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Sample purification can be considered the most polluting step of the whole analytical process for PCBs

determination in sediment samples. The use of photochemical sample treatment represents an

alternative methodology for extracts clean up allowing for a reduction of the used amount of organic

solvents. The first application of a photochemical sample treatment for the selective removal or

reduction of organic substances interfering with PCBs analyses in sediments is reported. The method’s

efficiency and robustness were compared with currently used chromatographic purification. Quality

parameters such as recovery, linearity and reproducibility were studied. The entire procedure was

validated by four replicate analysis of certified reference sediment. The quantification limits (LOQ)

obtained by us ranged from 1 to 3.1 ng g�1. The RSD for each congener was below 15% and recoveries

were in the range 40–130%.

Results based on the analysis of real and certified samples showed similar or improved detection

thresholds and pointed out the advantages of the photochemical methodology in terms of costs and

environmental friendly conditions.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Humans are exposed daily to a number of potentially harmful
substances of natural or anthropogenic origin [1]. However, while
direct exposure to pollutants (by inhalation, ingestion or contact)
is obviously a major concern, awareness of indirect exposure (e.g.
through contaminated food) [2] is difficult to achieve. This is
particularly important for harmful micropollutants from trans-
port or industrial activities [3] whose monitoring represents a
major challenge in analytical chemistry.

Electrical installations, industrial outlets and the use of pesti-
cides are the major source of chlorinated organic compounds
released in the environment. In temperate regions, these are
distributed in several geographical areas through long-range
atmospheric transport and deposition. Additionally, chlorinated
organic compounds can be introduced in the food chain and reach
consumers in very high levels [4].

In this context, polychlorinated biphenyls (PCBs) micropollu-
tants, whose production was banned in Europe in 1985 [5], are still
an environmental issue [6]. In fact, this class of persistent organic
pollutants, whose world production has been recently estimated at
more than 1.3 �106 t, can lead to significant emissions into the
ll rights reserved.
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environment [7]. Due to their chemical and thermal stability, low
flammability, and electrical insulating properties [8], PCBs have
been widely used as dielectric fluids in capacitors and transformers,
special lubricants and additives in paints and pesticides [9].

Besides toxicological studies on PCBs, recent research is
focusing on more sophisticated analytical methods for PCBs
detection [10]. Distribution and dispersion of PCBs mostly occurs
through air [11], water, soils and sediments [12]. The latter, are
complex matrices whose analysis often involves costly extraction
and purification procedures. PCBs are separated from environ-
mental matrices using different techniques, for example solid
phases microextraction (SPME) [13,14] (analyta recoveries in the
range from 25 to 130% [15] standard deviations from 4 to 17%
[16]), and different organic solvents such as dichloromethane,
hexane, acetone, or a combination of them [17]. For this reason,
sample purification can be considered the most important and
polluting step of the whole analytical process for PCBs determi-
nation in a sediment sample [18].

Unfortunately, due to strong interactions of PCBs with the
natural organic matter present in sediments, problems such as
low and variable extraction efficiency are commonly experienced
[19]. Additionally, co-extraction of compounds causing interfer-
ences during instrumental analysis is also a major issue. Indeed,
several interfering substances can be present in PCBs extracts that
need to be analyzed by GC–MS methods; these include organic
compounds having molecular or fragment mass equal to that of
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the analyte and interfering in SIM-mode GC–MS analysis. In order
to resolve these issues, purification procedures of the analytical
extracts are required.

Chromatographic purification over silica gel can be utilized for
the clean up of extracts of environmental matrices. In fact,
currently used methods for extract purification in PCBs analysis
in sediments are: EPA method N13630 (Silica gel clean up) and
EPA method N13620 (Florisil clean up). However, these methods
use large amounts of toxic and hazardous solvents [20].

