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Lipid Droplets: A New Player in Colorectal Cancer
Stem Cells Unveiled by Spectroscopic Imaging
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ABSTRACT

The cancer stem cell (CSC) model is describing tumors as a hierarchical organized system and
CSCs are suggested to be responsible for cancer recurrence after therapy. The identification of
specific markers of CSCs is therefore of paramount importance. Here, we show that high levels
of lipid droplets (LDs) are a distinctive mark of CSCs in colorectal (CR) cancer. This increased
lipid content was clearly revealed by label-free Raman spectroscopy and it directly correlates
with well-accepted CR-CSC markers as CD133 and Wnt pathway activity. By xenotransplantation
experiments, we have finally demonstrated that CR-CSCs overexpressing LDs retain most tumori-
genic potential. A relevant conceptual advance in this work is the demonstration that a cellular
organelle, the LD, is a signature of CSCs, in addition to molecular markers. A further functional
characterization of LDs could lead soon to design new target therapies against CR-CSCs. STEM

CELLS 2015;33:35-44

INTRODUCTION

Colorectal (CR) cancer is one of the most fre-
quent neoplasms and the second leading
cause of cancer-related death in the Western
world [1]. CR cancer normally originates from
clonal expansion of a single intestinal stem or
progenitor cell located at the bottom of the
CR crypt [2, 3] that undergoes genetic and/or
epigenetic alterations [4, 5]. Nevertheless, the
hierarchical organization that is present in the
crypts as well as the morphogenic signals that
sustain this hierarchy appears to be main-
tained throughout tumor progression [6, 7]. In
agreement, tumors have been shown to con-
tain a hierarchy with a cancer stem cell (CSC)
compartment at the apex [8]. Importantly, dif-
ferent studies have indicated that these CSCs
are more resistant to therapy than differenti-
ated tumor cells [9, 10]. For these reasons,
CR-CSCs have been recognized as key compo-
nents in CR carcinogenesis and recurrences
[11-13]. This is why their identification and
isolation becomes a crucial step to better
understand the mechanisms that underlie their
biological behavior [14]. To address this issue,
one or more of the following in vitro analyses
have been used so far: detection of CR-CSC
markers, serial colony forming assays, and the

STEM CELLS 2015;33:35-44 www.StemCells.com

propagation as tumor spheres in stem cell cul-
turing conditions [15, 16]. To prove the tumori-
genic potential of the isolated CR-CSCs, it is
then necessary to perform serial injections of
the spheres into immune compromised mice
[17]. Unfortunately, nearly all the potential
markers of CR-CSCs so far proposed, such as
CD133 [17, 18], CD44 [19], ESA (EpCAM) [18],
CD166 [19], ALDH-1[9], Musashi 1 (Msi1) [20],
and LGR5 [21] require staining and are not
completely unique for the CSC population.

It is therefore highly desirable to develop an
alternative, rapid, and reliable technique for
CR-CSC detection and sorting. The identification
of such a method could also reveal new
relevant cellular/functional aspects of the CSC
subpopulation [14]. Raman techniques have
been recently used for biological and medical
studies as they display, due to the sensitivity to
the chemical structure of biomolecules, non-per-
turbative sampling capabilities, label-free imag-
ing, and high spatial resolution [22-24]. For
instance, Raman microspectroscopy has been
used to study DNA and protein distribution
inside cells [25, 26], the cellular uptake and dis-
tribution of liposomal drug carriers [27], label-
free mitochondrial distribution [28], lipidomic in
leukocytes [29], and lipid imaging in human
lung-cancer cells and in brain tissues [30].

© 2014 The Authors. STEM CELLS Published by
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In this study, Raman spectroscopy, fluorescence micros-
copy, flow-cytometry, and electron microscopy are used to
investigate the presence of distinctive features of CR-CSCs
compared to differentiated tumor cells and normal epithelial
colon cells. We show that Raman microspectroscopy highlights
a higher content of lipids in CR-CSCs compared to the differ-
entiated counterpart and normal CR cells. Fluorescence
microscopy with hydrophobic dyes, BODIPY [31], and LD540
[32] clearly identifies the origin of the larger lipid content as
an increased expression of lipid droplets (LDs). The large
amount of LDs is also confirmed and quantified by flow
cytometry and electron microscopy. As a remarkable point,
we find that LD content in CSC subpopulation is directly cor-
related with the over-expression of CD133 and high Wnt/f-
catenin pathway activity, two well-accepted markers for CR-
CSCs. The correlation between LD content and tumorigenic
potential was checked through the injection of different sub-
sets (LDs"'&"/LDs"*%) in NOD/SCID mice.

