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Abstract: Retrieving precipitation data from a rain gauge network is a classical and common practice in hydrology and climatology. These
data represent the key input in hydrological modeling to reproduce, for example, the characteristics of a flood phenomenon. The accuracy of
the model results is strongly dependent on the consistency of the monitoring network in terms of spatial scale, i.e., network density and
location of the rain gauges and time resolution. In this context, several studies have been carried out to analyze how the rainfall sampling
influences the estimation of total runoff volume. The aim of this paper is to use a physically based and distributed-parameter hydrologic
model to investigate how the number and the spatial distribution of a rain gauge network influence the estimation of the hydrograph and its
characteristics in conjunction with different spatial and temporal characteristics of rainfall forcing and different soil-type characteristics.
The TIN-based real-time integrated basin simulator (tRIBS) hydrologic model was used to simulate hydrologic response at Baron Fork
Basin, Oklahoma. Downscaled next-generation radar (NEXRAD) measurements were assumed to represent the true precipitation distribution
over the basin. Additional precipitation fields have been derived from the interpolation of eight fictitious rain gauges randomly placed in the
area. The hydrological response from tRIBS that is driven by these precipitation fields has been compared with the response of the model
forced with NEXRAD precipitation. The analysis has been carried out assuming first simplified spatial distributions of soil characteristics and
then the real soil-type distribution. Results have shown the dependence of the best rain gauges configuration for the estimation of runoff on
the spatiotemporal characteristics of storm events and the soil-type distribution. DOI: 10.1061/(ASCE)HE.1943-5584.0000829. © 2014
American Society of Civil Engineers.

Author keywords: Rain gauge network; Hydrologic model.

Introduction

In the past years, numerous field experiments have revealed that
most of the hydrological processes occurring in a basin are char-
acterized by considerable spatial variability (Schuurmans et al.
2007). In hydrological modeling, these processes are most likely
described by the spatially distributed approaches, whose efficiency
is often compromised by large uncertainties in spatially distributed
input variables. Particularly, rainfall is often defined as the key var-
iable in such hydrological systems because of its crucial role in
determining surface processes.

Precipitation is governed by complicated physical processes that
are inherently nonlinear and extremely sensitive (Bardossy et al.
1992); it is significantly variable in space and time within a catch-
ment (Krajewski et al. 2003) and the spatial variability has a dom-
inant impact on runoff modeling (Bell et al. 2000). The time-spatial
variability clearly affects every method of rainfall estimation and

influences the design of a rain gauge network (Sun et al. 2002).
Rain gauges provide a point estimation of rainfall, which is then
used to obtain a spatial distribution of precipitation over the catch-
ment through spatial interpolation techniques. However, if the rain
gauge network density is low, or the distribution of gauges and the
interpolated methods are not correct, the rainfall field obtained may
be affected by a large estimation error that is transferred, often am-
plified, to the runoff through the hydrological model.

For such a reason, design of rain gauge networks both in terms
of density (number of rain gauges), structure (location of a single
rain gauge), and temporal resolution has been an issue widely
investigated in scientific literature to better understand its implica-
tions in hydrological modeling, e.g., its influence on basin discharge
(Krajewski et al. 1991; St-Hilarie et al. 2003; Meselhe et al. 2009).

Starting from the pioneer works of Eagleson and Shack (1966)
and Eagleson (1967a, b), a number of studies have been developed,
which basically differ in the hydrological model used (distributed
or lumped, physically based, or black-box), the temporal scale
(event scale or continuous simulations), the basin spatial scale,
and the assessed output variable (volume of runoff, peak runoff,
time to peak).

Wilson et al. (1979) performed the analysis at event scale and
found that the spatial distribution and the accuracy of the rainfall
input influence the estimation of the volume of storm runoff, peak
runoff, and time-to-peak simulated by the hydrological model.

Krajewski et al. (1991) forced a physically based distributed-
parameter hydrologic model on a small basin with synthetic rainfall
to investigate the effect of different spatial and temporal rainfall-
input sampling density on the model response at the event scale.
The results indicated higher sensitivity of basin response with
respect to the rainfall data temporal resolution rather than the
spatial resolution.
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Obled et al. (1994) used the semidistributed version of TOPMO-
DEL with different patterns of rainfall point data given by five and
21 rain gauges, showing that although the use of a greater number
of rain gauges was irrelevant to the estimation of precipitation, the
small differences obtained became significant when the response
was assessed in terms of runoff. In fact, the increase of the number
of rain gauges caused an elevated improvement in the estimation of
both runoff and flood peak.

Faurès et al. (1995), through analysis at the event scale, dem-
onstrated that the uncertainty in runoff estimation is strongly related
to the number of gauges providing the input data. In case of in-
creased spatial rainfall gradients, the location of the gauge also be-
comes a crucial parameter in the modeling of the storm hydrograph.

Another important contribution by Lopes (1996) indicated that
the relative importance of the location of a specific gauge in describ-
ing the rainfall field may change with spatial and temporal storm
characteristics, demonstrating also the influence of the spatial ar-
rangement of single rain gauges on catchment response prediction.

