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Abstract: In this paper, the problem of distributed power losses minimization in islanded 

distribution systems is dealt with. The problem is formulated in a very simple manner and a 

solution is reached after a few iterations. The considered distribution system, a microgrid, 

will not need large bandwidth communication channels, since only closeby nodes will 

exchange information. The correction of generated active powers is possible by means of the 

active power losses partition concept that attributes a portion of the overall power losses in 

each branch to each generator. The experimental part shows the first results of the proposed 

method on an islanded microgrid. Simulation results of the distributed algorithm are 

compared to a centralized Optimal Power Flow approach and very small errors can be observed. 
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1. Introduction 

The Optimal Power Flow (OPF) is a very important issue in power systems. For the operator, fixed 

generated power corresponds to one operating condition only. Optimized operation very often demands 

an adjustment of generation, as loads and renewable based generation vary, according to given 

objectives. Typical ones are minimization of power losses or minimization of production cost.  

The application of such criteria immediately implies variable generated power and relevant bus voltages, 

which have to be determined so that both or one of the two objectives is achieved. The problem [1] is 

intrinsically complex and computationally expensive, the relevant optimization is nonlinear and 

nonconvex and may include both binary and continuous variables. 

The formulation of OPF typically refers to a centralized approach, for which a processing unit solves 

the problem starting from measures collected from Intelligent Electronic Devices (IEDs) connected to 

apparatus of the power network. This centralized architecture can be found in power systems even at the 

distribution level and even in modern power distribution systems integrating a large amount of generated 

power form renewables, such as microgrids(MGs) [2]. According to the United States Department of 

Energy, MGs can be defined as “localized grids that can disconnect from the traditional grid to operate 

autonomously and help mitigate grid disturbances to strengthen grid resilience…” they “… can play an 

important role in transforming the nation’s electric grid”… “MGs also support a flexible and efficient 

electric grid, by enabling the integration of growing deployments of renewable sources of energy such as 

solar and wind and distributed energy resources such as combined heat and power, energy storage,  

and demand response.” 

Renewable sources of energy are typically inverter-interfaced units showing low inertia and causing 

regulation problems in power systems. In MGs, a three levels control hierarchical architecture [3] allows 

to provide good power quality operation and more recently, experimental papers have been dealing with 

distributed secondary [2], control, while practical distributed tertiary control for MGs and energy 

management is still under investigation [4,5]. 

OPF is essentially a tertiary level optimal operation issue in electric power systems and the latter 

has been for a long time a concern of many researchers. For this purpose, many optimization 

techniques have been used, such as “the steepest descent” method [6], particle swarm optimization  

method [7], Glow-worm Swarm Optimization (GSO) method [8] fuzzy rules method [9,10], dynamic 

programming [11], global optimization [12,13] and so forth. In addition, optimization problems have 

been solved considering the presence of energy storage systems, which are critical in islanded MGs 

systems [10,14–19]. More recently, the authors in [20] have proposed a solution, which combines the 

Lagrange method and Newton Trust Region method to solve centralized OPF in islanded microgrids in 

which generated power of generator and loads depend on frequency and voltage. 

In the above mentioned research works, a form of central coordination is needed; they solve a 

centralized OPF problem and they need a centralized control system which shows disadvantages, such as 

low flexibility, low expandability and heavy computational burden. To cope with these disadvantages, 

decentralized OPF is a good idea and provides useful solutions especially for reconfigurable systems 

and plug-and-play applications. A distributed OPF approach has been first been proposed in [21,22] 

since 1997 to solve the OPF problem in transmission networks. In these two papers, the authors 

consider the OPF issue for sub-regions and coordinate the solution of multiple OPF problems through 
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an iterative update on constraint Lagrange multipliers. Since then, the problem has been studied widely. 

In [23], to solve the problem of decentralized OPF control, the authors have pursued an iterative 

approach delivered with a preconditioned conjugate gradient method. However, in this approach the 

management is highly centralized and it is addressed to power transmission systems. Also for power 

transmission systems, in [24,25] a similar incremental approach was presented, extended to solve the 

problem DC-OPF. 

The authors in [4] combined and broadened the approaches of [21,22] to unbalanced systems and 

employed the Alternating Direction Method of Multipliers (ADMM) to solve the problem of distributed 

OPF in unbalanced smart microgrids systems, but the method still requires the identification of 

sub-networks and is not fully decentralized; it also needs to solve the centralized problem and the 

approach seems very complex. In [26], the ADMM was applied to solve OPF with an approach 

completely distributed/decentralized that do not need any form of central coordination. It was used a 

region-based optimization process where the exchanged information is limited only to neighboring 

regions. These approaches consider balanced transmission systems. 

Finally, a decentralized approach employing a distributed reinforcement learning approach 

(distributed Q-learning) it is worth citing [27]. This paper proposes a decentralized control algorithm to 

modify tap changers, capacitor banks and generation bus voltage in order to dispatch reactive power to 

reduce power losses. The paper applied distributed Q learning to a power dispatch problem in electrical 

power systems, but the approach does not consider the load flow solution thus needing continuous 

measurements of branch power flows to verify the quality of the implemented operating points, which do 

not seem easily applicable. 

In this paper, we propose a simple distributed OPF algorithm in which an approximate solution of the 

OPF is reached without a central controller. Nodes exchange information only with its neighbors, and 

there is no need of information about the network’s topology. For this reason the proposed system is 

suitable also when switches reconfiguration takes place without any modification.  