From a detection point of view, the large amount of LDs
produces remarkable increased intensities of the Raman peaks
corresponding to specific vibrations of fatty acids, and the
intensity differences are so unambiguously evident that these
Raman modes are ideal candidates as Raman markers for a
fast, robust, and label-free method for CR-CSC identification.
From a biological/functional point of view, LDs can be an
ideal target for future colon cancer therapies.

MATERIALS AND IMETHODS

Cell Cultures

CR-CSC cultures were generated as previously described by Ricci-
Vitiani et al. [6, 18] and cultured in ultra-low adhesion flasks
(Corning, Lowell, MA, http://www.corning.com) in Dulbecco’s
modified Eagle’s medium (DMEM)/F-12 serum-free medium (Life
Technologies, Carlsbad, CA, http://www.lifetechnologies.com)
supplemented with fresh epidermal growth factor (EGF) (20 ng/
ml) and basic fibroblast growth factor (FGF) (10 ng/ml) (Sigma-
Aldrich, St. Louis, MO, http://www.sigmaaldrich.com) to pro-
mote their growth. A GFP™ subculture was obtained by lentivi-
ral transduction as previously described [6]. Differentiated cells
(sphere-derived adherent cells [SDACs]) were obtained by dis-
sociating CR-CSCs and culturing them in Dulbecco’s modified
medium supplemented with 10% fetal calf serum (FCS) in
adherent conditions for at least 25 days. Normal epithelial colon
cells (NECCs) (CCD841-CoN, Manassas, VA, www.atcc.org) and
colon carcinoma cell (CCC) lines (HCT116 and RKO, Manassas,
VA, www.atcc.org) were cultured in RPMI and «-MEM com-
pleted with 10% of fetal bovine serum (FBS) and 1% of P/S,
respectively.

Raman Measurements

Raman microspectroscopy is carried out by means of a
Renishaw InVia Raman microscope (Wotton Under Edge, UK,
www.renishaw.com), equipped with a motorized stage for the
laser-scanning of the sample. The excitation wavelength is
633 nm and the incident light is focused on the sample
through an Olympus (Olympus ltalia S.r.l., Segrate, Italy, www.
olympus-europa.com) X60/1.0 NA water immersion objective.
The laser power at the sample level is about 3 mW. A notch-
filter is used to block the Rayleigh back-scattered light. Before

© 2014 The Authors. STEM CELLS Published by
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recording Raman measurements, the cells are passaged by
trypsinization, washed three times with phosphate buffered
saline (PBS), and then resuspended in the same buffer. During
the measurements, CaF, slides are used as substrates because
of their negligible Raman signal background.

For the imaging experiments, cells were scanned through
the laser focus in a raster pattern with a typical step-size of
1 pm. Raman spectra are recorded in the 800-3,200 cm ™ * range
and the accumulation time is 5 seconds per each pixel. Subse-
quently, Raman images were created by plotting the integrated
intensity of a specific Raman band as a function of position.
Since different biomolecules exhibit different characteristic
Raman bands, this technique allows for a label-free imaging of
the spatial distribution of biomolecules inside the cell.

Confocal Microscopy

Fluorescence images have been collected using a Nikon Al
confocal-laser-scanning microscope (Tokyo, Japan, www.nikon.
com) with a PlanApo X60 oil immersion objective with a 1.40
numerical aperture. In suspension live cells have been stained for
LDs using BODIPY 493/503 (Molecular Probes, Invitrogen, Carls-
bad, CA, http://www.lifetechnologies.com). BODIPY 493/503 was
used at 1 pg/ml. Cells were washed with PBS 1X and incubated
with BODIPY 493/503 for 15 minutes at room temperature.

