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Abstract

Organization of cancer cells into endothelial-like cell-lined
structures to support neovascularization and to fuel solid
tumors is a hallmark of progression and poor outcome. In
triple-negative breast cancer (TNBC), PDGFRb has been iden-
tified as a key player of this process and is considered a
promising target for breast cancer therapy. Thus, we aimed at
investigating the role of miRNAs as a therapeutic approach to
inhibit PDGFRb-mediated vasculogenic properties of TNBC,
focusing on miR-9 and miR-200. In MDA-MB-231 and
MDA-MB-157 TNBC cell lines, miR-9 and miR-200 promoted
and inhibited, respectively, the formation of vascular-like struc-
tures in vitro. Induction of endogenous miR-9 expression, upon
ligand-dependent stimulation of PDGFRb signaling, promoted
significant vascular sprouting of TNBC cells, in part, by direct
repression of STARD13. Conversely, ectopic expression of miR-

200 inhibited this sprouting by indirectly reducing the protein
levels of PDGFRb through the direct suppression of ZEB1.
Notably, in vivo miR-9 inhibition or miR-200c restoration,
through either the generation of MDA-MB-231–stable clones
or peritumoral delivery in MDA-MB-231 xenografted mice,
strongly decreased the number of vascular lacunae. Finally,
IHC and immunofluorescence analyses in TNBC specimens
indicated that PDGFRb expression marked tumor cells
engaged in vascular lacunae. In conclusion, our results dem-
onstrate that miR-9 and miR-200 play opposite roles in the
regulation of the vasculogenic ability of TNBC, acting as
facilitator and suppressor of PDGFRb, respectively. Moreover,
our data support the possibility to therapeutically exploit
miR-9 and miR-200 to inhibit the process of vascular lacunae
formation in TNBC. Cancer Res; 76(18); 5562–72. �2016 AACR.

Introduction
Tumor vascularization is a fundamental step in solid tumor

progression. The idea that this process only relies on the sprouting
of existing endothelial angiogenic vessels has been gradually
replaced by the evidence that tumor vasculature is orchestrated

by different pathways of vasculogenesis. Indeed, the contribution
of neoplastic cells is increasingly relevant (1). More importantly,
the presence of noncanonical mechanisms of tumor-mediated
vascularization (e.g., vascular mimicry, tumor to endothelial-like
cell differentiation, vessel co-option) is particular to more aggres-
sive cancers and has been associated with tumor progression and
decreased survival rate (1).

The differentiation of tumor cells in endothelial-like cells
was reported in angiogenic vessels of aggressive cancers, where
neoplastic cells acquired the expression of endothelial markers
(e.g., CD31 and CD34) and participated in the formation of
functional vascular-like structures (2, 3). We recently described
the presence of vascular lacunae lined by a mosaic of normal
endothelial cells and CD31-expressing tumor cells in human
breast cancer (4). Among the different breast cancer subtypes,
we reported that the endothelial differentiation ability was
most prominent in triple-negative breast cancer (TNBC), the
most aggressive and undifferentiated subtype (5, 6), where the
presence of vascular lacunae associated with poor clinical
outcome. Moreover, treatment with multi-target tyrosine
kinase inhibitors (TKI) reduced the formation of these struc-
tures, nominating platelet-derived growth factor receptor beta
(PDGFRb) as an important player in this alternative mecha-
nism of vascularization (4). Interestingly, PDGFR signaling
has been under investigation as a promising target for breast
cancer therapy due to its involvement in crucial steps of
progression such as angiogenesis, epithelial-to-mesenchymal
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transition (EMT), and metastasis (7). However, clinical trials
with TKIs against this receptor have not produced satisfactory
results (7).

miRNAs are small noncoding RNAmolecules involved in gene
regulation that are often deregulated in human cancer (8). Inter-
estingly, a negative regulatory loop involvingmiR-9 and PDGFRb
has been described in a cardiomyocyte model (9). In this context,
ligand-dependent stimulation of PDGFRb triggers activation of
the downstream signaling pathways. PDGFRb signaling induces
the expression of miR-9, which acts to inhibit PDGFRb activation
by targeting the mRNA encoding this receptor. Together with the
internalization and degradation of PDGFRb upon stimulation,
this provides a mechanism by which signaling through this
receptor may be temporally limited. High levels of miR-9 have
been associated with prometastatic function in human breast
cancer (10), as well as with the acquisition of a mesenchymal
and aggressive phenotype (11). On the other hand, members of
the miR-200 family (five miRNAs organized in two clusters: miR-
200a/b/429 and miR-200c/141) are well-known negative regu-
lators of EMTdue to their direct targeting of several transcriptional
factors implicated in the transition, such as ZEB1/2 and Snail
(12). Interestingly the EMT-associated transcriptional factors
FOXQ1 and TWIST1 can induce PDGFR expression (13). Con-
versely, PDGFRb activation with PDGF-DD ligand mediates
EMT through the induction of ZEB1 and consequent suppres-
sion of miR-200 (14).

