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Abstract: A fast and accurate measurement of soil carbon is needed in current scientific 

issues. Today there are many sensors suitable for these purposes, but choosing the 

appropriate sensor depends on the spatial scale at which the studies are conducted. There 

are few detailed studies that validate these types of measures allowing their immediate use. 

Here it is validated the quick use of a sensor in execution at Pantelleria, chosen for size, 

use and variability of the parameter measured, to give an operational tool for carbon stocks 

studies. The DRIFT sensor used here has been validated in the first 60 cm of the soil of the 

whole island, and it has shown predictivity higher than 90%. 
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1. Introduction 

Reflectance spectroscopy (RS) has successfully used for the discrimination of soil types from 

satellite, and multi spectral and aircraft hyperspectral data [1–3]. Similarly, it was used for quantitative 
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soil–landscape modeling [4,5], precision agriculture [6,7], tracing sediments [8] and for soil carbon 

(SC) monitoring [9]. 

The ability of RS to provide non-destructive rapid prediction for soil physical, chemical and 

biological properties in the laboratory has been demonstrated [4]. Despite these indications of the 

potential of the technique, there are relatively few examples of the application of RS for non-

destructive assessment of soils [10,11], soil and crop physical and biochemical properties. Although 

the near-infrared (NIR) range (800–2,500 nm) is still the most widely used, mid-infrared spectroscopy 

(MIRS) is becoming increasingly common due to the specificity toward the functional groups of the 

absorbance bands in that spectral range. Fourier transformed infrared (FTIR) spectroscopy, and in 

particular diffuse reflectance FTIR spectrometry (DRIFTS) analysis, has been used extensively in 

studies on organic molecules in soils and a quite large variety of bands characteristic of molecular 

structures/functional groups have been identified [11,12]. Moreover, the DRIFTS analysis of undiluted 

soil samples can also be used to assess soil organic matter (SOM) composition also in small sample 

sets, if mirror reflection and (mineral) interferences are considered [4], and in natural environments, 

sample preparation for DRIFTS is much simpler than for transmission IR spectroscopy and 

interferences due to water adsorption are reduced and resolution is improved [12,13]. DRIFTS, along 

with partial least squares (PLS) algorithms, provides statistical models to quantify soil properties [14]. 

The statistical treatment of the principal component regression (PCR) and partial least squares 

regression (PLSR), in fact, are the most common techniques used for spectral calibration and 

prediction [15]. The methodology and accuracy assessment of current remote sensing analyses can 

explore land cover at 30 m spatial resolution using satellite data as reference material. Some soil 

attributes has been validated using mid-infrared diffuse reflectance spectroscopy sensors at small  

scale [16] and a large scale [17].  

Diverse entities are working on future markets for trading of greenhouse gases (GHG) emissions 

allowances (e.g., the Carbon Finance Unit at the World Bank), but still today one of the impediments 

in growing up of these voluntary markets is the cost of information needed to quantify benefits on a 

site-specific basis. A method for rapid assessment of the carbon content in the soil also takes great interest 

for the purposes of a possible inclusion, for instance, by the European Union among the activities eligible 

in the second commitment period of the Kyoto Protocol (Art 3.4) [18].  

Here it is applied DRIFTS-PLS to quantify SC contents comparing the elemental determination for 

bulk soils and soil fractions in a small and homogeneous area, Pantelleria Island, with a carbon-free 

substrate to investigate the changes in SC stock as a function of changes in land cover. 

2. Materials and Methods 

Pantelleria (36°N 12°E), the major satellite island of Sicily (83 km2), is the summit of a partially 

revealed volcano located 100 km S of Sicily and 70 km N of Tunisia on the axis of the Sicily Channel 

Rift Zone. The volcanic edifice is a stratovolcano emerging above sea level at 836 m, which is covered 

by tephra layers including basalts, felsic lavas, and trachytes and pantellerites tuffs erupted mainly 300 ka 

and 50 Ka producing ignimbritic deposits up to 20 m thick [19]. The island is semi-arid with a typical 

Mediterranean climate (MAT 18 °C, MAP 409 mm) with monthly average temperatures fluctuating 

between 12 and 26 °C [20]. First archaeological facts date 35 Ka ago although the island remained 
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almost uninhabited until the Carthaginians occupied it, followed by the Romans and later by the Arabs. 