Flow Cytometry

All cells were collected from the flasks, washed with PBS 1X,
and incubated with BODIPY 493/503 at 1 pg/ml or LD540 at
0.1 pg/ml for 15 and 10 minutes, respectively, at room tem-
perature in the dark. CD133 was stained using an anti-CD133
antibody (MiltenyiBiotec, Bergisch Gladbach, Germany, http://
www.miltenyibiotec.com) allophycocyanin  (APC)-conjugated
(Invitrogen, Carlsbad, CA, http://www.lifetechnologies.com/nl/
en/home/brands/invitrogen.html). Stained cells were washed
twice with PBS 1X and resuspended in the same solution.
Samples were analyzed by FACSAria Il flow cytometer (BD Bio-
sciences, San Jose, CA, www.bd.com). To allow for comparison
of the different cell lines, gains for forward-scattering, side-
scattering, and fluorescence photo multiplier tubes are kept
the same on all the measurements.

Transmission Electron Microscopy Measurements

NECCs, CR-CSCs, SDACs, and CCCs were processed for trans-
mission electron microscopy. The volume fraction of the cell
occupied by LDs was estimated using point counting stereol-
ogy techniques (for more details see Supporting Information
Methods).

Cell Sorting

Two different CR-CSC lines bearing the TCF Optimal Promoter
(TOP)-green fluorescent protein (GFP) construct were col-
lected from the flasks and sorted for GFP''&" and GFP“°%
(both sorted fractions consist of approximately 11%-13% of
the total GFP™ population), using a fluorescence-activated cell
sorting (FACS) FACSAria Il, and then stained for LD content
using the LD540 dye.

Limiting Dilution Assay
The self-renewal capacity of the CR-CSC LDs™&" and LDs“"

was assayed by dissociation of colon cancer spheroids and
plating cells at serial dilution (1, 2, 4, 8, 16, 32, 64, and 128
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Figure 1. Raman characterization and mapping of colon cell samples. (A): Two different cell regions, indicated as * and **, respectively,

can be clearly identified in the cell according to their Raman spectra. The Raman differences are due to four main peaks located at
1,300, 1,440, 1,740, and 2,850 cm ™ *. Typical spectra from region * (top curve) and region ** (bottom curve) show that region * has
higher expression of all these aforementioned peaks compared to region **, as clearly highlighted by the Raman difference spectrum
***. brightfield image of a CR-CSC and Raman imaging at 2,850 cm ' of the same cell are reported, highlighting the two different
regions. (B): From the top row to the bottom one: NECCs, CR-CSCs, SDACs, and CCCs. Brightfield images are reported on the first col-
umn, while Raman images calculated at 1,300 and 2,850 cm™* are reported in the second and third column, respectively. The fourth
column shows spectra averaged over the whole cell area, for each cell line. Raman images in the second column are similar to the cor-
responding ones of the third column, thus revealing that the two Raman modes at 1,300 and 2,850 cm ! are space-correlated. Peaks
related to lipidic vibrations are more pronounced in the CR-CSCs (second row) compared to SDACs and CCCs, as it is evident both from
Raman images and spectra. NECCs reported in the first row express the lowest Raman intensities of lipidic vibrations. Abbreviations:
CCC, colon carcinoma cell; CR-CSC, colorectal cancer stem cell; NECC, normal epithelial colon cell; SDAC, sphere-derived adherent cell.

cells per well) in 96-well microplate with flat bottom and
repellent surface for low attachment (CELLSTAR Cell-Repellent
Surface, Greiner Bio-One, UK, http://www.selectscience.net/
products/cellstar-cell-repellent-surface/?prodID=171921). The
cell culture medium used for this assay is the CSC medium
described above (DMEM/F-12 serum-free medium, supple-
mented with fresh EGF and basic FGF). Results were statisti-
cally evaluated after 4 weeks using the Extreme Limiting
Dilution Analysis (ELDA) software [33].

