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SUMMARY
Cancer-driven granulo-monocytopoiesis stimulates expansion of tumor promoting myeloid populations,
mostly myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs). We identi-
fied subsets of MDSCs and TAMs based on the expression of retinoic-acid-related orphan receptor
(RORC1/RORg) in human and mouse tumor bearers. RORC1 orchestrates myelopoiesis by suppressing
negative (Socs3 and Bcl3) and promoting positive (C/EBPb) regulators of granulopoiesis, as well as the
key transcriptionalmediators ofmyeloid progenitor commitment and differentiation to themonocytic/macro-
phage lineage (IRF8 and PU.1). RORC1 supported tumor-promoting innate immunity by protecting MDSCs
from apoptosis, mediating TAM differentiation and M2 polarization, and limiting tumor infiltration by mature
neutrophils. Accordingly, ablation of RORC1 in the hematopoietic compartment prevented cancer-driven
myelopoiesis, resulting in inhibition of tumor growth and metastasis.
INTRODUCTION

Immunologic stress, such as infection and cancer, modifies

the magnitude and composition of the hematopoietic output, a

feature of immune regulation defined as ‘‘emergency’’ hemato-

poiesis, to guarantee proper supply of immune cells to increased

demand (Ueha et al., 2011). Tumors can reprogram myeloid

cells to promote disease progression (Sica and Bronte, 2007).

However, the molecular pathways guiding cancer-driven ‘‘emer-

gency’’ myelopoiesis remain largely unknown. Colony-stimu-

lating factors (CSFs) are major orchestrators of hematopoietic

development. Among these, granulocyte CSF (G-CSF) and

granulocyte-macrophage CSF (GM-CSF) drive ‘‘emergency’’

myelopoiesis by securing supply of neutrophils and macro-

phages from bone marrow (BM) and hematopoietic stem cell
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regulate HSC niche homeostasis (Chow et al., 2011; Winkler

et al., 2010). Thus, investigation of the molecular networks that

dictate this reciprocal regulation appears to be crucial, as it

may affect tissue homeostasis during cancerogenesis.

G-CSF-induced granulopoiesis is mediated through the

transcription factors c-EBPb (Akagi et al., 2008) and STAT3

(Zhang et al., 2010), whereas M-CSF supports monocyte differ-

entiation through the transcription factors PU.1 and IRF8 (Fried-

man, 2007). Of relevance, interleukin-17A (IL-17A) promotes

G-CSF- and stem-cell-factor-mediated neutrophilia (Liu et al.,

2010) and supports G-CSF-driven ‘‘emergency’’ myelopoiesis

(Schwarzenberger et al., 2000).

Despite the fact that IL-17 expression in cancer has been so

far mainly restricted to the adaptive immunity (Iwakura et al.,

2011) and its role in cancer remains controversial (Toomer and

Chen, 2014), TAMs and MDSCs produce the Th17-driving

cytokines TGFb and IL-6 (Zamarron and Chen, 2011), and IL-

17-expressing cells with macrophage morphology have been

described in cancer patients (Zhu et al., 2008). Although the

Th17 response is controlled by the orphan nuclear receptor ret-

inoic-acid-related orphan receptor gamma (RORg) full-length

protein (RORC1) and the RORCgt splice variant (RORC2) (Ivanov

et al., 2006), the signaling pathways that drive IL-17-producing

innate immune cells have been poorly investigated. IL-17A-ex-

pressing myeloid cells have been reported in inflammation (Tay-

lor et al., 2014; Zhu et al., 2008; Zhuang et al., 2012). In arthritis

patients, mast cells express a dual RORC1/IL-17A fingerprint in

response to TLR4 ligands (Hueber et al., 2010), and a population

of RORgt-expressing neutrophils that produce IL-17 was identi-

fied in fungal infection (Taylor et al., 2014). We explored the role

of the IL-17/RORC1 axis in myeloid lineage differentiation and

commitment associated with cancer development.

RESULTS

Divergent RORC1/IL-17A Fingerprint in
Tumor-Associated Myeloid Cells
To clarify the role of IL-17A+ innate immune cells in tumor

progression, we screened the myeloid compartment of fibro-

sarcoma (MN/MCA1)-bearing C57BL/6 mice. A tumor volume

of <1.5 cm3 and few lung metastases (fewer than five), at days

21–23 after tumor cell injection, was defined as early-stage dis-

ease (ED), whereas tumors larger than 2 cm3 and a higher num-

ber of lung metastases (more than 15; days 25–28) was defined

as advanced-stage disease (AD) (Figure S1). In AD, few blood

and spleen CD45+CD3+ T cells expressed IL-17A (data not

shown), whereas IL-17A was significantly expressed by CD45+

CD3� cells in the blood (30% ± 3%) and spleen (12% ± 1.5%)

(Figure 1A). Few CD45+CD3� cells expressed IL-17A in non-

tumor bearers (NTs) and ED, suggesting that IL-17A+ myeloid

cells mark advanced cancer-associated inflammation. FACS

analysis of theCD45+CD3� cell pool confirmed that Gr1+CD11b+

MDSCs represent the major splenic myeloid population in AD

(Figure 1B), comprising a predominant polymorphonuclear

CD11b+Gr1+Ly6GhighLy6Clow (PMN-MDSC) population and

side monocytic CD11b+Gr1+Ly6ChighLy6Glow (M-MDSC) and

CD11b+F4/80+ macrophage populations. IL-17A was signifi-

cantly expressed by PMN-MDSCs in the blood and spleen

of AD mice (Figure 1C), although these cells failed to release
254 Cancer Cell 28, 253–269, August 10, 2015 ª2015 Elsevier Inc.
IL-17 in response to degranulating signals, including CD16/32

(FCII/III) antibody-mediated cross-linkage and C5a (data not

shown) (Mantovani et al., 2011). In contrast, IL-17A was poorly

or not expressed by M-MDSCs (Figure 1C) and CD11b+F4/80+

macrophages (data not shown). RORC1 and its splice variant

RORC2 are master regulators of IL-17A gene transcription

in Th17 cells (Ivanov et al., 2006), innate lymphocytes (Sawa

et al., 2010), gd T cells (Gray et al., 2011), and natural killer

T cells (Rachitskaya et al., 2008). Hence, we tested by FACS

whether IL-17 expression in myeloid cells was associated

with RORC1. In keeping with IL-17A expression, the majority

of blood and spleen PMN-MDSCs from AD mice expressed

RORC1, while its expression was restricted to a minor subset

of IL-17A� M-MDSCs (Figure 1D, left). Nevertheless, as

compared to PMN-MDSCs, M-MDSCs expressed higher levels

of RORC1, estimated as mean fluorescence intensity (MFI) (Fig-

ure 1D, right). It is noteworthy that RORC1 was highly expressed

by splenic IL-17A�CD11b+F4/80+ macrophages in ADmice (Fig-

ure 1E), by F4/80+ TAMs (>90%) and thyoglicollate-elicited peri-

toneal macrophages (PECs) from both tumor-free (NT-PEC) and

AD (AD-PEC) mice (Figure 1E).

To corroborate the evidence that ED stages already pro-

mote emergency hematopoiesis, we performed histopatholog-

ical and immunohistochemical analysis of both spleens and BM

frommice bearing early- and late-stage tumor (Figure 2A). Histo-

pathological analysis of the BM parenchyma of wild-type (WT)

and Rorc1�/� tumor-free and tumor-bearing mice (including ED

and AD tumor stages) showed a significant expansion of the

granulocytic compartment (Figure 2A, top), which associated

with a progressive contraction of the erythroid colonies (blue ar-

rows) and with signs of dysmegakaryopoiesis (i.e., megakaryo-

cytes with bulbous and/or hypolobated nuclei and prominent

pleiomorphism; red arrows). Notably, at late time points (AD),

theBMgranulocytic hyperplasia of tumor-associated emergency

hematopoiesis was characterized by the enrichment in immature

myeloid precursors (Figure 2A, top, dashed lines), which were

more conspicuous in WT than in Rorc1�/� mice. As expected,

tumor-freemice showed a normal composition of the hematopoi-

etic parenchyma in theBMwithpreservedmyeloid/erythroid ratio

and normal maturation of the myeloid elements. Spleen histopa-

thology performed on the same animals demonstrated signs of

tumor-associated emergency hematopoiesis in the spleen

parenchyma of ED and AD tumor-bearing WT and Rorc1�/�

mice, in the form of red pulp hyperplasia underlying splenomeg-

aly (Figure 2A, bottom). The enhanced myelopoiesis of WT mice

featured the progressive (i.e., from ED to AD) accumulation of

clusters of morphologically immature granulocytes (Figure 2A,

bottom, arrows and dashed lines; right H&E insets) that inter-

mingled with erythroid precursor islets, megakaryocytes, and

polymorphonuclear granulocytes. Despite a comparable degree

of red pulp hyperplasia due to the consistent increase in poly-

morphonuclear granulocytes, erythroid precursors, and mega-

karyocyte clusters, Rorc1�/� mice showed less clusters of

morphologically immature myeloid cells as compared with their

WT counterparts (Figure 2A, bottom, arrows and dashed lines;

right H&E insets). Immunohistochemical analysis of the MDSC-

associated IL-4R marker highlighted IL-4R+ myeloid cells with

monocytoid or granulocytic morphology populating the myeloid

cell aggregates differently enriched within the expanded red



Figure 1. Myeloid-Specific IL-17A+/RORC1+

Cells Mark Advanced Cancer-Associated

Inflammation

(A) Expression of IL-17A by CD45+CD3� hemato-

poietic cells in blood (left) or spleens (right) from

tumor-free (NT) or MN/MCA1-bearing mice, at

both early tumor disease (ED) and advanced

tumor disease (AD). Mean percentages ± SEM of

IL-17A+ cells within the CD45+CD4�CD3� gate

were measured by fluorescence-activated cell

sorting (FACS).

