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In this paper, electrical analogous models of fractional hereditary materials are introduced.
Based on recent works by the authors, mechanical models of materials viscoelasticity
behavior are firstly approached by using fractional mathematical operators. Viscoelastic
models have elastic and viscous components which are obtained by combining springs
and dashpots. Various arrangements of these elements can be used, and all of these visco-
elastic models can be equivalently modeled as electrical circuits, where the spring and
dashpot are analogous to the capacitance and resistance, respectively. The proposed mod-
els are validated by using modal analysis. Moreover, a comparison with numerical exper-
iments based on finite difference time domain method shows that, for long time
simulations, the correct time behavior can be obtained only with modal analysis. The
use of electrical analogous in viscoelasticity can better reveal the real behavior of fractional
hereditary materials.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

In the last few decades, fractional calculus has attracted a great interest in various scientific areas including physics and
engineering [1–9]. Particularly, in the area of viscoelasticity a significant effort has been done in describing more closely the
behavior of materials by using fractional mathematical models. Moreover, the analogy between viscoelastic and electrical
constitutive equations is well-known so that, in spite of different physical meanings, the widely used Maxwell model,
Kelvin–Voigt model, and Standard Linear Solid Model can be applied to predict a circuit behavior as well [10]. Besides, allow
for the time varying distributions of elements, a series of generalized models are proposed in either canonical structure or
ladder networks [11,12], such as the Maxwell–Wiechert model. All the above mentioned viscoelastic models have elastic and
viscous components which are combined of springs and dashpots. The only difference is the arrangement of these elements,
and all of these viscoelastic models can be equivalently modeled as electrical circuits, where the spring and dashpot are anal-
ogous to the capacitance and resistance respectively [13–15]. Nevertheless, compare to two viscoelastic elements, there are
four passive electrical elements including resistor, capacitor, inductor and the recently find memristor [16,17]. Thus,
although the circuits of LC, RC, RL, etc. can be transformed in some circumstances, it is still reasonable to expect that there
are far more new properties included in the electrical models that are formulated by using the same structure in viscoelastic
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models. Particularly, the introduction of the fractional elements [18] and power-law phenomena cannot only extend the
above discussions but also better reveal the real physical world such as the mechanical model of fractional hereditary mate-
rials [19] and the Abel’s singular problem [20]. In the paper, mechanical models of viscoelasticity behavior are firstly ap-
proached by using fractional operators, based on recent works by the authors [19,21,22]. Then, electrical analogous
models are introduced in order to obtain electrical equivalent circuits useful to predict the behavior of fractional hereditary
materials in an easy way. The validity of the proposed models is demonstrated by using modal analysis. Moreover, the com-
parison with numerical experiments based on finite difference time domain (FDTD) method shows that, for long time sim-
ulations, the correct time behavior can be obtained only with modal analysis.

2. Mechanical models of fractional viscoelasticity

Many materials, like rubbers, polymers, bones, bitumen and so on, show a viscoelastic mechanical behavior; moreover
also biological tissues have viscoelastic properties [23–28]. Viscoelasticity is the property of such materials that exhibit at
the same time elastic and viscous behavior. The elastic behavior is typical of simple solid materials in which the strain
history cðtÞ is linked by the stress history rðtÞ through a proportional relation as shown in Eq. (1):
rðtÞ ¼ EcðtÞ ð1Þ
where E is the Young modulus (Pascal). Eq. (1) shows the so-called Hooke law, the mechanical model of elasticity is repre-
sented by a perfect spring with stiffness E as shown in Fig. 1(a). Instead, the viscous behavior is typical of perfect fluid in
which there are stress and strain history linked by the Newtonian law as shown in following equation:
rðtÞ ¼ g
d
dt

cðtÞ ¼ g _cðtÞ ð2Þ
where g is the viscosity (Poise) of the fluid. In this case the stress history rðtÞ is related to the rate of deformation _cðtÞ and the
model that describes this behavior is the dashpot shown in Fig. 1(b).

