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ABSTRACT: Selective modification of the inner surface of halloysite nanotubes
(HNTs) by the cycloaddition of azides and alkynes (click reaction) was successfully
achieved. Fourier transform infrared spectroscopy and thermogravimetry confirmed that
the modification involved only the HNT cavity. Morphological investigations evidenced
that the functionalized nanotubes formed microfibers and clusters in the micrometer
range. By means of the casting method, these nanomaterials were dispersed into
biopolymeric matrixes (chitosan and hydroxypropyl cellulose) with the aim of obtaining
nanocomposite films with tunable properties from the physicochemical viewpoint. For
comparison purposes, we also characterized composite nanomaterials based on pristine
halloysite. The mesoscopic structure of the nanocomposites was correlated with their
tensile, thermal, and wettability properties, which were found to be strongly dependent
on both the nature of the polymer and the HNT functionalization. The attained
knowledge represents a basic point for designing new hybrid nanostructures that are
useful in specific purposes such as biocompatible packaging.

■ INTRODUCTION

The functionalization of clay nanoparticles represents a well-
known technique for designing ecocompatible materials of
technological interest. Among nanoclays, halloysite nano-
particles (HNTs) are very appealing because of their
biocompatibility and versatile characteristics, such as large
surface area, tunable surface chemistry, and hollow tubular
morphology.1,2 All of these features make HNTs suitable for
use in catalyst supports,3−6 water decontamination,7,8 encapsu-
lation and controlled release of chemically and biologically
active compounds with smart functions (antibacterial,9,10

anticorrosion,11 and self-healing12 functionalities), and fillers
for polymers.13−16

HNTs are rather polydisperse in size with external diameters
of 50−80 nm, lumens of 10−15 nm, and lengths of about 1000
nm.1 The inner surface consists of a gibbsite octahedral sheet
(Al−OH) groups, whereas the external surface is composed of
siloxane groups (Si−O−Si). This peculiarity determines a
positively charged lumen and a negatively charged outer surface
in the pH range2 between 2 and 8 that is responsible for pH-
induced gel formation.17

Selective modification of HNT surfaces enable the control of
both the aqueous colloidal stability and the adsorption capacity
of the nanoparticles.18 Functionalization of the HNT cavity
with octadecylphosphonic acid19 and sodium alkanoates18

generates inorganic tubular micelles that can behave as sponges
for hydrophobic molecules. On the other hand, modification of

the HNT external surface can generate valuable catalyst
supports, as demonstrated for metalloporphyrin immobiliza-
tion5 and the Suzuki coupling reaction.4

The hydrophilicity of both the inner and outer surfaces
makes HNTs dispersible in aqueous biopolyelectrolytes such as
pectin14 and chitosan.20 The combination between polymers
and HNTs is a good strategy to develop nanocomposite films
with desirable mechanical performance that can be utilized as
biocompatible packaging13,14,21 and as scaffolds for tissue
engineering.16 Filling hydroxypropyl cellulose (HPC) with
HNTs was found to cause an increase in the polymer
degradation temperature.13 Pectin/HNT composite is ther-
mally more stable than the pristine polymer, and the
nanomaterial presents a uniform morphology.14 A pectin/
poly(ethylene glycol) (PEG) blend filled with HNTs was found
to show better elastic properties than both the pristine
polymers and the corresponding pectin/HNT nanocompo-
sites.22 The tensile strength and elastic modulus of chitosan are
enhanced by HNTs at low filler loadings (up to 10 wt % filler
content).23 Nanoparticle functionalization is a well-established
strategy for improving the compatibility and dispersibility of an
inorganic filler in a polymer matrix.
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In this work, the effect of functionalization of the inner
surface of HNTs by the click reaction was investigated. For this
purpose, we designed new molecules that can interact with
both the internal surface of HNTs and each other through
suitable terminal groups. The efficiency and selectivity of the
reaction were estimated. Moreover, the morphology of the
functionalized nanotubes was studied. The obtained materials
were used as nanofillers for the development of nanocomposite
films based on biopolymers. The bionanocomposites were
extensively characterized from the physicochemical viewpoint
by determining the mechanical properties, thermal degradation,
and wettability. The acquired knowledge represents a basic
point for designing new green nanomaterials.