(B) Myeloid subsets in spleens from tumor-

bearing mice. Mean percentages ± SEM of

Gr1+CD11b+ (total MDSCs), CD11b+Gr1+Ly6C+

Ly6Glow (M-MDSCs), CD11b+Gr1+Ly6G+Ly6Clow

(PMN-MDSCs) and CD11b+F4/80+ cells in spleen

from NT, ED, or AD mice measured within the

CD45+ gate.

(C) Mean percentages ± SEM of IL-17A-express-

ing M-MDSCs and PMN-MDSCs in blood or

spleens from NT, ED, or AD mice.

(D) Mean percentages and MFI ± SEM of RORC1-

expressing M-MDSCs and PMN-MDSCs in blood

or spleens from NT or tumor-bearing mice.

(E) RORC1-expressing splenic CD11b+F4/80+

cells obtained from NT, ED, and AD mice (left) or

RORC1-expressing PECs obtained from NT

(NT-PECs) and AD (AD-PECs) mice and RORC1-

expressing TAMs isolated from AD tumors

(MN/MCA1) (right). Results are shown as mean

percentages ± SEM. Expression of IL-17A and

RORC1 in myeloid cells was determined within the

CD11b+CD45+ gate. Results of a representative

experiment of six independent experiments with

sixmice/group are shown. Statistical analysis: *p <

0.05, **p < 0.01, ***p < 0.001 (Student’s t test).

See also Figure S1.
pulp of tumor-bearing WT and Rorc1�/� mice (Figure 2A). Over-

all, these results demonstrate that Rorc1�/� mice effectively

instruct BM and splenic emergency hematopoiesis along cancer

development while displaying a defective induction of specific

MDSC-related myeloid populations.

With the gating strategy used to determine IL-17A and RORC1

shown in Figure 2B, our results suggest that RORC1 expres-

sion is uncoupled from IL-17A in the monocytic/macrophage

compartment, while it is co-expressed in the granulocytic cells

of tumor-bearingmice. To validate this finding in cancer patients,

we analyzed the MDSC populations in PBMCs from healthy do-

nors (HDs; n = 10) or patients with advanced colorectal cancer

(CRC; stage II/III; n = 10) using the gating strategy of Figure 2C.

It is noteworthy that the number of RORC1+ M-MDSCs (HLA-

DRlow/�CD14+CD33high) and PMN-MDSCs (HLA-DRlow/�CD15+

CD33high) increased in CRC patients and dominated in the

human PMN-MDSC subset (Figure 2D). Expansion of MDSC

populations in cancer patients was paralleled by an increased

number of circulating neutrophils and monocytes (Figure 2D).

Also in analogy to the murine setting (Figure 1D), the human

M-MDSC population showed higher mean fluorescence

intensity of RORC1+. In contrast, IL-17A was detected neither

in human blood M-MDSCs nor in PMN-MDSCs (data not
shown). These results indicate that expression of RORC1 by

myeloid subsets constitutes a hallmark of tumor-promoting

‘‘emergency’’ myelopoiesis.

RORC1 Promotes Expansion of MDSCs and TAMs
To investigate the in vivo relevance of RORC1-expressing

myeloid cells, we transplanted donor RORC1-deficient BM

cells into lethally irradiated C57BL/6 WT recipient mice

(Rorc1�/�>WT), to be compared to WT>WT mice. Eight weeks

later, mice were injected with MN/MCA1 cells and monitored

for tumor development. Tumor growth and metastasis were

significantly reduced in Rorc1�/�>WT mice (Figure 3A). The

effect of RORC1 deficiency in BM cells was tested in two

additional tumor models. Rorc1�/� BM was transplanted into

mouse mammary tumor virus-polyoma middle T antigen

(MMTV-PyMT; a spontaneous mammary carcinoma [Guy et al.,

1992]) transgenic mice and into C57BL/6 mice that were

exposed to methylcholanthrene-induced cancerogenesis and

subsequently developed fibrosarcoma (Stutman, 1974) (Fig-

ure 3B). Consistently, RORC1 deficiency in the BM resulted in tu-

mor growth inhibition in both models (Figure 3B). FACS analysis

(data not shown) confirmed the IL-17/RORC1 expression pattern

observed in the MN/MCA1 model (Figure 1). Rorc1�/�>WT
Cancer Cell 28, 253–269, August 10, 2015 ª2015 Elsevier Inc. 255
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tumor-bearing mice showed a significant reduction of splenic

M-MDSCs and PMN-MDSCs, in comparison to WT>WT mice

(Figure 3C). To estimate the suppressive activity of M-MDSCs,

we activated cells with IFN-g (Gabrilovich et al., 2012), loaded

them with ovalbumin, and then co-cultured them for 3 days

with total splenocytes purified from OT-1 transgenic mice ex-

pressing the T cell receptor specific for the ovalbumin antigen.

Rorc1�/� M-MDSCs displayed reduced suppressive activity,

estimated as proliferation of co-cultured OT1 splenocytes (Fig-

ure 3D). It is noteworthy that, at the tumor site, we observed an

increase of PMN-MDSCs (Figure 3E), as opposed to a significant

decrease of CD11b+Ly6ClowF4/80+ TAMs (Figure 3F). Histologi-

cal analysis of spleens from Rorc1-deficient tumor bearers

showed a dramatic reduction in IL-4R+ MDSCs (Marigo et al.,

2010) and strongly reduced expression of IL-17A (Figure 3G) in

comparison to WT counterpart. These results are further confir-

mative of the IL-4R expression analyses onWT andRorc1�/�BM

(Figure 2A) and imply that RORC1 promotes the expansion

of splenic MDSCs and TAMs. To confirm this conclusion, we

treated tumor-free or MN/MCA1-bearing WT mice with the

RORC1 agonist SR1078 (Kojetin and Burris, 2014). SR1078

increased the AD lung metastatic burden (Figure S2A), as well

as splenic M-MDSCs and PMN-MDSCs (Figure S2B, left).

Despite the fact that CD11b+F4/80+ macrophages were not

modified (data not shown), SR1078 increased RORC1 expres-

sion in splenic macrophages, as well as in M-MDSCs and

PMN-MDSCs (Figure S2B). By contrast, IL-17A expression

was selectively induced in PMN-MDSCs (Figure S2B, right). Of

note, SR1078 did not affect steady-state myelopoiesis in tu-

mor-free mice (Figure S2C), confirming RORC1 as a positive

regulator of myelopoiesis in cancer.

To explain the reduction of MDSCs in Rorc1�/� tumor-bearing

mice, we considered two possible mechanisms: RORC1 regu-

lates the differentiation of hematopoietic precursors in the BM

(Figure 4) and/or RORC1 regulates the survival and maturation
Figure 2. Effects of RORC1 on Emergency Hematopoiesis Associated

(A). Top: BM histopathological analysis of WT (left) and Rorc1�/� (right) tumor-f

showing the progressive changes in BM hematopoietic parenchyma along tum

hematopoietic composition with no detectable differences between WT and Ror

myeloid granulocytic lineage, which was paralleled by the contraction of the ery

similarly observed in WT and Rorc1�/� mice. In AD samples, the myeloid pool e

myeloid cell clusters (dashed lines), which was consistent with the enhanced mye

immature myeloid cell clusters characterizing AD samples were more prominent

Bottom: spleen histopathological analysis ofWT (left) andRorc1�/� (right, compos

panels; AD, lower composite panels) mice showing the progressive increase in red

In tumor-free mice, white pulp (WP) areas are predominant over RP, the latter be

yocytic elements (upper H&E panels and upper H&E insets). In ED and AD samples

foci. In particular, the RP WT mice showed an increase in immature myeloid cell

granulocytic or monocytoid morphology (left middle and lower H&E insets, arrows

Rorc1�/� mice, despite a comparable degree of RP hyperplasia mainly conseq

clustering, foci of morphologically immature myeloid cells were less evident (right

RP myeloid cell clusters that were differently expanded in WT and Rorc1�/� m

marker IL-4R were detected (IHC insets, red signal).

(B) Gating strategy used to determine the different mouse myeloid subsets.

(C) Gating strategy used to determine the different human myeloid subsets.