The required communication algorithm is simple, involving a lower communication overhead as 

compared to the centralized solutions; more robust against nodes and links failure, in fact we can add or 

remove nodes from the network and the algorithm will adapt to the new condition. In a centralized OPF, 

where loads and power appliances are accessible through the telecommunication network, the loss of 

control and operation of the power system’s apparatuses may seriously affect the real-time operation of 

the power system [28]. 

The application on a small nine bus system is just a proof-of-concept of the proposed approach and is 

limited to active power generation correction. The application at this stage refers to a topology that is 

quite common in AC MGs in which an AC line supplies a set of loads; generators inject power in the 

same line but are physically located in different places according to how suitable the sites are for 

renewable energy generation. 

Results are quite promising and suggest including reactive power generation correction to get to more 

precise solutions. Further studies will expand the considered solution approach to account for more 

complex topologies. 
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2. Scope of Work and Optimal Power Flow (OPF) Problem Formulation 

With the basic hierarchical control architecture proposed in the literature for microgrids [3], when a 

bus power injection suddenly varies (from a load or a generation source), the regulation process starts. 

In this conventional control structure, three control levels can be evidenced: 

(1) Primary control level for controlling local power, voltage and current. It typically follows the 

setting points given by upper level controllers and performs control actions over interface power 

conversion systems. 

(2) Secondary control level appears on top of primary control. It deals with power quality control, 

such as voltage/frequency restoration, as well as voltage unbalance and harmonic compensation. 

In addition, it is in charge of synchronization and power exchange with the main grid or other MGs. 

(3) Tertiary level introduces intelligence in the whole system. To that end, tertiary control will attempt to 

optimize the MG operation based on efficiency and/or economics, solving when necessary the OPF 

problem. Knowledge both from the MG side as well as the external main network is of utmost 

importance to execute the optimization functions and ICT (Information and Communication 

Technology) is a key technology for that issue. Local or centralized Decision-Making algorithms 

are employed to process the gathered information and take proper actions. 

The bandwidth of communication channels of the different control levels are thus typically 

separated by at least one order of magnitude, implying the decoupling of the dynamics at different 

levels. This feature implies easier modelling and analysis of MGs systems. As we look at higher control 

levels, regulation speed becomes lower; e.g., droop control in primary level has typically a response 

within 1 to 10 ms, secondary control speed can get to 100ms up to 1s depending on the speed limit of 

the used communication technology, while tertiary control implements the actions in time steps 

ranging from seconds to hours.  

While for primary and secondary levels, extensive literature provides decentralized implementation, 

a decentralized approach for tertiary regulation level is still under study. At this level, the solution of the 

OPF will produce a correction of the generators’ set points giving rise to minimum losses operation or 

minimum cost operation. In this paper, we focus on the identification of a sub-optimal minimum losses 

operation point using a distributed intelligence methodology.  

The conventional OPF problem for power losses minimization can be formulated as follows. 

Consider a microgrid with N nodes, G of which are generators, including storage systems, and L of 

which are loads or non dispatchable renewable sources. The microgrid has B branches, for each of 

which the longitudinal electrical parameters can be indicated as Rk and Xk (where k = 1, … B). 

The mathematical formulation of the centralized OPF problem can be written as follows: 

Min ∑ ∆𝑃𝑘

𝐵

𝑘=1

= Min ∑
𝑅𝑘

𝑉𝑖
2 [(𝑃𝑓𝑙𝑜𝑤

𝑘 )
2
+ (𝑄𝑓𝑙𝑜𝑤

𝑘 )
2
]

𝐵

𝑘=1

 (1) 

where losses are determined solving a centralized load flow as follows: 

∑𝑃𝑖
𝑆

𝐺

𝑖=1

= ∑𝑃𝑖
𝐿

𝐿

𝑖=1

+ ∑ ∆𝑃𝑘

𝐵

𝑘=1

 (2) 
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under the following constraints: 

𝑉𝑖
𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖

𝑚𝑎𝑥 i = 1, … N (3) 

𝐼𝑘 ≤ 𝐼𝑘
𝑚𝑎𝑥 k = 1, … B (4) 

𝑃𝑖
𝑆,𝑚𝑖𝑛 ≤ 𝑃𝑖

𝑆 ≤ 𝑃𝑖
𝑆,𝑚𝑎𝑥 i = 1, … G (5) 

where Vi is the voltage module at the sending bus i of branch k; i=SB(k). 

𝑃𝑓𝑙𝑜𝑤
𝑘 , 𝑄𝑓𝑙𝑜𝑤

𝑘  respectively are the real and reactive power flows on branch k. 

𝑉𝑖 ,  𝑉𝑖
𝑚𝑖𝑛,  𝑉𝑖

𝑚𝑎𝑥 respectively are the voltage module and its minimum and maximum rated values at 

bus i; 𝐼𝑘,  𝐼𝑘
𝑚𝑎𝑥 respectively are the current flow module on the k-th branch and the k-th branch 

ampacity; 𝑃𝑖
𝑆,  𝑃𝑖

𝑆,𝑚𝑖𝑛,  𝑃𝑖
𝑆,𝑚𝑎𝑥 respectively are the power injection at the i-thdispatchable generation 

node, its minimum and maximum values. 

