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a b s t r a c t

Imaging techniques give a fundamental support to medical diagnostics during the pathol-
ogy discovery as well as for the characterization of bio-medical structures. The imaging
methods involve electromagnetic waves in a frequency range that spans from some Hz to
GHz and over.Most of thesemethods involve ionizingwaves and scanning of a large human
body area even if only a focused inspection is needed. In this paper, a numerical method to
evaluate the shape of microstructures for application in the medical field, with a very low
invasiveness for the human body, is proposed. In particular, the tooth’s root canal is con-
sidered. In fact, this is one of the hot topics in the endodontic procedures where rotary in-
struments arewidely used. These instruments are subjected to suddenmechanical damage
during the surgical process, due to cyclic fatigue directly related to the canal’s geometrical
characteristics. In order to develop an improved endodontic procedure so that instrument
breakage probability and canal milling precision are optimized, preliminary canal root re-
construction techniques have to be implemented. These techniques are usually based on
invasive X-ray imaging. Thus, a minimally invasive, easy to use imaging technique that can
be applied many times on the patient is of great interest. To this aim, a method based on
a flexible thin-wire antenna radiating non ionizing VHF waves is proposed. By measuring
the spatial magnetic field distribution in the neighboring area, it is possible to reconstruct
the microstructure image by estimating the shape of the antenna against a sensor panel.
The mathematical model is strictly non-linear and the inverse problem described above is
solved numerically; first simulation results are presented in order to show the validity and
the robustness of the proposed approach.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The support given by imaging techniques to medical diagnostics is fundamental during the pathology discovery as well
as for characterization of biological structures [1–7]. The imaging methods involve electromagnetic waves in a frequency
range that spans from some Hz to GHz and over. Hence, the understanding of biological structure response to the electro-
magnetic field is fundamental. The investigation of the interaction between healthy or pathological biological tissues and
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electromagnetic waves is still a hot topic [8]. In fact,understanding how an electromagnetic wave interacts with the human
body becomes increasingly important if one considers that the most of imaging methods involve the scanning of wide areas
of the human body, even if only a focused inspection is needed. In this way, although a wide scanning allows the acquisition
of a big amount of data by single exposition, also areas of the body not interested in the diagnostics are exposed to the
waves, so increasing the invasiveness for the patient. For this reason, new imaging systems able to analyze only a focused
area (confined scanning), are becoming more and more investigated [5]. A big input to micro-imaging systems has been
given by micro-electronic technology, which allows the development of systems for scanning of confined small areas. In
fact, emitters and receivers (sensors) can be made smaller and smaller, so that the final size of the imaging systems as well
as the wave spots become very small. Generally, the acquired data need to be appropriately elaborated extracting the imag-
ing information bymeans of inverse optimization algorithms [3,4,7]. Through these algorithms high quality information can
be extracted from the data acquired by the sensors, even if the quality of the sensors signal is low. In this paper a method
for the shape recognition of microstructures with application in medical field is proposed. Precisely, the tooth’s root canal
reconstruction is considered. In fact, this is one of the hot topics in the endodontic field where rotary instruments are widely
used. These instruments, named files, used for surgical procedures, are subjected to various types of mechanical stress, di-
rectly related to canal’s characteristics. In particular, file separation caused by cyclic fatigue is still an unsolved problem.
Moreover, it occurs without warning since no indication of plastic deformation appears during the surgical process. Cyclic
fatigue studies, often supported by file builders, have shown the influence of canal shape (i.e. angle, curvature radius, length,
possible bifurcations) on mechanical stresses, so deeply modifying the instrument life and, consequently, its breakage [9,
10]. In order to develop an improved endodontic procedure through which the breakage probability of the files and milling
precision of the canal are optimized, root canal reconstruction techniques have to be implemented. These techniques are
usually based on invasive X-ray imaging: in fact, for most of the endodontic procedures this imaging technique has to be
performed many times, so exposing the patient to an unwanted X-ray dose amount. Moreover, the effective canal shape
reconstruction remains a critical task [9,10].