In order to describe the viscoelastic behavior, the mechanical models of Fig. 1 are inadequate and, over time, some
researchers have used several more or less complex assemblies of the two simple elements of Fig. 1, as it was done by Kelvin,
Voigt, Maxwell, Zener, etc. [29,30]. In these models the stress–strain relation is described by following relation:
Xn

k¼0

ak
dk

dtk
rðtÞ ¼

Xm

k¼0

bk
dk

dtk
cðtÞ ð3Þ
Another way to describe the time dependent behavior of viscoelastic materials is by the integral formulation. In fact, from
the relaxation function GðtÞ, that represents the stress rðtÞ for an assigned strain history cðtÞ ¼ HðtÞ (where HðtÞ is the unit
step function) and by using the Boltzmann superposition integral the following stress–strain relation is obtained:
rðtÞ ¼
Z t

0
G t � �tð Þdc �tð Þ ¼

Z t

0
G t � �tð Þ _c �tð Þd�t ð4Þ
Eq. (4) is valid for quiescent system at t ¼ 0. All classical models, whose constitutive law is described by Eq. (3), have as
relaxation function GðtÞ a function based on an exponential law. Several scientists have experimentally demonstrated that
the relaxation function is not well described by an exponential law, but it follows a power-law trend [21,31–34] of the fol-
lowing type:
GðtÞ ¼ CðbÞ
C 1� bð Þ t

�b ð5Þ
where Cð�Þ is the Euler gamma function, CðbÞ and b are parameters that depend on the specific material. By using the relax-
ation function of Eq. (5) and applying the Boltzmann superposition integral of Eq. (4), another stress–strain relation is
obtained:
rðtÞ ¼ CðbÞ CDb
0þc

� �
ðtÞ ð6Þ
E

γ(t)

σ(t)E

(a) Perfect spring

γ(t)

σ(t)η

(b) Perfect dashpot

Fig. 1. Elastic and viscous models.
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where CDb
0þc

� �
ðtÞ is the Caputo’s fractional derivative [35–41] of order b of strain history cðtÞ with respect to time t, that is

defined as
CDb
0þc

� �
ðtÞ ¼ 1

Cð1� bÞ

Z t

0
t � �tð Þ�b _c �tð Þd�t ð7Þ
Eq. (6) shows the stress–strain relation of a new mathematical model of viscoelasticity that is known as spring-pot [42–45];
the involved b order of fractional operator is defined in the range 0;1� ½ (b ¼ 0 corresponds to pure elastic behavior of Eq. (1),
while b ¼ 1 represents the pure viscous behavior of Eq. (2)).

The mechanical meaning of the fractional mathematical model reported in Eq. (6) is recently provided by Di Paola & Zin-
gales [22]. In particular the authors have distinguished two cases of viscoelasticity, one for the behavior in which the elastic
phase predominates (Elasto-Viscous materials 0 < b < 1=2) and the other in which viscous phase is predominant (Visco-
Elastic materials 1=2 < b < 1).

For the Elasto-Viscous (EV) materials the exact mechanical model is a massless indefinite fluid column resting on a bed of
independent springs as shown in Fig. 2(a), while for the Visco-Elastic (VE) materials the exact mechanical model is a mass-
less indefinite shear-type column resting on a bed of independent dashpot as shown in Fig. 2(b).

By introducing a z vertical axis, both for the EV model and for the VE model, the fractional stress–strain relation of Eq. (6)
is obtained at the top of the lamina if, as stiffness coefficient kiðzÞ and dashpot coefficient ciðzÞ (i ¼ E for the EV model and
i ¼ V for VE model) the following expressions are considered:
ðEVÞ
kEðzÞ ¼ G0

Cð1þaÞ z
�a;

cEðzÞ ¼ g0
Cð1�aÞ z

�a;
a ¼ 1� 2b

(
ð8aÞ

ðVEÞ
kV ðzÞ ¼ G0

Cð1�aÞ z
�a;

cV ðzÞ ¼ g0
Cð1þaÞ z

�a;
a ¼ 2b� 1

(
ð8bÞ
The stress–strain relations of both models involve the Bessel function and, by imposing the proper boundary conditions the
following expressions valid at the top of the lamina are obtained:
ðEVÞ rðtÞ ¼ CEðbÞ CDb
0þc