In Vivo Tumorigenicity Assay

Mice experiments were performed according to the animal
care committee guidelines of the University of Palermo. For in
vivo limiting-dilution injection, total CR-CSC population was
sorted for LD540 intensity and 100, 500, 1,000, and 8,000
cells from 12% lowest and 12% highest were deposited by
FACS in a 96-well plate containing stem cell medium, admixed
with matrigel, and then injected subcutaneously in 5-week-old
NOD/SCID mice (Charles River Laboratories, IT, http://www.
criver.com). Tumor size was measured weekly using an elec-
tronic caliper and the volume was then calculated with the
formula: larger diameter X (smaller diameter)®> X 7/6. At the
end of the experiments, mice were sacrificed and tumors col-
lected. Tumor tissues were finally processed for morphological
and immune-histochemical analysis or for in vitro culture.

Statistical Analysis

Most of the Raman spectra presented in this work are aver-
age curves coming from a large number of measurements.
Standard deviation and principal component analysis (for

www.StemCells.com

more details see Supporting Information) were used for
Raman analysis.

Transmission electron microscopy (TEM) comparison of
the volume fraction of cell occupied by LDs for each sample
was done with Student’s t test (for more details see Support-
ing Information). For clonogenic assay, the statistical analysis
was performed with Prism 5 (GraphPad Software, La Jolla, CA,
http://www.graphpad.com) applying Bonferroni Multiple Com-
parison Test. Differences were considered significant with p-
values <.05 (*) and <.01 (**).

RESULTS

CR-CSCs Show a Specific Lipid Raman Signature

Primary CR-CSC lines, characterized for CD133 [18] expression
and high Wnt/ff-catenin pathway activity [6], and SDACs from
distinct human CR cancer specimens derived from seven
patients (stage II-IV) undergoing CR resection (see Supporting
Information) were analyzed by Raman spectroscopy. In addi-
tion, NECCs and two CCCs were used for comparison. Figure
1A shows a typical Raman imaging result recorded on a single
CR-CSC. When analyzing the spectra measured across the cell
area, two spatial regions (named region * and **) with differ-
ent Raman features were identified. The characteristic Raman
spectra (Fig. 1A*, 1A**) from these regions exhibit clear dif-
ferences for peak intensity at 1,300, 1,440, and 1,740 cm !
and for the Raman band at 2,800-3,000 cm *. The assign-
ment of all these Raman bands has been thoroughly dis-
cussed in literature, with the peaks at 1,300 and 1,740 cm !t

© 2014 The Authors. STEM CELLS Published by
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Figure 2. Lipid droplet quantification. (A): Comparison of typical z-projected confocal fluorescence images of the investigated cell lines

stained with BODIPY 493/503. The lipid droplet content on CR-CSCs is higher compared to all the other cell lines. (B): Histograms over-
lay for flow-cytometry BODIPY fluorescence measurements regarding three of the CR-CSC (red) lines and their SDACs (black). Abbrevia-
tions: CCC, colon carcinoma cell; CR-CSC, colorectal cancer stem cell; NECC, normal epithelial colon cell; SDAC, sphere-derived adherent

cell.

unambiguously assigned to molecular vibrations of lipids [34,
35], while the 1,440-1,450 cm™ " and 2,800-3,000 cm™*
bands are indicators for the lipid to protein ratio (see
Supporting Information).

Comparison of the two spectra (Fig. 1A***) revealed that
region * has a larger content of lipids. Besides the intensity
increase observed for the peaks at 1,300 and 1,740 cm L,
which are characteristic only of lipids, both the aforemen-
tioned lipid to protein indicators (1,440-1,450 and 2,800-
3,000 cm ? bands) denote larger lipid content. In fact, a
detailed analysis of the 1,440-1,450 cm ™! band shows a shift
toward the 1,440 cm™* vibration typical of lipids, while in the
2,800-3,000 cm ' region the CH, symmetric stretching at
2,850 cm ! is noticeably more pronounced (CH, groups are
more frequent in fatty acids than in proteins). Overlapping
the bright-field image of the cell with the Raman map at
2,850 cm ™ * clearly shows that these lipid-rich areas corre-
spond to the presence of granulated (or droplet-like) morpho-
logical structures. Also, imaging at 1,300, 1,440, and
1,740 cm ™! (data not shown) exhibits the same spatial corre-
lation with the bright-field image. These peaks are therefore

© 2014 The Authors. STEM CELLS Published by
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spatially overlapping, which confirmed the lipid nature of the
observed droplets.