The optimization variables are the power injections at the generation buses, therefore Equation (1) 

must relate to these terms. In this paper, the methodology chosen for the solution of the OPF problem 

is heuristic. In this case, for centralized OPF the constraints can either be included in the objective 

function through penalty terms or can be considered afterwards, by discarding unfeasible solutions or 

by strongly penalizing them or even repairing them through heuristic repair methods. A decentralized 

formulation of the same problem is given in the following section, assuming that the overall energy 

balance of the microgrid does not change except for the limited amount of power losses that is minimized.  

3. General Formulation and Methodology for Decentralized OPF 

The methodology adopted in this paper to solve the decentralized OPF derives from the combination 

of approximated power flow algorithms like the well-known backward-forward [29] algorithm and 

power flow tracing methods as discussed in [30]. The idea is essentially to modify the power injected by 

the different sources that are installed in the microgrid, by applying the gradient descent method to 

reduce the power losses in each branch caused by each generator. The latter operation is carried out by 

calculating the partial derivatives of the power losses on each branch with respect to the contribution of 

power of the upstream generation source. Power losses on each branch can indeed be expressed as a 

function of the contribution to the power flow from each generator. Such assessment allows to correct 

the active power injected by each generation source. To understand if the correction has produced a 

variation of the voltages profile and thus to correctly evaluate the new power losses value, an on-line 

distributed power flow is also carried out. 

The problem formulation thus becomes the following: 

Min∆𝑃𝑘 = Min
𝑅𝑘

𝑉𝑠
2
[(𝑃𝑓𝑙𝑜𝑤

𝑘 )
2
+ (𝑄𝑓𝑙𝑜𝑤

𝑘 )
2
] (6) 

where losses are determined locally applying the Kirkhhoff current law at the sending and ending 

buses of the k-th branch for which the sum of entering and outgoing flows on the adferent branches to 

a generic bus (na in Equation (7)) must be zero:  

1

0
an

k

flow

k

P


  (7) 
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Moreover, since the network is islanded, the corrections at the generators must have opposite signs 

so as to compensate the overall power balance.  

The following constraints about voltages and currents will still hold at each generic bus i and at  

each branch: 

𝑉𝑖
𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖

𝑚𝑎𝑥 (8) 

𝐼𝑘 ≤ 𝐼𝑘
𝑚𝑎𝑥 (9) 

The following constraint about power generated from each source in the microgrid should also  

be considered: 

𝑃𝑗
𝑆,𝑚𝑖𝑛 ≤ 𝑃𝑗

𝑆 ≤ 𝑃𝑗
𝑆,𝑚𝑎𝑥

 (10) 

To evaluate the correction to be executed on the generated power of each source minimizing the 

power losses on each branch, it is necessary to know to what extent the power flowing on a single 

branch can be attributed to a given source. 

Referring to Figure 1 below, Equation (11) shows the relation between the power flowing on branch k, 

and the contribution of the generic i-th generator (Pk,i
S; Qk,i

S) to the power flow in the same branch k, 

under the hypothesis that the power flows from the sending bus S to ending bus E. 

𝑃𝑘
𝑓𝑙𝑜𝑤

= ∑𝑃𝑘,𝑖
𝑆

𝑛

𝑖=1

;  𝑄𝑘
𝑓𝑙𝑜𝑤

= ∑𝑄𝑘,𝑖
𝑆

𝑛

𝑖=1

 (11) 

It can be argued that the contribution from a given source to the power flowing in branch k is 

proportional to the injected power from a generic generator. 

In [30], the authors study the problem of power losses partition and the following Equation (12) 

instead of Equation (6) can be used: 

∆𝑃𝑘 =
𝑅𝑘

𝑉𝑠
2
[(∑𝑃𝑘,𝑖

𝑆

𝑛

𝑖=1

)

2

+ (∑𝑄𝑘,𝑖
𝑆

𝑛

𝑖=1

)

2

] (12) 

where the relation between the overall losses on branch k, Pk, and the contribution of the i-th 

generator to the power flow in the same branch k (Pk,i
S; Qk,i

S) is shown. In this expression, Rk is the 

resistance of the k-th branch and VS is the voltage module at the sending bus. The same expression can 

be written, if reactive flows can be neglected, in the following way (see Figure 1): 

∆𝑃𝑘 =
𝑅𝑘

𝑉𝑠
2
∑

[
 
 
 
 

(𝑃𝑘,𝑖
𝑆 )

2
+ 2∑(𝑃𝑘,𝑖

𝑆 𝑃𝑘,𝑗
𝑆 )

𝑛

𝑗=1
𝑗≠𝑖 ]

 
 
 
 𝑛

𝑖=1

 (13) 

Under the hypothesis that power flows from the i-th generator in the generic branch k (Pk,i
S; Qk,i

S) 

can be somehow deduced, the minimization of Equation (13) allows to derive the active power 

correction that must be applied to the generated power according to the gradient method carried out 

only with respect to the active generated powers. 

According to a heuristic rule, the partition of the flows in each branch among generators is at first 

determined and then adjusted along iterations, as it will be detailed later on in the paper. 
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Figure 1. Partition of the power flows among generators in a generic branch k. 

To derive the terms (Pk,i
S; Pk,j

S) in Equation (13), it is necessary to solve the distributed load flow and 

contextually perform power flow tracing. 

3.1. Distributed Power Flow 

Distributed power flow is carried out according to the well-known backward/forward methodology 

described in [29]. In this case, loads are modeled as constant power nodes and generators as constant 

power sources. To calculate the distributed load flow, it will be assumed that the following quantities are 

known because they can be locally measured: 

 voltage modules; 

 real and reactive power injected by generator buses; 

 real and reactive power absorbed by load nodes; 

 real and reactive power injected/absorbed by storage systems. 