(D) Cytofluorimetric analysis of RORC1 expression in the circulating MDSC subset

was performed on PBMCs, and analysis of neutrophils and monocytes was

DR�CD332+CD14+), PMN-MDSCs (HLA-DR�CD332+CD15+), monocytes (HLA-D

CD16+CD33+) in blood from healthy donors (HD; n = 10) and CRC patients (n = 10

test). Below, a representative flow-cytometry analysis of RORC1+M-MDSCs and
of MDSCs (Figure S3). We first analyzed by FACS the commit-

ment of common hematopoietic progenitors in tumor-bearing

WT>WT and Rorc1�/�>WT chimeras. Although in the spleen

few Lin�c-kit+Sca-1+ (LSK) cells were measured (data not

shown), LSK cells were significantly increased in the BM from

Rorc1�/�>WT mice (Figure 4A). Analysis of myeloid progenitors

revealed increased number of CMPs in the BM of Rorc1�/�>WT

chimeras and, in accordance, a decrease of granulocyte/macro-

phage progenitors (GMPs) (Figure 4A). These findings reveal a

blockage in differentiation of early hematopoietic progenitors in

Rorc1�/�>WT chimeras and suggest a relevance of RORC1

directly in the BM during the early steps of myeloid cell differen-

tiation. Corroborating this hypothesis, RORC1was expressed by

immature (c-kit+) granulocytes andmonocytes in the BMof naive

mice (Figure 4B). In the same myeloid cell subsets, IL-17 was

found produced mainly by immature neutrophils (Figure 4B).

Next, we tested the in situ expression of IL-17A and RORC1 in

BM parenchyma of patients undergoing a biopsy for staging

of Hodgkin’s lymphoma. Consistently, IL-17A staining was local-

ized within myeloid cells with immature morphology, within the

precursor-rich areas lining the bone trabeculae (Figure 4C, black

arrows). By contrast, mature granulocytes with segmented

nuclei barely expressed or did not express IL-17A. Indeed, a

neat decreasing gradient was observed in IL-17A expression

from para-trabecular areas rich in precursors toward inter-

trabecular spaces mainly populated by mature elements (Fig-

ure 4C). Notably, double-marker immunohistochemical analysis

confirmed that IL-17A+ hematopoietic cells did not correspond

to Th-17 cells, as they were distinct from the CD3+ T elements

populating the BM niche (Figure 4D, black arrows). Within

the same BM hematopoietic parenchyma, RORC1 (RORg)

expression was detected mostly in myeloid cells with combined

cytoplasmatic and nuclear localization (Figure 4E, black arrows).

These results in human samples further support that the RORC1/

IL-17A program takes part in the regulation of the precursor
with Cancer Development

ree (NT) and tumor-bearing mice with early (ED) and advanced (AD) disease,

or development in the two strains. While tumor-free mice displayed a normal

c1�/� strains, ED and AD BM samples showed a progressive expansion of the

throid (blue arrows) and megakaryocytic (red arrows) compartments and was

xpansion was also characterized by the increase in morphologically immature

lopoietic activitiy of stress-adapted (i.e., cancer-associated) myelopoiesis. The

in WT than in Rorc1�/� mice. Original magnifications of H&E panels are 3400.

ite panels) tumor-free (upper panels) and tumor-bearing (ED,middle composite

pulp (RP) hematopoietic function along tumor development in the two strains.

ing mainly populated by erythroid cells with scattered myeloid and megakar-

, RP hyperplasia was evident and consequent to the increase of hematopoietic

figures (left middle and lower H&E panels, arrows and dashed lines) showing

), along with an increase in megakaryocyte and erythroid precursor clusters. In

uent to megakaryocyte and polymorphonuclear granulocyte expansion and

middle and lower H&E panels and insets, arrows and dashed lines). Within the

ice, cells with granulocytic or monocytoid morphology expressing the MDSC

s, neutrophils, andmonocytes from CRC patients as indicated. MDSC analysis

carried out in whole blood. Mean percentages ± SEM of M-MDSCs (HLA-

R+CD14+CD15low/�CD16�CD332+), and neutrophils (HLA-DR�CD14�CD15+

) are shown. Statistical analysis: *p < 0.05, **p < 0.01, ***p < 0.001 (Student’s t

RORC1+PMN-MDSCs from cancer patients is also shown.
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compartment during myelopoiesis. To test whether RORC1

regulates myelopoiesis, lineage-negative (Lin�) cells isolated

from WT and Rorc1�/� BM were treated in vitro with G-CSF

or GM-CSF and tested, 5 days later, for granulocyte or mono-

cyte differentiation by flow cytometry (Figure 4F). In response to

GM-CSF, Lin� cells from Rorc1�/� mice failed to differentiate in

macrophages, displaying increased differentiation into GR-1high

granulocytes. On the contrary, G-CSF treatment resulted in

reduced GR-1high granulocyte production by RORC1�/� Lin�

cells. This contrasts with the steady-state condition, where in

absence of any specific stimulus the rate of differentiation of

Lin� cells was identical between WT and Rorc1�/� BM sources.

These results indicated a key role of RORC1 in the myelopoietic

activity of G-CSF and GM-CSF. Figure S3A underlies the

different effects of G-CSF and GM-CSF on the differentiation

of Ly6G+ subsets, indicating that GM-CSF promotes a larger

expansion of double Ly6G+Ly6C+ monocytic cells.

We next determined whether RORC1 might control MDSC

survival (Sinha et al., 2011) and maturation. Small differences

were observed in survival of WT versus Rorc1�/� BM-derived

MDSCs at steady-state conditions (medium) (Figure S3B). In

contrast, increased AnxV+ binding was observed in both

M-MDSCs and PMN-MDSCs after 48 hr, which was reduced in

the presence of either tumor supernatant (TSN) or combination

of GM-CSF/G-CSF in both subsets (Figure S3B), indicating

that RORC1 is crucial for MDSC survival. The protective role of

both TSN and GM-CSF/G-CSF against apoptosis was partially

lost in RORC1-deficient M-MDSCs, while RORC1-deficient

PMN-MDSCs suffered a massive apoptosis (Figure S3B). These

results confirm the protective role of RORC1 in CSF-mediated

M-MSDC and PMN-MDSC survival, highlighting a tighter depen-

dence of PMN-MDSC survival from RORC1 expression levels.

Neutrophil activation and maturation is paralleled by upre-

gulation of the FCgII and FCgIII receptors (CD32 and CD16,

respectively) (Hogarth, 2002) and of the complement C5a re-

ceptor (C5aR) (Guo and Ward, 2005). Splenic PMN-MDSCs

from WT>WT tumor bearers expressed lower CD16/CD32 and

C5aR levels than did PMN-MDSCs from Rorc1�/�>WT mice

(Figure S3C). Furthermore, WT splenic immature PMN-MDSCs

expressed lower levels of CD16/CD32 and C5aR, as opposed

to higher RORC1, when compared to mature thioglycollate-eli-
Figure 3. Role of RORC1 in the Expansion of MDSCs and TAMs during

(A) MN/MCA1 cells were injected into the indicated hematopoietic reconstitutedm

monitored. At day 28, mice were sacrificed, the weight of the tumors (g) was esti

measured (right). Data are shown are the mean ± SEM of at least 12 mice/group

(B) Rorc1�/� BMwas transplanted into MMTV-PyMT transgenic mice (left) or C57

fibrosarcoma (right). Mean tumor volumes (cm3) ± SEM from six WT>WT and R

***p < 0.001 (Student’s t test).

(C) Mean percentages ± SEM of M-MDSCs and PMN-MDSCs in spleens from

*p < 0.05, **p < 0.01, ***p < 0.001 (Student’s t test).

(D) Decreased antigen-specific (OVA) suppressive activity of Rorc1�/�M-MDSCs

the mean ± SEM of a representative experiment done in triplicate. Statistical ana

(E) Mean percentages ± SEM of M-MDSCs and PMN-MDSCs in primary AD tumo

*p < 0.05, **p < 0.01, ***p < 0.001 (Student’s t test).

(F) Mean percentages ± SEM of F4/80+ TAMs in primary tumors from WT>W

Rorc1�/�>WT chimeras (white bar) is represented as relative value as compared t

of six independent experiments, with n = 6 mice per group is shown. Statistical

(G) Histological analysis of IL-17A+ and IL-4R+ in the splenic MDSC population i

See also Figure S2.
cited neutrophils (Neu-PECs) (Figure S3D). These observations

indicate that RORC1 might suppress neutrophil maturation,

favoring immature PMN-MDSCs to support tumor promotion.

RORC1 Controls Critical Regulators of Myelopoiesis
To determine the tumor-derived factor/s that activate RORC1,

we analyzed MN/MCA1 supernatants from AD mice for myeloid

growth factors. TSNs were enriched in G-CSF, GM-CSF, and

M-CSF and partially in IL-1b (Figure 5A). Of note, 48 hr of treat-

ment with either a combination of GM-CSF and G-CSF or TSN

induced IL-17A expression in BM-derived PMN-MDSCs and,

to a lower extent, in M-MDSCs (Figure 5B, left). BM-derived

M-MDSCs and PMN-MDSCs expressed basal RORC1 levels

(Figure 5B, right), plausibly induced by GM-CSF and G-CSF

used for their in vitro generation (Peranzoni et al., 2010), which

was increased by combination of GM-CSF and G-CSF (Fig-

ure 5B, right). Confocal microscopy demonstrated that RORC1

expression and nuclear translocation was induced in naive

PECs challenged for 72 hr with lipopolysaccharide (LPS), IL-

1b, G-CSF, GM-CSF, and M-CSF, but not by IFN-g (Figure 5C)

or IL-6 (data not shown). Of note, we found increased levels of

G-CSF and GM-CSF in the sera of AD mice (data not shown),

as compared to ED mice, suggesting that RORC1-dependent

emergency hematopoiesis is controlled by the extent of can-

cer-associated inflammation.