� �
ðtÞ ð9aÞ

ðVEÞ rðtÞ ¼ CV ðbÞ CDb
0þc

� �
ðtÞ ð9bÞ
where the coefficients CEðbÞ and CV ðbÞ are defined as:
CEðbÞ ¼
G0C bð Þ22b�1

C 2� 2bð ÞC 1� bð Þ
g0Cða� 1Þ
G0Cðaþ 1Þ

� �b

ð10aÞ

CV ðbÞ ¼
G0C 1� bð Þ21�2b

C 2� 2bð ÞC bð Þ
g0Cðaþ 1Þ
G0Cða� 1Þ

� �b

ð10bÞ
In addition, in order to provide a mechanical meaning of the fractional viscoelasticity, the introduced mechanical models
may be discretized and the obtained discrete mechanical models can be easily solved by a classical modal analysis [19].
Moreover the extension of fractional multiphase viscoelastic model is obtained from the introduced exact mechanical mod-
els [46,47].

It is easy to observe that the elastic law between stress and strain history, that is modeled by a perfect spring, is analogous
to Ohm law between current iðtÞ and voltage vðtÞ, which is typical of purely resistive conductors. While the Newtonian law is
(a) Elasto-Viscous model (b) Visco-Elastic model

Fig. 2. Continuous fractional models of viscoelasticity.
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analogous to capacitor law between current and voltage rate _vðtÞ, which is characteristic of purely capacitive elements. If
there are circuits with an electrical behavior intermediate between the purely capacitive and the purely resistive, these re-
sult in a fractional current–voltage relation (such as for the stress–strain relation in fractional viscoelasticity); so it is rea-
sonable to think that the viscoelastic analogy and the introduced mechanical model [22,19] may be useful to find a
proper fractional electrical model.

3. Fractional capacitor

In electrical networks models, the capacitors play a very important role since they model the conservative part of the
electric field effects. The well-known Curie’s law [48] reveals an empiric relation between the current iðtÞ related to the ap-
plied voltage vðtÞ ¼ HðtÞ � V (being HðtÞ the unit step function):
iðtÞ ¼ vðtÞt�b

cðbÞCð1� bÞ 0 < b < 1 ð11Þ
while cðbÞ is a constant depending on the physical characteristics of the capacitor. Both cðbÞ and b can be obtained by exper-
imental data and subsequent best fitting procedure. Eq. (11) may be interpreted as the relaxation function in the following
sense. When vðtÞ is applied to the capacitor, the corresponding iðtÞ decay with a power law then it relaxes. The current re-
lated to V ¼ 1 is denoted as GEðtÞ, i.e. this current is due to the unit step voltage:
GEðtÞ ¼ t�b

cðbÞCð1�bÞ ; t P 0; 0 < b < 1

GEðtÞ ¼ 0; t < 0; 0 < b < 1
ð12Þ
Such a function will be named the ‘E-Relaxation Function’ (ERF), where the prefix E stands for ‘electrical’ in order to avoid
confusion with the ‘Relaxation Function’ in viscoelasticity. By using the Boltzmann superposition principle, the current his-
tory in the capacitor due to a voltage vðtÞ can be written as:
iðtÞ ¼
Z t

0
GEðt � tÞdvðtÞ

dt
dt ð13Þ
This is a convolution integral whose kernel is the ERF. If the power law kernel Eq. (12) is inserted, the following relation is
obtained:
iðtÞ ¼ 1
cðbÞCð1� bÞ

Z t

0
ðt � tÞ�b dvðtÞ

dt
dt ¼ 1

cðbÞ
cDb

0þv
� �

ðtÞ ð14Þ
It has to be observed that for b ¼ 1 relation Eq. (14) restores an ideal capacitor of capacitance C ¼ 1=cð1Þ; when b ¼ 0 a pure
resistor of resistance R ¼ cð0Þ, is obtained. Inside the interval 0 < b < 1 the fractional capacitor exhibits an intermediate
behavior between an ideal resistor and an ideal capacitor. Lets now suppose that a step current iðtÞ ¼ HðtÞ � I feeds the capac-
itor; the voltage related to I ¼ 1 is denoted as JEðtÞ, i.e. this voltage is due to the unit step current, and will be named as the
‘E-Creep Function’ (ECF) as the analogous in viscoelasticity as well. By using again the Boltzmann superposition principle, the
following relation holds:
vðtÞ ¼
Z t