■ EXPERIMENTAL METHODS
Materials. Chitosan (75−85% deacetylated, MW = 50−190

kg mol−1) and HPC (MW = 80 kg mol−1) were obtained from
Aldrich. HNT was a gift from Applied Minerals, Inc. All
reagents needed for HNT functionalization were purchased
from Aldrich. All these materials were used without further
purification.
Functionalization of Halloysite. The synthesis of

functionalized halloysite nanoparticles (f-HNTs) was done by
the click reaction, through the use of Cu2+-catalyzed Huisgen
1,3-dipolar cycloaddition. Details on the syntheses of
compounds 1 and 2 are given in the Supporting Information.
A schematic of the synthesized molecules is shown in Figure 1.
To functionalize the internal surface of halloysite, we placed
each compound in the presence of halloysite in a tBuOH/water
(1:1) for 48 h at room temperature in such a way that the
encapsulation of 1 and 2 in the HNT lumen was facilitated.
Finally, dispersions of HNT/1 and of HNT/2 were mixed in

the presence of a catalytic amount of CuSO4 and sodium
ascorbate for 7 days at room temperature to allow the click
reaction between the azides and alkyne terminations of the
different moieties from the inner HNT lumen. This was done
with the aim of generating organized structures through the
formation of functionalized HNT (f-HNT) (Figure 1).
Preparation of Nanocomposite Films. Nanocomposite

films were prepared using the aqueous casting method as
described elsewhere.13 Briefly, we prepared a 2 wt % aqueous
biopolymer (chitosan and HPC) solution under stirring at 70
°C. Then, an appropriate amount of filler (functionalized or
pristine HNTs) was added to the biopolymer solution and kept
under stirring overnight. The well-dispersed aqueous mixture
was poured into glass Petri dishes at 60 °C to evaporate water
until the weight was constant and to obtain biofilms with a
thickness of ca. 0.12 mm. Dried biofilms contained 5 wt %
nanofiller.
Instrumentation. Thermogravimetry. Thermogravimetry

experiments were performed by means of a Q5000 IR

apparatus (TA Instruments) under a nitrogen flow of 25 cm3

min−1 for the sample and 10 cm3 min−1 for the balance. The
weight of each sample was ca. 10 mg. The temperature
calibration was carried out by means of the Curie temperatures
of standards (nickel, cobalt, and their alloys). The measure-
ments were conducted by heating the sample from room
temperature to 900 °C at a rate of 20 °C min−1.

Scanning Electron Microscopy. The morphologies of the
nanocomposites were studied using an ESEM FEI QUANTA
200F microscope. Before each experiment, the surface of the
sample was coated with gold in argon by means of an Edwards
Sputter Coater S150A to avoid charging under electron beam
treatment. The measurements were carried out in high-vacuum
mode (<6 × 10−4 Pa) for simultaneous secondary electrons.
The energy of the beam was 20 kV, and the working distance
was 10 mm. Minimal electron dose conditions were employed
to avoid damaging the sample.

Fourier Transform Infrared (FTIR) Spectroscopy. FTIR
spectra in KBr were determined at room temperature in the
spectral region 400−4000 cm−1 by means of an FTIR
spectrophotometer (Agilent Technologies Cary 630). An
average of 30 scans per sample using a nominal resolution of
4 cm−1 was registered.

Dynamic Mechanical Analysis. Tensile properties were
determined by means of a DMA Q800 instrument (TA
Instruments). For all mechanical measurements, the samples
were films of rectangular shape (10.00 mm × 6.00 mm × 0.120
mm). Tensile tests were performed with a stress ramp of 1 MPa
min−1 at 26.0 ± 0.5 °C. We determined the values of the elastic
modulus, the tensile strength (defined as the tensile stress at
which the material fractures), and the elongation at the
breaking point. Each nanocomposite was measured five times,
and the average values are reported. Note that the films
composed of chitosan did not undergo breakage even upon
application of the largest force (18 N) allowed by the
instrument.