Hence, an imaging method which is easy to use, with low invasiveness, with a satisfactory precision, and that can be
applied many times on the patient, can become a fundamental task for these applications.

The proposed method works with non ionizing low power electromagnetic waves, in the Very High Frequency (VHF)
range, in order to achieve a low level of invasiveness for the human body. The method uses a system endowed with a
microtransmitter, a sensor panel to acquire the spatial distribution of the electromagnetic field in the close proximity and
an elaboration logic to acquire and elaborate the sensors signals. The micro transmitter radiates the VHF waves by means
of a flexible thin-wire microantenna, inserted in the root canal. Hence, the micro antenna can be assumed to have the same
shape of the analyzed structure. By measuring the spatial distribution of the magnetic field in the neighborhood of the
thin-wire antenna, it is possible to reconstruct the microstructure image. In fact, the shape reconstruction is possible by
estimating the location of thin-wire antenna against the sensor panel. The recognition problem of the thin-wire antenna
location by magnetic field measurements can be addressed as an inverse problem. The thin-wire antenna is supposed to
be a sequence of linear segments: given a model for the characterization of the magnetic field at a set of points in space
(forward problem) and given a set of measurements at these points, it is possible to solve the inverse problem in terms of
the distances of the antenna axis points from the sensor panel. The magnetic field component is selected since the physical
domain can be characterized with a uniform magnetic permeability in the VHF range. In this paper, first results about the
previous idea are reported concerning two simulated scenarios. Namely, the spatial distribution of the emittedmagnetic field
is simulated through a numerical model based on the method of moments (MoM), where the first kind Fredholm integral
equation is solved by the point matching procedure [11–17]. The field values are used as the measured input for the inverse
problem. The Levenberg–Marquardt algorithm [18,19] is used in solving the inverse problem by means of minimization of
the Euclidean distance between the measured field and the field generated by a given configuration of thin-wire piecewise
antenna. The numerical procedure involved by the algorithm rounds the entries of the Hessian matrix, step by step, and the
location of the antenna segments can be estimated with satisfactory precision, so obtaining the image of the canal shape.

The paper is structured as follows. In Section 2 the mathematical framework about the proposedmethod is presented. In
Section 3 numerical results about reconstruction examples are discussed, then a conclusion about results and ongoing work
completes the paper.

2. Numerical approach

The biological thin microstructures taken into account in this paper are shown in Fig. 1. The Figure shows the typical
shape of a root canal: in this case the canal reveals two curvature changes along the whole length. As already underlined,
due to an inaccurate prediction of these curvature changes, the endodontic files suffer frommechanical stress that can cause
unwanted breakage and added problems in the patient. The shape of thesemicrostructures can be estimated bymeans of an
appropriate embedded emitting antenna and by measuring the spatial distribution of the appropriate radiated electromag-
netic field component. In particular, themagnetic fieldmay be the best choice together with the selection of the appropriate
work frequency range. The proposed approach is a typical inverse problem: the measured spatial distribution of the mag-
netic field emitted by a VHF thin-wire antenna (i.e. with radius less than one hundredth of the maximumwork wavelength)
is the input, and the source shape reconstruction is the final target. The antenna is assumed to be a piecewise linear struc-
ture, i.e. a sequence of Nb branches with uniform radius rc and conductivity σc . The antenna is fed at the point (x0, y0, z0)
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Fig. 1. Tooth’s root canal (point red line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

by a sinusoidal current source with known frequency f and amplitude Isource. The spatial distribution of the magnetic field is
detected by a sensor panel with M sensors distributed on its surface. As a first approximation, the surrounding medium is
supposed to be homogeneous and isotropic, with conductivity σ , electric permittivity ϵ andmagnetic permeabilityµ. Under
these assumptions, the shape reconstruction involves theminimization of an objective function shown in Eq. (1), by using an
iterative procedure. Roughly speaking, step by step the iterative procedure looks for a set of segments coordinates that min-
imize the 2-norm difference between the computed and measured magnetic field at sensor points, i.e. the error function F :

min
p

{F} = min
p


∥Hcomp(p) − Hmeas∥2


(1)