Pantelleria, in fact, provided obvious stop-over sites on the traditional North-South axis of the wheat 

and non-food good trade [20–22]. Pantelleria is characterized by a uniqueness of its landscape, in 

which natural elements do not prevail over the artifacts created by man, mainly its drywalls and 

cylindrical gardens. Pantelleria has been nearly totally terraced during centuries and cultivated with 

grapevine, caper, and olive trees. Adaptive field fragmentation allow numerous small property owners 

to adapt to changing climate and cost of labor [23]. About 80% of these terraces are nowadays 

abandoned [18] and small areas of pristine forests and Maquis are rather widespread. Following the 

abandonment of agricultural activity, which took place from the middle of the last century, areas of 

considerable extent have been affected by succession processes [24].  

Mineralogy investigations [25] have shown that the major components of all soils from Pantelleria 

are directly inherited from the volcanic carbon-free bedrocks. Due to the presence of a certain amount 

of artefacts, or technic hard rock the classification of our soils is rather homogeneous, most of them 

(69 out of 78) belonging to Vitric Technosols (skeletic) [26], while prefix qualifiers in few (6/78) soils 

are ekranic or umbric. For purpose of comparison, few samples (3/78) from Umbric Leptosols and 

Umbric Andosols were considered in our study. The undisturbed soil used in this study were collected 

from Ap horizons, 100 cm3 of samples were collected with a metal cylinder at depth 10, 20, 30, 40 and 

60 cm. The volume and the weight of the skeleton of each sample were measured simultaneously by 

immersion in a known volume of distilled water in a graduated cylinder [27]. The fine-earth samples 

were weighed and then dried at a temperature of 105 °C until reaching a constant weight. Later they 

were crushed and sieved at 2 mm, then stored at −18 °C. 

Electrical conductivity and pH measurements were carried out with a multiparametric probe (Hanna 

Instruments HI 991300, Woonsocket, Rhode Island). The pH was measured in three distinct 

suspensions of 1:2.5 soil: solution, water and 1M KCl, and 1:50 1M NaF. The measurements of total 

amount of C and N on the solid phase were performed on 0.5 mm grounded samples using an 

elemental analyzer (Fisons EA1108, Ipswich, United Kingdom). The range extension in content of 

total C and N for these samples provided a good test on the ability of MIRS to quantify soil C and N. 

Infrared radiation reflected from the surface of the soil samples was measured by a DRIFT module 

on a FT-IR spectrometer ALPHA (Bruker Optics, Milano, Italy). The analysis was conducted  

(i) on the soil (<2 mm) crushed in an agate mortar and (ii) on 0.1 g of the same soil dried at 40 °C and 

crushed with the same amount of KBr (Fluka FTIR grade). For each of the two procedures duplicate 

measurements were run. All measured carbon concentrations were then corrected to an oven-dry 

equivalent mass. DRIFTS–PLS predicted the C and N contents more precisely (larger R2, smaller error 

of prediction) for KBr-diluted samples than for neat samples, therefore, it is used KBr-diluted samples. 