Figure 1B shows the typical Raman imaging for all the
measured cell lines, with intensity maps at 1,300 and
2,850 cm ?, along with whole-cell-averaged Raman spectra
on the last column. CR-CSCs clearly exhibit a distinctive
Raman signature with remarkable intensities for the two
aforementioned peaks. Again, these features are localized
in spatial regions corresponding to granules observed in
the bright-field image of the cell. The SDACs have partially
inherited this characteristic, but at a smaller extent. Even
if some spots are still noticeable in the bright-field picture
of the cell (mostly in the left-bottom part of the SDACs in
Fig. 1B), the peaks intensities at 1,300 and 2,850 cm *,
on the averaged Raman spectra, are much smaller com-
pared to CR-CSCs. CCCs exhibit, instead, few spots.
Accordingly, Raman intensities at 1,300 and 2,850 cmt
drop to smaller values, and Raman spectra from CCCs gen-
erally resemble to Raman profile of region ** of Figure
1A. Finally, the NECCs (first row in Fig. 1B) show the most
uniform appearance, with a nearly absence of spots in the

STEM CELLS
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Figure 3. Transmission electron microscopy (TEM) to reveal lipid droplets on colorectal cells. (A—F): TEM images of the CR-CSCs, their
differentiated forms (SDACs), CCCs, and NECCs. (A and B), parasagittal sections of (A) CR-CSCs and (B) SDACs belonging to human
patient 1; (C and D), parasagittal sections of (C) CR-CSCs and (D) SDACs belonging to human patient 2; (E), parasagittal section of a
CCC; (F), parasagittal section of a NECC. White arrowheads point to mitochondria; black arrowheads point to multivesicular bodies and
late-endosome/lysosome hybrids. LDs are colored in red. n, nucleus. (G): TEM image of a LD in cross-section. The asterisk points to the
endoplasmic reticulum. Inset: detail of the LD single membrane leaflet. (H): Volume fraction of LDs in the cytoplasm and in the whole
cell. Error bars, SEM. Statistical significance is denoted by * (p <.01, Student’s t test). Scale bars are 4 um for A-F and 100 nm for G.
Abbreviations: CCC, colon carcinoma cell; CR-CSC, colorectal cancer stem cell; NECC, normal epithelial colon cell; SDAC, sphere-derived
adherent cell.

bright-field image, and also their Raman spectra have lines, suggesting that it can be used as a Raman marker for
small intensities at the characteristic frequencies of lipids detecting CR-CSCs. We noticed that, due to the clear change
vibrations. in spectra between CR-CSCs and the other cell types, no

In order to prove that Raman spectroscopy can provide a  data treatments were necessary (we reported Principal Com-
fast tool for CR-CSC detection (and for future sorting applica- ponent Analysis in Supporting Information Fig. S3 just to
tions) we extended our measurements. Besides point-by- point out the sensitivity of the method [36]).
point Raman mappings, we measured a single Raman spec-
trum in the 800-1,800 cm™* range for each cell using a line-
focused laser excitation extending for the whole cell diame- LD Quantification

ter. In these measurements (see also Supporting Information To confirm the presence, and to assess the amount of the

. —1 .
Fig. S1, 52_)' the.1,300 cm © Raman peak of CR-CSCs dis- |inid-rich regions revealed by Raman spectroscopy, fluores-
played an intensity level that was much more pronounced  cence imaging and flow cytometer measurements were per-
than in normal cells or in other non-stem CR cancer cell  formed on the cell samples using BODIPY 493/503 or LD540
www.StemCells.com © 2014 The Authors. STEM CELLS Published by
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Figure 4. Correlation of the expression levels of the Lipid Droplets with CD133 and Wnt/f}-catenin. (A, B): The expression of the LDs in
cD133"8" and CD133"" cells were analyzed by flow cytometry. Cells were stained with an anti-CD133 APC-conjugated and then with
BODIPY 493/503. Both CD133"&" samples (A and B red lines) have a higher expression of LDs compared to the CD133"" (black lines).
(C): Schematic representation of the TOP-GFP Wnt construct. (D, E): Cells were sorted for GFP expression (GFP''&" and GFP*°") and then
stained for LDs with LD540 dye; both TOP-GFP samples have the same behavior showing as Wnt/f;-catenin pathway expression clearly
correlates with LDs quantity. Abbreviations: APC, allophycocyanin; FACS, fluorescence-activated cell sorting; GFP, green fluorescent pro-