The correlation between the scale of the basin and the effect of
rain gauges spatial density is explicitly studied in the work of
Arnaud et al. (2002), showing that this correlation changes in
the case of very extreme events. The development of spatially dis-
tributed models has encouraged the analysis of the effect of rainfall
spatial variability on different distributed hydrological variables
such as soil moisture, groundwater level, and discharge. As an ex-
ample, Schuurmans et al. (2007) showed that the spatial variability
of daily rainfall has a major effect on discharge and spatial distri-
bution of groundwater level and soil moisture content of the catch-
ment. More recently, studies based on continuous simulations have
also been carried out (Bardossy et al. 2008), confirming that an
excessive reduction of rain gauges, up to a certain threshold num-
ber, makes model performances worse. Meselhe et al. (2009), using
a physically based and conceptual hydrologic model, showed that
an increase in the rain gauge density or the rainfall data temporal
resolution caused a significant improvement of the hydrograph
estimation.

The more recent physically based and spatial distributed hydro-
logical models allow for the investigation of further important
issues, such as the analysis of how the different soil-type character-
istics may influence the design of a rain gauge network for the es-
timation of the discharge hydrograph. Indeed, because the different
hydrological properties directly control the rainfall-runoff trans-
formation, it becomes significant to determine how the spatial
correlation between different precipitation fields and soil-type dis-
tribution influence the hydrological response.

In this regard, the present study analyzes the influence of the
rain gauge network configuration in terms of number and spatial
distribution on the estimation of the discharge hydrograph, explic-
itly taking into account the soil spatial distribution within the basin
differently from previous studies. The work is carried out by apply-
ing a physically based distributed-parameter hydrologic model to
the Baron Fork Watershed in Oklahoma. The analysis is performed
at the event scale by considering nine precipitation events with dif-
ferent spatiotemporal characteristics, all occurring during 1998.
The influence of the rain gauge network configuration on the es-
timation of the runoff is thus assessed by analyzing the relationship
between spatial distribution of rainfall and soil-type patterns simul-
taneously within the study area. First, the analysis assumes some
simplified and fictitious spatial distributions of soil characteristics
and then the real spatial distribution of soil types. In this way, the
dependence of the best rain gauge configuration on the soil-type
distribution is investigated as well as the influence of the spatio-
temporal characteristics of storm events on the assessment of the
rain gauge network performance.

Model

The TIN-based real-time integrated basin simulator (tRIBS)
(Ivanov et al. 2004a, b) is the model used in this study. tRIBS
explicitly considers the spatial variability in precipitation fields
and land-surface descriptors and is capable of solving basin hydrol-
ogy at very fine temporal (hourly) and spatial (10–100 m) scales.
An adaptive multiple resolution approach, based on triangulated ir-
regular networks (TINs), is used to represent the complexity of the
simulation domain, allowing a significant reduction of the number
of the computational model elements. The tRIBS model currently
includes a variety of hydrologic processes, as briefly described in
Noto et al. (2008). Interested readers are referred to Ivanov et al.
(2004a, b) for details concerning the model structure, parameteriza-
tion, forcing, and testing for a series of real basins.

Case Study

Basin Description

The study area selected for the analysis is the Baron Fork Basin,
where the tRIBS model has been successfully calibrated and
verified by Ivanov et al. (2004a, b).

The basin, located in northeastern Oklahoma, is 800 km2 in
size, and its elevation is between 200 and 600 m above mean sea
level. Most of the basin is characterized by steep slopes (15–40%)
with gently rolling relief at the basin headwater (east) and rugged
terrain in its lower areas (west) (Fig. 1). Vegetation covers approx-
imately 52% of the area with deciduous and evergreen forests and
46% with croplands and orchards. The surface soil texture is pri-
marily silt-clay (47%), sandy-clay-loam (40%), and loam (13%).
For a more detailed description of the basin, interested readers
can refer to Ivanov et al. (2004a, b) and Liuzzo et al. (2010).

Data

Precipitation
The spatial distribution of precipitation fields over the basin
has been obtained by the next-generation weather radar (NEX-
RAD) system, available for the study area (Vivoni et al. 2006)
in the form of hourly NEXRAD 4-km gridded estimates.
These precipitation fields have been used both to directly force

Fig. 1. DEM of the Baron Fork Basin
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the hydrological model and to provide precipitation data sampled
by fictitious rain gauge networks as described in “Assumptions and
Simulations.”

Following the approach used by many authors, the analysis
of the effect of the rain gauge position has been performed at
the event scale. Nine precipitation events that occurred during
1998 were chosen and classified as a function of their average in-
tensity and spatial variability. This allowed for considering the pre-
cipitation characteristics on the influence of precipitation sampling
on the hydrological response. The nine events were chosen accord-
ing to the average, in time and space, of precipitation event inten-
sity im classified as high (H) (im > 2.5 mm=h), medium (M)
(1.5 mm=h < im < 2.5 mm=h) and low (L) (im < 1.5 mm=h), and
to the spatial variability of the average of rainfall evaluated in terms
of coefficient of variation COVS (i.e., the ratio between the stan-
dard deviation of the mean intensity grid and the spatial average
value of the same grid) ranked as high (h) (COVS > 0.5), medium
(m) (0.25 < COVS < 0.5) and low (l) (COVS < 0.25). Subjective
ranges of the two classifications were chosen taking into account
only the events that occurred in the basin during 1998.

The primary features of the nine events and the classification on
the basis of precipitation intensity (im) and coefficient of variation
(COVS) are summarized in Table 1, which reports the ID event, the
two-letter code in which the first capital letter denotes average in-
tensity class (H or M or L) and the second small letter denotes the
spatial variability class (h or m or l), start event and end event date
and hours, event duration (h), total event rainfall (mm), precipita-
tion average intensity im (mm=h), precipitation average intensity
peak im;peak (mm=h), spatial variability of precipitation in terms
of coefficient of variation COVS, and classification of the events
as a function of the im and COVS values.