Here, we investigated the role of miR-9 and miR-200 in the
PDGFRb-mediated vasculogenic properties of TNBC, raising the
possibility of a newmiRNA-based therapeutic approach to impair
the phenomenon of vasculogenesis in TNBC.

Materials and Methods
Patients and samples

Human tissues were selected from the archives of the Fonda-
zione IRCCS Istituto Nazionale dei Tumori of Milan (INT) from
patients with invasive breast cancer and na€�ve of neoadjuvant
treatment. The first set included 78 formalin-fixed paraffin
embedded (FFPE) breast cancers collected from 2003 to 2004
(29 luminal, 32HER2þ, and 17 TNBCs). The second set consisted
of 85 FFPE TNBC, resected between 2002 and 2006 (baseline
characteristics of the two cohorts in Supplementary Table S1).
Histologic subtype and gradewere determined according toWHO
classification and Nottingham histologic grading system, respec-
tively. Immunohistochemical classification was assigned follow-
ing the 2009 St. Gallen's Consensus guidelines for estrogen
receptor (ER) and progesterone receptor (PgR) markers, whereas
HER2 was scored according to ASCO/CAP 2013 guidelines. An
informed consent was obtained from all patients. All procedures
were carried out in accordance with the Helsinki Declaration
(World Medical Association, 2013) and the study was conducted
only after approval from the Institutional Review Board and the
Independent Ethical Committee.

Cell cultures, plasmids, and treatments
Human TNBC cell lines MDA-MB-231, MDA-MB-157, MDA-

MB-468, and HCC1937, and embryonic kidney HEK293 cells
were purchased from ATCC. SUM149 and SUM159 TNBC cell
lines were purchased from Asterand Bioscience. All cell lines were
obtained between 2000 and 2010, authenticated once a year (last
verification on November 2015) using the short tandem repeat

profiling method in our Institute facility, and propagated in the
suggested media within 6 months of thawing from stocks.

Clones stably expressing miR-9 inhibitor and miR-200c pre-
cursor were generated from the MDA-MB-231 cell line after
transfection with pEZX-AM01 and pEZX-AM04 plasmids (Gene-
Copoeia), respectively, using Lipofectamine 3000 transfection
reagent (Life Technologies). Cells were cultured in RPMI1610
medium with 10 % FBS, 1 mmol/L L-glutamine, and 0.75 mg/mL
(miR-9 clones) or 0.5 mg/mL (miR-200c clones) puromycin.

For PDGFRb stimulation, cells were treated with 50 ng/mL
PDGF-BB (Peprotech) in serum-free medium and maintained in
serum-free medium.

miRNA and siRNA transfection
miRNA overexpression was achieved by transfection with

human miRNA precursors (Life Technologies) and verified by
qRT-PCR. miRNA silencing was obtained by transfection with
locked nucleic acid (LNA)-based inhibitors (Exiqon) and validat-
ed by reporter assay. For gene knockdown, specific siRNAs (Life
Technologies) were used. Cells were incubated with 100 nmol/L
miRNA precursors, LNAs, or siRNAs complexed with Lipofecta-
mine RNAi Max transfection reagent (Life Technologies) accord-
ing to manufacturer's instructions.

RNA extraction and quantitative RT-PCR
Total RNA was extracted from cell lines with QIAzol reagent

(Qiagen). For gene and miRNA quantification, cDNA was syn-
thesized from1mg and 100 ng of RNAwith SuperScript III Reverse
Transcriptase and TaqMan MiRNA Reverse Trascription Kit (Life
Technologies), respectively. qRT-PCR was performed using Taq-
Man assays for human ZEB1, GAPDH, miR-9-5p, miR-200b-3p,
miR-200c-3p, and RNU44 (Life Technologies) or custom primers
for PDGFRb and GAPDH with SYBR Green technology (Life
Technologies). From FFPE breast cancer tissues, total RNA was
extracted with miRNeasy Mini Kit (Qiagen) and assessed for
quality via Bioanalyzer. Twenty nanograms of RNA were reverse
transcribed using miRCURY LNA Universal RT miRNA PCR
system (Exiqon) and qRT-PCR was performed in triplicate using
Exiqon assays for human miR-9-5p, miR-200c-3p, RNU44, and
RNU48. Gene and miRNA levels were normalized to the endog-
enous control RNU44, RNU48, or GAPDH and the relative
expression was calculated using the comparative 2�DCt method.

Primers: GAPDH Fw: 50-ATTCCACCCATGGCAAATTC-30;
GAPDH Rv: 50-AGCATCGCCCCACTTGATT-30; PDGFRb Fw:
50-AGCGCTGGCGAAATCG-30; PDGFRb Rv: 50-TGACACTGG-
TTCGCGTGAA-30.