0
JEðt � tÞdiðtÞ

dt
dt ð15Þ
The application of the Laplace transform to Eqs. (13) and (15), enables to straightforwardly observe that ERF and ECF are
related each other by the following fundamental relationship:
bJEðsÞbGEðsÞ ¼
1
s2 ð16Þ
where bJEðsÞ and bGEðsÞ are the Laplace transform of JEðtÞ and GEðtÞ, respectively. By using Eq. (16), the ECF in time domain is
easily found, namely:
JEðtÞ ¼ cðbÞtb

Cð1þbÞ ; t P 0

JEðtÞ ¼ 0; t < 0
ð17Þ
By inserting Eq. (17) in Eq. (15), the following relation holds:
vðtÞ ¼ cðbÞ
Cð1þ bÞ

Z t

0
ðt � tÞb diðtÞ

dt
dt ð18Þ
After some trivial manipulations of the previous equation, it follows:
vðtÞ ¼ cðbÞ
Cð1þ bÞ

Z t

0
ðt � tÞ1�b

iðtÞdt ¼ cðbÞ Ib0þ i
� �

ðtÞ ð19Þ
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where Ib0þ �
� �

ðtÞ is the Riemann–Liouville fractional integral. Eqs. (14) and (19) are valid for virgin capacitors with ið0Þ ¼ 0 and

vð0Þ ¼ 0. When the initial conditions are different from zero (i.e. i0 and v0), then the terms v0GEðtÞ and i0JEðtÞ have to be
added in Eqs. (14) and (19), respectively. Power law description of JEðtÞ or GEðtÞ leads to conclude that the fractional capacitor
exhibits a long-tail memory in the sense that the actual state depends on the entire past history [49,50]. On the contrary,
pure resistor has not memory and pure capacitor shows short-time memory. So, in order to distinguish the behavior of
fractional capacitor it is named as hereditary capacitor. In the next section the electrical equivalent circuit of Eq. (14) will
be presented.

4. Electrical equivalent circuit of fractional capacitor (b ¼ 1=2)

In this section electrical circuit models of fractional element whose constitutive law is expressed by Eq. (14), is presented
for b ¼ 1=2. Firstly, let consider the electrical circuit shown in Fig. 3. A longitudinal pure resistor with a per-unit length resis-
tance r and a transversal pure capacitor with a per-unit length capacitance c, constitute the elementary cell of a transmission
line model along the x abscissa. By using the Kirchhoff voltage and current laws the following coupled partial differential
equations hold:
@iðx; tÞ
@x

¼ �c
@vðx; tÞ
@t

ð20Þ
and
@vðx; tÞ
@x

¼ �riðx; tÞ ð21Þ
By combining Eqs. (20) and (21) the following diffusion equation holds:
@2vðx; tÞ
@x2 � rc

@vðx; tÞ
@t

¼ 0 ð22Þ
By Laplace transforming Eq. (22), the following relation holds in the s-domain:
@2bv ðx; sÞ
@x2 � rcsbv ðx; sÞ ¼ 0 ð23Þ
The solution of Eq. (23) is expressed as:
bv ðx; sÞ ¼ B1ex
ffiffiffiffi
rcs
p
þ B2e�x

ffiffiffiffi
rcs
p

ð24Þ
being B1 and B2 integration constant to be determined. By imposing the following boundary conditions:
lim
x!0
bv ðx; sÞ ¼ bv ð0; sÞ ¼ bV ðsÞ

lim
x!1

bv ðx; sÞ ¼ 0
ð25Þ
with bV ðsÞ as the Laplace transform of the source voltage vðtÞ placed at x ¼ 0;B1 ¼ 0 and B2 ¼ bV ðsÞ result. So the solution of
Eq. (23), become:
bv ðx; sÞ ¼ bV ðsÞe�x
ffiffiffiffi
rcs
p

ð26Þ
By differentiating with respect to x and taking into account Eq. (21), the following relation holds:
@bv ðx; sÞ
@x

