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Abstract

Alzheimer disease (AD) and metabolic syndrome are two highly prevalent pathological conditions of Western
society due to incorrect diet, lifestyle, and vascular risk factors. Recent data have suggested metabolic syndrome
as an independent risk factor for AD and pre-AD syndrome. Furthermore, biological plausibility for this rela-
tionship has been framed within the ‘‘metabolic cognitive syndrome’’ concept. Due to the increasing aging of
populations, prevalence of AD in Western industrialized countries will rise in the near future. Thus, new
knowledge in the area of molecular biology and epigenetics will probably help to make an early molecular
diagnosis of dementia. An association between metabolic syndrome and specific single-nucleotide poly-
lmorphisms (SNPs) in the gene INPPL1, encoding for SHIP2, a SH2 domain-containing inositol 5-phosphatase
involved in insulin signaling, has been described. According to recent data suggesting that Type 2 diabetes
represents an independent risk factor for AD and pre-AD, preliminary results of a case–control study performed
to test the putative association between three SNPs in the SHIP2 gene and AD show a trend toward association
of these SNPs with AD.

Introduction

Alzheimer disease (AD) is the most common form of
dementia, accounting for more than 50% of all cases

of dementia.1 It occurs primarily after age 65, and for this
reason it is classified as an age-related disease. The excep-
tion is the familiar early-onset form (with Mendelian in-
heritance) that represents about 1% of all cases.2 Its
prevalence is approximately 1% between 65 and 69 years
and is higher than 50% in individuals above 95 years.3 AD is
a neurodegenerative disorder with the typical features
characterized by the impairment of memory, language, at-
tention, executive functioning, apraxia, agnosia, and apha-
sia. Cognitive, but also behavioral, symptoms cause a
reduction of functional activities compared to a previous
level of functioning.1–3

According to the amyloid hypothesis, AD is character-
ized by accumulation of senile plaques constituted by de-
posits of the abnormal form of amyloid b (Ab) protein
(Ab40–42 amino acids), present in common forms of de-
mentia, and neurofibrillary tangles originating from hy-
perphosphorylation of microtubular tau protein. These
structures accumulate progressively in the brain starting
from the hippocampus and then spreading to the cerebral
cortex, where neurons are lost, causing memory, language,
and general cognitive impairment.3

However, today some different pathophysiological theo-
ries regarding AD exist, suggesting that the disease could be
driven by inflammation, vascular changes, and metabolic
disorders. These theories are not mutually exclusive, because
inflammation plays a relevant role in both vascular lesions
and metabolic disorders.3–8 Indeed, several population-based
studies have recently described Type 2 diabetes as a risk
factor for AD. Furthermore, these data were also confirmed
in the pre-AD status, the so-called mild cognitive impair-
ment. However, data are not definitive and negative results
have also been published.9–11

Most recently, metabolic syndrome, which represents a
cluster of metabolic factors—insulin resistance, abdominal
obesity, glucose intolerance, hypertension, hyperinsulinemia,
and raised fasting plasma glucose—has also been described
in association with an increased risk of AD.12,13 Interestingly,
strong evidence suggests that systemic inflammation and
central adiposity contribute to and perpetuate metabolic
syndrome.8 All of these alterations predispose individuals to
type 2 diabetes and cardiovascular disease.8–14

Genetic background, age, sex, diet, physical activity, and
habits in general all influence the prevalence of the meta-
bolic syndrome and its components. Twenty years ago in
the Mediterranean area, it was assessed that 70% of adults
have at least one of the disorders characterizing metabolic
syndrome. However, in the European population, the rate
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of metabolic syndrome is 7%–30%.15,16 Worldwide there are
1.1 billion overweight people with a body mass index (BMI)
between 25 kg/m2 and 30 kg/m2 and 312 million with a
BMI > 30 kg/m.14 In the last 40 years, the rate of obesity in
the United States has increased, and today 66% of adults
have a BMI > 25 kg/m2 and half of those have a BMI
> 30 kg/m.17

Another link between obesity, inflammation, insulin
signaling, and dementia is the amyloid precursor protein
(APP),18 a transmembrane protein from which the Ab40–42

fragment that forms senile plaques originates.3 APP is con-
sidered an adipokyne, producing and processing Ab40–42 in
adipose tissue. This fragment is expressed in fat tissues
and overexpressed in abdominal adipocytes of obese
patients.18