Finally, we determined the mRNA levels for RORC1 and

RORC2 (Ivanov et al., 2006; Yang et al., 2008) in PECs and in thy-

mocytes (Sun et al., 2000) from healthy WT mice (Figure S4A). It

is noteworthy that LPS-stimulated (72 hr) PECs expressedRorc1

mRNA levels similar to those of WT thymocytes, but not Rorc2

mRNA. These data confirm that in cancer, the monocyte-macro-

phage lineage expresses a selective RORC1 fingerprint unlinked

from IL-17A, whereas the granulocyte/neutrophil lineage ex-

presses a dual RORC1/IL-17A signature. In support of RORC1

as a key driver of ‘‘emergency’’ granulo-monocytopoiesis, BM-

CD11b+Gr1+ granulocytes and BM-CD11b+Ly6C+ monocytes

from both LPS- and M-CSF-treated mice significantly increased

RORC1 expression (Figure S4B).

To determine the in vivo role of myeloid growth factor/s, we

treated MN/MCA1-bearing mice with neutralizing antibodies to

G-CSF, GM-CSF, or the M-CSF receptor (M-CSFR/CSFR1)
Tumor-Driven Emergency Myelopoiesis

ice. Starting from day 14 after MN/MCA1 cell injection, tumor volume (cm3) was

mated (left), and the number and weight of macroscopic lung metastases was

. Statistical analysis: *p < 0.05, **p < 0.01, ***p < 0.001 (Student’s t test).

Bl/6 mice, which were subsequently exposed to methylcholanthrene to induce

orc1�/�>WT chimeras are shown. Statistical analysis: *p < 0.05, **p < 0.01,

WT>WT and Rorc1�/�>WT tumor (MN/MCA1) bearers. Statistical analysis:

in response to IFN-g at different MDSC:OT1 splenocyte ratios. Data shown are

lysis: *p < 0.05, **p < 0.01, ***p < 0.001 (Student’s t test).

rs (MN/MCA1) from WT>WT and Rorc1�/�>WT mice (AD). Statistical analysis:

T and Rorc1�/�>WT tumor bearers (MN/MCA1). Myeloid cell percentage in

oWT>WT chimeras (100%) (black bar). Data from a representative experiment,

analysis: *p < 0.05, **p < 0.01, ***p < 0.001 (Student’s t test).

n WT and Rorc1�/� tumor-bearing mice.
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Figure 4. RORC1 Regulates Myeloid Commitment of BM Precursors

(A) Frequency of hematopoietic stem cells (LSK) andmyeloid progenitors (CMP, GMP, andMEP) in the BMofWT andRorc1�/�mice. Mean percentages ± SEM is

shown. Statistical analysis: *p < 0.05, **p < 0.01, ***p < 0.001 n = 6 (Student’s t test).

(B) Flow-cytometry analysis for the expression of RORC1 and IL-17 in different myeloid cells identified by staining of BM cells with monoclonal antibodies to

CD11b, CD117, GR-1, and F4/80. For RORC1 expression, BMcells fromRorc1�/�micewere set as a negative control. Immature granulocytes (myeloblasts) were

identified according to their co-expression of GR-1 and c-kit. Mature granulocytes were GR-1high and c-kit�, whereas monocytes/macrophages were

CD11b+Gr-1�F4/80+. For further checking of their phenotype, these populations were sorted and stained with Giemsa. Representative pictures are shown.

(legend continued on next page)
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(Hume and MacDonald, 2012). Inhibition of G-CSF and GM-CSF

limited the accumulation of splenic PMN-MDSCs with no effect

on M-MDSCs (Figure 5D, left). In contrast, the anti-CSFR1 anti-

body decreased the number of F4/80+ spleen macrophages

whereas, surprisingly, it induced a strong increase in splenic

PMN-MDSCs. At contrast, the anti-G-CSF antibody significantly

increased the CD11b+F4/80+ spleen macrophages. Confirming

the relevance of myelopoiesis to cancer inflammation, neutrali-

zation of GM-CSF, G-CSF, or M-CSFR resulted in inhibition of

tumor growth and metastasis (Figure 5D, center and right).

These findings suggest a reciprocal antagonistic regulation of

the polymorphonuclear and monocytic lineages in CSF-driven

‘‘emergency’’ myelopoiesis in cancer.

To shed light on themechanisms of RORC1-driven emergency

myelopoiesis, we evaluated positive and negative transcriptional

regulators in BM and spleens from WT>WT and Rorc1�/�>WT

tumor bearers. CCAAT/enhancer binding protein b (C/EBPb) is

amajor positive regulator of G-CSF- andGM-CSF-driven ‘‘emer-

gency’’ myelopoiesis (Akagi et al., 2008), whereas C/EBPa ap-

pears to be a major regulator of ‘‘steady-state’’ granulopoiesis

and cooperates with PU.1 to ‘‘emergency’’ granulo-monocyto-

poiesis (Hirai et al., 2006; Jin et al., 2011). We observed a mild

but significant decrease of mRNA expression of PU.1, C/EBPb,

and C/EBPa in spleens and BM from Rorc1�/�>WT tumor

bearers, paralleled by decreased C/EBPb protein levels in

splenic PMN-MDSCs and M-MDSCs (Figure 6A). Importantly,

BM and spleens from Rorc1�/�>WT MN/MCA1 tumor bearers

displayed increased mRNA levels of the suppressor of cytokine

signaling-3 (Socs3) and the transcriptional co-regulator B cell

leukemia/lymphoma 3 (Bcl3) (Figure 6B), both potent inhibitors

of G-CSF-driven granulopoiesis (Croker et al., 2004; Kreisel

et al., 2011). In agreement with the IFN-g-mediated inhibition

of G-CSF-driven neutrophilia (Ulich et al., 1988), IFN-g induced

a strong increase of Socs3 and Bcl3 mRNA in splenic

PMN-MDSCs from Rorc1�/� tumor bearers (Figure 6B, right).

Finally, in accordange with the decreased number of macro-

phages found in spleen and tumor of Rorc1�/�>WT chimeras

(Figure 6C), we observed a decreased number of IRF8-express-

ing CD11b+F4/80+CD115+ macrophages (Figure 6D), which

was confirmed by confocal microscopy in tumor tissues of

Rorc1�/�>WT chimeras (data not shown). As M-CSFR/CD115

(Qian and Pollard, 2010) is a marker of terminally differentiated

macrophages (Auffray et al., 2009), this result indicates that

RORC1 is required for the modulation of cell-fate switching fac-

tor(s) driving maturation of macrophages (Friedman, 2007).

RORC1 Controls Polarization of Myeloid Cells
M-CSFR signaling modulates macrophage survival and differen-

tiation (Qian and Pollard, 2010) and induces M2 macrophage

polarization, a condition supporting tumor progression (Manto-

vani and Sica, 2010). To evaluate RORC1 in the macrophage
(C–E) In situ expression of IL-17A and RORC1 (RORg) within the hematopoietic

lymphoma (HL). Representative pictures show that both IL-17A (C) and RORC1 (E)

is not expressed by CD3+ cells in the BM (D).

(F) Lin� cells were isolated from the BM of WT and Rorc1�/� mice and treated as

within the gate of viable cells (7-AAD-). Data shown are the mean ± SEM of two

(Student’s t test).

See also Figure S3.
polarization, we analyzed the mRNA expression of prototypical

M1 and M2 genes in AD-PECs, cells displaying an intermediate

PEC versus a TAM phenotype and representing a good model

to study M1-M2 polarization in cancer (Sica et al., 2000; Tor-

roella-Kouri et al., 2009) from tumor-bearing WT>WT and

Rorc1�/�>WT chimeras. AD-PECs were isolated from tumor-

bearing WT>WT and Rorc1�/�>WT chimeras and treated with

100 ng LPS (M/L) or 200 U/ml IFN-g for 4 hr to induce M1 polar-

ization or exposed to LPS for 20 hr (L/M) to induce LPS-tolerant

M2-like polarization (Porta et al., 2009). In addition, spleen PMN-

MDSCs were stimulated 4 hr in vitro with IFN-g, LPS, or IFN-g

plus LPS. RORC1-deficient AD-PECs displayed enhanced

expression of M1 (IL-12p40, tumor necrosis factor alpha

[TNF-a], IL-1b) and decreased expression of M2 (IL-10, TGFb,

chitinase-3-like protein 3/Ym1) genes under M/L and L/M condi-

tions (Figure 7A). Simiarly, RORC1-deficient PMN-MDSCs

showed increased TNF-a and IL-1b mRNA levels and IL-1b

secretion in response to LPS/IFN-g (Figure 7B). Thus, RORC1

acts as negative regulator of M1 and promoter of M2 cytokine

genes. This observation was supported by the increased levels

of pro-inflammatory cytokines (TNF-a and IL-1b) and growth

factors (G-CSF, GM-CSF, and VEGF) in MN/MCA1 superna-

tants from Rorc1�/�>WT (Figure 7C), correlating with marked

splenomegalia observed in Rorc1�/�>WT chimeras bearing

the MN/MCA1 and MMTV-PyMT tumors (Figure 7D). Moreover,

we found increased splenic CD4+IFN-g+ and F4/80+TNF-a+

cells in tumor-free and tumor-bearing Rorc1�/�>WT mice

(Figure S5A), while total CD45+CD4+ cells decreased as

described (Figure S5A) (Harrington et al., 2005). In contrast,

tumor-infiltrating CD4+IFN-g+ and total CD45+CD4+ T cells

increased in Rorc1�/�>WT chimeras (Figure S5A). Furthermore,

F4/80+TNF-a+ macrophages increased in spleens and tumors

from Rorc1�/�>WT mice (Figure S5A). Supporting the inhibitory

role of RORC1, CD4+Foxp3+ T regulatory cells significantly

decreased in the spleen from Rorc1�/�>WT mice (Figure S5A).