The only admitted communication is between adjacent nodes. The algorithm is divided in three parts: 

an initialization phase consisting in the power flow tracing starting from measured bus voltages collected 

on the grid. In this phase, each IED at each bus, at regular time intervals, measures the local voltage 

value and queries the neighboring nodes about bus voltage levels. 

A second part, the backward phase, in which the IEDs at load nodes decide how to correct power 

generations; and finally a third step, the forward phase, in which the modification of the voltage 

profiles is carried out. From the updated voltage values, the power losses can be again calculated 

according to Equation (13). Backward and forward phases are repeated until convergence. 

In what follows, a sink node is a load node with known real and reactive power (PL, QL) where the 

flows from the adjacent nodes converge; it is this a node showing the lowest voltage value as 

compared to the neighboring nodes, see node E in Figure 2. 

Some basic concepts can be accounted for, in this process, when considering each generic branch k: 

(1) Loads are supplied through the adjacent branches in a proportion that probabilistically depends 

on the voltage level of adjacent buses. 

(2) The power flow entering a branching node is shared among the outgoing branches following a 

heuristic sharing principle. 
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Figure 2. A sink load node. 

In this phase, constraints violations about currents (backward phase) and about voltages  

(forward phase) can be evidenced and the learning algorithm will account for it giving a negative 

feedback about the decided power correction. 

3.2. Distributed Optimal Power Flow 

To solve the OPF, the main step is to understand how the generators contribute to the power flow in 

each branch of the network. In the initialization phase, the voltage modules at each bus will tell the 

direction of the power flows in the branches at each step. In this way, the paths of the power supplied by 

generators are identified and the power inversion points are devised. As simplifying assumption, the real 

and reactive power inversion points are considered the same. In the same initialization phase, looking at 

the bus voltage levels, also the sink nodes can be identified. 

In the backward phase starting from a sink node, when a correction to an upstream generator is 

decided on a given branch, the other generators power injections will have to be corrected in the opposite 

direction. In this way, the overall power balance is maintained, not considering the comparably low 

power losses. The paths in which the power generation correction is a decrement are first considered. 

The method for corrections of active powers injected by the generators is the gradient descent 

method. Based on Equation (13) at each branch, partial derivatives, in each of the variables (𝑃𝑘,𝑖
𝑆 ) of the 

power losses and in each branch will be calculated and these terms will be used to correct the 

generated power at the relevant source nodes. Once decided the amount of the power generation to be 

reduced in the considered path, the other paths are analyzed, evaluating how much increase each power 

generation unit must apply according to the power losses in the downstream paths. In Section 4, this 

step is outlined in greater detail. This correction is to be applied at each iteration of the OPF procedure. 

Each iteration implies the visit of all nodes of the network. 

The subsequent forward phase calculates the new bus voltages and weights of the learning 

procedure outlined below. The distributed OPF is carried out as described below through a 

backward/forward process starting from the sink nodes and following procedures listed below. 

3.3. Backward Phase 

Let’s first consider a generic sink bus L supplied through h branches (see Figure 2). In order to 

proceed upwards, it is required to know how the load at bus E in the figure must be divided into the 

adjacent upstream branches. This condition is expressed through the values of the αk coefficients. 

These can be deduced at the first iteration by the following equation: 
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𝛼𝑘 = −
𝑉𝐸

2 − 𝑉𝑆𝑘𝑉𝐸

𝑅𝑘𝑃
𝐿 + 𝑋𝑘𝑄

𝐿
 (14) 

in which the voltage displacement difference at the two ends (Sk, E) of branch k is neglected. 

The sharing proportions αk, are actually initially set using heuristic rules as Equation (14) and then 

“learned” and adjusted during the iterative process. Such sharing proportions allow to suitably scale 

the generated power correction upstream. 

The process is implemented in a distributed fashion. In this way, it is possible at each node to 

calculate the power losses of the adjacent branches and proceed upwards towards the generators. 

According to [29], the real losses and reactive power variation in the generic branch k (k ranging from  

1 to h) can be evaluated in the following way: 

∆𝑃𝑘
𝐿 =

𝑅𝑘[𝛼𝑘(𝑃𝐿 + 𝑗𝑄𝐿)]
2

𝑉𝐿
2

∆𝑄𝑘
𝐿 =

𝑋𝑘[𝛼𝑘(𝑃𝐿 + 𝑗𝑄𝐿)]
2

𝑉𝐿
2

 (15) 

where Rk, Xk are the resistance and the reactance of branch k; PL, QL and VE respectively are the real, 

reactive powers supplied through bus Sk and the voltage at bus E. 

According to [29], once the power flows on each branch are defined, Equation (13) allows to 

evaluate the corrections of the generated powers deriving from the consideration of each branch.  

To decide how to correct the active powers injected by the generators we apply a learning algorithm, 

that is described in more detail in the next section. 

The process can be repeated going backwards to the generators, as the real and reactive power flow, 

𝑃𝑓𝑙𝑜𝑤
𝑘  and 𝑄𝑓𝑙𝑜𝑤

𝑘 , at a generic branch k can be expressed as the summation of the load supplied at the 

ending node, the loads supplied downstream and the power losses in the downstream branches. 