tein; TOP, TCF Optimal Promoter (TOP).

staining, which are consolidated dyes for cellular LD visualiza-
tion [32, 37, 38].

Confocal images were collected for all the colon cell lines
and z-projections created using the Image) software [39]. The
acquired images clearly showed the “lipid droplet” nature of
the same granular structures visible in the bright-field image,
which are responsible for the high lipid-related Raman peaks.
A comparison of typical LD content among the considered
samples is shown in Figure 2A and Supporting Information
Figure S4. From this it is clear that the number of LDs
increases from the normal cells to the CR-CSCs.

Moreover, flow-cytometric analysis allows for a statistical
assessment of the LD expression difference among the investi-
gated cell lines. Comparison of histograms for CR-CSC lines
from three different patients and their related SDACs con-
firmed the higher LD expression in multiple CR-CSCs.

The ultra-structural analysis performed with TEM on
NECCs, two different CR-CSC samples, their relative SDACs,
and CCCs, corroborated both Raman and fluorescent micros-
copy results (Fig. 3). The LDs were unambiguously identified
in the cell cytoplasm, often close to the endoplasmic reticu-
lum (Supporting Information Fig. S5), as subcellular structures
delimited by a single membrane leaflet (Fig. 3G and inset)
[37]. The stereological analysis, performed to quantify the
volume fraction of the LDs in the various cell lines analyzed,
further confirmed the insights from Raman and fluorescent
microscopy (Fig. 3H). We measured a LD volume fraction
expressed as percentage of cytoplasmic volume ranging from

© 2014 The Authors. STEM CELLS Published by
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4.09% *+ 0.48%, for the CR-CSCs, to 0.89% * 0.29%, for the
NECCs, value that fall into the range reported for other cell
types (Fig. 3H) [40]. In the CR-CSCs, the LD volume fraction in
the whole cell and in the cytoplasm resulted to be signifi-
cantly higher (p <.01), compared to that measured for SDACs
(Fig. 3H). Furthermore, the LD volume fraction in the SDACs
was largely higher (p <.01) compared to that measured inside
the NECCs and the CCCs (Fig. 3H).

Correlation Between CD133, Wnt, and LDs

To verify whether LD content and the expression of CR-CSC
markers directly correlate, we performed flow cytometer
measurements of CD133 expression and Wnt/f-catenin path-
way activity. In a first experiment, different CR-CSC samples
were double-stained for LDs and CD133 with BODIPY 493/503
and anti-CD133 antibody. Flow cytometric analysis (Fig. 4A,
4B) showed a clear correlation between the two markers. In a
second experiment, LDs and Wnt correlation was studied
using two CR-CSC cultures with a TOP-GFP reporter gene [6].
Importantly, cells derived from these single-cell cloned TOP-
GFP cultures still showed a big heterogeneity in Wnt signaling
level [6]. The two cell lines were sorted based on the GFP flu-
orescence, as an indicator of Wnt activity, into two subsets,
Wnt™€" and Wnt"°". Sorted cells were then stained for LD
content using the LD540 dye, taking advantage of the fact
that it can be used in combination with GFP (green) since its
emission spectrum extends to red fluorescence (Fig. 4C—4E). It
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subpopulations in vitro. Three different CR-CSC samples were tested for their clono-

genic potential. (A): CR-CSCs were sorted for LDs"" and LDs™" by fluorescence activated cell sorting for LDs using LD540 dye and then
deposited 1, 2, 4, 8, 16, 32, 64, and 128 cells per well. (B): The estimated sphere-forming cells were analyzed using the extreme limiting
dilution analysis as reported in the graph. All the three LDs"e" cell samples have a significantly increased clonogenic potential compared
to the LDs"®™ cell samples. Error bars representing the SD of the mean of three independent experiments are shown. Significance is
indicated (*, p <.05 and **, p <.01). Abbreviations: CR-CSC, colorectal cancer stem cell; LD, lipid droplet.