In this context, we decided to develop a new procedure, for the
purification of extracts for the analysis of PCBs in sediments,
which is also more selective, inexpensive, more robust, and
substantially less solvent-consuming than previous methods
[21–23]. This procedure allowed good analyta recoveries (40–
140%) within the range accepted by EPA, high reproducibility
(relative error o10%) and low detection limits comparable to EPA
method n. 3620 (Florisil clean up). Modern treatments to degrade
chemical and biological contaminants in water and sediments
include advanced oxidation processes (AOPs) [24] as well as
photochemical and photocatalytic procedures [25–27]. For
instance, the unselective photochemical mineralization of organic
compounds has been used as a valid alternative to conventional
methods for the purification of extracts in the analysis of metals
[28]. However, the selective photochemical removal of organic
substances interfering in the PCBs gas-chromatographic analysis
has never been reported. In this study we report a new photo-
chemical method, which takes advantage of ultraviolet light
irradiation to reduce the concentration of organic substances that
interfere in SIM-mode GC–MS analysis of PCBs from sediments.
The described approach includes the choice of the most appro-
priate irradiation conditions in order to avoid photochemical
degradation of the analyta.
Fig. 1. Recoveries of PCB using different solvent mixtures.
2. Experimental

2.1. Chemicals

Dichloromethane, n-hexane and diethyl ether were purchased
from Carlo Erba, (GC pure grade). Standard solutions were purchased
from Chemical Research. Twelve compounds were used as internal
standards (one for every group of analytes determined by gas
chromatography using the same ratios Mnþ/z). Stock internal stan-
dard solutions of PCBs (PCB81, PCB77, PCB123, PCB81, PCB114,
PCB105, PCB126, PCB167, PCB156, PC157, PCB169, PCB189) were
prepared (100 ppb) in hexane from commercial standard nonane
solutions (1 ppm) (Chemical Research WELEPA-1668IS) by drying and
re-dilution.

Stock congener solutions of PCBs (100 ppb) were prepared in
hexane from commercial standard isooctane solutions (10 ppm)
(Chemical Research O2S130111-01) by drying and re-dilution.
Both stock internal and commercial standard solutions were
stored in a refrigerator (4 1C). PCB congeners were from CEN
PCB congener MIX 1 SUPELCO. The certified sediment used in this
study was CRM no. 536 PCBs in fresh water harbor sediment.
Florisil (60–100 mesh) was obtained from Merck and heated at
130 1C for 16 h prior to use. Extractions were performed using an
automated Soxhlet (Büchi Extraction System B-811). Irradiations
were carried out in pyrex vessels by using a Rayonet RPR-100
photoreactor equipped with a merry-go-round apparatus and 16
RPR-3500 A Hg lamps (8 W each) irradiating at l¼350725 nm.

2.2. Samples

Real sediment samples collected from Palermo (Italy) coastal
area (Cala station) were used to develop the analytical method.
qA total of 3–5 Kg of sample was collected by bucketing 30 cm of
the top layer sediments from each site and placed into plastic
bags. The samples were initially stored in the dark at �5 1C on
site, to inhibit biological activity and avoid exposure to light, and
then rapidly transported to the laboratory where they were
stored at �18 1C.

2.3. General procedure

According to reported methods [29], the standard procedure
for PCBs determination in sediments involves matrix preparation,
extraction, purification and analysis steps. These were performed
on real samples collected at Palermo coastal area. Matrix pre-
paration was not necessary for the determination of PCBs in the
commercial Certified reference material, which was purchased as
already sampled, sub-sampled, homogenized, sieved and dried.
All analyses were performed in four replicates.

2.4. Matrix preparation

The marine sediment sample was sub-sampled from five
different parts of the bucket. These five sub-samples (20–25 g)
were unified and homogenized into a single batch. The batch was
then air-dried and sieved through a mesh with a grain size of
2 mm. The obtained sediment sample was dried in an oven for
48 h at 60 1C and stirred occasionally to avoid aggregation of the
material.

2.5. Method development

In order to evaluate the best extraction and clean up meth-
odologies, we have applied different operating conditions to real
spiked samples obtained by adding 250 mL of a 100 ppb PCB
congeners solution to a sediment sample (5 g) collected from Cala
station. In fact, testing the method on spiked real marine sedi-
ment samples is a very important approach to simulate a real
analysis and identify optimal conditions.

Figs. 1 and 2 show the percentages of PCBs recovery as a
function of solvent mixture and number of extraction cycles,
using as blank marine sediment samples from Cala station. The
results showed that the best percentage recoveries were obtained
using a 1:1 (v/v) n-hexane/dichloromethane solvent mixture for
30 extraction cycles. These parameters have been used for PCBs
extraction from sediment sample.