¼ �bV ðsÞ ffiffiffiffiffiffircs
p

e�x
ffiffiffiffi
rcs
p
¼ �rbiðx; sÞ ð27Þ
that for x ¼ 0 gives:
Fig. 3. C-R electrical equivalent circuit for b ¼ 1=2.
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bV ðsÞ ffiffiffiffiffiffircs
p

¼ rbið0; sÞ ¼ rbIðsÞ ð28Þ
Eq. (28) is the Laplace transform of the constitutive law relating the external voltage and the corresponding current at x ¼ 0.
The inverse Laplace transform gives:
iðtÞ ¼
ffiffiffi
c
r

r
CD1=2

0þ v
� �

ðtÞ ð29Þ
By Eq. (29) it is shown that the electrical circuit of Fig. 3 is the exact electrical model of the fractional capacitor with order
b ¼ 1=2. It is straightforward to obtain the same result by using the circuit model shown in Fig. 4, in which the roles of resis-
tor and capacitor are exchanged. The following relations hold:
@vðx; tÞ
@x

¼ �1
c

Z t

0
iðx; sÞds ð30Þ
and
@iðx; tÞ
@x

¼ �1
r

vðx; tÞ ð31Þ
By combining Eqs. (30) and (31) the following relation holds:
@2vðx; tÞ
@x2 ¼ 1

rc

Z t

0
vðx; sÞds ð32Þ
and by taking the Laplace transform of (32):
@2bv ðx; sÞ
@x2 � 1

rcs
bv ðx; sÞ ¼ 0 ð33Þ
The solution of the previous equation is:
bv ðx; sÞ ¼ B1e
xffiffiffi
rcs
p þ B2e

�xffiffiffi
rcs
p ð34Þ
The relevant boundary conditions are those in Eq. (25), leading to B1 ¼ 0 and B2 ¼ bV ðsÞ. By differentiating with respect to x
and taking into account the Laplace transform of Eq. (30), the current solution is obtained:
biðx; sÞ ¼ csbV ðsÞ 1ffiffiffiffiffiffi
rcs
p e

�xffiffiffi
rcs
p ð35Þ
that in x ¼ 0 gives (cfr. Eq. 28):
bið0; sÞ ¼ bV ðsÞ ffiffiffiffiffi
cs
r

r
ð36Þ
Inverse Laplace transform of Eq. (36) gives the same Eq. (29). Then it is possible to conclude that both the electrical equiv-
alent circuits of Figs. 3 and 4, exactly model the constitutive law expressed by Eq. (14).

5. Discretization

Electrical circuit of Fig. 3 can be discretized by considering small abscissa intervals Dx, as shown in Fig. 5. Let denote with
v s ¼ v0 the source voltage and with i0 its current; with i1; . . . ; in; . . . the current flowing in the longitudinal resistors rDx, and
with v1; . . . ; vn�1; � � � ; vn ¼ 0 the nodal voltages which are the same of that applied to the transversal capacitors cDx, except
for the last one. By using the constitutive relations of the lumped elements and the Kirchhoff laws, and by omitting the tem-
poral dependence, the following relations hold:
Fig. 4. R-C electrical equivalent circuit for b ¼ 1=2.



Fig. 5. Discretized model of electrical circuit shown in Fig. 3, driven by a voltage source.
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i0 ¼ ic0 þ i1

i1 ¼
1

r Dx
ðvs � v1Þ

i2 ¼
1

r Dx
ðv1 � v2Þ

..

. ..
. ..

. ..
.

in�1 ¼
1

r Dx
ðvn�2 � vn�1Þ

in ¼
1

r Dx
vn�1

ð37Þ
and
ic0 ¼ cDx _v0

ic1 ¼ i1 � i2 ¼ cDx _v1

ic2 ¼ i2 � i3 ¼ cDx _v2

..

. ..
. ..