Western blot analysis
Total protein lysateswere extractedwith lysis buffer (1%Triton,

50 nmol/L Tris, 15 mmol/L NaCl) supplemented with protease
inhibitors (Sigma-Aldrich). The following primary antibodies
were used: rabbit anti-human IgG antibodies against STARD13
(1:500, sc-67843), PDGFRb (1:500, sc-432), E-cadherin (1:500,
sc7870; Santa Cruz Biotechnology); mouse anti-human IgG anti-
body against Vinculin (1:1,000, V9131, Sigma-Aldrich); mouse
horseradish peroxidase–conjugated anti-human IgG anti-b-actin
(1:1,000, A3854, Sigma-Aldrich). Proteins were visualized by
enhanced chemiluminescence detection system (Sigma-Aldrich).
Quantification was performed by Quantity One 4.6.6 software
(Bio-Rad).

miRNAs in PDGFRb-Mediated Vasculogenesis of TNBC

www.aacrjournals.org Cancer Res; 76(18) September 15, 2016 5563



Reporter assay
Cells (8� 104) were seeded in 24-well plates and cotransfected

with 500 ng pMiR-9-5p-Luc reporter vector (Signosis) and 50 ng
phRL-SV40 control vector (Renilla; Promega) using Lipofectamine
3000. After 24 hours, Firefly and Renilla luciferase activities were
measured by Dual-Luciferase Reporter Assay System (Promega).

Tube formation assay
Plates (96-well) were coatedwith growth factor–reducedMatri-

gel (Corning) and tube formation assay was performed and
quantified as reported previously (4).

Dual-luciferase reporter assay
The full-length human 30UTR of STARD13 was cloned in

pmirGLO Dual-Luciferase miRNA Target Expression vector (Pro-
mega; pmiR-30UTRWT). This construct was used to generate
plasmids carrying the mutated forms of STARD13 30UTR, mod-
ified in each of the two predicted miR-9–binding sites (pmiR-
30UTRMut1 andpmiR-30UTRMut2), usingQuikChange II XL Site-
Directed Mutagenesis Kit (Agilent). HEK293 cells (2 � 105) were
seeded in 12-well plates and cotransfected with 500 ng pmiR-
30UTR (WT, Mut1, or Mut2) and 100 nmol/L of either miR-9-5p
precursor or negative control using Lipofectamine 3000. After 24
hours, Firefly and Renilla luciferase activities were measured as
described above.

In silico analyses
Level 3 TCGA data from mRNA-seq and miR-seq of breast

cancer samples were used. To define tumor subtype, we used ER,
PgR, andHER2 IHC status reported in the clinical informationfile.

Profiling data of 175 nitrogen-frozen breast cancer tissues had
been deposited by Huang and colleagues in the Gene Expression
Omnibus data repository (GEO) with accession number
GSE59590 (15). For the Italian subset, differentially expressed
genes between luminal and basal breast cancers were identified by
linear modeling as implemented in the limma package (16).
In silico prediction of miRNA targets was performed with 6
algorithms simultaneously (DIANAMicroT-CDS, miRanda,
miRDB, PITA, RNA22, TargetScan v6.2; ref. 17) using the HUGO
gene symbol as common identifier.

In vivo experiments
Orthotopic breast tumors were generated by implantation of 5

� 106 cells resuspended in a 1:1 mixture of PBS and Matrigel
(Corning) in the mammary fat pad of 8-week-old female SCID
mice (Charles Rivers). For stable clones, tumors were monitored
and harvested before necrosis. For in vivo miRNA modulation,
when MDA-MB-231 tumors reached a volume of approximately
50mm3,mice were treated with 20 mgmiRNA-based drugs (Tema
Ricerca) administered five times, every 3–4 days, by peritumoral
injection. miR-9 inhibitor or control were delivered as naked
oligonucleotides, whereasmiR-200cmimic or cel-miR-67 control
were formulated with MaxSuppressor In Vivo RNA-LANCEr II
(Bioo Scientific), according to manufacturer's instructions. All
animal experiments were approved by the Ethics Committee for
Animal Experimentation of INT.

Immunohistochemical analysis
FFPE xenograft tumor sections were unmasked using Novocas-

tra Epitope Retrieval Solutions pH6 and pH9 and incubated for 1

hour with the following primary antibodies at room temperature:
mouse anti-human CD31 (1:50, 1A10, Leica Biosystems); mouse
anti-human AREB6 (ZEB1; 1:150, 3G6, Abcam).

FFPE human specimens were treated with citrate solution to
unmask the antigen and then incubated for 1 hour with rabbit
anti-human PDGFRb (1:200, Y92, Abcam) at room temperature.

Immunofluorescence
FFPE human sections were incubated with the following pri-

mary antibodies: mouse anti-human CD31 (1:50 pH6, 1A10,
Leica Biosystems), rabbit anti-human PDGFRb (1:250 pH6, Y92,
Abcam), and mouse anti-human p53 (1:800 pH6, DO-7, Leica
Biosystems). The following secondary antibodieswereused: Alexa
Fluor 350–conjugated goat anti-mouse, Alexa Fluor 488–conju-
gated goat anti-rabbit, Alexa Fluor 568–conjugated goat anti-
mouse (Life Technologies).

miRNA in situ hybridization
miRNA in situ hybridization (ISH) was performed as described

previously (18). Tumor sections were hybridized with double-
DIG-LNA probes for miR-21, miR-9, miR-200c, and scrambled
miR (Exiqon), according to the manufacturer's instructions.