Contact Angle Equipment. Contact angle studies were
performed by means of an optical contact angle apparatus
(OCA 20, Data Physics Instruments) equipped with a video
measuring system having a high-resolution CCD camera and a
high-performance digitizing adapter. SCA 20 software (Data
Physics Instruments) was used for data acquisition. The water
contact angle just after deposition was measured by the sessile
drop method by gently placing a droplet of 6.0 ± 0.5 μL onto
the surface of the film. The temperature was set at 25.0 ± 0.1
°C for the support and the injecting syringe as well. A
minimum of five droplets were examined for each film sample.
Only the chitosan-based films were analyzed.

Figure 1. Schematic representation of the f-HNT synthesis.
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■ RESULTS AND DISCUSSION

Characterization of Functionalized HNT. FTIR spectra
(Figure 2) were obtained to confirm HNT modification.
Compared to pristine HNTs, f-HNTs exhibited some new
FTIR peaks, such as CH2 stretching vibration bands (at 2933
and 2863 cm−1) that were shifted to lower frequencies with
respect to those observed for compound 1 (3060 and 2879
cm−1), which is consistent with a compact packing of the
organic moieties into the lumen.24 The presence of the triazole
ring in the f-HNTs was demonstrated by the stretching
vibration bands of NN and CN aromatic groups around
1492 and 1376 cm−1, respectively. Furthermore, f-HNTs did
not show the stretching vibration bands of CCH (2117
cm−1) and N3 (2063 cm−1) groups, which were observed for
compounds 1 and 2, respectively.
The FTIR spectrum of f-HNTs was also characterized by the

OH stretching vibrational bands of halloysite. The frequencies
of these bands were not altered in the functionalized nanotubes.
Specifically, we observed the broad peak of the water OH
stretch as well as the OH stretching vibration bands of the Al
OH and SiOH groups.
From these data, one can state that f-HNTs were

synthesized. In addition, these findings were confirmed by
TG studies (Figure 3).
In fact, f-HNTs exhibited typical halloysite weight losses

occurring at ca. 550 and 750 °C attributed to the expulsion of
interlayer water molecules and the dehydroxylation of alumina,
respectively.14 Moreover, the ratio between these weight losses
was not altered by HNT functionalization.
The mass loss in the temperature range between 180 and 420

°C is due to the thermal degradation of the organic molecules
incorporated in the HNT lumen. This degradation occurred in
several steps as evidenced by the presence of two peaks (at ca.
250 and 350 °C) and a shoulder (at ca. 375 °C) in the
differential thermogravimetric (DTG) curve. In addition, TG
experiments allowed the degree of HNT functionalization to be
determined as ca. 10 wt %. Based on the geometric volume of
the nanotube cavity, it was reported1 that ca. 10% of the void
space is available for encapsulation. On this basis, we concluded
that the organic molecules were incorporated into the HNT
lumen with a high efficiency approaching the maximum
expected loading.
Another confirmation of the functionalization of HNTs is

provided by SEM (Figure 4), which indicates a fibrous

mesoscopic structure. The diameter of these fibers is ca. 14
μm, whereas the length ranges between 150 and 250 μm.
Moreover, we observed the formation of anisotropic clusters
with a size of ca. 200 μm. The surfaces of both the clusters and
the fibers present randomly distributed nanotubes with sizes
comparable to those of the pristine HNT sample.14 These
experiments indicated that the functionalization does not alter
the tubular morphology of halloysite but it can generate
organized structures in the micrometer range.

Characterization of Nanocomposite Films. Biocompo-
sites films were successfully obtained with f-HNTs, and they
evidenced macroscopic differences. The addition of the filler to
both HPC and chitosan determined a decrease of the optical
transparency (see Supporting Information). The chitosan/f-
HNTs exhibited a surface much rougher than the pristine
polymer, whereas this peculiarity was not observed for the
chitosan/HNT hybrid. All films exhibit compact mechanical
features.

Figure 2. FTIR spectra of compound 1, compound 2, HNT, and f-HNT.