3.4. Forward Phase 

Starting from the generator nodes, the losses and voltage drops due to the updated power generation 

are calculated. In branching nodes, the new power injection is partitioned in the same proportion of the 

flows on the adjacent branches assessed in the backward phase. The voltage at the generator buses are 

considered as fixed. 

3.5. Voltages Correction in the Forward Phase 

Following the flow of the generic branch k from the sending bus (S) to the ending bus (E), the new 

voltage module at generic bus E, (once VS is known) is calculated as follows: 

VE =
1

2
[VS + √VS

2-4(RkPflow
k + XkQflow

k )] (16) 

where the power flows 𝑃𝑓𝑙𝑜𝑤
𝑘 , 𝑄𝑓𝑙𝑜𝑤

𝑘  include both all the power flows downstream branch k and the 

real and reactive losses on the downstream branches, as calculated following Equation (15). The new 

voltages distribution, will allow the identification of new power flows and the restart of the procedure 

until convergence. In what follows, the learning algorithm for the αk coefficients is described. 
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4. Learning Algorithm for the αk Coefficients 

Starting from a sink bus (see Figure 1), a set of paths going to the generators can be identified.  

By the learning algorithm, it can be decided whether the generator supplying each considered path has to 

increase or reduce its contribution. 

At each of the branches, there are two possible choices: increase the flow or decrease the flow.  

Such choices are indicated with a two-valued variable dt: 

dt={−1;1} (17) 

 −1 means that the power flow should be reduced in this branch; 

 1 means that the power flow should be increased in this branch. 

The choice about decreasing or increasing is taken probabilistically, assuming as probability of 

reduction the weight itself.  

Referring a branch k with edges “i” and “j”, such weight is at first initialized as follows: 

wij,0 = αk = αij (18) 

Therefore, initially, a greater weight reflects a more loaded edge, and thus a greater probability of 

decreasing the power flow is the effect of a greater weight. In this way, the correction of the power 

injected by generator j that is calculated for the considered edge k is the following: 

∆𝑃𝑗,𝑘
𝑆 (𝑡) = 𝑤𝑖𝑗,𝑡

𝜕∆𝑃𝑘

𝜕𝑃𝑗
𝑆  (19) 

In order to modify the weights and thus learn, it is required to know what the effect of the taken 

choice on the objective of losses reduction is. To do so, after having performed the forward phase,  

it is possible to know whether the power losses in the path to which the considered branch belongs is 

actually decreased or not. 

Let yt denote the feedback; it will take value 1 if the decision taken about decrease/increase the 

power injection was wrong, namely if the calculated losses are increased, 0 if the decision taken  

was correct: 

{
𝑦𝑡 = 1 if the decision was wrong
𝑦𝑡 = 0 if the decision was right

  

At the generic step t + 1, each weight can be updated as follows:  

𝑤𝑖𝑗,𝑡+1 = 𝑤𝑖𝑗,𝑡𝑒
𝑑𝑡µ𝑦𝑡 (20) 

where μ is a real coefficient in the range [0;1] that defines the speed of the update. In our experiment,  

it was fixed to 0.4. When the decision is right, the weight stays unchanged. When the decision is wrong, 

the weight grows if in the precedent step the decision was to increase, while it gets reduced if the 

decision was to decrease. 

At the end of the update, the weights at the branches afferent to the sink bus L are normalized 

according to: 

𝑤𝑖𝑗 =
𝑤𝑖𝑗

∑𝑤𝑖𝐿
 (21) 
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Constraints Handling 

As already outlined in Sections 2 and 3, in OPF the typical constraints are about maximum voltage 

drops, currents below branches ampacity and power generation within limits. The latter in DOPF 

(Distributed Optimal Power Flow) are verified during the Forward phase, in which both voltage 

modules, branch currents and generated powers are calculated. The tests carried out in the following 

section will show that load flow results also show limited errors. When a constraint violation is observed 

along the process, the feedback is negative as if the objective is not met. 

5. The Test System 

The test system is the nine bus balanced system shown in Figure 3 below, in which there are three 

distributed generators (DGs) at Bus 1, Bus 2, Bus 3 and six other load buses. The line-data and the  

bus-data are shown in the Table 1. 

 

Figure 3. 9-bus test microgrid system. 

Table 1. Electrical features of the test microgrid system. 

Branch R, pu X, pu 

L4_5 0.01288089 0.00084849 

L4_7 0.01288089 0.00084849 

L5_8 0.01288089 0.00084849 

L5_6 0.01173823 0.00030459 

L6_9 0.01173823 0.00030459 

L1_7 0.00692521 0.08702493 

L2_8 0.00692521 0.08702493 

L3_9 0.00692521 0.08702493 

Li_j indicates the id of the generic line connecting buses i and j. 

6. Application 

Simulations are carried out with MATLAB software, in a nine bus microgrid (see Figure 3) having 

the electrical features reported Table 1. Three cases with different loading at buses 4–9 are considered 

to show the efficiency of proposed method. 
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The optimized solution using the proposed DOPF is compared to a centralized OPF solution using 

GSO algorithm as described in [9]. Since the solution of the DOPF is approximated, the attained solution 

is close to the optimal, but not the optimal. Thus, to get a practical solution, if the network hosts G 

generators, G-1 will implement the DOPF solution, while one will physically act as slack node to 

account for approximations and small errors in load flow calculations. However, as will be shown using 

a precise load flow calculation, physically viable results do not differ much from what is attained using 

the DOPF. From an Initial Operating Point (IOP) of the test system, the DOPF will find new 

sub-Optimal Operating Point (OOP) for all generators in the test system as well as the voltage at each 

bus. The precise load flow with one slack bus is then calculated using a conventional Newton Raphson 

method and the behavior of the optimized system with OOP is checked. In the load flow solution, G-1 

generation units are considered PV buses (in the considered application, these are DG2 and DG3) and 

the remaining one (typically the largest unit, in the considered application DG1) is the slack bus.  