Statistical analysis
For two-group comparison, multiple group comparison and

correlation analyses, the probability value was calculated, respec-
tively, with either an unpaired two-tailed Student t test or non-
parametric Mann–Whitney test, nonparametric Kruskal–Wallis
test, or moderated t test adjusted for multiple testing by the false
discovery rate (FDR) on limma package in R, and Pearson test
using GraphPad Prism 5 software (GraphPad software Inc.).
Statistical significance of association analyses and differences in
survival Kaplan–Meier curves were tested with c2 and Wilcoxon
test, respectively, using SAS software (SAS Institute Inc.). P� 0.05
was considered significant.

Data are expressed as mean � SD of three independent experi-
ments, unless otherwise specified in the figure legends.

Results
miR-9 mediates PDGFRb-induced tube formation ability

Among a panel of TNBC cell lines, we selected MDA-MB-231
and MDA-MB-157 as suitable models based on their described
ability to generate vascular-like structures in vitro (4) and on the
opposite expression of miR-9 (Supplementary Fig. S1A). We first
confirmed the previously described negative regulatory loop
existing between miR-9 and PDGFRb (9). Specifically, PDGFRb
protein levels were reduced upon overexpression of miR-9 in
MDA-MB-231 cells, and increased following inhibition of this
miRNA inMDA-MB-157 cells (Supplementary Fig. S1B and S1C),
corroborating the targeting of the receptor by miR-9. Further
reporting the previously described regulatory relationship
between PDGFRb and miR-9 (9), activation of PDGFRb with
PDGF-BB ligand increased the relative expression of miR-9 in
both TNBC models (Fig. 1A).

We thus investigated the functional effect of miR-9 in tube
formation capability. MDA-MB-231 cells transfected with miR-9
precursor acquired a higher ability to form vascular-like structures
than control cells, whereas silencing of miR-9 in MDA-MB-157
cells resulted in a strong impairment of the same phenomenon
(Fig. 1B). These data suggest that miR-9 could contribute to
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PDGFRb-regulated vasculogenesis. To strengthen these findings,
MDA-MB-157 cells were transfected with either LNA-miR-9 or a
scrambledoligonucleotide, andPDGF-BB–treated cellswere com-
pared with control cells. We observed that the advantage in
loop formation ability gained with the treatment with PDGF-BB
was almost completely abrogated by concomitant knockdown of
miR-9 (Fig. 1C).

In summary, miR-9 enhances the ability of TNBC cells to
generate vascular-like structures in response to PDGFRb
in vitro.

miR-9 is overexpressed in TNBC and associates with poor
prognosis in breast cancer

Considering the ability of miR-9 to enhance vasculogenic
properties and the stronger capability of TNBC to generate vas-

cular lacunae than luminal and HER2þ carcinomas (4), we
investigated whether miR-9 levels vary among the different breast
cancer subtypes. In a cohort of 78 breast cancer tissues (set 1), we
observed higher expression of miR-9 in TNBC than luminal and
HER2þ subtypes, a finding that was further validated in the TCGA
public dataset (Supplementary Fig. S2A and S2B). Moreover, we
observed highermiR-9 levels in tumors with high histologic grade
(P < 0.0001) and negative hormonal status (ER P ¼ 0.0088, PgR
P ¼ 0.0007; Supplementary Table S2). Finally, breast cancer
patients were stratified according to miR-9 median expression.
Kaplan–Meier survival analysis showed that higher miR-9 levels
significantly associated with poor prognosis in terms of both
disease-free survival (DFS) and distant-metastasis free survival
(DMFS; P¼ 0.0077 and P¼ 0.0121, respectively; Supplementary
Fig. S2C).

Figure 1.

miR-9 mediates PDGFRb-induced tube formation ability through STARD13 targeting. A, TNBC cells were treated with 50 ng/mL PDGF-BB for 6 hours. miR-9
expression was assessed by qRT-PCR. The result is representative of three independent experiments and is expressed as mean � SD of three technical replicates.
B, TNBC cells were transfected with either miR-9 precursor or LNA-miR-9, and corresponding controls, for 48 hours; tube formation ability was determined
as the percentage of modulation in loop formation of treated cells compared with control. C, MDA-MB-157 cells were transfected with either LNA-miR-9 or LNA-
control and, after 24 hours, treated or not with PDGF-BB for the following 24 hours; tube formation ability was evaluated. D, miR-9 expression in basal
versus luminal breast cancer was evaluated by qRT-PCR; statistically significant differenceswere calculatedwithMann–Whitney test. E, TNBC cells were transfected
with either miR-9 precursor or control for 48 hours. STARD13 protein was evaluated by Western blot analysis. F, TNBC cells were transfected with a siRNA
specific against STARD13 or a scrambled oligonucleotide for 48 hours; tube formation assay was performed (top). Efficiency of silencing was validated by Western
blot analysis (bottom). G, HEK293 cells were cotransfected with either control or miR-9 precursor and with pmiR-Glo dual-luciferase reporter plasmid carrying
the wild-type (WT) or the mutated forms (Mut1 and Mut2) of STARD13 30UTR. Firefly luciferase activity was measured 24 hours after transfection, normalized on
Renilla luciferase, and expressed as relative value between cells transfected with miR-9 and the corresponding control. � , P < 0.05; �� , P < 0.01; ��� , P < 0.001,
Student t test.
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miR-9 regulates TNBC vasculogenic properties through
STARD13 targeting