. ..
.

icn�1 ¼ in�1 � in ¼ cDx _vn�1

ð38Þ
When n increases, the currents decrease and then a truncation can be performed. Let now introduce the node voltage matrix
vT ¼ v1 � � � vn�1½ � and the matrix of the corresponding node voltage temporal derivatives _vT ¼ _v1 � � � _vn�1½ �; by using Eqs.
(37) to obtain the temporal derivatives of node voltages of Eqs. (38), the following relation holds:
_v ¼ Avv þ lvsC1 ð39Þ
where v s is the source voltage, l ¼ 1=½rcðDxÞ2�;CT
1 ¼ 1 0 � � � 0½ �, and Av is the following tridiagonal matrix [51,52]:
Av ¼ �l

2 �1 0 0 � � � 0
�1 2 �1 0 � � � 0
0 �1 2 �1 � � � 0
..
.
� � � ..

.
� � � ..

.
� � �

0 � � � 0 �1 2 �1
0 � � � 0 0 �1 2

26666666664

37777777775
ð40Þ
Let indicate with kj the eigenvalues of matrix �1
l Av and with /j the corresponding eigenvectors normalized with the identity

matrix. /k;j indicates the kth component of the vector /j. Since Av is symmetric (and positive as definition), the matrix /

whose jth column is the eigenvector /j leads to the following relations:
/T ¼ /

/T Av/ ¼ �lK
ð41Þ
where K is the diagonal matrix whose jth element is kj. By performing the following coordinates transform:
y ¼ /v ð42Þ
in Eq. (39), and multiplying on the left by /T , the following relation is obtained:
_y ¼ �lKy þ lv su ð43Þ
where uT is the first row of the matrix /, namely:
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u ¼ /T C1 ¼ /11 /12 . . . /1n½ � ð44Þ
From Eq. (43) it results that in the modal space y the differential equations are decoupled and are given in the form:
_yjðtÞ þ lkjyjðtÞ ¼ l/1jv sðtÞ ð45Þ
and the corresponding electrical equivalent circuit is simply that shown in Fig. 6. The response of the jth electrical circuit is
given as:
yjðtÞ ¼ yjð0Þe�qj t þ l/1j

Z t

0
e�qjðt�tÞv sðtÞdt ð46Þ
where yjð0Þ ¼ /T
j vð0Þ; qj ¼ lkj and vsðtÞ is the source voltage. Once all the responses yjðtÞ are evaluated, the voltage vector v

is readily formed as:
v ¼ /T y ð47Þ
and the current iðtÞ is then computed by the first of Eqs. (37). From Fig. 6 it appears the multi-scale physical significance of
the fractional constitutive law.

Let now suppose that the circuit of Fig. 5 is driven by a current source, as reported in Fig. 7. By using the same notation as
in the previous case, the following equations hold:
i1 ¼ 1
r Dx ðv0 � v1Þ

i2 ¼ 1
r Dx ðv1 � v2Þ

..

. ..
. ..

. ..
.

in�1 ¼ 1
r Dx ðvn�2 � vn�1Þ

in ¼ 1
r Dx vn�1

ð48Þ
and
ic0 ¼ is � i1 ¼ cDx _v0

ic1 ¼ i1 � i2 ¼ cDx _v1

ic2 ¼ i2 � i3 ¼ cDx _v2

..

. ..
. ..

. ..
.

icn�1 ¼ in�1 � in ¼ cDx _vn�1

ð49Þ
Let now introduce the node voltage vT ¼ ½v0 � � � vn�1� and the matrix of the corresponding node voltage temporal deriva-
tives _vT ¼ _v0 � � � _vn�1½ �; after some trivial manipulations the following relation holds:
_v ¼ Aiv þ
is

cDx
C1 ð50Þ
where Ai is the following tridiagonal matrix:
Fig. 6. Electrical circuit of Fig. 5 in the modal space.



Fig. 7. Discretized model of electrical circuit shown in Fig. 3, driven by a current source.
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Ai ¼ �l

1 �1 0 0 � � � 0
�1 2 �1 0 � � � 0
0 �1 2 �1 � � � 0
..
.
� � � ..

.
� � � ..