The second step of the method development involved the
verification of the optimal conditions to apply a photochemical
clean up methodology for PCB determination in sediment sam-
ples. Even though PCBs do not absorb at wavelengths greater than
310 nm, [30] we checked their stability under irradiation for 3 h
at l¼350725. Fig. 3 illustrates the absorbance spectra of a PCB



Fig. 2. Recoveries of PCB using different extraction cycles.

Fig. 3. Absorbance spectra of a PCB mixture solution (CEN PCB congener MIX 1

SUPELCO) at a concentration of 500 ppb (of each PCBs) in a 1:1 (v/v) dichlor-

omethane/n-hexane (a) before and (b) after irradiation.

Table 1
Operating conditions for real sediment sample.

Sample l irradiation (nm) Time irradiation (h) Gas bubbling

a 350725 nm 3 No gas bubbling

b 350725 nm 3 O2

c 350725 nm 3 Ar

d No irradiation No irradiation No gas bubbling

Table 2
Comparison of the results for PCB analysis from CRM marine samples using the

different clean up procedures.

PCB mg Kg�1 Real Repeatability Repeatability

Absolute

concentration

Recovery (%)

(RSD%)a

Recovery (%)

(RSD%)b

tcal

test

tcrit

test

PCB 28 44 13072 14572 1.150 3.182

PCB 52 38 6371 7571 1.777 3.182

PCB 101 44 8971 10073 1.791 3.182

PCB 149 49 5171 6071 2.368 3.182

PCB 118 28 5371 6171 1.736 3.182

PCB 153 50 5971 6971 2.213 3.182

PCB 105 4 6473 6971 1.111 3.182

PCB 138 27 4876 6976 1.268 3.182

PCB 128 5 4179 5479 1.231 3.182

PCB 156 3 84715 5473 0.746 3.182

PCB 180 22 5671 7071 2.720 3.182

PCB 170 13 4672 7472 1.303 3.182

a Photochemical purification process.
b Florisil purification process.
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mixture solution (CEN PCB congener MIX 1 SUPELCO) at a
concentration of 500 ppb (of each PCBs) in a 1:1 (v/v) dichlor-
omethane/n-hexane before (Fig. 3a) and after (Fig. 3b) irradiation.
The spectra are basically unchanged, confirming that, PCBs are not
decomposed at l¼350725. Therefore, the solutions obtained
from the extraction of sediments could be irradiated at 350 nm to
reduce the amount of interfering organic substances.

2.6. Extraction

Based on the optimized extraction procedure, a 5 g sample of
CRM sediment was placed into a 33 mL cellulose thimble together
with 0.5 g of anhydrous Na2SO4. The cellulose thimble was then
placed in an automated Soxhlet extractor, which was fitted to a
distillation flask containing 150 mL of a 1:1 (v/v) n-hexane/
dichloromethane mixture and the sample was extracted for
30 cycles (3 h) in warm mode. A similar extraction procedure
was followed for real sediments samples to which 250 mL of a
100 ppb PCBs congener standard solution was added before the
extraction (spiked samples).
2.7. Purification

The photochemical purification of the organic extracts was
performed under various conditions (Table 1) and its efficiency
was compared with the Florisil chromatographic clean up (EPA
method N1 3620) used as reference method (Table 2). The organic
extracts (50 mL) were transferred into a Pyrex glass photolysis
tube, and either directly irradiated at l¼350725 nm for a total
of 3 h (sample a), or purged with argon (sample b) or oxygen
(sample c) for 10 min prior to irradiation (Table 1). In order to
monitor the effect of the irradiation as a function of time, samples
were collected at 1, 2 and 3 h during and after irradiation. As
blank experiment, sample d was analyzed without previous
purification. Each sample was reduced in volume using a rotary-
evaporator and dried under a N2 stream. Residues were then
recomposed to 250 mL with internal standard solutions of PCBs
(100 ppb) and analyzed by GC–MS.
2.8. GC–MS analysis