is evident that LD expression and Wnt signaling level strongly
correlate. It is important to note that the different expression
of LDs is not due to the use of different cell media, since
WntM&" and Wnt'°% cells were sorted from the same popula-
tion, such as for the case of CD133, as reported above. These
results, showing a clear correlation between CD133, Wnt, and
LD content, indicate that LDs could be used as CR-CSC marker,
and suggest a possible functional or metabolic link of LDs in
CR-CSCs [41, 42].

A High LD Content Is Linked to Clonogenic Potential of
CR-CSCs

Different CR-CSC lines were stained with the LD540 dye and
sorted in LDs"®" and LDs'" populations. The sorted cells
were used to perform a limiting dilution assay (LDA) to test
the clonogenic potential. The results reported in Figure 5
show that LDs"" cells possess a higher clonogenic potential
compared to the LDs"" in all the CR-CSC lines analyzed, indi-
cating that LD content correlates with clonogenicity. In addi-
tion, this may suggest a possible role of these LDs in giving
an advantage in promoting and sustaining cell growth. These
data show that CR cells contain a subpopulation of cells with
high levels of LDs that can be used as a marker to single out
the CSC subset present within heterogenic tumor cell
population.

In Vivo Tumorigenic Potential Analysis

To determine whether CR-CSC LDs"" and LDs*°“ fractions
display tumorigenic potential, we injected CR cancer cells sub-
cutaneously in immune-compromised mice. The experiment
was performed using four different cellular dilutions (8,000,
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1,000, 500, and 100 cells), for both LDs™&" and LDs"" frac-
tions, and following the tumor growth over time after cells
injection. Although both CR-CSC LDs"&" and LDs'®" exhibited
tumorigenic activity, LDs"°Y cells generated delayed small
tumors, whereas the LDs"&" cell fraction was able to grow as
large tumors (Fig. 6A, 6B). Such a low tumorigenic activity of
the LDs"" population was lost when a small number of cells
(<500 cells) were subcutaneously injected, suggesting that
cells endowed with tumorigenic potential are included into
the LDs™&" population, while LDs"®" cells could represent the
more differentiated nontumorigenic cell population (Fig. 6A).
Of note, 17 weeks later, we observed that xenograft tumors
recapitulated the morphological features of the parental CR
tumors (Fig. 6C, 6D).

DiscussIiON

In the last years, it was shown that CR cancer cells exhibit
more LDs than their normal counterpart [41, 43], but here we
have found that CR-CSCs can be identified for having the larg-
est amount of LDs when compared with differentiated tumor
or normal epithelial cells. This finding has been confirmed by
measurements carried out on CR-CSCs from seven different
patients and a well-studied TOP-GFP reported gene cell sys-
tem for Wnt/f-catenin pathway activity [6]. We have demon-
strated through an in vivo assay that, even though some CR-
CSC LDs™" could be tumorigenic and develop slowly growing
small tumors, most of the tumorigenic potential is restricted
to the CR-CSC LDs"™®" fraction.

We can speculate that the higher expression of LDs in CR-
CSCs could be part of the disease pathogenesis confirming
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Figure 6. Cells with high lipid droplet content show cancer stem cell (CSC) tumorigenic features in vivo. (A): In vivo transfer of LD540
stained cultures. Different cell numbers from the indicated populations were injected into NOD/SCID mice after fluorescence-activated
cell sorting. The percentage of successful tumor initiations after 17 weeks out of four injections for each condition is shown. The LDs'"en
fraction showed the highest tumor—initiatin%1 capacity (refer Fig. 6B for the kinetic of tumor appearance). (B): Time course of colon
tumor growth after injection of 8,000 LDs™&" or 8,000 LDs“°" CR-CSCs (tumor volumes were determined as described in Materials and
Methods). (C): Representative picture of the xenotransplanted tumors. (D): Hematoxylin/eosin staining of xenografts shows clear evi-

dence of colon carcinoma morphology, resembling the human parental phenotype. Abbreviation: LD, lipid droplet.