Antagonistic Regulation of the Polymorphonuclear and
Monocytic Lineages
A decreased number of tissue macrophages in tumors from

Rorc1�/�>WT mice (Figure 3F) correlated with increased PMN-

MDSC infiltration (Figure 3E), suggesting that pathways leading

to terminal differentiation and M2 polarization of TAMs hamper

neutrophil accumulation in tumors. To prove this assumption,

we treated MN/MCA1-bearing WT mice with an anti-CSFR1

antibody (Ries et al., 2014), which significantly depleted the

CD11b+F4/80+CD115+ TAM population, co-expressing high

RORC1 levels (Figure 8A). Macrophage depletion was paralleled

by the inhibition of immature RORC1+ M-MDSCs and PMN-

MDSCs (Figure 8B) and increased tumor infiltration of mature

(C5ahighCD16/32high) (Figure 8C) RORC1�Ly6Ghigh neutrophils

(Figure 8B). In agreement, RORC1 was highly expressed in
BM parenchyma of patients undergoing BM biopsy for staging of Hodgkin’s

are produced by immature BM cells lining the endosteal niche, whereas IL-17A

indicated. The frequency of differentiated myeloid cell subsets was calculated

different experiments. Statistical analysis: *p < 0.05, **p < 0.01, ***p < 0.001
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Figure 5. CSF-, LPS-, and IL-1b-Mediated Induction of RORC1 in Innate Immune Cells

(A) Expression levels of GM-CSF, G-CSF,M-CSF, and IL-1b in theMN/MCA1 supernatants (TSN) from advanced disease were determined by ELISA. Data shown

are the mean ± SEM of three independent experiments.

(B) BM-MDSCs were left untreated or were treated with either TSN (MN/MCA1) or a combination of recombinant GM-CSF (40 ng/ml) and G-CSF (40 ng/ml) for

48 hr. Expression of IL-17A and RORC1 in M-MDSCs and PMN-MDSCs was evaluated by FACS analysis. Mean fluorescence intensity (MFI) ± SEM of three

representative experiments is shown. Statistical analysis: *p < 0.05, **p < 0.01, ***p < 0.001 (Student’s t test).

(C) Expression and nuclear translocation of RORC1 in PECs exposed to IFN-g (200 U/ml), LPS (100 ng/ml), IL-1b (20 ng/ml), G-CSF (40 ng/ml), GM-CSF

(40 ng/ml), and M-CSF (40 ng/ml). After 72 hr of in vitro activation, PECs were stained with anti-RORC1 antibody (red) or irrelevant rat immunoglobulin G (IgG).

Nuclei were counterstained with DAPI (blue). Representative images are shown. Confocal microscopy analysis of RORC1 nuclear fluorescence intensity (nuclear

coefficient) is shown on the right. Mean ± SEM from three independent experiments is shown. Statistical analysis: *p < 0.05, **p < 0.01, ***p < 0.001 (Student’s

t test).

(D) MN/MCA1 tumor-bearing mice were treated with blocking antibodies against G-CSF, GM-CSF, M-CSFR/CSFR1, or isotype control antibody as indicated.

Data onM-MDSCs, PMN-MDSCs, andCD11b+F4/80+ cells in spleens frommicewith ADwithin the CD45+ gate (left) and primary tumor growth (center) are shown

as the mean ± SEM. The number of macroscopic lung metastases (right) is shown as the mean ± SD. A representative experiment with six mice/ group is shown.

Statistical analysis: *p < 0.05, **p < 0.01, ***p < 0.001 (Student’s t test).

See also Figure S4.
F4/80+/CD115+ macrophages, in comparison to reduced

RORC1 levels in Ly6Glow granulocytes and negativity in mature

inflammatory Ly6Ghigh granulocytes (Figure 8D), indicating that
262 Cancer Cell 28, 253–269, August 10, 2015 ª2015 Elsevier Inc.
TAM infiltration is accompanied by infiltration of immature

MDSCpopulations, at theexpenseofmature neutrophils. Of rele-

vance, anti-M-CSF treatment resulted in a similar increase of



Figure 6. Influence of RORC1 on the Expression of Transcriptional Regulators of Myeloid Cell Maturation

(A) Total RNA from BM (left) and splenocytes (center) obtained from MN/MCA1-bearing WT>WT and Rorc1�/�>WT mice was analyzed by RT-PCR for the

expression of the C/EBPb, C/EBPa, and PU.1 transcription factors. Results are given as the fold increase over the mRNA level expressed by WT and are

representative of at least three different experiments. Mean percentages ± SEM of C/EBPb protein expression in M- and PMN-MDSC subsets in c-kitlow BM and

splenocytes fromWT>WT andRorc1�/�>WT tumor-bearing chimeras weremeasured by FACS analysis (right). Themean ± SD of three independent experiments

is shown.

(B) mRNA levels of Socs3 and Bcl3 in BM and splenocytes (left) or in unstimulated (�) and IFN-g-activated PMN-MDSCs (CD11b+Ly6G+) isolated from the spleen

(right) obtained from MN/MCA1-bearing WT>WT and Rorc1�/�>WT mice. Results are shown as the mean ± SEM from triplicate values.

(C) Splenic CD11b+F4/80+CD115+ macrophages (left) and CD11b+F4/80+CD115+ TAMs (right). Macrophage percentage in Rorc1�/�>WT chimeras (white bar) is

represented as relative value as compared to WT>WT chimeras (100%) (black bar). Results are shown as the mean ± SEM from triplicate values.

(D) The mean count ± SEM of IRF8+F4/80+ cells in spleens and MN/MCA1 from WT>WT and Rorc1�/�>WT chimeras analyzed within the CD11b+F4/80+ gate is

shown. The mean ± SEM of three independent experiments is shown. Statistical analysis: *p < 0.05, **p < 0.01, ***p < 0.001 (Student’s t test).
C5ahighCD16/32highmatureneutrophils in thespleen (FigureS6A),

indicating its systemic effects. These results are in agreement

with Figure 5D and together suggest a competition between the

monocytic and granulocytic commitment of myeloid precursors.

As mature RORC1�PMN-MDSCs display a pronounced

inflammatory phenotype (Figure 7B), their inhibition most likely

contributes to maintaining the tumor-promoting microenviron-

ment. Furthermore, while M-CSF induced RORC1 expression

in splenic (data not shown) and medullar (Figure S4B) monocyte

precursors, treatment with anti-CSFR1 resulted in reduced
monocyte/macrophage precursors (population C + D) and

in increased granulocyte progenitors (population A + B) (Fig-

ure 8E). Supporting the role for reciprocal negative regulation

of monocytes/macrophages and granulocytes in cancer inflam-

mation, treatment with anti-G-CSF antibody increased the num-

ber of splenic F4/80+TNF-a+M1-likemacrophages, paralleled by

elevation of CD4+IFN-g+ Th1 cells (Figure 8F).

As the increase in CD4+IFN-g+ and F4/80+TNF-a+ cells

observed in Rorc1�/� tumor-bearing mice was phenocopied

by the anti-G-CSF treatment of MN/MCA1 tumor-bearing
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Figure 7. Effects of RORC1 on Macrophage Polarization

(A) Total RNA from control (medium), activated (IFN-g), M1-activated (M/L), and M2-like LPS-tolerant (L/M) AD-PECs harvested from MN/MCA1 from WT>WT

(black bar) or Rorc1�/�>WT (white bar) chimeras were analyzed by RT-PCR for the expression of representative M1 genes (IL-12p40, TNF-a, and IL-1b) and M2

genes (IL-10, TGFb, and Ym1). Statistical analysis: *p < 0.05, **p < 0.01, ***p < 0.001; n = 3 (Student’s t test). Results are representative of at least three different

experiments and are shown as the mean ± SEM from triplicate values.

(B) Total RNA from control (medium) and activated (IFN-g, LPS, or LPS+IFN-g) PMN-MDSCs obtained from the spleen from MN/MCA1-bearing WT>WT and

Rorc1�/�>WT chimeraswere analyzed by RT-PCR for the expression of representativeM1 genes (IL-1b and TNF-a). Secretion of IL-1b (pg/ml) was determined by

ELISA. Cells were activated as indicated for 24 hr. Results are given as the fold increase over the mRNA level expressed by untreated cells (medium) and are

representative of at least three different experiments; shown are the mean ± SEM from triplicate values. For ELISA, results are the average of three independent

experiments ± SD. Statistical analysis: *p < 0.05, **p < 0.01, ***p < 0.001 (Student’s t test).