Figure 3. (Top) Thermogravimetric and (bottom) differential
thermogravimetric curves of pristine and functionalized halloysite.
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Tensile Properties. We investigated the mechanical resist-
ance to elongation for the prepared films by measuring the
stress versus strain curves under a linear force ramp (some
examples are reported in Figure 5). The tensile properties for

pure biopolymers and nanocomposites are collected in Table 1.
The performance of chitosan was found to be much better than
that of HPC, in agreement with the presence of amino groups
that enhance the interactions among the polymeric chains.
Regarding the nanocomposites, we found that the addition of

f-HNTs generates films with better mechanical performance
than for those based on pristine HNTs.
Filling the chitosan with small amounts of HNTs determined

an increase in the elastic modulus (ca. 20%) in agreement with
the literature.25 The chitosan/f-HNT film exhibited the largest
elastic modulus, with an improvement with respect to the
pristine biopolymer of ca. 55%.
This extraordinary result was conferred by the microfibers of

the functionalized nanotubes arranging themselves in a network
with enhanced mechanical properties. It should be noted that

the stress at break for chitosan-based materials was not
determined because it was outside the instrumental range.
For the HPC-based films, the presence of filler caused an

enhancement of the elastic modulus (ca. 7% and ca. 23% for
HNTs and f-HNTs, respectively), whereas the stress at the
breaking point was slightly decreased. As Figure 5 shows, the
elongation at the breaking point strongly decreased upon the
addition of both pristine and functionalized nanotubes. This
effect can be ascribed to the reduction of the sliding between
the polymer chains against each other because of their
interactions with the nanoclay,22,26 which was also confirmed
by the decrease of the elongation at break values (Table 1).

Morphology. The morphologies of the nanocomposites
showed the effect of the filler on the mesoscopic structure of
the films. For chitosan/HNTs, the surface appeared homoge-
neous, and the presence of nanotubes was rare (Figure 6).
On the contrary, the addition of f-HNTs to chitosan

generated an increase in film roughness because of nanotube
clusters (with a size of ca. 4 μm) that appeared on the surface
(Figure 6). These results confirmed the enhancement of the
surface hydrophobicity for the chitosan/f-HNT composite film.
The variation of surface morphology is straightforwardly
evidenced by the drop images collected just after the deposition
of water drops and the corresponding contact angle values
(Figure 6).
These results are intriguing because f-HNTs are hydrophilic

in nature; moreover, the chitosan/HNT hybrid presents
wettability behavior similar to that of the pristine biopolymer.
Reports in the literature state that hydrophobic surfaces can be

Figure 4. (a) SEM micrograph of functionalized halloysite (scale bar = 500 μm) and (b−e) high-magnification SEM micrographs of (b,c)
microfibers (b, scale bar = 20 μm; c, scale bar = 5 μm) and (d,e) clusters (d, scale bar = 2 μm; e, scale bar = 5 μm) of functionalized halloysite.

Figure 5. Stress vs strain curves for nanocomposite and polymer films.

Table 1. Tensile Properties of Chitosan, HPC, and Their
Nanocompositesa

film

elastic
modulus
(MPa)

stress at the
breaking point

(MPa)

elongation at the
breaking point

(%)

water
contact

angle (deg)

chitosan 820 75
chitosan/
HNT

980 74

chitosan/f-
HNT

1280 82

HPC 300 8.6 21.8
HPC/
HNT

320 8.5 6.1

HPC/f-
HNT

370 7.7 3.7

aRelative errors are ±5% in elastic modulus, ±3% in stress and
elongation at break, and ±1° in contact angle.
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generated by hydrophilic substances if a rough topography is
induced.27,28

The formation of f-HNT clusters should generate a
worsening of the film mechanical properties unless it is
exclusively a surface phenomenon. To investigate the structure
inside the films, SEM images of a transverse section of the
chitosan/f-HNT nanocomposite were obtained (Figure 7).
We observed a multilayer structure with the presence of the

f-HNT fibers along the thickness of the film and detected no
clusters. Thus, one can conclude that the difference in
morphology between the inner layers and the surface is

responsible for the improvement of the mechanical perform-
ances.
As Figure 8 shows, both the HPC/HNT and HPC/f-HNT

composite films presented smooth surfaces. The absence of
nanotubes on the surface indicates that the filler was buried in
the polymer matrix. Our previous work18 demonstrated that, at
high filler loadings, the addition of halloysite to the HPC matrix
generates a sandwich-like structure in which the filler is
segregated. This peculiarity was explained in terms of the low
affinity between HNTs and HPC, which present hydrophilic
and hydrophobic characters, respectively.