.
� � �

0 � � � 0 �1 2 �1
0 � � � 0 0 �1 2

26666666664

37777777775
ð51Þ
The eigenvalues kj of matrix �1
l Ai and the corresponding eigenvectors /j normalized with the identity matrix, are:
kj ¼ 2� 2 cos
2j� 1
2nþ 1

p
� �

; j ¼ 1;2; . . . ;n

/k;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4
2nþ 1

r
cos

ð2j� 1Þð2k� 1Þp
2ð2nþ 1Þ

� �
; j; k ¼ 1;2; . . . ;n

ð52Þ
where /k;j is the kth component of the vector /j.
By using the same transformation as in Eq. (41) and Eq. (42), the following relation similar to that reported in Eq. (43), is

obtained:
_y ¼ �lKy þ is

cDx
u ð53Þ
where uT is reported in Eq. (44). From Eq. (53) it results that in the modal space y the differential equations are decoupled
and are given in the form:
_yjðtÞ þ lkjyjðtÞ ¼
/1jis

cDx
ð54Þ
and so:
yjðtÞ ¼ yjð0Þe�qj t þ
/1j

cDx

Z t

0
e�qjðt�tÞisðtÞdt ð55Þ
A similar result may also be achieved from the electrical equivalent circuit of Fig. 4, by using the discretized circuit reported
in Fig. 8. The following relations hold:
i1 ¼ cDxð _v s � _v1Þ
i2 ¼ cDxð _v1 � _v2Þ

..

. ..
. ..

. ..
.

in�1 ¼ cDxð _vn�2 � _vn�1Þ
in ¼ cDx _vn�1

ð56Þ
Fig. 8. Discretized model of electrical circuit shown in Fig. 4, driven by a voltage source.
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and
ir0 ¼ i0 � i1 ¼ vs
r Dx

ir1 ¼ i1 � i2 ¼ v1
r Dx

..

. ..
. ..

. ..
.

irn�1 ¼ in�1 � in ¼ vn�1
r Dx

ð57Þ
By using the node voltage matrix vT ¼ v1 � � � vn�1½ � and the matrix of the corresponding node voltage temporal derivatives
_vT ¼ _v1 � � � _vn�1½ �, the differential equations are given in the form:
Av _v ¼ l2v � l _vsC1 ð58Þ
where Av has been already defined in Eq. (40). By using the previous procedure, the coordinate transform leads to the fol-
lowing set of decoupled differential equations:
_y ¼ �lK�1y � _v sK
�1u ð59Þ
where u is defined in Eq. (44), and whose jth equation is:
_yjðtÞ þ
l
kj

yjðtÞ ¼ �
/1j

kj
_v sðtÞ ð60Þ
The solution of Eq. (60) is given as:
yjðtÞ ¼ yjð0Þe
�l

kj
t �

/1j

kj

Z t

0
e
�l

kj
ðt�tÞ

_v sðtÞdt ð61Þ
The electrical circuit in the modal space is shown in Fig. 9.
Let now suppose that the circuit of Fig. 8 is driven by a current source, as reported in Fig. 10. The following relations hold:
i1 ¼ cDxð _v0 � _v1Þ
i2 ¼ cDxð _v1 � _v2Þ

..

. ..
. ..

. ..
.

in�1 ¼ cDxð _vn�2 � _vn�1Þ
in ¼ cDx _vn�1

ð62Þ
and
ir0 ¼ is � i1 ¼ v0
r Dx

ir1 ¼ i1 � i2 ¼ v1
r Dx

..

. ..
. ..

. ..
.

irn�1 ¼ in�1 � in ¼ vn�1
r Dx

ð63Þ
By using the node voltage matrix vT ¼ v0 � � � vn�1½ � and the matrix of the corresponding node voltage temporal derivatives
_vT ¼ _v0 � � � _vn�1½ �, after some trivial manipulations the following differential equations holds:
Ai _v ¼ l2v � l
cDx

isC1 ð64Þ
Fig. 9. Electrical circuit of Fig. 8 in the modal space.