The spectra were acquired by 24 scans performed in the range between 7,000 cm−1 and 375 cm−1 at a 

resolution of 4 cm−1 (air was used as a background). The acquisition and processing spectral as well as 

the subsequent statistical treatments and the multivariate calibration method used for quantitative 

spectral analysis were performed with the Bruker software OPUS, statistical package OPUS QUANT2 

6.5. The PLS method reduces a set of spectroscopic calibration data into a set of loadings, taking into 

account the spectral variance and the predetermined value of each of the samples in the calibration data 

set. To predict the value of a new sample, its spectrum is fitted with the same loadings as the 

calibration set, and the properties are predicted from the regression coefficients of the PLS model. The 
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IR spectra of samples were elaborated with OPUS QUANT2 software to determine the calibration 

function by a multivariate calibration by which the software extrapolates the chemiometric model 

which is successively cross validated. The quality of results was evaluated by R2, bias and residual 

prediction deviation (RPD) parameters. The coefficient of determination (R2) gives the percentage of 

variance present in the true component values, which is reproduced in the prediction. R² approaches 

100% as the predicted concentration values approach the true values. The bias is a systematic 

deviation of the measured (predicted) values from the true value due to a particular measurement 

method. In the research, it is the difference between the average true value and the average measured 

value of the validation set samples. The RPD is the ratio of standard deviation to standard error of 

prediction which indicates the standard deviation of all bias-corrected measured values from the true 

value. The most capable QUANT2 method is the one with the highest RPD value and a bias value as 

close as possible to zero. 

3. Results and Discussion 

Figure 1 reports the distribution of the sampling points on Pantelleria map while Table 1 describes 

the input data for the full soil set showing that while the ranges of nitrogen, carbon and electrical 

conductivity vary widely, bulk density and pH values were within relatively narrow ranges. 

The distributions of the data for C, N and EC are right-tailed and leptokurtic, being asymmetric 

toward small values and more acute peak near its mean compared with the standard normal 

distribution. The soil variability is mainly due to anthropogenic changes. The cultivation on terraces 

and the subsequent abandonment are the reason for the high variability in the carbon content of the soil 

even at a detailed scale. 

Mid-infrared spectra contain information on major functional moieties of organic matter, such as 

alkyl C, C-O-C from polysaccharides, aromatic carbonyl bands, aromatic C=C stretching vibrations, 

and C=O from carboxylic acids, aldehydes and ketones and so on. In the range 3,700–3,500 cm−1 were 

assigned the sharp peaks of SiO-H and AlO-H stretching. The broad adsorption band in the range 

3,500–2,500 cm−1 was indicative of the presence of the O–H and N–H groups, widely involved in 

hydrogen bonds. It was possible to see overlapped also the weak peaks around 2,900 cm−1 assigned to 

C–H stretching of CH3 and CH2 groups. The band at 1,730 cm−1 was generally due to C=O stretching 

of COOH and other carbonyl groups [10–13]. The bands at around 1,650–1,600 cm−1 were attributed 

to several group vibrations including aromatic C=C and C=O stretching of amide I groups (in protein 

like compounds) and the absorption at about 1,540 cm−1 was ascribed to N-H deformation and C-N 

stretching of amides (amide II group) [10–13]. The shoulder appearing at 1,460–1,450 cm−1 was by 

aliphatic C-H deformations and/or aromatic ring vibrations. The broad band in the range at  

1,450–1,220 cm−1 was attributed to O-H deformation, C-O stretching of phenolic OH and C-H 

deformation of -CH2 and -CH3 groups together C-O stretching and O-H deformation of carboxyls and 

C-O stretching of aryl ethers, and finally a band between 1,150 and 1,000 cm−1 was due to C-O 

stretching of polysaccharide or polysaccharide-like substances [12,13]. No band in the range  

2,650–2,500 cm−1, attributable to carbonate group was detected in our spectra in agree with chemical 

determination. Figure 2 reports a typical spectrum obtained in DRIFTS measurements while in Table 2 

were summarized the principal structural assignments. 
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Figure 1. Sites where soils were sampled for this study, where lines indicate the percent of 

soil total carbon at depth of 30 cm. The grid is irregular as sampling was carried out for 

extracting the highest C variability, regionalized by the use of soils. In particular, northern 

sampling points collected the greater variability of soils in terms of crops. In the South, the 

variability is given by the natural environment of the Mediterranean vegetation, while 

towards West by different gradients of human pressure. A regular sampling grid would not 

have correctly interpreted this intrinsic variability. 