Figure 6. SEM micrographs and optical images of a water droplet just after the deposition of chitosan, chitosan/HNT, and chitosan/f-HNT films.
Scale bars = 10 μm.

Figure 7. SEM micrographs of a transverse section of chitosan/f-HNT: scale bar = (left) 100 and (right) 5 μm.

Figure 8. SEM micrographs of (a) HPC/HNT and (b) HPC/f-HNT. Scale bar = 10 μm.
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The SEM insights indicated that f-HNTs do not favor
polymer/filler interactions, as expected by the designed
synthesis.
Thermal Degradation. Thermogravimetry is an appropriate

technique for investigating the thermal degradation of both
polymers and nanocomposites.29−31

Figure 9 shows that the pristine chitosan-based film thermally
degrades in several steps.

The weight loss occurring from the ambient temperature to
150 °C was due to physically adsorbed water, whereas polymer
degradation took place in two stages at higher temperature. The
first stage started at ca. 220 °C and continued to ca. 420 °C, as
evidenced by the sharp peak in the DTG curve. The second
stage ranged between 500 and 800 °C, reaching a maximum
degradation rate at ca. 675 °C. The broad peak in the DTG
curve highlights that this degradation step was kinetically slower
than the previous one.
The addition of the filler to the chitosan matrix influenced

the polymer thermal stability. Compared to that of the pristine
chitosan, the DTG peak reflecting the first stage of polymer
degradation was shifted to higher and lower temperatures for
HNTs and f-HNTs, respectively. Even though these variations
were very small (within 5 °C), we can hypothesize that HNT
functionalization reduces the barrier effect toward the mass
transport of volatile products because the lumen is occupied by
organic molecules. This interpretation is corroborated by the
TG data relative to the second step of the chitosan degradation;
accordingly, f-HNTs did not influence the temperature range,
whereas HNTs strongly enhanced the polymer resistance to the
thermal degradation (the process started at ca. 850 °C).
Regarding the HPC-based films, we observed that both the

pristine polymer and the nanocomposites thermally degraded
into two steps (Figure 10). All systems presented a first weight
loss of ca. 4 wt % in the temperature range between 25 and 150
°C that is correlated to the water content of the materials.

Polymer degradation occurred in one stage in the interval from
250 to 450 °C. The effect of the filler on the HPC thermal
stability was negligible, as the degradation maximum rate slowly
shifted to lower temperatures (the variations are within 4 °C).
These results agree with the morphological insights that
evidenced a low affinity between the polymer and the
nanoparticles.

■ CONCLUSIONS

Functionalization of the inner lumen of halloysite nanotubes by
means of the click reaction involving azides and alkynes was
achieved. The synthesis of the modified HNTs was successful
as confirmed by thermogravimetry and IR spectroscopy. SEM
investigations showed the presence of fibers and clusters in the
micrometer range. Nanocomposite films based on both pristine
and modified halloysite were prepared. The fillers were
dispersed into chitosan and hydroxypropyl cellulose. A
comprehensive physicochemical study of the bionanomaterials
was carried out through wettability, thermal degradation, and
tensile properties, which were correlated with the mesoscopic
structure. Bionanocomposites based on the functionalized
nanotubes and chitosan presented a strong enhancement in
the mechanical performances as a result of the presence of
fibers of HNTs. Furthermore, the surface presence of modified
HNT clusters enhanced the surface roughness, leading to an
increase in the water contact angle. Less relevant effects were
observed for the nanocomposite based on hydroxypropyl
cellulose.
With this study, we successfully propose a selective reaction

of the halloysite inner cavity to obtain microfibers that can be
used as green fillers to reinforce biopolymeric materials. The
structural and surface properties are tunable, and therefore, a
variety of materials with controlled behavior can be obtained.

Figure 9. (Top) Thermogravimetric and (bottom) differential
thermogravimetric curves of chitosan-based films.

Figure 10. (Top) Thermogravimetric and (bottom) differential
thermogravimetric curves of HPC-based films.
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