Then the optimal result is compared with the optimal result given by the OPF solution obtained using 

the GSO method [9] on the same test system. In the following tables and figures the results are given. 

6.1. Case A 

Table 2 shows the initial operating point with relevant loading for this operating condition and power 

losses. Table 3 shows the sub-optimal solution from the DOPF, OOP. Table 4 shows the load flow in this 

latter operating point obtained using DOPF. Table 5 shows the comparison with the centralized OPF 

with GSO. Table 5 shows the error in power losses that is attained considering the two approaches and 

the latter stays below 4%, while comparing Tables 3 and 4, the maximum voltages estimation error of 

DOPF is slightly above 4% and with the proposed correction from DOPF power losses are almost half as 

compared to the IOP. 

Figure 4 shows the variation of power injection between optimized solution OGPR and initial 

operating point IOP. Figures 5 and 6 show a comparison of the two operating solutions in terms of 

power losses in branches and voltage level. 

Table 2. Initial operating point. 

Bus 

Voltage 

Module 

Vi/pu 

Voltage 

Angle 

di/rad 

Generated 

Real Power 

PGi/pu 

Generated 

Reactive Power 

QGi/pu 

Real power 

Load 

PLi/pu 

Reactive 

Power Load 

QLi/pu 

Total Power 

Losses 

Ploss/pu 

Bus 1 1.1090 0.0000 3.1213 0.1334 0.0000 0.0000 

0.1874 

Bus 2 1.1056 −0.1920 0.7097 0.4767 0.0000 0.0000 

Bus 3 1.1058 −0.1962 0.7064 0.5632 0.0000 0.0000 

Bus 4 1.0740 −0.2311 0.0000 0.0000 1.3500 0.0000 

Bus 5 1.0591 −0.2378 0.0000 0.0000 1.2000 0.0000 

Bus 6 1.0525 −0.2405 0.0000 0.0000 1.0500 0.2132 

Bus 7 1.1063 −0.2225 0.0000 0.0000 0.2500 0.0508 

Bus 8 1.0649 −0.2417 0.0000 0.0000 0.2500 0.0508 

Bus 9 1.0583 −0.2454 0.0000 0.0000 0.2500 0.0508 
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Table 3. Optimal Operating Point (OOP) given by the DOPF (Distributed Optimal Power Flow). 

Bus Vi/pu PGi/pu 

Bus 1 1.1090 1.4747 

Bus 2 1.1056 1.3884 

Bus 3 1.1058 1.6743 

Bus 4 1.0714  

Bus 5 1.0259  

Bus 6 1.0273  

Bus 7 1.0890  

Bus 8 1.0573  

Bus 9 1.0422  

Table 4. Load flow solution of the test system with OOP. 

Bus 

Voltage 

Module 

Vi/pu 

Voltage 

Angle 

di/rad 

Generated 

Real Power 

PGi/pu 

Generated 

Reactive Power 

QGi/pu 

Real Power 

Load 

PLi/pu 

Reactive 

Power Load 

QLi/pu 

Total Power 

Losses 

Ploss/Pu 

Bus 1 1.1090 0.0000 1.3790 0.3628 0.0000 0.0000 

0.0917 

Bus 2 1.1056 0.0039 1.3884 0.2850 0.0000 0.0000 

Bus 3 1.1058 0.0289 1.6743 0.2106 0.0000 0.0000 

Bus 4 1.0636 −0.0975 0.0000 0.0000 1.3500 0.0000 

Bus 5 1.0663 −0.0957 0.0000 0.0000 1.2000 0.0000 

Bus 6 1.0699 −0.0929 0.0000 0.0000 1.0500 0.2132 

Bus 7 1.0771 −0.0985 0.0000 0.0000 0.2500 0.0508 

Bus 8 1.0798 −0.0958 0.0000 0.0000 0.2500 0.0508 

Bus 9 1.0866 −0.0914 0.0000 0.0000 0.2500 0.0508 

Table 5. Comparison of results between Glow-worm Swarm Optimization (GSO) and DOPF. 

Method Ploss/pu Deviation 

DOPF 0.0917 
3.97% 

GSO 0.0882 

 

Figure 4. Change of generated power at each DG from IOP to OOP. 
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Figure 5. Power losses in each branch before (IOP) and after (OOP) the optimization. 

 

Figure 6. Voltage improvement at each bus. 

6.2. Case B 

Table 6 shows the initial operating point with relevant power losses. Table 7 shows the sub-optimal 

solution from the DOPF, OOP. Table 8 shows the Load flow in the optimized solution using DOPF. 

Table 9 shows a comparison of the solution attained with DOPF and with the centralized OPF with GSO. 

Table 9 shows the error in power losses that is attained considering the two approaches and the latter is 

1.28%, while comparing Tables 7 and 8, the maximum voltages estimation error of DOPF is slightly above 

5% and with the proposed correction from DOPF power losses are almost half as compared to the IOP. 

Table 6. Initial operating point. 