Fig. 2 describes the spatial pattern of the precipitation average
intensity for each event. The range of event duration is from
4 h (event Mm) to 74 h (event Ml) and the total event rainfall
amount is between 6.09 mm (event Mm) and 116.11 mm (event
Ml). Event Hl shows the greatest average precipitation intensity
(im ¼ 3.49 mm=h), the greatest average intensity peak (im;peak ¼
20.13 mm=h), and the lowest precipitation spatial variability
(COVS ¼ 0.12), whereas event Ll has the lowest average precipi-
tation intensity (im ¼ 0.77 mm=h) and the lowest average intensity
peak (im;peak ¼ 2.22 mm=h) and event Lh has the greatest spatial
variability (COVS ¼ 0.92).

Soil-Type Distribution
Simulations have been performed considering first two synthetic
configurations with a single soil-type [silty-clay (c) at low per-
meability and sandy-clay-loam (s) at high saturated hydraulic con-
ductivity coefficient] and then using two synthetic configurations
of the same two soil-types distributed differently over the basin:
silty-clay upstream the basin and sandy-clay-loam downstream

the basin (cs) and vice-versa (sc) (Fig. 3). The two chosen soil-
types (silty-clay and sandy-clay-loam), besides belonging to the
true soil-types distribution, have been selected because they are
representative of substantially different hydrological soil proper-
ties. Finally, the true spatial distribution of soil types (r) with three
soil types has been considered. The soil-type hydrologic parameters
used by the tRIBS model are shown in Table 2.

Assumptions and Simulations

To carry out all the simulations described above, the following as-
sumptions have been made:
• The NEXRAD radar measurements are assumed to be represen-

tative of the true precipitation distribution; because rainfall ex-
hibits considerable heterogeneity at smaller scales than those
characterizing NEXRAD (4 km), the spatial resolution of this
true precipitation has been increased to 1 km through a multi-
scale disaggregation method (Perica and Foufoula-Georgiou
1996). This method has the capability to statistically reproduce
the rainfall variability at different scales and is conditioned on
large-scale rainfall statistics. It is based on two tested hypoth-
eses: first, the standardized rainfall fluctuations are character-
ized by simple scaling; and second, the statistical scaling
parameters of these fluctuations can be related to the convective
available potential energy (CAPE).

• The hydrological response from the tRIBS model forced with
disaggregated NEXRAD precipitation has been assumed as true

Table 1. Rainfall Features for Each Event

Event ID

Start event End event Duration
(h)

Total
rainfall (mm)

im
(mm=h)

im;peak
(mm=h) COVS

Classification

Date (month=day); time (hrs) im COVS

Hh 11/10; 0400 11/10; 0900 5 15.47 3.09 13.42 0.60 H h
Hm 01/04; 0300 01/05; 1800 39 109.97 3.05 18.32 0.26 H m
Hl 10/05; 0700 10/06; 1200 29 101.18 3.49 20.13 0.12 H l
Mh 05/07; 0000 05/07; 0700 7 10.89 1.56 7.21 0.63 M h
Mm 12/06; 2000 12/07; 0000 4 6.09 1.52 4.61 0.44 M m
Ml 09/12; 2000 09/15; 2200 74 116.11 1.73 15.45 0.12 M l
Lh 08/19; 1800 08/20; 0100 7 9.44 1.35 3.04 0.92 L h
Lm 06/18; 1000 06/18; 1900 9 8.91 0.99 2.31 0.45 L m
Ll 03/17; 0600 03/17; 1800 12 9.27 0.77 2.22 0.22 L l

Fig. 2. Spatial pattern of average precipitation intensity for each event;
events with the same average intensity class (H, M, or L) are in the
same row, whereas events with the same coefficient of variation class
(h, m, or l) are in the same column
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hydrological response of the basin (simulation zero) and is used
as a reference for the other simulations.

• Eight fictitious rain gauges have been randomly distributed in
the basin (Fig. 4) by placing four rain gauges approximately
downstream (rain gauges 1–4) and four approximately upstream
(rain gauges 5–8); upstream and downstream subbasins have
been approximately identified as a function of the flow path dis-
tance of each gauge to the basin outlet.

• Disaggregated NEXRAD time-series data have been sampled
by the eight fictitious rain gauges to obtain the gauge’s time
series.

• The tRIBS model parameters, including the soil parameters
introduced previously, coming from the model calibration by
Ivanov et al. (2004a), have been used for all the simulations.
After simulation zero, precipitation fields which were derived

from the rain gauge time series have been used to force the tRIBS
model, for a total of 255 different simulations for each soil-type
distribution and each event (resulting in 11,484 simulations).
The 255 configurations result from all possible combinations of
rain gauges.

To spatially distribute precipitation, the tRIBS model utilizes the
Thiessen polygon method, which establishes regions of neighbor-
hood around a point of observation. Any point inside each polygon
assumes the observed values of the point of measurement used to
construct the polygon. The primary advantage of this method is its
simplicity. In addition to its simplicity, Tabios and Salas (1985), in
a comparative analysis among different spatial interpolators,
showed that Thiessen polygons gave fairly satisfactory results, even
better than other more complex interpolation techniques as poly-
nomial interpolation, and similar performances to inverse distance
weighting method, especially in the case of very few rain gauges.