Fig. 10. Discretized model of electrical circuit shown in Fig. 4, driven by a current source.
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where Ai has been already defined in Eq. (51). By using the previous procedure, the coordinate transform leads to the fol-
lowing set of decoupled differential equations:
_y ¼ �lK�1y � is

cDx
K�1u ð65Þ
where uT is reported in Eq. (44), and whose jth equation is:
_yjðtÞ þ
l
kj

yjðtÞ ¼ �
/1j

kj

is

cDx
ð66Þ
The solution of Eq. (66) is given as:
yjðtÞ ¼ yjð0Þ e
�l

kj
t �

/1j

cDxkj

Z t

0
e
�l

kj
ðt�tÞ

isðtÞdt ð67Þ
6. Numerical examples

In this section numerical examples are presented in order to show the accuracy of the discretized model. At first, for the
discretized circuit shown in Fig. 5, the current response i0 to a unit step voltage v sðtÞ ¼ HðtÞ is considered. In this case, the
exact solution of Eq. (13) is the ERF described in Eq. (12). Different comparisons have been carried out. In Fig. 11 the com-
parison between discrete circuit results, with 2000 eigenvalues, L ¼ 2 m, and ERF function behavior described in Eq. (12), is
reported. In order to better compare the discretized model based on modal analysis, another example is reported in Fig. 12,
related to the same circuit. Moreover, finite difference time domain (FDTD) method [53–55] is also used in order to numer-
ically solve the coupled Eqs. (20) and (21). In Fig. 13, for the same example reported in Fig. 12, FDTD results are compared
with analytical ones. A very good agreement has been reached.

Moreover, the voltage response v0 to a unit step current isðtÞ ¼ HðtÞ is also considered. The discrete circuit shown in Fig. 7,
is used. The exact solution of Eq. (15) for the unit step function is the creep function described in Eq. (17). In Fig. 14 the com-
parison between modal analysis results and ECF profile reported in Eq. (17), is shown. FDTD simulations have been carried
out also in this case. In Figs. 15 and 16 short and long time simulation results are compared withe ECF profile, respectively. As
reported in [19], discrete model is able to represent the behavior of v0 voltage only for a certain time interval.
Fig. 11. Comparison between discrete circuit modal analysis of Fig. 5 results, and ERF function behavior described in Eq. (12).



Fig. 12. Comparison between discrete circuit modal analysis of Fig. 5 results, and ERF function behavior described in Eq. (12).

Fig. 13. Comparison between FDTD method results and ERF function behavior described in Eq. (12).

Fig. 14. Comparison between modal analysis results and ECF profile: nodal voltage v0 of Fig. 7.
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Fig. 15. FDTD results compared with ECF profile: short time simulation.

Fig. 16. FDTD results compared with ECF profile: long time simulation.

Fig. 17. v0 voltage time profile of Fig. 7 with a sinusoidal input: x ¼ 1 rad=s. The input amplitude is set to a unit value.
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In Fig. 17 v0 voltage time profile of Fig. 7 with a sinusoidal current source with x ¼ 1 rad=s and unit amplitude is re-
ported, compared with the analytical one. A 5 m length configuration has been selected.

The exact response to such an input for Eq. (15), is:
vðtÞ ¼
�isx t1þb

cðbÞCð2þ bÞ 1F2 1;
2þ b

2
;

3þ b
2

; � xt
2

2� �� �
ð68Þ
where 1F2ð�Þ is the hypergeometric function [56] that is defined as
pFq a1; . . . ; ap; b1; . . . ; bq; z
	 


¼
X1
n¼0

a1ð Þk a2ð Þk . . . ap
	 


k

b1ð Þk b2ð Þk . . . bq
	 


k

zk

k!
ð69Þ
where að Þk ¼ kðaþ 1Þ . . . ðaþ k� 1Þ is the Pochhammer Symbol. For b ¼ 1=2 Eq. (68) becomes:
vðtÞ ¼
�isx t3=2

cð1=2ÞCð5=2Þ 1F2 1;
5
4
;

7
4

; � xt
2

2� �� �
: ð70Þ
As shown in Fig. 17, a very good agreement has been obtained.
7. Conclusions

Electrical analogous models of fractional hereditary materials have been introduced. At first, mechanical models of mate-
rials viscoelasticity behavior have been approached by using fractional calculus. By combining springs and dashpots, differ-
ent viscoelastic models have been obtained. These models have been equivalently modeled as electrical circuits, where the
spring and dashpot are analogous to the capacitance and resistance, respectively. The proposed models have been validated
by using modal analysis. The comparison with numerical results obtained also by using FDTD method shows that, for long
time simulations, the correct time behavior can be revealed only with modal analysis. The use of electrical analogous in vis-
coelasticity can help to better investigate the real behavior of fractional hereditary materials.
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