Bus 

Voltage 

Module 

Vi/pu 

Voltage 

Angle 

di/rad 

Generated 

Real Power 

PGi/pu 

Generated 

Reactive Power 

QGi/pu 

Real Power 

Load  

PLi/pu 

Reactive 

Power Load 

QLi/pu 

Total Power 

Losses 

Ploss/pu 

Bus 1 1.1090 0.0000 2.5237 0.1918 0.0000 0.0000 

0.1364 

Bus 2 1.1056 −0.1770 0.2884 0.5635 0.0000 0.0000 

Bus 3 1.1058 −0.0670 1.6743 0.3882 0.0000 0.0000 

Bus 4 1.0712 −0.1858 0.0000 0.0000 0.9500 0.0000 

Bus 5 1.0588 −0.1896 0.0000 0.0000 1.2000 0.0000 

Bus 6 1.0592 −0.1880 0.0000 0.0000 1.0500 0.2132 

Bus 7 1.0960 −0.1806 0.0000 0.0000 0.3500 0.0711 

Bus 8 1.0596 −0.1951 0.0000 0.0000 0.2500 0.0508 

Bus 9 1.0726 −0.1879 0.0000 0.0000 0.5500 0.1117 
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Table 7. OOP given by proposed method. 

Bus Vi/pu PGi/pu 

Bus 1 1.1090 1.4278 

Bus 2 1.1056 1.3380 

Bus 3 1.1058 1.7205 

Bus 4 1.0674  

Bus 5 1.0036  

Bus 6 1.0419  

Bus 7 1.0845  

Bus 8 1.0501  

Bus 9 1.0628  

Table 8. The behavior of the test system with OOP. 

Bus 

Voltage 

Module 

Vi/pu 

Voltage 

Angle 

di/rad 

Generated 

Real Power 

PGi/pu 

Generated 

Reactive Power 

QGi/pu 

Real Power 

Load  

PLi/pu 

Reactive 

Power Load 

QLi/pu 

Total Power 

Losses 

Ploss/pu 

Bus 1 1.1090 0.0000 1.3708 0.3476 0.0000 0.0000 

0.0793 

Bus 2 1.1056 −0.0002 1.3380 0.3004 0.0000 0.0000 

Bus 3 1.1058 0.0320 1.7205 0.2935 0.0000 0.0000 

Bus 4 1.0662 −0.0971 0.0000 0.0000 0.9500 0.0000 

Bus 5 1.0656 −0.0958 0.0000 0.0000 1.2000 0.0000 

Bus 6 1.0665 −0.0932 0.0000 0.0000 1.0500 0.2132 

Bus 7 1.0783 −0.0979 0.0000 0.0000 0.3500 0.0711 

Bus 8 1.0785 −0.0963 0.0000 0.0000 0.2500 0.0508 

Bus 9 1.0802 −0.0919 0.0000 0.0000 0.5500 0.1117 

Table 9. Comparison of results between two methods. 

Method Ploss/pu % deviation 

DOPF 0.0793 
1.28% 

GSO 0.0783 

Figure 7 shows the variation of power injection between optimized solution by DOPF, OOP, and 

initial operating point IOP. Figures 8 and 9 show a comparison of the two operating solutions in terms 

of power losses in branches and bus voltage levels. 

 

Figure 7. Generated power change at each DG unit. 
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Figure 8. Power losses in each branch before (IOP) and after (OOP) the optimization. 

 

Figure 9. Voltage improvement at each bus. 

6.3. Case C 

Table 10 shows the initial operating point with relevant power losses. Table 11 shows the sub-optimal 

solution from the DOPF, OOP. Table 12 shows the Load flow in the optimized solution using DOPF. 

Table 13 shows a comparison of the solution attained with DOPF and with the centralized OPF with GSO. 

Table 13 shows the error in power losses that is attained considering the two approaches and the 

latter is 0.5%, while comparing Tables 11 and 12, the maximum voltages estimation error of DOPF is 

slightly below 5% and with the proposed correction from DOPF power losses are less than half as 

compared to the IOP. Losses reduction and voltage profile adjustment show similar behavior as in 

cases A and B shown in Sections 6.1 and 6.2. 
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Table 10. Initial operating point.  

Bus 

Voltage 

Module 

Vi/pu 

Voltage 

Angle 

di/rad 

Generated 

Real Power 

PGi/pu 

Generated 

Reactive Power 

QGi/pu 

Real Power 

Load 

PLi/pu 

Reactive 

Power Load 

QLi/pu 

Total Power 

Losses 

Ploss/pu 

Bus 1 1.1090 0.0000 3.1310 0.1173 0.0000 0.0000 

0.1970 

Bus 2 1.1056 −0.1935 0.7097 0.4877 0.0000 0.0000 

Bus 3 1.1058 −0.1988 0.7064 0.6629 0.0000 0.0000 

Bus 4 1.0765 −0.2319 0.0000 0.0000 0.9500 0.0000 

Bus 5 1.0583 −0.2391 0.0000 0.0000 1.2000 0.0000 

Bus 6 1.0482 −0.2422 0.0000 0.0000 1.0500 0.2132 

Bus 7 1.1077 −0.2230 0.0000 0.0000 0.3500 0.0711 

Bus 8 1.0641 −0.2432 0.0000 0.0000 0.2500 0.0508 

Bus 9 1.0505 −0.2478 0.0000 0.0000 0.5500 0.1117 

Table 11. OOP given by proposed method. 