(C) Expression levels (pg/ml) of cytokines/growth factors in tumor supernatants (MN/MCA1) harvested fromWT>WT andRorc1�/�>WT chimeras. Results are the

average of three independent experiments ± SEM. Statistical analysis: *p < 0.05, **p < 0.01, ***p < 0.001 (Student’s t test).

(D)Mean spleenweights (g)± SEM inMN/MCA1-bearing (n=10) andMMTV-PyMT (n= 6)mice.Statistical analysis: *p< 0.05, **p < 0.01, ***p< 0.001 (Student’s t test).

See also Figure S5.
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mice, we questioned whether G-CSFmight work through RORC.

To address this question, we treated WT and Rorc1�/� tumor-

bearing mice with anti-G-CSF and monitored the expansion of

both CD4+IFN-g+ and F4/80+TNF-a+ cells. As a result, the anti-

G-CSF treatment significantly decreased RORC1 expression in

PMN-MDSCs and partially in M- MDSCs and F4/80+ macro-

phages (Figure S6B). Moreover, the increase of tumor-infiltrating

F4/80+TNF-a+ macrophages and CD4+IFN-g+ T cells in

response to anti-G-CSF, observed in WT mice, was significantly

reduced in Rorc1�/� mice (Figure S6C), strengthening the

hypothesis that G-CSF works through the induction of RORC1.

Finally, to assess the role of myeloid-specific RORC1 in adaptive

immunity against cancer, we depleted CD4+ and CD8+ T cells in

both WT and Rorc1�/� tumor-bearing mice. As a result, we

observed a significant increase of lung metastasis in Rorc1�/�

tumor-bearing mice treated with the anti-CD4/anti-CD8 anti-

bodies (Figure S6D), suggesting that the protumor activity of

RORC1 acts through both the innate and adaptive immunity.

DISCUSSION

We demonstrate that RORC1 fuels cancer-promoting inflam-

mation by enhancing survival and expansion of CD16/32low/

C5aRlow immature MDSCs, with reduced expression of M1 cyto-

kines (IL-1b and TNF-a) and increased suppressive activity, and

promoting terminal macrophage differentiation. Our study indi-

cates that RORC1 impinges on cancer-driven myelopoiesis by

suppressing negative (Socs3 and Bcl3) (Croker et al., 2004; Krei-

sel et al., 2011) and promoting positive (C/EBPb) (Hirai et al.,

2006) transcriptional regulators of ‘‘emergency’’ granulopoiesis,

while instating the expression of macrophage-specific tran-

scription factors IRF8 and PU.1 (Friedman, 2007). Depletion of

RORC1+F4/80+CD115+ TAMs with anti-CSFR1 antibody

enhanced the recruitment of mature (CD16/CD32high) RORC1�

inflammatory neutrophils, with diminished expansion of imma-

ture RORC1+(CD16low/CD32low) PMN-MDSCs. This result, along

with the observed competition between the commitment of

myeloid precursors for the monocytic versus granulocytic line-

age, observed with the anti-G-CSF and anti-CSFR1 treatments,

respectively, may indicate that blocking M-CSF-dependent

myelopoiesis unleashes expansion and maturation of granulo-

cytic cells, which would favor the increase of tumor-infiltrating

neutrophils. These events deflect the inflammatory microenvi-

ronment to adverse the tumor, increasing infiltration of CD4+

IFN-g+ T cells and F4/80+TNF-a+ M1 polarized macrophages.

Our results indicate that high RORC1 expression acts as pro-

resolving mediator of myeloid inflammation and that antagonists

to RORC1 might hold the potential to prevent tumor-promoting

myeloid differentiation. We also report that IL-17 expression is

disjointed from RORC1 in the monocyte/macrophage lineage

(M-MDSCs and CD11b+F4/80+ TAMs). Wu et al. have recently

described that tumor-infiltrating inflammatory dendritic cells

activate IL-17-producing RORgt+ gdT17 cells to secrete IL-8,

TNF-a, and GM-CSF cells and sustain the subsequent intratu-

mor accumulation of immunosuppressive PMN-MDSCs in colo-

rectal cancer (Wu et al., 2014). Further, an inflammatory cascade

encompassing the IL-1b-mediated production by IL-17 in gdT

cells resulted in systemic G-CSF-dependent expansion of sup-

pressive neutrophils and formation of breast cancer metastasis
(Coffelt et al., 2015). Our observation that IL-17 is selectively ex-

pressed, but not secreted by immature granulocyte/neutrophil

subsets, does not support a direct role of myeloid-cell-derived

IL-17 in the expansion of MDSCs during cancer development,

but rather indicates that IL-17A is a hallmark of immaturemyeloid

responses in cancer bearers. This notion is further supported by

the observation that expression of IL-17 and RORC1 localizes

within the immature myeloid cells precursor-rich areas lining

the bone trabeculae of BM biopsies from patients under diag-

nosis of Hodgkin’s lymphoma. Moreover, in contrast toRorc1�/�

BM transplantation, chimeric mice receiving the Il17a�/�BMhad

no defect in developing tumor-associated myeloid cells, in both

the BM and spleen (data not shown). It remains to be established

whether IL-17A expression by circulating MDSCs is dependent

on the disease stage, as we did not observe its expression in

blood from T2/T3 CRC patients.

Along with other reports, our observation highlights the rele-

vance of members of the nuclear receptor superfamily in regula-

tion of inflammation (Gerbal-Chaloin et al., 2013; Wittke et al.,

2004) and suggests RORC1 as central regulator of cancer asso-

ciated myelopoiesis and key driver of the protumor differentia-

tion of MDSCs and TAMs.

EXPERIMENTAL PROCEDURES

More-detailed procedures can be found in the Supplemental Experimental

Procedures.

Ethics Statement

The study was approved by the scientific board of Humanitas Clinical and

Research Center and designed in compliance with Italian governing law, EU

directives and guidelines, and the NIH Guide for the Care and Use of Labora-

tory Animals. Mice have beenmonitored daily and euthanized when displaying

excessive discomfort. Cancer patients were enrolled in the study after signing

Cancer Research Center Humanitas IRB-approved consent.

Mice

C57BL/6 mice were purchased from Charles River. RORC1 mutant mice

(B6.129P2(Cg)-Rorctm1Litt/J) (Sun et al., 2000) were donated by Dr. Dan Litt-

man (New York University). MMTV-PyMTmice (Guy et al., 1992) were donated

by Professor Guido Forni (University of Turin) andmated with C57BL/6 females

to obtain the F1 C57BL/6-MMTV-PyMT strain. IL-17A-deficient mice were

donated by Dr. Burkhard Becher (University of Zurich). All animal work was

conducted under the approval of the Humanitas Clinical and Research Center,

in accordance with Italian and EU directives and guidelines.

BM Transplantation

53 106 CD45.2 RORC1-deficient (Rorc1�/�), IL-17A�/�, or WT BM cells were

injected intravenously into 8-week-old lethally irradiated (two doses of 475

cGy) CD45.1 C57BL/6 WT male or C57BL/6-MMTV-PyMT female mice.

8 weeks later, BM engraftment was checked by staining of blood cells with

PerCP-conjugated CD45.1 antibody and PE-conjugated CD45.2 antibody

(BD Biosciences) and subsequent FACS analysis.

Tumor Models

105 murine fibrosarcoma (MN/MCA1) cells were injected intramuscularly in the

left hind limb. Tumor growth was monitored three times a week with a caliper,

starting from day 14. Themodels of chemically induce fibrosarcoma andmam-

mary tumor virus-polyoma middle T antigen (MMTV-PyMT) transgenic mice

are described in the Supplemental Experimental Procedures.

Cell Culture and Reagents

Lineage cell separation from BM, isolation of myeloid cells, and cell-culture

conditions are described in the Supplemental Experimental Procedures.
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Mixed-Lymphocyte Reaction

Mixed-lymphocyte reaction was performed as previously reported (Larghi

et al., 2012) and as described in the Supplemental Experimental Procedures.

Patients

Ten patients with T2 or T3 CRC did not receive radiation or chemotherapy

before sample collection.

Flow Cytometry

Detailed conditions and antibodies used in flow cytometry analysis are

described in the Supplemental Experimental Procedures

Gating Strategy

Gating strategy for the identification of humanMDSCs, neutrophils, andmono-

cytes is described in the Supplemental Experimental Procedures.

Histopathological Analysis

Histopathological analysis was performed on BM and spleens from WT,

Rorc1�/�, and chimeric mice on sections routinely stained with H&E. Single-

and double-marker immunohistochemistry on mouse and human tissue spec-

imens were performed as previously reported (Tripodo et al., 2012) and are

described in detail in the Supplemental Experimental Procedures.

Confocal Microscopy

Confocal Microscopy was performed as previously reported (Moalli et al.,

2010) and as described in the Supplemental Experimental Procedures.

Statistics

Statistical significance was determined by a two-tailed Student’s t test

(*p < 0.05, ** p < 0.01, *** p < 0.001).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and six figures and can be found with this article online at http://dx.doi.org/

10.1016/j.ccell.2015.07.006.
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Figure 8. Reciprocal Negative Regulation of Monocytes/Macrophages
(A) Mean counts ± SEM of CD115- and RORC1-expressing F4/80+ macrophages

treated tumor-bearing WT mice.