To identify additional miR-9 targets that might be able to
explain its effect on the vasculogenic properties of TNBC, we took
advantage of deposited gene profiling data of Italian and Chinese
breast cancer patients (15). Tumors were stratified as luminal,
HER2þ, basal, or normal-like subtype, according to intrinsic gene
expression (19). Considering the overlapping expression profiles
of basal and TNBC subtypes (6), we analyzed 13 basal versus 80
luminal tumors belonging to the Italian cohort of the dataset.
After validating highermiR-9 expression in the basal subtype (Fig.
1D), we merged genes downregulated in basal versus luminal
breast cancers with miR-9 targets predicted by at least 3 of 6
prediction tools. One of themost differentially expressed genes in
our dataset, STARD13 (StAR-related lipid transfer domain con-
taining 13 - a Rho-GAPase–activating protein), met these criteria
(Supplementary Table S3). Given that downregulation of this
gene has been associated with increased motility and invasion
(20), we examined STARD13 as a putative mediator of miR-9
effect on TNBC vasculogenesis.

We first validated STARD13 as miR-9 target by assessing
changes in the relative expression of this protein following
miR-9 transfection. Consistent with STARD13 being a down-
stream target of miR-9 activity, we observed a slight reduction in
both TNBC cell lines following this transfection (Fig. 1E). Fur-
thermore, siRNA-mediated knockdown of STARD13 accelerated
the formationof vascular-like structures, phenocopying the effects
resulting from overexpression of miR-9 (Fig. 1F). Finally, miR-9–

mediated suppression of luciferase activity in HEK293 cells
cotransfected with a reporter fused to the 30 UTR of STARD13
(pmiR-30UTRWT) was abrogated by mutating at least one of the
two miR-9–binding sites (Fig. 1G).

In conclusion, we show that STARD13 is directly targeted by
miR-9, and this targeting comprises one of the mechanisms
exploited by the miRNA to modulate the vasculogenic properties
of TNBC cells.

miR-200 family inhibits tube formation ability through
PDGFRb repression

Wenext evaluated the basal levels ofmiR-200 in the samepanel
of TNBC cell lines, using miR-200b and miR-200c as representa-
tive members of each of the two clusters comprising the miR-200
family.We found that bothmiRNAswere strongly downregulated
in the mesenchymal and stem-like Basal B compared with the
more epithelial Basal A subgroup (Supplementary Fig. S3A). In
the selected MDA-MB-231 and MDA-MB-157 cell lines, ectopic
expression of bothmiR-200members not only strongly impaired
tube formation ability (Fig. 2A and Supplementary Fig. S3B), but
also restored E-cadherin expression and,more interestingly, led to
an important reduction in PDGFRb protein levels (Fig. 2B).

As PDGFRb is not apredicted target ofmiR-200,we investigated
how this family could regulate the expression of the receptor. The
induction of E-cadherin aftermiR-200 restoration is a hallmark of
the suppression of ZEB1,which is a known target ofmiR-200 (21).
This observation, combined with the possible role of ZEB1/
PDGFRb cross-talk in the maintenance of a post-EMT phenotype

Figure 2.

miR-200 family inhibits tube formation ability through the suppression of PDGFRb. A and B, TNBC cells were transfected with miR-200b, miR-200c, or control
for 48 hours. A, tube formation ability was evaluated. B, PDGFRb and E-cadherin expression was assessed by Western blot analysis. C and D, MDA-MB-231
cells were transfected with either a siRNA against ZEB1 or a scrambled oligonucleotide; after 72 hours, tube formation ability was analyzed (C); mRNA and protein
levels of PDGFRb were evaluated by qRT-PCR and Western blot analysis, respectively (D). E, correlation between ZEB1 and PDGFRb mRNA levels in the
TNBC subset of TGCA public dataset. �� , P < 0.01; ��� , P < 0.001 (Student t test).
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(13, 22), raised the hypothesis that miR-200 could indirectly
repress PDGFRb through ZEB1 targeting. For this reason, we first
investigated the role of ZEB1 in in vitro loop formation. As
expected, knockdown of ZEB1 reduced the ability of MDA-MB-
231 cells to formvascular-like channels (Fig. 2C).Moreover, ZEB1
silencing significantly reduced PDGFRb at both the mRNA and
protein level in both MDA-MB-231 and MDA-MB-157 cell lines
(Fig. 2D and Supplementary Fig. S3C–S3E). Finally, we found
a strong positive correlation between mRNA levels of ZEB1
and PDGFRb in the TNBC subset of the TCGA dataset (P <
0.001, r ¼ 0.8098; Fig. 2E).