The flood hydrographs obtained for each simulation have been
compared with the simulation zero. The performance of the net-
work has been evaluated using the root-mean squared error
(RMSE) as performance index. This index allows one to quantify
the difference between the discharge (or precipitation) values
obtained from the tRIBS model forced with the gauge precipitation
and the true discharge (or precipitation) values. The RMSE has

been calculated by using the following formula for both the pre-
cipitation, P, and the discharge at the basin outlet, Q:

RMSEX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
i¼1 ðXi;GAU − Xi;RADÞ2

N

r
ð1Þ

where Xi;GAU. = mean areal precipitation over the basin or the outlet
discharge at time i, obtained from the tRIBS model forced with rain
gauge measurements; Xi;RAD = “true” mean areal precipitation over
the basin at time i (i.e., that coming from the disaggregated radar
data), or the outlet discharge at time i obtained from tRIBS model
forced with the true precipitation; and N = event duration in hours,
corresponding to the total number of hourly time step. To compare
events characterized by different magnitudes, the normalized
RMSE (NRMSE) is introduced by normalizing the RMSE by
the average Xm of observed data (NRMSE ¼ RMSE=Xm).

Results and Discussion

Analysis of results is carried out to identify the network configu-
rations that best reconstruct either the rainfall field or the runoff
estimation, in conjunction with the basin soil properties in the latter
case. This is done by understanding which network, for a fixed
number of rain gauges and soil-type distribution, minimizes the
RMSE for precipitation (RMSEP) and discharge (RMSEQ).

Rainfall Estimation

The distribution of precipitation obtained for each combination of
rain gauges has been compared with the true precipitation distribu-
tion coming from disaggregated NEXRAD. For a fixed number of
rain gauges composing the network, that with the smallest RMSEP
(RMSEmin;P) has been chosen as the best network for rainfall es-
timation. Clearly, such analysis is not influenced by the basin soil
properties.

Table 3 summarizes the results for each event as a function
of the number of gauges in the network. Networks with the

Fig. 3. Configurations of soil-type distribution used in the analysis

Table 2. Soil-Type Parameter

Soil type n θsðmm3 mm−3Þ θrðmm3 mm−3Þ ψb ðmmÞ λ ks ðmm=hÞ fðmm−1Þ Ar

Silty-clay 0.475 0.36 0.07 −370 0.15 1 0.0001 100
Sandy-clay-loam 0.437 0.39 0.01 −73 0.592 235 0.001 400
Loam 0.463 0.40 0.009 −110 0.254 15 0.0007 200

Note: n = totalporosity; θs = soil moisture at saturation; θr = residual soil moisture; ψb = air entry bubbling pressure; λ = pore-size distribution index; Ks =
saturated hydraulic conductivity; f = decay parameter of conductivity; and Ar = anisotropy ratio.

Fig. 4. Rain gauge placement inside the basin
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RMSEmin;P are highlighted in bold. For each event, the RMSEmin;P
is not obtained with the complete network but with a fewer number
of rain gauges. For example, in the event Ml, five gauges provided
better precipitation estimations relative to the complete network.
This behavior can be attributed to the addition of three rain gauges
that sample precipitation lower than that measured by the initial five
gauges, as well as the radar, producing an increase of the estima-
tion. With an even higher number of gauges distributed in the basin,
the RMSEP should progressively decrease to a null value, theoreti-
cally achieved with a number of gauges equal to the disaggregated
NEXRAD grid cells.

For example in event Hh, if only one rain gauge is used, the
lowest value of RMSEP is obtained by Rain Gauge 4 that is placed
in the center of the basin. If two rain gauges are used, the minimum
RMSEP is obtained with Gauges 1 and 8, placed downstream
(Gauge 1) and upstream (Gauge 8), respectively. In the configura-
tion with three rain gauges, the best network is comprised of
Gauges 1, 5, and 8; whereas the four-gauge configuration is made
up of Gauges 1, 5, 6, and 8, with three gauges upstream the basin
and only one downstream because the precipitation is primarily dis-
tributed upstream. In the cases of five rain gauges, there are still
four gauges upstream and one downstream. Therefore, the rain
gauge position is strongly dependent on the precipitation spatial
pattern.

By comparing all the events, the derivation of criteria to under-
stand the best position of rain gauges for the estimation of precipi-
tation is not easily achievable since the reconstruction of the rainfall
volume is strongly influenced by the spatial pattern of precipitation,

and the network performances vary for each event, as also stated by
Lopes (1996).

However, some remarks can be made taking into account the
nine events as a whole. For example, for a fixed number of gauges
in the network, the percentage of occurrences at each rain gauge is
plotted in Fig. 5. In the one-rain-gauge network, Gauge 8 is the
most frequent and therefore the most influential. Varying the num-
ber of gauges in the networks, Gauges 3 and 8 are always included,
whereas Gauges 1, 2, and 6 are the least influential to reconstruct
the correct mean areal precipitation.

Results previously shown in Table 3 are summarized in Fig. 6,
reporting the average NRMSEmin;P values (NRMSEmin;P) over the
nine events as a function of the number of used gauges, making
results independent of the rainfall event. If only one rain gauge
is used, the NRMSEmin;P is obtained by Rain Gauge 8 that is placed
in the central part of the basin. When two rain gauges are used, the
NRMSEmin;P is achieved with Gauges 3 and 7, placed upstream
(Gauge 7) and downstream (Gauge 3). In the configuration with
three rain gauges, the best network is comprised of Gauges 3,
7, and 8, whereas the four-gauge configuration includes Gauges
2, 3, 7, and 8. In this case, the best network is obtained with five
gauges, three gauges downstream (Gauges 2, 3, and 4) and two
upstream (Gauges 7 and 8); again, the least influent are Gauges
5 and 6.