Recent data support an increased susceptibility for AD
in patients with metabolic syndrome,19 but from the age of
85 the association between metabolic syndrome and ac-
celerated cognitive decline vanishes.20 On the other hand,
some American scientists hypothesize that AD is a third
form of diabetes.21 This hypothesis was formulated in 2005
when 45 AD patients were analyzed postmortem, showing
lower levels of insulin in the brain. In particular, the au-
thors analyzed the frontal cortex of AD individuals, cal-
culating the concentration of insulin, insulin-like growth
factor 1, and insulin receptor. Data showed that later
stages of disease were associated with an up to 80% de-
crease of these parameters compared to healthy brain.21

According to the latter association, some authors proposed
the concept of ‘‘metabolic cognitive syndrome’’ (MCS)
when describing co-occurrence of AD and metabolic syn-
drome. Indeed, dementia and metabolic syndrome present
some overlap both in predisposition factors and in altered
signaling cascade. Environmental elements like diet, life-
style, smoking, and socioeconomic status are critical con-
tributors in these disorders. Altered insulin signaling
pathway has a key role in their pathogenesis. In particular
insulin resistance might be the first step toward both dis-
orders, constituting a bridge between AD and metabolic
syndrome.22

Metabolic-Cognitive Syndrome: Insulin
and the Central Nervous System

Insulin is known to be a peripheral regulator of nutrient
storage, but it is also essential for the control of energy
balance in the central nervous system (CNS). Neuronal in-
sulin signaling pathway has an important function in
mammalian fat storage and in Caenorhabditis elegans and
Drosophila, the cellular signaling systems mediating these
effects bear remarkable homology to those described in
mammals.23

There is substantial evidence demonstrating insulin action
in the control of neuronal function in cortical and hippo-
campal areas, which are involved in memory processing and
cognitive functioning.24,25 Insulin directly influences neurons
by processes not linked to modulation of glucose uptake.
Neurotransmitter release, neuronal outgrowth, tubulin ac-
tivity, neuronal survival, and synaptic plasticity are all di-
rectly modulated by insulin.26–29 The insulin signaling
pathway modulates synaptic plasticity, promoting the re-
cruitment of c-aminobutyric acid (GABA) receptors on

postsynaptic membranes, influencing N-methyl D-aspartate
receptor (NMDA) conductance (neuronal Ca2 + influx)
and regulating receptor a-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) cycling.30,31

The MCS was elaborated on 2010 by Frisardi and his
colleagues. It is based on the co-existence, in patients, of
metabolic syndrome and cognitive impairment of degener-
ative or vascular origin.22 Insulin resistance can be mani-
fested in peripheral tissues or directly in the brain as an
insulin resistance brain state that contributes to cognitive
impairment and neurodegeneration for the reason described
above.22

Many molecules participate in the regulation of the insulin
signaling pathway; therefore, an alteration in the function or
expression of some of these proteins causes a reduction in
glucose uptake. Consequently, glucose accumulates in the
blood, determining hyperglycemia and hyperinsulinemia.
Hyperglycemia induces an increase of the peripheral use of
insulin, which results in a reduction of insulin disposable for
the brain. Because insulin is essential for memory, learning,
neuronal survivor, and longevity processes, the alteration of
its concentration might cause important consequences on tau
and Ab processing.24,25 For example, an impairment of in-
sulin signaling pathway causes a reduction of the activity of
phosphatidylinositol 3-kinase (PI3K) and consequently a re-
duction in AKT/protein kinase B (PKB) pathway. This leads
to an increase of glycogen synthase kinase 3 a/b (GSK-3 a/b)
activity that phosphorylates tau protein and causes in-
traneuronal Ab accumulation.21

Moreover, glucose metabolism plays a role in the protein
posttranslational modification involving the hexosamine
biosynthetic pathway, which leads to the generation of O-N-
acetylglycosamine (O-Glc-NAc). If insulin resistance is es-
tablished, intraneuronal glucose metabolism is impaired.
Consequently, the amount of O-Glc-NAcylation is reduced.
This posttranslational modification competes with the
phosphorylation process, thus more phosphate groups are
added with an increase of the amount of phosphorylated tau
protein.32