Analysis of purified solutions and were carried out using a gas
chromatograph coupled with a mass spectrometer (Shimadzu, mod.
GCMS-QP2000) equipped with an Equity-5 (30 m�0.25 mm I.D.,
0.25 mm film thickness) fused-silica capillary column from Supelco
SLBTM-5 ms, lot. 41579-03A. Ultra pure (99.999%) helium was used
as a carrier gas and the flow rate was maintained at 1.7 mL/min.
1 mL of each concentrated solution was injected by the Shimadzu
Auto Injector AOC-20I, in splitless mode with a 0.61 min split delay.
The injector temperature was maintained at 250 1C and detector at
270 1C. The GC temperature ramp increased: from 60 1C (1 min) to
170 1C (1 min) at a 301/min heating rate, from 170 1C to 300 1C at a
51/min rate, and then from 300 1C to 330 1C (5 min) at 201/min rate.
The calibration was performed weekly. The data were acquired
operating in single-ion monitoring mode (SIM). Identification of the
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components of the standard mixture was carried out by comparing
retention times for each component in the mixture with those of
the corresponding pure compounds, analyzed under the same
experimental conditions. Identification was confirmed by compar-
ing the corresponding MS spectra. The identification of PCBs in the
solutions extracted from sediments was carried out on the basis of
previously determined retention times and confirmed by using
mass spectra.

Response factors for different compounds were measured by
injecting a mixture containing standard compounds and having
the same concentration of internal standard solutions of PCBs as
that used for spiking the samples. The most abundant ion was
used for quantification and two other ions were additionally used
for confirmation.
3. Results and discussion

The linearity of the method for PCBs analysis in CRM was
evaluated over a range of concentrations (6.00–500 ng mL�1)
finding a linear response (see correlation coefficients in Table 3)
for all analytes.
Table 3
Calibration data, linear range, correlation coefficient, LOD and LOQ analysis

of PCBs.

PCB Calibration

range

(ng mL�1)

Correlation

coefficient (r2)

Limit of

detection

(LOD; ng g�1)

Limit of

quantification

(LOQ; ng g�1)

PCB 28 6–500 0.987 1.0 3.1

PCB 52 6–500 0.990 1.0 2.7

PCB 101 6–500 0.997 1.0 1.0

PCB 149 6–500 0.999 1.0 1.0

PCB 118 6–500 0.993 1.0 1.0

PCB 153 6–500 0.992 1.0 1.0

PCB 105 6–500 0.994 1.0 1.0

PCB 138 6–500 0.999 1.0 1.0

PCB 128 6–500 0.997 1.0 1.0

PCB 156 6–500 0.992 1.0 1.0

PCB 180 6–500 0.994 1.0 1.0

PCB 170 6–500 0.994 1.0 1.0

Fig. 4. Chromatograms for PCB 28 (mass 256 amu, RT 11.50) i
Since PCB 28 has major organic interferences in the determi-
nation from sediment samples through the GC–MS analyses, we
decided to test the efficiency of the proposed photochemical
sample purification in the chromatographic analysis of PCB28.

SIM-mode (256 amu) representative chromatograms of PCB 28
analysis for the four a–d samples from real sediments treated as
summarized in Table 1 are shown in Fig. 4 a–d. Results pointed
out that oxygen purging of the organic extracts followed by
irradiation at 350 nm for 3 h were the best purification conditions
for the detection of PCB 28 (mass 256 amu, RT¼11.50 min) in real
sediments (Fig. 4b). In fact, no PCB 28 was detectable in not
purified sample extracts (sample d), since the baseline was
covering the corresponding peak at around 11.50 min, due to
the presence of interfering organic matter from the matrix.
Indeed, in SIM mode, interferences could arise not only from
single compounds but from all possible matrix compounds frag-
ments at the detected mass, thus appearing as an up shifted
baseline.

On the other hand, PCB 28 was barely detectable in argon
purged (sample c) or not purged (sample a) irradiated extracts.