We concluded that members of the miR-200 family inhibit the
tube formation ability of TNBC cell lines through the suppression

of PDGFRb. Furthermore, the regulation of the receptor by miR-
200 strongly relies on the targeting of ZEB1.

miR-9 and miR-200c regulate vascular lacunae
formation in vivo

To validate the effect of the miRNAs of interest on vasculo-
genic properties in vivo, we first generated MDA-MB-231 clones
for the stable inhibition of miR-9 (sponge miR-9) or over-
expression of miR-200 (miR-200c) and the corresponding
controls (sponge miR-control and vec-miR, respectively),
selecting miR-200c as representative member of the family
(Fig. 3A). The expanded clonal populations were implanted
in the mammary fat pad of female SCID mice and monitored

Figure 3.

miR-9 inhibition and miR-200c restoration decrease vasculogenic properties of TNBC tumors. MDA-MB-231 clones (sponge-miR-9 or miR-200c and
corresponding controls) were implanted in the mammary fat pad of the SCID mice. A, efficiency of miR-9 inhibition and miR-200c overexpression was validated by
reporter assay and qRT-PCR, respectively. For reporter assay, Firefly luciferase was normalized on Renilla luciferase and the luminescence activity expressed
as relative value between sponge miR-9 and sponge miR-control. B, tumor growth was monitored by caliper measurement. C, hematoxylin and eosin and
CD31 staining of FFPE tumor sections. White arrows indicate tumor cells engaged in vascular lacunae. D, quantification of vascular lacunae was performed by
counting the total number of CD31þ vascular structures identified in five nonoverlapping high-powermicroscopic fields (�400). � , P <0.05; �� , P <0.01; ��� , P <0.001
(Student t test).
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until the time of sacrifice. miR-9 knockdown did not lead to
significant differences in tumor volume, whereas miR-200c
tumor-bearing mice exhibited a strong reduction in tumor
growth compared with control group (Fig. 3B). To assess the
effect on vasculogenic properties, tumors were analyzed for the
presence of vascular lacunae, identified as CD31þ blood vessels
with CD31þ tumor cells lining the vascular structure. Qualita-
tive analysis first revealed the presence of less structured vas-
cular lacunae following both inhibition of miR-9 and over-
expression of miR-200c in comparison with control groups
(Fig. 3C). In addition, we observed a significant reduction in
the number of CD31þ vascular lacunae compared with the
corresponding controls (Fig. 3D).

We then adopted the MDA-MB-231 cell line to perform in vivo
miRNA delivery experiments on tumors orthotopically xeno-
grafted in SCID mice. miR-9 inhibitor or miR-200c mimic, and
respective controls, were delivered by peritumoral injection. Con-

sistently with the results obtained with stable clones, mice treated
with miR-200c mimic but not those treated with miR-9 inhibitor
showed a significant reduction of tumor volume (Fig. 4A). More-
over, the analysis of CD31þ vascular lacunae highlighted a sig-
nificant qualitative and quantitative reduction of the vasculogenic
capability in treated versus untreated xenografts (Fig. 4B and C).
Finally, to verify the efficiency of the delivery, histologic sections
were analyzed for the expression of the EMT-associated transcrip-
tion factor ZEB1. Examination of these sections revealed an
overall decrease in treated samples in comparison with controls
(Fig. 4D).

PDGFRb identifies vascular lacunae in TNBC tissues
Having assessed the functional role of PDGFRb in mediating

vasculogenic properties, we evaluated the ability of the receptor to
identify vascular lacunae in TNBC human tissues, as previously
reported for the CD31 marker (4).

Figure 4.

In vivo treatment with miR-9 inhibitor or miR-200c mimic decreases vasculogenic properties on TNBC. MDA-MB-231 cells were implanted in the mammary fat
pad of SCID mice. A, tumor growth was monitored; black arrows indicate the schedule of treatment. B, hematoxylin and eosin and CD31 staining of FFPE
tumor sections. White arrows indicate tumor cells engaged in vascular lacunae. C, quantification of vascular lacunae was performed as described above.
D, ZEB1 staining of FFPE tumor sections. � , P < 0.05; �� , P < 0.01 (Student t test).

D'Ippolito et al.

Cancer Res; 76(18) September 15, 2016 Cancer Research5568



In the TNBC cohort (set 2), immunohistochemical analysis
revealed a variable membrane and cytoplasmic staining of
PDGFRb in both stromal and epithelial structures. As expected,
perivascular fibroblasts and pericytes associated with blood
vessels were PDGFRb positive; intratumoral stromal axes sur-
rounding nests of neoplastic cells showed a moderate-to-
intense positivity for the receptor. Finally, neoplastic cells
showed a variable reactivity, ranging from absence of signal
to a strong cytoplasmic and membrane staining (Supplemen-
tary Fig. S4A and S4B). More importantly, as shown for CD31
marker, also PDGFRb was able to identify tumor cells physi-
cally engaged in the formation of vascular lacunae (Fig. 5A). To
strengthen this evidence, we performed a triple-marker immu-
nofluorescence analysis, observing foci of colocalization of
PDGFRb and CD31 in tumor cells, identified by positive
reactivity to p53 staining (Fig. 5B).