(B) Mean counts ± SEM of RORC1+ and RORC1� M-MDSC and PMN-MDSC su

(C) Mean fluorescence intensity (MFI) ± SEM for CD16/CD32 and C5aR expres

ant-CSFR1 antibody.

(A–C) Statistical analysis: *p < 0.05, **p < 0.01, ***p < 0.001; n = 3 (Student’s t te

(D) FACS analysis of RORC1 expression levels in Ly6Ghigh and Ly6Glow granuloc

(E) FACS dot plots for granulocyte (A), monocyte/macrophage (C), andmacrophag

bearingWTmouse treated with IgG isotype and one treated with anti-CSFR1 antib

is shown (t test, *p < 0.05; n = 5). Statistical analysis: *p < 0.05, **p < 0.01, ***p <

(F) Total CD4+ and CD4+IFN-g+ and total F4/80+ and F4/80+TNF-a+ subsets in MN

(white bar) or anti-G-CSF antibody (black bars). The mean ± SEM of six mice/exp

(Student’s t test).
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Waisman, A., Pfeilschifter, J., and Frank, S. (2009). A transgenic mouse model

of induciblemacrophage depletion: effects of diphtheria toxin-driven lysozyme

M-specific cell lineage ablation on wound inflammatory, angiogenic, and

contractive processes. Am. J. Pathol. 175, 132–147.

Gray, E.E., Suzuki, K., and Cyster, J.G. (2011). Cutting edge: Identification of a

motile IL-17-producing gammadelta T cell population in the dermis.

J. Immunol. 186, 6091–6095.

Guo, R.F., and Ward, P.A. (2005). Role of C5a in inflammatory responses.

Annu. Rev. Immunol. 23, 821–852.

Guy, C.T., Cardiff, R.D., andMuller, W.J. (1992). Induction of mammary tumors

by expression of polyomavirus middle T oncogene: a transgenic mouse model

for metastatic disease. Mol. Cell. Biol. 12, 954–961.
and Granulocytes in Cancer-Associated Inflammation
in the MN/MCA1 tissue from untreated (isotype IgG control) and anti-CSFR1-

bsets.

sion in PMN-MDSCs in MN/MCA1 from WT mice treated with isotype IgG or

st).

ytes and in F4/80+/CD115+ macrophages.

e (D) progenitor subsets in BM and spleen from one representative MN/MCA1-

ody, both with AD, are shown. Themean ± SD of five mice/experimental group

0.001 (Student’s t test).

/MCA1 tumors from tumor-bearing mice treated with isotype control antibody

erimental group is shown. Statistical analysis: *p < 0.05, **p < 0.01, ***p < 0.001

Cancer Cell 28, 253–269, August 10, 2015 ª2015 Elsevier Inc. 267

http://dx.doi.org/10.1016/j.ccell.2015.07.006
http://dx.doi.org/10.1016/j.ccell.2015.07.006
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref1
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref1
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref1
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref2
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref2
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref2
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref3
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref3
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref3
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref3
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref3
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref4
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref4
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref4
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref4
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref5
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref5
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref5
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref5
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref6
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref6
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref7
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref7
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref8
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref8
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref8
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref9
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref9
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref10
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref10
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref10
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref10
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref10
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref11
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref11
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref11
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref12
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref12
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref13
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref13
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref13


Harrington, L.E., Hatton, R.D.,Mangan, P.R., Turner, H., Murphy, T.L., Murphy,

K.M., and Weaver, C.T. (2005). Interleukin 17-producing CD4+ effector T cells

develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat.

Immunol. 6, 1123–1132.

Hirai, H., Zhang, P., Dayaram, T., Hetherington, C.J., Mizuno, S., Imanishi, J.,

Akashi, K., and Tenen, D.G. (2006). C/EBPbeta is required for ‘emergency’

granulopoiesis. Nat. Immunol. 7, 732–739.

Hogarth, P.M. (2002). Fc receptors are major mediators of antibody based

inflammation in autoimmunity. Curr. Opin. Immunol. 14, 798–802.

Hueber, A.J., Asquith, D.L., Miller, A.M., Reilly, J., Kerr, S., Leipe, J., Melendez,

A.J., andMcInnes, I.B. (2010). Mast cells express IL-17A in rheumatoid arthritis

synovium. J. Immunol. 184, 3336–3340.

Hume, D.A., and MacDonald, K.P. (2012). Therapeutic applications of macro-

phage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor

(CSF-1R) signaling. Blood 119, 1810–1820.

Ivanov, I.I., McKenzie, B.S., Zhou, L., Tadokoro, C.E., Lepelley, A., Lafaille,

J.J., Cua, D.J., and Littman, D.R. (2006). The orphan nuclear receptor

RORgammat directs the differentiation program of proinflammatory IL-17+

T helper cells. Cell 126, 1121–1133.

Iwakura, Y., Ishigame, H., Saijo, S., and Nakae, S. (2011). Functional special-

ization of interleukin-17 family members. Immunity 34, 149–162.

Jin, F., Li, Y., Ren, B., and Natarajan, R. (2011). PU.1 and C/EBP(alpha)

synergistically program distinct response to NF-kappaB activation through

establishing monocyte specific enhancers. Proc. Natl. Acad. Sci. USA 108,

5290–5295.

Kojetin, D.J., and Burris, T.P. (2014). REV-ERB and ROR nuclear receptors as

drug targets. Nat. Rev. Drug Discov. 13, 197–216.

Kreisel, D., Sugimoto, S., Tietjens, J., Zhu, J., Yamamoto, S., Krupnick, A.S.,

Carmody, R.J., and Gelman, A.E. (2011). Bcl3 prevents acute inflammatory

lung injury in mice by restraining emergency granulopoiesis. J. Clin. Invest.

121, 265–276.

Larghi, P., Porta, C., Riboldi, E., Totaro, M.G., Carraro, L., Orabona, C., and

Sica, A. (2012). The p50 subunit of NF-kB orchestrates dendritic cell lifespan

and activation of adaptive immunity. PLoS ONE 7, e45279.

Liu, B., Tan, W., Barsoum, A., Gu, X., Chen, K., Huang, W., Ramsay, A., Kolls,

J.K., and Schwarzenberger, P. (2010). IL-17 is a potent synergistic factor with

GM-CSF in mice in stimulatingmyelopoiesis, dendritic cell expansion, prolifer-

ation, and functional enhancement. Exp. Hematol. 38, 877–884.e1.

Mantovani, A., and Sica, A. (2010). Macrophages, innate immunity and cancer:

balance, tolerance, and diversity. Curr. Opin. Immunol. 22, 231–237.

Mantovani, A., Cassatella, M.A., Costantini, C., and Jaillon, S. (2011).

Neutrophils in the activation and regulation of innate and adaptive immunity.

Nat. Rev. Immunol. 11, 519–531.

Marigo, I., Bosio, E., Solito, S., Mesa, C., Fernandez, A., Dolcetti, L., Ugel, S.,

Sonda, N., Bicciato, S., Falisi, E., et al. (2010). Tumor-induced tolerance and

immune suppression depend on the C/EBPbeta transcription factor.

Immunity 32, 790–802.

Metcalf, D. (2008). Hematopoietic cytokines. Blood 111, 485–491.

Moalli, F., Doni, A., Deban, L., Zelante, T., Zagarella, S., Bottazzi, B., Romani,

L., Mantovani, A., and Garlanda, C. (2010). Role of complement and Fcgamma

receptors in the protective activity of the long pentraxin PTX3 against

Aspergillus fumigatus. Blood 116, 5170–5180.

Peranzoni, E., Zilio, S., Marigo, I., Dolcetti, L., Zanovello, P., Mandruzzato, S.,

and Bronte, V. (2010). Myeloid-derived suppressor cell heterogeneity and

subset definition. Curr. Opin. Immunol. 22, 238–244.

Porta, C., Rimoldi, M., Raes, G., Brys, L., Ghezzi, P., Di Liberto, D., Dieli, F.,

Ghisletti, S., Natoli, G., De Baetselier, P., et al. (2009). Tolerance andM2 (alter-

native) macrophage polarization are related processes orchestrated by p50

nuclear factor kappaB. Proc. Natl. Acad. Sci. USA 106, 14978–14983.

Qian, B.Z., and Pollard, J.W. (2010). Macrophage diversity enhances tumor

progression and metastasis. Cell 141, 39–51.

Rachitskaya, A.V., Hansen, A.M., Horai, R., Li, Z., Villasmil, R., Luger, D.,

Nussenblatt, R.B., and Caspi, R.R. (2008). Cutting edge: NKT cells constitu-

tively express IL-23 receptor and RORgammat and rapidly produce IL-17
268 Cancer Cell 28, 253–269, August 10, 2015 ª2015 Elsevier Inc.
upon receptor ligation in an IL-6-independent fashion. J. Immunol. 180,

5167–5171.

Ries, C.H., Cannarile, M.A., Hoves, S., Benz, J., Wartha, K., Runza, V., Rey-

Giraud, F., Pradel, L.P., Feuerhake, F., Klaman, I., et al. (2014). Targeting

tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy

for cancer therapy. Cancer Cell 25, 846–859.