In summary, the results described so far suggest two findings:
(1) it is not possible to obtain a unique optimal network to well
reproduce the precipitation volume for all the rainfall events;
and (2) intensity of the precipitation event and its spatial variability

Table 3. RMSEmin;P and Optimal Rain Gauge Network for a Fixed Number of Gauges for Each Event

Number
of gauges

Event Hh Event Hm Event Hl

RMSEmin;P (mm=h) Gauges RMSEmin;P (mm=h) Gauges RMSEmin;P (mm=h) Gauges

1 0.946 4 0.964 8 1.655 8
2 0.306 1,8 0.387 3,5 0.686 3,7
3 0.179 1,5,8 0.309 1,3,5 0.487 2,4,7
4 0.169 1,5,6,8 0.241 3,4,5,6 0.342 2,4,6,7
5 0.170 1,5,6,7,8 0.231 2,3,5,6,8 0.302 2,4,5,6,7
6 0.261 1,4,5,6,7,8 0.207 1,2,3,5,6,8 0.271 2,3,4,5,6,7
7 0.339 2,3,4,5,6,7,8 0.211 1,2,3,5,6,7,8 0.267 2,3,4,5,6,7,8
8 0.421 All 0.219 All 0.323 All

Number
of gauges

Event Mh Event Mm Event Ml

RMSEmin;P (mm=h) Gauges RMSEmin;P (mm=h) Gauges RMSEmin;P (mm=h) Gauges

1 0.975 3 0.575 8 1.252 8
2 0.754 3,7 0.162 1,8 0.400 3,5
3 0.204 3,7,8 0.100 3,6,8 0.340 3,7,8
4 0.244 2,4,5,6 0.107 2,3,6,8 0.288 1,3,7,8
5 0.193 2,3,4,5,7 0.114 1,2,3,6,8 0.212 1,2,3,7,8
6 0.185 1,2,3,4,7,8 0.183 1,2,3,4,6,8 0.236 1,2,3,6,7,8
7 0.226 1,3,4,5,6,7,8 0.342 1,2,3,4,5,7,8 0.283 1,2,3,5,6,7,8
8 0.406 All 0.393 All 0.334 All

Number
of gauges

Event Lh Event Lm Event Ll

RMSEmin;P (mm=h) Gauges RMSEmin;P (mm=h) Gauges RMSEmin;P (mm=h) Gauges

1 1.132 8 0.803 8 0.198 4
2 0.556 3,8 0.338 7,8 0.126 4,8
3 0.178 1,4,7 0.236 2,3,5 0.071 2,4,5
4 0.154 1,3,6,7 0.165 2,3,7,8 0.086 2,3,4,5
5 0.164 1,2,3,4,7 0.166 1,2,3,7,8 0.085 2,3,4,6,8
6 0.164 1,3,4,6,7,8 0.164 1,2,3,5,7,8 0.079 2,3,4,5,7,8
7 0.321 1,2,3,4,6,7,8 0.197 2,3,4,5,6,7,8 0.092 2,3,4,5,6,7,8
8 0.681 All 0.215 All 0.112 All

Note: Networks with minimum RMSEmin;P are highlighted in bold.
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have significant influence on the design of the rain gauge network.
These results are in agreement with Lopes (1996), who showed that
the importance of the location of a gauge in describing the rainfall
field may change with storm characteristics.

The interpolation method used to spatially distribute the precipi-
tation also influences the results obtained in the analysis; further
investigations by using different interpolation methods might in-
deed be interesting. However, the validity of Thiessen polygons
method, widely used in many scientific works, does not disavow
these results.

Hydrograph Reconstruction

In the case of runoff estimation, the search of the best network for a
fixed number of rain gauges composing the network depends not
only on the estimation of the true precipitation distribution but also
on the rainfall-runoff transformation, which, in turn, depends on
the distribution of the hydrological soil proprieties; as for the pre-
vious case, the best network is that with the smallest RMSEQ
(RMSEmin;Q). The model structure used for the rainfall-runoff
transformation (tRIBS model) may affect the results of such analy-
sis. However, because it is a physically based scheme with distrib-
uted data and parameters, the simulation of the physical process is

ensured; thus, the findings will not be strictly related to the model
scheme used in this study.

The results have been evaluated by first analyzing the single
events; then a summary of the overall analysis is also provided.

For the sake of brevity, the results of only two events, Hh and
Lh, will be reported in this paper as an example of analysis carried
out. Tables 4 and 5 show the optimal networks as a function of the
soil-type configuration and the number of gauges in the network for
events Hh and Lh, respectively (for a fixed soil-type distribution,
the network with the minimum RMSEQ is highlighted in bold). The
RMSEQ values associated to each best network are shown.

The first important observation arises by comparing the best net-
works obtained for the estimation of either precipitation (see events
Hh and Lh of Table 3) or discharge (Tables 4 and 5). The configu-
rations of the two types of networks rarely coincide, in agreement
with Eagleson (1967a, b) and Faurès et al. (1995), because the best
positions for the estimation of runoff are influenced by the rainfall-
runoff transformation and thus by the soil distribution. As already
observed for the estimation of the precipitation, the minimum
RMSEQ is never obtained with the complete network.