TNBC tumors were then divided according to the presence
(PDGFRbþ) or absence (PDGFRb�) of PDGFRb staining associ-
ated to tumor cells either engaged in vascular-like structures or
organized in tumor nests (Table 1). We first found a strong
association between the presence of CD31þ and PDGFRbþ vas-
cular lacunae (P¼ 0.001). In addition, the presence of PDGFRbþ

vascular lacunae strongly associated also with the presence of

PDGFRbþ tumor nests (P < 0.001). As a consequence, 79.3% of
tumors with PDGFRbþ tumor nests showed CD31þ vascular
lacunae (Table 1). Interestingly, PDGFRb expression in both
tumor nests and vascular lacunae associated with high histologic
grade (P¼ 0.0046; P¼ 0.095). We did not observe any significant
association with other clinicopathologic parameters (Table 1).

In light of the opposite behavior of miR-9 and miR-200 family
in regulating PDGFRb-mediated vasculogenic properties, we
finally evaluated the association between the expression levels
of these miRNAs and the receptor status in the TNBC cohort. We
found that high miR-200c levels negatively associated with the
presence of PDGFRbþ vascular lacunae (P ¼ 0.0444) and estab-
lished a trend of negative association with PDGFRbþ tumor nests
(Supplementary Table S4).

Finally, we qualitatively assessed the tumor distribution of
miR-9 and miR-200c in TNBC by ISH. Interestingly, miR-200c
expression was mainly detected in tumor cells, whereas absence
of signal was observed in the stromal compartment and
immune infiltrate (Fig. 5C). Conversely, we were not able to
detect miR-9, probably because miR-9 expression was below
the ISH detection threshold. miR-21 and scrambled miR were
used as positive and as negative controls, respectively (Supple-
mentary Fig. S4C).

Figure 5.

PDGFRb identifies vascular lacunae in
TNBC tissues. A, IHC staining revealed
tumor cells with reactivity for either
CD31 or PDGFRb, which participate
in the formation of vascular
structures (white arrows). B,
immunofluorescence analysis of p53
(red), CD31 (blue), and PDGFRb
(green). C, hematoxylin and eosin
staining and ISH of miR-200c. The
ISH signal appeared as brown dots
usually localized in the cytoplasm.

Table 1. Relation between PDGFRb expression and clinicopathologic features in TNBC human tissues

PDGFRbþ vascular lacunae PDGFRbþ tumor nest
Clinicopathologic features Absence (%) Presence (%) P Absence (%) Presence (%) P

Histologic grade
Grade II 10/45 (22.2) 0/26 (0) 0.0095 10/42 (23.8) 0/29 (0) 0.0046

Tumor size
� T2 14/46 (30.4) 11/26 (42.3) 0.3094 15/43 (34.9) 10/29 (34.5) 0.9720

Nodal status
Positive 16/39 (41) 12/24 (50) 0.4863 15/36 (41.7) 13/27 (48.1) 0.6084

CD31þ vascular lacunae
Presence 23/44 (52.7) 25/26 (96.1) 0.001 25/41(61) 23/29 (79.3) 0.1036

PDGFRbþ tumor nest
Presence 6/46 (13) 23/26 (88.5) <0.001

NOTE: P values were calculated by c2 test. Statistically significant values are in bold.
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Discussion
Our findings indicate that miR-9 and miR-200 play opposite

roles in regards to PDGFRb-mediated vasculogenic properties of
TNBC. Furthermore, we demonstrate that PDGFRb staining iden-
tifies tumor cells physically engaged in the formation of vascular
lacunae.

miR-9 has a well-recognized prometastatic function in human
breast cancer (10, 23), and it has been more recently associated
with poor prognosis, EMT, and stemness features (11). Consis-
tently, we found that higher miR-9 expression identified breast
cancer patients with poor prognosis and associated with high
histologic grade. Moreover, miR-9 levels were higher in TNBC
than in luminal and HER2þ subtypes, in accordance with the
negative association with hormonal status; ER can in fact mediate
the epigenetic silencing of miR-9 (24), strengthening the prefer-
ential expression of this miRNA in more aggressive phenotypes.

Theprotumoral effectsofmiR-9 (e.g.,migration, invasion, EMT)
resemble the features mediated by PDGFRb (25, 26). We showed
indeed that miR-9 itself was able to enhance vasculogenic prop-
erties both in vitro and in vivo, resembling the addiction of TNBC to
PDGFRb signaling for the generation of vascular lacunae (4).
Moreover, miR-9 expression was induced upon PDGFRb activa-
tion, suggesting that thismiRNAacts as downstream effector of the
receptor signaling. Indeed, PDGF-BB–mediated induction of tube
formation capability was abrogated by concomitant inhibition of
miR-9, thus demonstrating that this miRNA is indeed crucial for
PDGFRb-mediated enhancement of vasculogenesis.