Results from the analysis of samples a–d show the role of
molecular oxygen in the photodegradation of the interfering
organic compounds. In particular, comparison of data from
samples a (not purged extract) and c (deoxygenated extract) with
untreated extract (sample d), pointed out the occurrence of an
oxygen-independent photochemical degradation of the organic
compounds interfering with PCB analysis. On the other hand,
improved analyses achieved by saturating the extract with oxygen
prior to irradiation (sample b) indicate that a photo-oxygenation
process is also promoted under the used irradiation conditions. By
considering the qualitative absorption spectrum of a typical extract
(Fig. 5), it is likely that irradiation at 350 nm promotes one or more
of the following degradation processes: (i) a direct photochemical
reaction of the excited interfering organic compounds, (ii) a photo-
oxidation of the interfering organic compounds involving the direct
interaction between their excited states with molecular oxygen, (iii)
a sensitized singlet oxygen photooxidation of the interfering
organic compounds by the Kautsky mechanism [31]. Particularly
in the latter case, the electrophilic character of singlet oxygen
would prevent its attack to electron poor PCBs, which remain
preserved in the purification procedure.
n real sediment sample in different operating conditions.
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The best conditions for the photochemical purification were
also applied to the analysis of Certified Reference Material (CRM)
Fig. 5. Absorbance spectrum of organic extract from sediment in dichloro-

methane/n-hexane 1:1.

Fig. 6. Comparison of chromatograms for PCB 28 (mass 256 amu, RT 11.50) in

CRM Florisil clean up (a) and CRM Photochemical clean up (b).

Fig. 7. Comparison of recoveries by Florisil column pur
for the validation of the methodology. The method’s precision was
evaluated through the analyses of four CRM replicates.

The chromatogram for PCB 28 (mass 256 amu RT¼11.50 min)
in the CRM sample is illustrated in Fig. 6, showing the absence of
interfering substances after either Florisil (Fig. 6 a) or photoche-
mical (Fig. 6 b) clean up.

The analysis of various CRM samples has been used for a
comparison between the photochemical clean up and the chro-
matographic purification on Florisil. Percentage of recovery,
standard deviations (SDs) and t test are reported for both
procedures in Table 2, showing similar efficiencies of the two
methods for PCBs analysis when tcalcrtcrit.

In Fig. 7, percentage recovery of the individual PCB congeners
in CRM obtained by Florisil purification are compared with those
obtained through the photochemical clean up. In almost all the
cases, PCB’s percentage recovery determined after photochemical
purification is slightly lower than that determined after Florisil
clean up (o10%).

Nevertheless, these differences are not significant (see t values in
Table 2). In the case of PCB 156, instead, the photochemical purifica-
tion allows a higher recovery of the analyta with respect to Florisil
procedure. This could be ascribed either to a different partition
between the PCB156 analyta and the Florisil stationary phase with
respect to the other PCBs, or to the low absolute concentration of PCB
156 in the CRM (see Table 2). In all the cases, PCBs recoveries after
photochemical clean up were in the range (from 40 to 140%) of those
accepted by the Environmental Protection Agency.
4. Conclusions

The classic clean up process for PCBs determination uses large
amounts of toxic solvents and stationary phases. This purification
process has a very high impact for the environment and is
potentially harmful for the analyst. In this study, we report the
development of an alternative photochemical methodology to
reduce the concentration of organic substances that interfere with
GC–MS analysis of PCBs.

Optimized photochemical purification conditions consisted of
a preliminary oxygen saturation of the Soxhlet organic extracts
followed by their irradiation at 350 nm for 3 h.

This procedure allowed for good analyta recoveries (40–140%)
within the range accepted by EPA, high reproducibility (relative
error o10%) and low detection limits comparable to EPA method
n. 3620 (Florisil clean up).

By considering good linearity range (from 6 to 500 ng mL�1),
high reproducibility (relative error o10%), lower limits of deten-
tion (1 ng g�1), lower limits of quantification (from 1 to
3.1 ng g�1) and acceptable analyta recoveries (from 40 to 130%)
ification and photochemical purification processes.
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the method was demonstrated to be successfully applicable also
to real sediment samples.

The photochemical clean up is highly selective and efficiently
leads to a final sample containing very low concentrations of
interfering compounds. If compared to classical chromatographic
purification, the proposed photochemical method for the clean up
of organic extracts for the analysis of PCBs in sediments allows a
reduction in the use of harmful solvents and benefits analysis
time, cost, and health risks.
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