the increasing interest toward these organelles, shown by the
recent literature [41, 42]. Even if LD role is not yet clear, there
are evidences of the over-expression of these organelles in
colon cancer development. LD accumulation was indeed
found in polyp epithelium of Apc™™ mice, suggesting that
they may contribute to polyp development [44].

It is known that LDs in neoplastic cells act as distinct
intracellular domain for regulated eicosanoids production
(Prostaglandin E2) starting from arachidonic acid (AA) [43].
The metabolism of AA is directly implicated in the generation
of a chronic inflammatory tissue environment that could pro-
mote carcinogenesis. For instance, 80%—90% of colon carcino-
mas show an enhanced cyclooxygenase-2  (COX-2;
prostaglandin H synthase) expression compared with normal
intestinal mucosa [45-47]. COX-2 is the enzyme that catalyzes
the rate-limiting step in eicosanoids synthesis, converting AA
into prostaglandins. Our results could therefore point to a
potential link between LDs over-expressing CR-CSCs and
inflammation in cancer.

Additionally, besides their function in the generation of
eicosanoids, LDs constitute sites of compartmentalization of
several signaling-relevant proteins, which may have functions
beyond AA metabolism. Indeed, proteins with well-established
roles in oncogenic cell transformation, tumorigenesis, and
metastasis, or identified as potential CR cancer biomarkers
including PI3K, ERK2, p38, PKC, caveolin, and ADRP, were
shown to localize in LDs in a variety of cell types [48-51].

Although no specific LD inhibitors have been described so
far, different classes of drugs have been demonstrated to
inhibit diverse lipid pathways, both in a direct or indirect way;
some of them, such as nonsteroidal anti-inflammatory drugs

© 2014 The Authors. STEM CELLS Published by
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[52, 53] and statins [54] could interfere with LD formation in
vitro and in vivo. Even if the mechanism of action of these
drugs is not completely understood, they have exhibited suc-
cessful results in the prevention of the CR cancer, suggesting
a pivotal role for the LDs in CR-CSCs. Moreover, very recent
results are indicating an even tighter connection between
lipid metabolism and stemness [55, 56].

The biological implications of LD overexpression in CR-CSCs
need further investigations. On this side, we could just specu-
late that the higher content of LDs may be crucial for CR-CSCs
in giving them an advantage in proliferation [57], as an energy
reserve to resist starvation, to survive in prohibitive microenvir-
onment conditions (oxidative/energy stress), or even stimulat-
ing signaling pathways promoting cell invasion [58].

In this work, we also propose a new method, Raman
spectroscopy, to highlight and characterize CR cancer stem-
ness. While, at the moment, there are no procedures available
for clinical use based on this label-free technique, a quick
look to the recent scientific literature shows that pivotal
achievements on the technical side have been accomplished
[59, 60] and we believe that a clear track has been traced to
make it an effective tool in clinical diagnosis. Differently from
label-based fluorescence analysis, the Raman technique col-
lects the whole spectral content without any additional tag-
ging procedure, and without any external perturbation of the
cell biological machinery, becoming ideal for in vivo multimo-
lecular detection. It is worth noticing that several research
groups are working to develop high sensitivity Raman-based
microendoscopes for future in vivo screening [59, 60]. These
technical achievements, combined with our finding about the
abundance of LDs (that are an ideal target for Raman
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detection) in CR-CSCs, place a solid ground to our view that a
Raman clinical application is reasonably within the reach.

CONCLUSIONS

Our data put in evidence that LDs could be considered as
new and important “players” in CR-CSCs, and a rather inter-
esting cellular target for future innovative anticancer thera-
pies. Moreover, we propose identification of CR-CSCs through
Raman spectroscopy, a label-free technique, able to visualize
the LD cell content.
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