We identified STARD13 as a new miR-9 direct target. Despite
the improvement of vasculogenic properties of TNBC cell lines
after STARD13 silencing, we only partially phenocopied the effect
of miR-9 overexpression. Nevertheless, it is known that miRNAs
explicate their action through the targeting of multiple gene
products; thus, we would need a more extensive study on miR-
9 targets to fully recapitulate its effect on vasculogenesis.

Even though our data support the connection between miR-9
and PDGFRb, in the TNBC set, we did not observe a significant
association between miR-9 expression and the presence of either
vascular lacunae or tumor nests positive for the receptor. How-
ever, unlike miR-200c, we were not able to reliably assess miR-9
distribution within the tumor microenvironment by ISH. As we
cannot exclude other nontumoral sources of this miRNA, miR-9
levels detected by qRT-PCR might not mirror the expression in
tumor cells.

ThemiR-200 family regulates fundamental stepsofbreast cancer
progression, although its role in tumorigenesis still appears con-
tradictory. ThismiRNA family, in fact, inhibits tumorproliferation,
migration, invasion, stemness, and contributes to overcome resis-
tance to standard therapies (21,27–31), but its expressionhasbeen
associated with breast cancer aggressiveness (32, 33). Moreover,
miR-200 can either increase or reduce the metastatic potential in
different TNBC models (34, 35). However, miR-200 expression is
very heterogeneous within TNBC and epigenetically suppressed in
undifferentiated and plastic phenotypes (36, 37). We confirmed
that cell lines with mesenchymal and stem-like features (Basal B)
exhibited amore significant loss in the expression ofmiR-200 than
cells with epithelial features (Basal A); in addition, in vivo resto-
ration of miR-200c in Basal B models strongly inhibited tumor
growth, corroborating its tumor suppressor role. More interesting-
ly, we described a new antitumor activity of this family consisting
in the impairment of tumor cell–mediated vascularization, which
is exerted through the suppression of PDGFRb. Furthermore, the

negative association between miR-200c expression and PDGFRb-
positive vascular lacunae supported the existence of this antic-
orrelation also in human TNBC. Finally, the predominant expres-
sion of miR-200c in tumor cells focused the miR-200/PDGFRb
cross-talk in the tumor compartment.

PDGFRb is not, however, predicted as direct target of miR-200.
Our data strongly suggest that ZEB1, one of the main transcrip-
tional factors triggering EMT, is the link between miR-200 and
PDGFRb. Consistently, a higher PDGFRb expression has been
reported in breast cancers with a more prominent mesenchymal
phenotype (38).

In vivo experiments support the effect ofmiR-9 knockdown and
miR-200 restoration in the impairment of vascular lacunae for-
mation. The approach of miRNA-based drug delivery raised two
interesting considerations. First,miRNA treatments induced ZEB1
suppression in xenograft tumors, highlighting the ability ofmiR-9
andmiR-200 to regulate not only tumor-mediated vasculogenesis
but also, more generally, EMT. Interestingly, Twist1, another key
transcriptional factor that triggers EMT, was recently reported to
induce the endothelial transition of tumor cells (39). Moreover,
this approach represents a proof of concept for exploiting miR-9
and miR-200 as therapeutic tools to affect tumor vascularization.
The existence of pathways that act as alternatives to the canonical
process of sprouting angiogenesis are proposed to mediate resis-
tance to conventional antiangiogenic therapies (40). Intriguingly,
miR-9 and miR-200 can directly induce or inhibit, respectively,
also the canonical angiogenesis (41, 42), supporting their mod-
ulation as a new approach to simultaneously target different
aspects of tumor vascularization.

Finally, our analyses show that PDGFRb-expressing tumor
cells identify vascular lacunae in human TNBC. More interest-
ingly, the only detection of tumor nests positive for PDGFRb
strongly indicate the presence of vascular lacunae, suggesting
that the IHC evaluation of the receptor could be useful in the
identification of patients whose tumor displays this aggressive
phenotype. However, the absence of PDGFRb signal does not
exclude the presence of tumor-mediated vascularization, as
highlighted by the existence of PDGFRb�/CD31þ vascular
lacunae.

In conclusion, we describe a new role of miR-9 andmiR-200 in
the biology of TNBC. The tight relation between PDGFRb-miR-9
axis and EMT, with concomitant downregulation of miR-200,
generates a favorable environment for the sustenance of tumor-
mediated vasculogenesis, which can be impaired by treatments
with miR-9 inhibitors or miR-200 mimics (Fig. 6). A deeper

Figure 6.

Schematic representation of the network involving PDGFRb, miR-9, miR-200,
and EMT.
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investigation of miR-9 and miR-200 in these multiple canonical
and noncanonical pathways of vasculogenesis becomes indeed
fundamental.
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