Insulin is also involved in the APP metabolism.33 APP
competes with the insulin receptor. Thus, its inefficient deg-
radation might play a key role in AD brain insulin resistance.34

SHIP2: A Modulator of the Insulin Pathway

When insulin binds to its membrane receptor, it activates a
signaling cascade involving phosphoinositides and the
AKT/PKB pathway.24 To regulate cellular levels of lipid
secondary messengers such as phosphatidylinositol (3,4,5)-
triphosphate (PtdIns [3,4,5]P3), cells use two major classes of
phosphoinositide phosphatases—the inositol polyphosphate
3-phosphatase PTEN and the SH2 domain-containing inosi-
tol 5-phosphatases 1 and 2 (SHIP1 and SHIP2).35

SHIP2 is a protein that catalyzes the degradation of lipid
secondary messenger phosphatidylinositol 3,4,5-triphos-
phate (PIP3) to produce phosphatidylinositol 3,4-diphos-
phate (PIP2). Thus, SHIP2 is an antagonist of PI3K that takes
part in insulin signaling, phosphorylating PIP2 to obtain
PIP3. Because the PI3K pathway plays a key role in the
biological effects of insulin, the attenuation of the PI3K-
mediated insulin signaling pathway could be associated with
insulin resistance in type 2 diabetes.36
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Many studies underline the role of SHIP2 as negative reg-
ulator of insulin signaling.35–37 Its overexpression reduces both
insulin-stimulated mitogen-activated protein kinase and AKT
activation, leading to downregulation of glucose uptake to-
ward failed recruitment of GLUT4 in cell membrane and gly-
cogen synthesis in 3T3-L1 adipocytes and L6 myotubes.38–40

Moreover expression of SHIP2 is greatly increased in the
skeletal muscle and fat tissue of diabetic mice.41

In addition, the SHIP2 gene (INPPL1) is localized in
human chromosome 11q13–14, which is suggested to be
linked to type 2 diabetes characterized by insulin resistance
and hypertension.42–44 Therefore, SHIP2 could be involved in
the pathogenesis of insulin resistance of type 2 diabetes mel-
litus in humans and also in the metabolic syndrome, in which
insulin resistance represents the first step toward.36,41–43,45

A study conducted by Kaisaki et al.45 shows a significant
association between single-nucleotide polymorphisms
(SNPs) of INPPL1 (rs2276047, rs9886, and an insertion/de-
letion in intron 1) and type 2 diabetes and metabolic syn-
drome in European populations. This finding was partly
confirmed by another study conducted by Kagawa et al. in
the Japanese population.46

Conclusion

Metabolic syndrome and AD constitute a worldwide prob-
lem, especially for Western societies, due to co-morbidity
(mainly vascular), lifestyle (i.e., diet, exercise, smoking, al-
cohol), and increasing age. Considering the increasing data
that have focused recently on the association between AD
and metabolic syndrome, it could be speculated that AD
could be a third form of diabetes.21

Metabolic syndrome is a condition that predisposes to
type 2 diabetes, which is characterized by systemic inflam-
mation, insulin resistance, obesity, high cholesterol levels,
and sedentary lifestyle, all conditions related to an increased
risk for AD.47 Due to increasing age, prevalence of AD in
Western industrialized populations will be higher in the fu-
ture. Thus, new knowledge regarding molecular biology and
epigenetics that would enable an early molecular diagnosis
of dementia is welcome.3

Discovery of new genes and proteins involved in
physiological pathways can be crucial for the identifica-
tion of altered mechanisms involved in the pathophysi-
ology of AD and consequently in signaling pathways.
Such discoveries would allow finding new target proteins,
developing new molecular risk profile for diagnosis and
prevention, and planning early interventions.6 In this re-
gard, we are extending previous research on the associa-
tion of INPPL1 SNPs and metabolic syndrome to AD.
With this aim, we are conducting a case–control study
evaluating the putative association between INPPL1 SNPs
and AD. Preliminary results obtained show a trend to-
ward association of these SNPs with AD, thus strength-
ening the hypothesis of a close relationship among AD,
metabolic syndrome, and diabetes.
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