Bus Vi/pu PGi/pu 

Bus 1 1.109 1.4785 

Bus 2 1.10561 1.4104 

Bus 3 1.1058 1.6581 

Bus 4 1.072644082  

Bus 5 1.039476829  

Bus 6 1.014015027  

Bus 7 1.090245292  

Bus 8 1.056166843  

Bus 9 1.039240181  

Table 12. The behavior of the test system with OOP. 

Bus 

Voltage 

Module 

Vi/pu 

Voltage 

Angle 

di/rad 

Generated 

Real Power 

PGi/pu 

Generated 

Reactive Power 

QGi/pu 

Real Power 

Load 

PLi/pu 

Reactive 

Power Load 

QLi/pu 

Total Power 

Losses 

Ploss/pu 

Bus 1 1.1090 0.0000 1.3603 0.3467 0.0000 0.0000 

0.0788 

Bus 2 1.1056 0.0062 1.4104 0.2876 0.0000 0.0000 

Bus 3 1.1058 0.0277 1.6581 0.3042 0.0000 0.0000 

Bus 4 1.0663 −0.0963 0.0000 0.0000 0.9500 0.0000 

Bus 5 1.0659 −0.0950 0.0000 0.0000 1.2000 0.0000 

Bus 6 1.0661 −0.0926 0.0000 0.0000 1.0500 0.2132 

Bus 7 1.0784 −0.0971 0.0000 0.0000 0.3500 0.0711 

Bus 8 1.0797 −0.0951 0.0000 0.0000 0.2500 0.0508 

Bus 9 1.0792 −0.0917 0.0000 0.0000 0.5500 0.1117 

Table 13. Comparison of results between two methods. 

Method Ploss/pu % deviation 

DOPF 0.0788 
0.64% 

GSO 0.0783 
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6.4. Convergence 

The analysis of the convergence is carried out here. Convergence is considered to be reached when 

the power losses improvement is limited below 1% in two subsequent iterations. Moreover, if power 

losses do not improve much, operating conditions stay unchanged.  

In all experiments, convergence is reached in no more than four iterations. In Figure 10 it is shown, 

as an example, how the weight changes in branch L5_8 during the iterations, going from an initial 

value of 0.7135 to a final value of 0.3206 after three iterations. Consequently, the initial choice of 

decreasing power generation of G2 is changed to growing power generation in this branch, allowing 

the algorithm to reach results near to the optimum obtained through a centralized algorithm.  

 

Figure 10. Weights update. 

In future work, the same distributed algorithm will be applied to larger grids and the correction of 

the injected reactive powers at the generators will be considered. 

7. Conclusions 

In this work, the issue of distributed Optimal Power Flow for power losses minimization in islanded 

MGs is dealt with. The issue is formulated in a simple way and a distributed intelligence approach 

allows one to find a solution after a few iterations. The communication infrastructure of the MG will 

not need large bandwidth communication channels, since only adjacent nodes will exchange data.  

The generated active powers is corrected using active power losses partition concept that relates a 

portion of the overall losses in each branch to each generator. A gradient descent method combined 

with a reinforcement learning algorithm allow to evaluate the correction and positively take into 

account its effect, thus getting close to the optimal solution. An application on a nine bus system 

carried out in the MATLAB environment shows the limited errors of the attained results as well as the 

effectiveness and plug and play features of the proposed approach. 
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Abbreviations 

∆𝑃𝑘 power losses on branch k 

RK longitudinal branch resistance 

𝑋𝑘 longitudinal branch reactance 

𝑉𝑖 , 𝑉𝑖
𝑚𝑖𝑛, 𝑉𝑖

𝑚𝑎𝑥 voltage module at bus i, min value of voltage at bus i, max value of voltage at bus i 

VS voltage module at sending bus 

VE voltage module at ending bus 

𝑃𝑓𝑙𝑜𝑤
𝑘  active power flow on branch k 

𝑄𝑓𝑙𝑜𝑤
𝑘  reactive power flow on branch k 

B number of branches 

N number of buses of the microgrid 

G number of generators 

L number of load nodes 

𝑃𝑖
𝐿 power absorbed from a load or injected by renewable source at the i-th bus 

𝐼𝑘, 𝐼𝑘
𝑚𝑎𝑥 module of current flowing in branch k, k-th branch ampacity 

𝑃𝑖
𝑆, 𝑃𝑖

𝑆,𝑚𝑖𝑛, 𝑃𝑖
𝑆,𝑚𝑎𝑥

 
power injection from a generator at bus i, min value of power injection at bus i, 

max value of power injection at bus i 

SB(k) sending bus of branch k 

na number of adferent branches to a bus 

𝑃𝑘,𝑖
𝑆 , 𝑄𝑘,𝑖

𝑆  
active and reactive power contribution from the generic i-th generator to the 

power flowing on branch k from the sending bus S to ending bus E 

∆𝑃𝑘
𝐿 , ∆𝑄𝑘

𝐿 
real losses and reactive power on branch k due to the real PL and reactive powers 

QL supplied through its ending bus 
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α𝑘(or α𝑖,𝑗) 

starting value for the weight used for power generation correction referring to 

branch k whose sending and ending bus are i and j. The value of such weights is 

updated along the search 

𝑤𝑖𝑗,𝑡 weight used for power generation correction at iteration t on branch k 

µ 
real coefficient in the range [0;1] used to define the updating speed of the value 

of weights 

∆𝑃𝑗,𝑘
𝑆 (𝑡) 

correction of the power injection from generator j calculated for edge k in 

iteration t 
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