In Eq. (1), p = [(x1, y1, z1) · · · (xNb , yNb , zNb)]
T is the vector of the Cartesian coordinates of the antenna segments ends

to be estimated, Hcomp is the vector of the magnetic field values at sensor points computed by assuming that the segments
ends are located at p, and Hmeas is the vector with the measured magnetic field values. The values of Hcomp are calculated
by the forward solver for a given signal source and antenna characteristics. More precisely, the current distribution along
the antenna is evaluated by solving an appropriate integral equation in frequency domain, derived fromMaxwell equations.
Then, by using the relation that links the currents to the magnetic field, the latter can be calculated at the sensor points. The
equations of the forwardmodel are solved numerically. For the problem addressed in this case, theMoM via point-matching
procedure in the frequency domain, is performed. Note that, by this method the involved integral equation includes the
boundary conditions, so that only the emitter has to be discretized but not the whole problem domain. This means that each
antenna branch needs to be split into a finite number of linear segments [11–16]. The problem formulation leads to a first
kind Fredholm integral equation. In fact, by expressing the electric field E⃗ with the retardedmagnetic vector potential A⃗, the
source frequency (ω = 2π f ) and the scalar electric potential φ, as shown in Eq. (2):

E⃗ = −(∇φ + jωA⃗) (2)

and by introducing the boundary conditions by means of the per-unit-length surface impedance żs, the following equation
holds:

u⃗ · E⃗ = żsIs (3)

−(∇φ + jωA⃗)tg = zsIs

in which the subscript tg indicates the component tangential to the wire surface, Is is the longitudinal current flowing into
the conductor, supposed concentrated on its axis (u⃗′ as the unit vector) because of the thin-wire assumption [11,14], u⃗ is
the unit vector tangential to the conductor’s surface, as shown in Fig. 2.

By using the relation between the magnetic vector potential A⃗ and the conduction current density, and the relation
between the scalar electric potential φ and the free electric charge density, the well known electric field integral equation



808 G. Ala et al. / Journal of Computational and Applied Mathematics 259 (2014) 805–814

Fig. 2. General thin-wire geometric references.

Fig. 3. Blocks diagram of the inverse problem algorithm. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

(EFIE) is obtained. Then, by integrating the EFIE along the surface of the conductor, the following modified EFIE is
obtained [11,14]:

jω

L
u⃗ ·


Ω

µIs(l′)g(r⃗, r⃗ ′)dl′dl +

L

∂

∂ ltg

1
jωϵ̇


Ω

dIs(l′)
dl′

g(r⃗, r⃗ ′)dl′dl = −żs


L
Is(r⃗)dl. (4)

Eq. (4) is a general relation that depends only on the longitudinal current and on geometrical quantities related to the
conductors constituting the thin-wire structures to be analyzed. In fact, Ω is the length of the exciting conductor, L is the
length of the induced conductor, r⃗ and r⃗ ′ are space position vectors of the observation and source points, respectively;
g(r⃗, r⃗ ′) =

e−k|r⃗−r⃗′ |

4π |r⃗−r⃗ ′| is the Green’s function in an unbounded region. The quantity ϵ̇ = ϵ + jωσ takes into account the complex

medium permittivity and k̇ =


−ω2µϵ̇ is the wave number. As already underlined, the forward problem, represented
by Eq. (4), is numerically solved by splitting the thin-wire antenna into a finite number of linear segments of length δ. In
scientific literature numerous results [11,14] show that an acceptable accuracy can be obtained for the solution of Eq. (4),
by assuming δ ≤ 0.05λ and a spatial linear distribution of current along the axis of each segment. In this way, a linear
system of order n + Nb is obtained with n as the number of segments. Once the currents are computed, the magnetic field
components in the surrounding medium are given by the dipole theory, by superposing the effects of all segments [11,14].
As discussed above, once the direct problem is solved, the inverse one can be then approached. In Fig. 3 a block diagram
for the algorithm used to solve the inverse problem is shown. The unknown end-point segment coordinates p are obtained
through an iterative procedure which, at each step, computes the correction factors needed to obtain the new set of points
coordinates. The correction factors are evaluated by the optimization functionality, on the basis of the difference in 2-norm
among themeasured fields and the fields computed by the forward solver. Since the problem is strictly nonlinear, the inverse
problem solver is based on the Levenberg–Marquardt (LM) algorithm [18]. In brief, the LM algorithm starts from an initial
set of reasonable end-point segment coordinates p(0): this set is then updated at each step k by adding the solutions ∆p(k)

of the linear system shown in Eq. (5):
B̃(k)