Event Hh (Table 4) is characterized by higher precipitation up-
stream. The lowest value of RMSEQ is obtained by Rain Gauge 5,
for the soil configurations c and cs. Instead, for s, sc, and r, the best
is Rain Gauge 7. In particular, the best single rain gauge is placed in
the area with higher precipitation. If two rain gauges are used, the
best RMSEQ is obtained with an upstream rain gauge and a down-
stream rain gauge for soil configurations c and sc, and with two
upstream gauges for s, cs, and r. In the three-rain-gauge configu-
ration, two rain gauges have to be located downstream in the basin
(Gauges 1 and 4) and one rain gauge upstream (Gauge 8) in all soil
configurations. In a network with four rain gauges, there are always
two gauges upstream and two rain gauges downstream. The num-
ber of rain gauges placed upstream is usually greater than the num-
ber of rain gauges located downstream because of the spatial
pattern of precipitation. Analysis of the network with more than
four gauges is not worthy because a clear criterion for the best
position of other gauges is not evident.

Event Lh (Table 5) is characterized by low intensity and high
variability (higher precipitation upstream and lower rainfall down-
stream). With a single rain gauge and when the less permeable soil
is upstream the basin (sc), the best network is with the rain gauge
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Fig. 5. Number of occurrences of each single rain gauge for precipitation estimation in the (a) one-rain-gauge network; (b) two-rain-gauge network;
(c) three-rain-gauge network; (d) four-rain-gauge network

0,1

0,2

0,3

0,4

0,5

0,6

0,7

1 2 3 4 5 6 7 8

N
R

M
SE

m
in

,P

Number of gauges

8 

3,7 

3,7,8 

2,3,7,8 
2,3,4,7,8 1,2,3,4,7,8 

1,2,3,4,6,7,8 

ALL 

Fig. 6. Relationship between NRMSEmin;P and number of gauges for
the average event

JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / MARCH 2014 / 549

J. Hydrol. Eng. 2014.19:544-553.

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

M
A

SS
 I

N
ST

IT
U

T
E

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

03
/0

4/
14

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



placed upstream (Gauge 7), whereas if the less permeable soil is
downstream in the basin (cs), the best network is with the rain
gauge placed downstream (Gauge 2). In a three-rain-gauge net-
work, the gauges are located upstream (Gauges 5, 7, 8) for c
and sc soil configurations, whereas in the case of cs configuration,
two gauges are placed downstream (Gauges 1 and 2) and a gauge
upstream (Gauge 7). The observed pattern points out that the usual
location of the rain gauges in the soils is characterized by low
permeability.

A similar analysis was performed for the other seven events.
Further observations can be made by assessing how the different
combinations of rainfall characteristics to soil-type distributions
may affect the network design and by evaluating which is the most
influential feature.

In the described event Hh, the single rain gauge is placed where
the precipitation is higher. If the average precipitation intensity is
medium but the spatial variability of rainfall is still high (this is the
case of event Mh, not described in this paper), the influence of pre-
cipitation pattern is more considerable than that of soil-types dis-
tribution, and the single gauge is placed where the precipitation is
higher. In the previously described event Lh, the single gauge is
placed where the soil is less permeable because the effect of the
less permeable soil position seems to prevail on the effect of pre-
cipitation distribution. If the spatial variability of precipitation is
low (events Hl-Ml-Ll), then the gauge’s position seems to not
be influenced by the soil distribution, and the best network is ob-
tained with the same number of gauges for all the soil configura-
tions. Moreover, if the spatial variability of precipitation is medium
(events Mm-Lm), the soil-type distribution plays a minor role on
the position of the gauges.

The overall results and observations point out that the factors
that may influence the distribution of rain gauges for the runoff
estimation are: (1) soil-type distribution, with a general trend to

locate the rain gauges where the soil is less permeable; and (2) pre-
cipitation spatial distribution, with the rain gauges placed where
precipitation is higher.

To compare the different events, the previously defined
NRMSEQ has been used. Fig. 7 shows the value of NRMSEmin;Q
for each event as a function of the number of gauges and for fixed
soil configuration. When rainfall spatial variability is high (events
Hh-Mh-Lh), there is an increased influence of the soil configuration
on the network performance, and the gauge location becomes a cru-
cial parameter in modeling the storm hydrograph, as also stated by
Faurès et al. (1995). For medium or low COVS, as the soil configu-
ration changes, the NRMSEmin;Q curves have a similar pattern.

For event Hl and varying the soil distribution, the curves do
not have a similar pattern, and the soil distribution influences
the design of the best network. When spatial variability of rainfall
is low, the distribution of rain gauges varies little, changing the soil
distribution; one can observe a flattening of the NRMSEmin;Q
curves, and then the position of the gauges seems to be not influ-
enced by the soil distribution (events Hl-Ml-Ll). The best net-
work is obtained with the same number of gauges for all the soil
configurations.

For a fixed number of gauges in the network, the percentage of
occurrences of a single rain gauge in the best network as a function
of the soil configuration is observed and analyzed in Fig. 8. In the
one-rain-gauge network [Fig. 8(a)], Gauge 6 is never present,
Gauge 3 is the most influential in the soil configuration cs, whereas
Gauge 5 is recurrent in sc (occurrence equal to 0.56), and Gauges 1,
2, and 4 are never present in sc.