 

Table 1. Reference laboratory data statistics for the samples used in this study (N = 89). 

Parameter 
Ntot Ctot 

Bulk 
Density 

 pH  
Electrical 

Conductivity

(%) (%) (g cm−3) (KCl) (H2O) (NaF) (dS m−1) 

Range 0.39 8.3 0.9 3.5 2.5 2.7 0.4 
Mean 0.09 1.4 †1.1 5.7 6.9 8.2 0.1 

Standard deviation 0.08 1.5 0.2 0.7 0.5 0.5 0.1 
Skewness 2 3 0 0 −1 2 2 
Kurtosis 4 8 0 1 1 3 3 

† First five cm of soil 1.0 ± 0.3, 10 cm 1.1 ± 0.2, 20 cm 1.1 ± 0.2, 30 cm 1.1 ± 0.2, >40 cm 1.0 ± 0.2. 

However, in DRIFT spectra of bulk soils and/or soil fractions, many organic signals are 

superimposed on signals from minerals (e.g., Si-O bonds from silicates at around 1,030 cm−1 interfere 

with the signal of polysaccharides) and water. This makes direct peak integration almost impossible, 

with the exception of the alkyl band, which has already been used sometimes for direct quantification 

of alkyl C. For these reasons, the chemical information is typically not directly accessible but has to be 

deciphered by multivariate statistical analysis. The spectral information contained in the loading 

weights is thereafter directly related to the property of interest. Thus, PLSR not only delivers 

quantitative information, but the spectral information used for the predictions can also be interpreted 

chemically and checked for plausibility. Table 3 presents the full cross-validation results for C and N.  
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Figure 2. DRIFT spectrum with assignment of principal bands investigated and the 

spectral width regions used for the PLS analysis of the selected soils. 

 

Table 2. Structural assignments of the main signals featured in a typical spectrum (Figure 2). 

Wavenumber cm−1 Structural Assignment 
3,700–3,600 OH of clay and Fe oxides 
3,400–3,100 O–H and N–H 
2,980–2,850 aliphatic C–H 
1,730–1,620 C=O carbonylic 
1,620–1,600 C=C 
1,565–1,480 carboxylate COO¯ 
1,470–1,300 C–H and C=C 
1,180–1,000 hydroxylic C–OH, Si-O Al–O 

800–600 Si–O Al–O 

Table 3. DRIFT settings. 

Parameter Wavenumbers cm−1 Functional Group Slope Bias R2 RPD 

Carbon 
3,160–2,810 
1,510–1,300 

C–H 
C–H 

0.949 0.042 0.951 4.49 

Nitrogen 
3,350–2,620 
1,485–1,300 

N–H 
C–N 

0.935 0.004 0.945 4.28 

R2 = coefficient of determination; RPD = residual predictive deviation. 

For the optimized PLS calibrations, some spectral data points, not contributing to the relationship 

between spectra and the specific soil property, were removed from the final calibration models. Such 

data filtering resulted in some slight improvement of the prediction accuracies. The R2 values were 

0.951 for C and 0.945 for N. These values agree reasonably well with those reported by other 
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researchers in the USA, Australia [28,29] and particularly with other three Italian islands [17]. The 

RPD values (SD/RMSECV, where SD is standard deviation and RMSESCV is root mean square error 

of cross-validation) for C and N (4.49 and 4.28, respectively) were consistent with a good analytical 

accuracy. A significant degradation of infrared PLS accuracy and precision for C by carbonate 

interference was reported by Reeves [30], but this effect was obviously not observed with our data.  