+ β(k)diag[B̃(k)
]


∆p(k)

= −G(k)T F(p(k)) (5)
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(a) Flat sensor panel.

(b) Semi-cylindrical sensor panel.

Fig. 4. Noiseless shape reconstructions. The initial position is that a of straight thin-wire antenna 2.3 cm in length and perpendicular to the Y–Z plane.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

where the matrix B̃(k) is an approximation of the Hessian matrix of F at step k and is equal to G(k)TG(k), with G(k) as the
gradient of the error function F at step k, while β(k) is an adaptive parameter. Once 1p(k) is known, the new coordinates are
calculated by the following relation:

p(k+1)
= p(k)

+ ∆p(k). (6)

3. Numerical results

In order to validate the capabilities of the proposed method, some numerical experiments concerning the shape
estimation of a specific tooth’s root canal have been carried out.

A NiTi (electrical conductivity 1.1 · 106 S/m) thin-wire antenna 0.1 mm in radius and 2.3 cm in length is assumed to be
inserted in the root canal and fed by a sinusoidal current source with frequency equal to 100 MHz. The NiTi alloy is selected
because it is commonly used in biomedical applications [9,10]. The antenna shape, which is approximately the canal shape,
is shown in Fig. 4(a) and (b) (red dashed line with cross markers). The same figures show also that the ground surface of the
antenna lies on the Y–Z plane, and the feed point is placed at a distance of 2 mm from the ground plane. The sensors are
assumed to be sensitive to the component of the magnetic field along the Z axis.

In order to approximate the characteristics of a tooth, the medium around the canal is assumed to have zero electrical
conductivity, relative permittivity equal to 15 and relative permeability equal to 1 [20].
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Fig. 5. Relative reconstruction error vs. SNR (dB). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Two sets of simulations have been carried out: one set concerning a noiseless environment, and one set to test the
influence of noise on the shape reconstruction.

In the noiseless context, the Signal to Noise Ratio (SNR) is assumed to approach infinity: themeasured values ofmagnetic
field have been calculated by means of the MoM-based forward solver described in Section 2. Different current source
amplitudes have been tested: 0.1 mA, 1 mA, 5 mA, 25 mA and 50 mA. It has to be underlined that all these current values as
well as the selected frequency, can be well tolerated by the human tissues also depending on the time of application (i.e. a
few seconds) [21,8,22,23]. On the other hand, the VHF waves are non ionizing ones with respect to the commonly used
X-ray.

Two sets of 12 sensors are considered. The sensors are placed on a flat surface in a first case study (Fig. 4(a)) and on a
semi-cylindrical surface in a second case study (Fig. 4(b)). The flat sensor panel is 3 cm in height and 1.5 cm in width, while
the semi-cylindrical one is 1.5 cm in radius and 3 cm in height.

The antenna shape has been reconstructed by means of a three branch conductor. The initial set of end-point segment
coordinates p(0) for the LM optimization algorithm is that of a straight thin-wire antenna 2.3 cm in length and perpendicular
to the ground plane. From these coordinates the true position of each branch is then estimated.

The estimated conductor position in the flat sensor panel case is shown in Fig. 4(a). In this first noiseless case study, the
distance between the estimated shape (black dashed line with square markers) and the true position (the red dashed line
with cross markers) is close to zero.

For this configuration, the 2-norm relative error between true and estimated coordinates values for a given current level,
and the number of iterations are reported in Table 1. The results show that the error is close to zero, also for small values of
the source current.