Sawa, S., Cherrier, M., Lochner, M., Satoh-Takayama, N., Fehling, H.J.,

Langa, F., Di Santo, J.P., and Eberl, G. (2010). Lineage relationship analysis

of RORgammat+ innate lymphoid cells. Science 330, 665–669.

Schwarzenberger, P., Huang, W., Ye, P., Oliver, P., Manuel, M., Zhang, Z.,

Bagby, G., Nelson, S., and Kolls, J.K. (2000). Requirement of endogenous

stem cell factor and granulocyte-colony-stimulating factor for IL-17-mediated

granulopoiesis. J. Immunol. 164, 4783–4789.

Sica, A., and Bronte, V. (2007). Altered macrophage differentiation and

immune dysfunction in tumor development. J. Clin. Invest. 117, 1155–1166.

Sica, A., Saccani, A., Bottazzi, B., Polentarutti, N., Vecchi, A., van Damme, J.,

and Mantovani, A. (2000). Autocrine production of IL-10 mediates defective

IL-12 production and NF-kappa B activation in tumor-associated macro-

phages. J. Immunol. 164, 762–767.

Sinha, P., Chornoguz, O., Clements, V.K., Artemenko, K.A., Zubarev, R.A., and

Ostrand-Rosenberg, S. (2011). Myeloid-derived suppressor cells express the

death receptor Fas and apoptose in response to T cell-expressed FasL. Blood

117, 5381–5390.

Stutman, O. (1974). Tumor development after 3-methylcholanthrene in immu-

nologically deficient athymic-nude mice. Science 183, 534–536.

Sun, Z., Unutmaz, D., Zou, Y.R., Sunshine, M.J., Pierani, A., Brenner-Morton,

S., Mebius, R.E., and Littman, D.R. (2000). Requirement for RORgamma in

thymocyte survival and lymphoid organ development. Science 288, 2369–

2373.

Taylor, P.R., Roy, S., Leal, S.M., Jr., Sun, Y., Howell, S.J., Cobb, B.A., Li, X.,

and Pearlman, E. (2014). Activation of neutrophils by autocrine IL-17A-IL-

17RC interactions during fungal infection is regulated by IL-6, IL-23, RORgt

and dectin-2. Nat. Immunol. 15, 143–151.

Toomer, K.H., and Chen, Z. (2014). Autoimmunity as a double agent in tumor

killing and cancer promotion. Front. Immunol. 5, 116.

Torroella-Kouri, M., Silvera, R., Rodriguez, D., Caso, R., Shatry, A., Opiela, S.,

Ilkovitch, D., Schwendener, R.A., Iragavarapu-Charyulu, V., Cardentey, Y.,

et al. (2009). Identification of a subpopulation of macrophages in mammary tu-

mor-bearing mice that are neither M1 nor M2 and are less differentiated.

Cancer Res. 69, 4800–4809.

Tripodo, C., Sangaletti, S., Guarnotta, C., Piccaluga, P.P., Cacciatore, M.,

Giuliano, M., Franco, G., Chiodoni, C., Sciandra, M., Miotti, S., et al. (2012).

Stromal SPARC contributes to the detrimental fibrotic changes associated

with myeloproliferation whereas its deficiency favors myeloid cell expansion.

Blood 120, 3541–3554.

Ueha, S., Shand, F.H., and Matsushima, K. (2011). Myeloid cell population dy-

namics in healthy and tumor-bearing mice. Int. Immunopharmacol. 11,

783–788.

Ulich, T.R., del Castillo, J., and Souza, L. (1988). Kinetics and mechanisms of

recombinant human granulocyte-colony stimulating factor-induced neutro-

philia. Am. J. Pathol. 133, 630–638.

Winkler, I.G., Sims, N.A., Pettit, A.R., Barbier, V., Nowlan, B., Helwani, F.,

Poulton, I.J., van Rooijen, N., Alexander, K.A., Raggatt, L.J., and

Lévesque, J.P. (2010). Bone marrow macrophages maintain hematopoietic

stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 116,

4815–4828.

Wittke, A., Weaver, V., Mahon, B.D., August, A., and Cantorna, M.T. (2004).

Vitamin D receptor-deficient mice fail to develop experimental allergic asthma.

J. Immunol. 173, 3432–3436.

Wu, P., Wu, D., Ni, C., Ye, J., Chen, W., Hu, G., Wang, Z., Wang, C., Zhang, Z.,

Xia, W., et al. (2014). gdT17 cells promote the accumulation and expansion of

myeloid-derived suppressor cells in human colorectal cancer. Immunity 40,

785–800.

http://refhub.elsevier.com/S1535-6108(15)00258-5/sref14
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref14
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref14
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref14
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref15
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref15
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref15
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref16
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref16
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref17
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref17
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref17
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref18
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref18
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref18
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref19
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref19
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref19
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref19
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref20
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref20
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref21
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref21
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref21
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref21
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref22
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref22
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref23
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref23
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref23
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref23
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref24
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref24
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref24
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref25
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref25
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref25
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref25
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref26
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref26
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref27
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref27
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref27
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref28
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref28
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref28
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref28
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref29
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref30
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref30
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref30
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref30
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref31
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref31
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref31
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref32
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref32
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref32
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref32
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref33
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref33
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref34
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref34
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref34
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref34
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref34
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref35
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref35
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref35
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref35
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref36
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref36
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref36
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref37
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref37
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref37
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref37
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref38
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref38
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref39
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref39
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref39
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref39
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref40
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref40
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref40
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref40
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref41
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref41
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref42
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref42
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref42
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref42
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref43
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref43
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref43
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref43
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref44
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref44
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref45
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref45
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref45
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref45
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref45
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref46
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref46
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref46
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref46
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref46
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref47
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref47
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref47
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref48
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref48
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref48
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref49
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref49
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref49
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref49
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref49
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref50
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref50
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref50
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref51
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref51
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref51
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref51


Yang, X.O., Pappu, B.P., Nurieva, R., Akimzhanov, A., Kang, H.S., Chung, Y.,

Ma, L., Shah, B., Panopoulos, A.D., Schluns, K.S., et al. (2008). T helper 17

lineage differentiation is programmed by orphan nuclear receptors ROR alpha

and ROR gamma. Immunity 28, 29–39.

Zamarron, B.F., and Chen, W. (2011). Dual roles of immune cells and their

factors in cancer development and progression. Int. J. Biol. Sci. 7, 651–658.

Zhang, H., Nguyen-Jackson, H., Panopoulos, A.D., Li, H.S., Murray, P.J., and

Watowich, S.S. (2010). STAT3 controls myeloid progenitor growth during

emergency granulopoiesis. Blood 116, 2462–2471.
Zhu, X., Mulcahy, L.A., Mohammed, R.A., Lee, A.H., Franks, H.A., Kilpatrick,

L., Yilmazer, A., Paish, E.C., Ellis, I.O., Patel, P.M., and Jackson, A.M.

(2008). IL-17 expression by breast-cancer-associated macrophages: IL-17

promotes invasiveness of breast cancer cell lines. Breast Cancer Res. 10, R95.

Zhuang, Y., Peng, L.S., Zhao, Y.L., Shi, Y., Mao, X.H., Chen, W., Pang, K.C.,

Liu, X.F., Liu, T., Zhang, J.Y., et al. (2012). CD8(+) T cells that produce inter-

leukin-17 regulate myeloid-derived suppressor cells and are associated with

survival time of patients with gastric cancer. Gastroenterology 143, 951–

962.e8.
Cancer Cell 28, 253–269, August 10, 2015 ª2015 Elsevier Inc. 269

http://refhub.elsevier.com/S1535-6108(15)00258-5/sref52
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref52
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref52
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref52
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref53
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref53
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref54
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref54
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref54
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref55
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref55
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref55
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref55
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref56
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref56
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref56
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref56
http://refhub.elsevier.com/S1535-6108(15)00258-5/sref56

	RORC1 Regulates Tumor-Promoting “Emergency” Granulo-Monocytopoiesis
	Introduction
	Results
	Divergent RORC1/IL-17A Fingerprint in Tumor-Associated Myeloid Cells
	RORC1 Promotes Expansion of MDSCs and TAMs
	RORC1 Controls Critical Regulators of Myelopoiesis
	RORC1 Controls Polarization of Myeloid Cells
	Antagonistic Regulation of the Polymorphonuclear and Monocytic Lineages

	Discussion
	Experimental Procedures
	Ethics Statement
	Mice
	BM Transplantation
	Tumor Models
	Cell Culture and Reagents
	Mixed-Lymphocyte Reaction
	Patients
	Flow Cytometry
	Gating Strategy
	Histopathological Analysis
	Confocal Microscopy
	Statistics

	Supplemental Information
	Author Contributions
	Acknowledgments
	References