Varying the number of gauges in the networks, Gauges 3 and 5
are always present, whereas Gauges 2, 4, and 6 are less frequent;
Gauge 8 is usually present, maintaining the same frequency when
varying the soil distribution. Gauges 1 and 7, less important in the
networks with one or two gauges, become more recurrent in the

Table 4. RMSEmin;Q and Optimal Network for a Fixed Number of Gauges for Each Soil Distribution and for Event Hh

RMSEmin;Q (m3=s) Rain gauges

Number of
gauges\soil s c sc cs r s c sc cs r

1 0.464 1.387 0.989 0.848 0.837 7 5 7 5 7
2 0.397 0.982 0.758 0.882 0.705 5,6 4,8 4,8 5,7 5,6
3 0.328 0.662 0.568 0.556 0.470 1,4,8 1,4,8 1,4,8 1,4,8 1,4,8
4 0.308 0.768 0.419 0.552 0.442 1,4,6,8 1,4,6,8 2,3,6,8 1,4,6,8 1,4,6,8
5 0.380 1.026 0.438 0.645 0.587 1,4,6,7,8 1,4,6,7,8 1,2,3,6,8 1,4,6,7,8 1,2,3,4,8
6 0.382 1.157 0.544 0.707 0.564 1,2,3,4,6,8 1,2,3,4,6,8 1,2,3,4,6,8 1,4,5,6,7,8 1,2,3,4,6,8
7 0.423 1.175 0.788 1.124 0.674 1,2,3,4,6,7,8 1,2,3,4,6,7,8 1,2,3,4,6,7,8 1,2,3,4,5,6,7 1,2,3,4,6,7,8
8 0.477 1.323 1.139 1.152 0.828 All

Note: Networks with minimum RMSEmin;Q are highlighted in bold.

Table 5. RMSEmin;Q and Optimal Network for a Fixed Number of Gauges for Each Soil Distribution and for Event Lh

RMSEmin;Q ðm3=sÞ Rain gauges

Number of
gauges\soil s c sc cs r s c sc cs r

1 2.490 5.483 3.997 2.701 3.501 2 7 7 2 2
2 1.466 3.409 3.244 1.799 2.041 7,8 2,7 2,7 7,8 2,7
3 1.131 2.074 2.119 1.333 1.681 1,2,7 5,7,8 5,7,8 1,2,7 5,7,8
4 1.208 2.280 2.136 1.384 1.777 1,2,3,7 2,5,7,8 1,5,7,8 1,2,3,7 1,5,7,8
5 1.113 1.937 1.910 1.148 1.363 1,2,5,7,8 1,3,5,7,8 1,2,5,7,8 1,3,5,7,8 1,2,5,7,8
6 1.179 1.937 1.966 1.133 1.436 1,2,3,5,7,8 1,2,3,5,7,8 1,2,3,5,7,8 1,2,3,5,7,8 1,2,3,5,7,8
7 1.293 2.188 2.207 1.238 1.574 1,2,3,5,6,7,8 1,2,3,5,6,7,8 1,2,3,5,6,7,8 1,2,3,5,6,7,8 1,2,3,5,6,7,8
8 1.636 2.663 2.481 1.875 2.020 All

Note: Networks with minimum RMSEmin;Q are highlighted in bold.
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network with three and four gauges. When a single rain gauge is
used in cs, the best rain gauge is placed downstream for six events
and upstream for three events; whereas in sc the gauge is upstream
for eight events and downstream only for one event. This observed
pattern confirms again that the best single rain gauge tends to be
located in areas characterized by low permeability.

All the results previously shown are summarized in Table 6 by
averaging the NRMSEmin;Q over the nine events (NRMSEmin;Q).
The best network for average conditions seems not to be influenced
by the soil-type distribution because the network composition is
almost the same for each soil-type distribution. This behavior is
probably attributable to the removal of the influence of the spatial

pattern of the precipitation by averaging the results relative to
each event.

As the number of rain gauges increases, there is no clear cri-
terion for the best positioning of a new gauge. However, when there
are three or five gauges in the network, there is no influence of the
soil distribution, and the network is about the same for each soil
distribution.

The same analysis carried out for the hydrograph reconstruction
has been performed also comparing the hydrograph peak obtained
with the precipitation measured by rain gauge networks and the
true hydrograph peak (obtained with the precipitation measured
by radar) for each event. Performance of the networks has been
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evaluated calculating the nondimensional absolute error for each
event

AE ¼ jQP;GAU −QP;RADj
QP;RAD

ð2Þ

where QP;GAU = flow peak of the event resulting from model re-
sponse forced with the precipitation measured by the best networks
obtained from the analysis of the NRMSEmin;Q averaged over
the nine events, as described in Table 6; and QP;RAD = flow peak
resulting from model response forced with the true precipitation
distribution.

Results are analyzed considering the curve of average absolute
error (AAE), obtained as average of the AE over the nine events
as a function of the number of gauges for each soil configura-
tion (Fig. 9).

As already observed, in comparison with the best network for
estimation of runoff, it comes out again that the best network for
estimation of the hydrograph rarely coincides with the best network
for the estimation of the hydrograph peak. Comparing results from
Table 6 (network finalized to hydrograph reconstruction) with those
of Fig. 9 (network finalized to hydrograph peak estimation) shows
that the minimum of curves for each soil type is different, and the
optimal network is obtained with a different number of gauges.