In accordance with the basic principles of sample selection for calibration, as suggested by Naes [31], 

the results obtained indicated that the strategy of samples selection, i.e., the large variability of the 

chemical parameters studied and of the sampling depth, as well as of the spectra in the model and the 

resulting coverage of the PLS score space within the complete sample set, ensuring that all samples from 

the island were adequately represented, was effective. This suggests that proper selection of samples 

representative of this environment (Figure 1) is more important than solely the number of samples used in 

the calibration [17,31]. Moreover, the DRIFTS frequency regions in which the program gets the best 

correlation coefficients (Table 3), were consistent with those expected to be more significant for C and 

N. It is calculated the error in the measurement of carbon and nitrogen obtained from the estimates 

with DRIFTS. In the case of nitrogen the estimation error is rather homogeneous spatially and always 

less than 30%. In the case of carbon (Figure 3) with the exception of the volcanic edifice in the terraces 

closer to the coast the error is around 25%. Soil carbon of the western terraces, from the Western coast 

by Scauri, can be estimated with an error of less than 40%. 

Figure 3. Lines indicate the error of predicted soil total carbon at any depth within 60 cm. 

Kriged C content is given as a maximum percentage of the error in the extrapolation of the 

predicted values (n = 89, standardised experimental variogram max lag 3,900 m, direction −16, 

tolerance 90, step amount 30, lag width 130, nugget 0.046, covariance 0.06, skewness 1.3). 

 

However, the implications of these results, using the overall samples, were more robust models for 

C and N amounts determinations with a good accuracy. This would suggest that prediction models for 

these analytes built from the individual island may possibly be successfully used to predict larger soil 
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sets. This possibility was tested comparing the DRIFT data of another geologically different 

Mediterranean island [17]. The results were illustrated in Figure 4 where the agreement between the 

data is very encouraging. 

Figure 4. Actual values and predicted values (g kg−1) comparing our data for Pantelleria 

(filled diamonds) and the data obtained by D’Acqui et al. [17] in the island of Pianosa 

(open squares) in the range of three percent carbon content of soils.  

 

4. Conclusions 

Detection of soil carbon evolution has a particular value for policy intervention and for carbon 

based emissions trading [32], so in situ, time-efficient and cost-effective, C measurement methods will 

be developed to facilitate the prediction on stocks through the on-going generation of spectral libraries 

from diverse soils and climatic conditions for the intention of validation [33]. The traditional 

methodologies used for measuring soil carbon content and other soil properties are time-consuming, 

analytically expensive, mainly sample-destructive and costly. Thus developing of new sensors for 

quick and less expensive are important. Several researches have demonstrated that DRIFTS is accurate 

and produces more robust calibrations than other technique [4,7,8,16,17,29]. DRIFTS have 

tremendous potential for the rapid and inexpensive determination of soil carbon, and other soil 

parameters. The DRIFTS PLS method of soil property predictions was shown to be suitable for the 

characterization of typical soils of islands in a Mediterranean environment [17]. It is applied  

DRIFTS-PLS to quantify soil C and N contents compared to elemental determination for several bulk 

soils. Our aim, to evaluate if a local calibration with satisfying prediction quality is attainable, in 

particular for deciphering and drawing the C or N spatial patterns at the field scale, was obtained. 

Calibration models for C and N attained R2 values of 0.951 and 0.945 respectively. Also these results, 

achieved by DRIFTS and PLS regression, confirmed that infrared methods are capable of 

discriminating between the variation in chemistry and composition in soils with a potential advantage 

of speed and low cost. Obviously, every PLS calibration model may be further expanded with 

additional soils and data to allow more accurate and detailed characterization of soil variability.  
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Total carbon stock in the first 30 cm of soil of Pantelleria is about 230,000 Mg, and the error of the 

estimates using the calibrated DRIFT sensor directly spans from 6 to 10 Mg SC ha−1. Ten years ago,  

Antle et al. [34] esteemed costs of errors in standard sampling for carbon accounting: those costs ranged 

from 0.01 to a maximum of 8 EUR per tonne, based on the sample size required to achieve a minimum 

10% sampling error (obviously, the costs increase as the sampling error approaches zero). Extrapolating 

these hypotheses in Pantelleria, an annual accounting error costs would span from 2,000 to one million 

EUR in the zero error sampling scenario. The use of a quick and rather accurate sensor could reduce 

the total cost of carbon accounting by augmenting the intensity of sampling in time and space. 
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