Fig. 4(b) shows the estimated position of the conductor for the semi-cylindrical sensor panel. For this scenario, the
2-norm relative error between true and estimated coordinates for a given level of source current, and the number of
iterations are shown in Table 2. The simulations results show that the error is close to zero also in this case.

The second set of experiments is aimed at studying the influence of noise on reconstruction accuracy.
The measurements are supposed to be affected by additive white Gaussian noise: the measured values of magnetic field

have been calculated by means of the MoM-based forward solver described in Section 2 and then the noise has been added.
Our experiments showed that the sensor panels tested in the ideal noiseless case are not able to provide an acceptable

reconstruction accuracy in a noisy environment. Therefore more complex sensor panels has been tested, namely 24 or 32
sensors on two parallel flat panels (each panel is 3 cm in height and 1.5 cm in width, see Figs. 6 and 7 respectively) and 32
sensors on a cylindrical panel (1.5 cm in radius and 3 cm in height, see Fig. 8).

Moreover, in order to test the effect of an increasing number of variables involved in the optimization process on
reconstruction accuracy, the shape of the antenna has been reconstructed by assuming a two branch conductor or a three
branch conductor, alternatively: if one considers common canal shapes and curvatures, both of these configurations can
potentially represent the canal shape in a satisfactory way.

The behavior of the relative reconstruction error versus the SNR for different sensor panels and numbers of assumed
antenna branches is shown in Fig. 5. In Figs. 6–8, some reconstructions are also shown for low values of SNR. In all these
experiments, the current source amplitude has been set to 50 mA.
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(a) Two segments.

(b) Three segments.

Fig. 6. Shape reconstruction in noisy environment, two flat sensor panels (24 sensors). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Table 1
Relative error and number of iterations required with the flat sensor panel.

Current (mA) Relative error No. of iterations

0.1 6.15e−11 169
1 6.10e−11 165
5 7.88e−09 87
25 3.78e−10 28
50 1.53e−11 8

Table 2
Relative error and number of iterations required with the semi-cylindrical
sensor panel.

Current (mA) Relative error No. of iterations

0.1 3.05e−10 25
1 1.04e−09 17
5 1.75e−11 12
25 2.55e−12 8
50 1.00e−09 8
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(a) Two segments.

(b) Three segments.

Fig. 7. Shape reconstruction in noisy environment, two flat sensor panels (32 sensors). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

It turns out that satisfactory accuracies can be achieved with all the configurations tested, even when the SNR is low.
However, by approximating the antenna with a two branch conductor, a better robustness with respect to noise can be
achieved, without compromising accuracy. In particular, two branch conductors reconstructions outperform three branch
ones for very noisy environments. In general, for a fixed number of conductor branches, the best results are obtained by
employing flat sensor panels.

4. Conclusions

In this paper, a numerical approach to reconstruct the shape of microstructures for bio-medical application with a very
low invasiveness for the human body, is proposed. The tooth’s root canal reconstruction is considered. This is one of the
hot topics in endodontic procedures where there is a wide use of rotary instruments (files) subjected to various types of
mechanical stress, directly related to the canal’s characteristics. File separation, caused by cyclic fatigue, occurs without
warning, so determining unwanted failure of the endodontic procedure, also with potential surgery complication for the
patient. Therefore, preliminary root canal reconstruction techniques have to be implemented in order to optimize the
endodontic procedure. These techniques are usually based on invasive X-ray imaging. In fact, for most of the endodontic
procedures this imaging technique has to be performed many times, so exposing the patient to an unwanted X-ray dose
amount. Moreover, the effective canal shape reconstruction remains a critical task. In the paper, a minimally invasive, easy
to use imaging technique that can be applied many times on the patient, is proposed. It is based on a flexible thin-wire
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(a) Two segments.

(b) Three segments.

Fig. 8. Shape reconstruction in noisy environment, cylindrical sensor panel (32 sensors). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

antenna radiating non ionizing VHF waves and inserted in the canal. The typical inverse problem is solved numerically: the
estimation of the antenna shape enables the reconstruction of the canal image with a satisfactory approximation. The first
simulation results also show the validity and the robustness of the proposed approach. A prototype of the actual application
is currently under construction.
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