The event scale findings have been verified by continuous
model simulation for 1 year (1998) using r soil-type configuration.
Results of the simulation confirmed the most important findings of
the analysis at event scale, in agreement with Bardossy et al.
(2008). Fig. 10 shows the RMSEmin;Q as a function of the number
of used gauges for the soil configuration r. Unlike the event scale
case (Table 6), the minimum RMSEmin;Q is obtained with the com-
plete network, as found also in Obled et al. (1994). In fact, because

the continuous simulation contains many events with different in-
tensity and spatial pattern, the influence of spatial pattern of the
precipitation of each single events is probably removed. Moreover,
the interstorm period is also considered in the evaluation of the net-
work performances.

Conclusions

In this paper, a thorough investigation of the influence of rain gauge
network characteristics on hydrological response at the catchment
scale has been carried out. The use of a physically based, distrib-
uted hydrologic model (tRIBS) has allowed us to investigate the
influence of rain gauge network configuration in terms of number
and spatial distribution, on the estimation of precipitation and flood
hydrograph in the Baron Fork Basin by taking into account the role
of different soil properties. Analysis has been performed at the
event scale by considering nine rainfall events with different spatial
variability and intensity and different soil-type distribution.

Complexity of the relationship between the number of variables
involved, particularly between rainfall volume and the nonlinear
rainfall-runoff transformation, makes the issue very difficult to dis-
cuss. By analyzing the results from different points of view, the
primary findings of the study can be summarized as follows:
• Comparison of structures of the best networks obtained in the

different analysis points out that networks designed for the best
reconstruction of rainfall field rarely coincide with the network
designed for the best flood hydrograph reconstruction or for es-
timation of the hydrograph peak. This behavior confirms the
results found by previous studies and is justified by the fact that

Table 6. NRMSEmin;Q and Best Network as a Function of the Number of Gauges and for Fixed Soil Distribution

NRMSEQ (m3=s) Rain gauges

NRMSEP

Number of
gauges\soil s c sc cs r s c sc cs r

1 0.416 0.451 0.429 0.347 0.447 3 3 8 3 3 8
2 0.248 0.279 0.257 0.237 0.271 3,7 3,7 7,8 3,8 3,7 3,7
3 0.175 0.192 0.175 0.188 0.174 3,7,8 3,7,8 3,7,8 3,7,8 3,7,8 3,7,8
4 0.153 0.154 0.136 0.175 0.158 2,3,7,8 3,5,7,8 3,5,7,8 1,3,7,8 3,5,7,8 2,3,7,8
5 0.138 0.148 0.134 0.151 0.145 1,3,5,7,8 1,3,5,7,8 1,3,5,7,8 1,3,5,7,8 1,3,5,7,8 2,3,4,7,8
6 0.142 0.155 0.138 0.164 0.152 1,2,3,5,7,8 1,2,3,5,7,8 1,2,3,5,7,8 1,3,5,6,7,8 1,2,3,5,7,8 1,2,3,4,7,8
7 0.150 0.160 0.152 0.174 0.163 1,2,3,5,6,7,8 1,2,3,4,5,7,8 1,2,3,5,6,7,8 1,2,3,5,6,7,8 1,2,3,5,6,7,8 1,2,3,4,6,7,8
8 0.174 0.163 0.161 0.180 0.173 All All

Note: Networks with minimum NRMSEmin;Q are highlighted in bold. The last column shows the precipitation best network.

Fig. 9. Event AAE as a function of the number of gauges for each soil
configuration
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Fig. 10. Relationship between RMSEmin;Q and number of gauges for
the continuous simulation and soil configuration r
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the best gauge position for runoff estimation is also influenced
by the rainfall-runoff transformation, which in turn depends on
the soil-type distribution.

• Spatiotemporal characteristics of storm events have demon-
strated a significant influence on catchment response predictions;
and for a fixed event, the best rain gauge configurations for
the runoff estimation are strongly dependent on the soil-type
distribution. However, it is not possible to generalize the re-
sults obtained in a basin and to extend them to other basins
because of the strong influence of the soil-type distribution.
This conclusion is only valid for the runoff prediction and is
subject to the particular combination of the precipitation spa-
tial distribution scheme. The primary factors that influence the
ideal position of rain gauges for improved streamflow predic-
tion can be identified by the precipitation spatial distribution
(i.e., the rain gauges are placed where higher precipitation oc-
cur) and soil-type distribution (i.e., general trend to locate the
rain gauges where the soil is less permeable). Particularly
(1) when the spatial variability of precipitation is high, the po-
sition of gauges becomes very important for modeling the
storm hydrograph, and the greater the precipitation spatial gra-
dient, the more significant is the effect of the soil type; and
(2) when the rainfall spatial variability is low, the distribution
of rain gauges varies little with the change of the distribution
of soils. For these cases, the position of the gauges seems to
not be influenced by the soil distribution and the best network
is obtained with the same number of gauges for all the soil
configurations.
From the preceding observations, the impossibility to create a

single criterion for designing the best rain gauge network for
the runoff estimation becomes clear. The choice of the best network
is strongly dependent not only on the rainfall and soil-type char-
acteristics (i.e., physical phenomena) but also on the type of output
variable estimated by the hydrological model [i.e., either precipi-
tation or total volume runoff or peak discharge or other variables
(not investigated in this paper) such as soil moisture]. Moreover,
because the reconstruction of the precipitation field depends on
the used rainfall interpolated method, the use of the Thiessen poly-
gon method might have influenced the model results but not
disavowed their validity. Similar observations arise for the use of
the specific structure implemented in the tRIBS model; however,
because the scheme adopted by this model is physically based,
the final results could be only slightly affected by the model struc-
ture, confirming the dependence of the best rain gauge network on
the soil proprieties distribution.
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