Evidence of a complex phylogeographic structure in the common dormouse, *Muscardinus avellanarius* (Rodentia: Gliridae)

ALICE MOUTON1*, ANDREA GRILL2, MAURIZIO SARA3, BORIS KRYŠTUFEK4, ETTORE RANDI5, GIOVANNI AMORI6, RIMVYDAS JUŠKAITIS7, GAETANO ALOISE8, ALESSIO MORTELLITI9, FABIANA PANCHETTI10 and JOHAN MICHAUX1-11

1Institut de Botanique, Bâtiment 22, Université de Liège (Sart Tilman), Boulevard du Rectorat 27, 4000 Liège, Belgium
2Institut Biodiversität der Tiere, Universität Wien, Rennweg 14, 1030 Vienna Austria
3Dipartimento Biologia Ambientale e Biodiversità, Laboratorio di Zoogeografia ed Ecologia Animale,Via Archirafi 18, 90123 Palermo
4Science and Research Centre, University of Primorska, Garibaldijeva 1, SI-5000 Koper, Slovenia
5ISPRA ex INFS, Ozzano Emilia, Bologna, Italy
6CNR, Institute of Ecosystem Studies, Via A. Borelli 50, 00161 Rome, Italy
7Institute of Ecology of Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
8Museo di Storia Naturale della Calabria e Orto Botanico, Via P. Bucci s.n., Rende (Cosenza), Italy
9Dipartimento di Biologia Animale e dell’Uomo, Università ‘La Sapienza’ Viale dell’Università 32, 00185, Roma, Italy
10Dipartimento di Biologia, Università ‘Roma Tre’, Viale Guglielmo Marconi 446, 00146, Roma, Italy
11CBGP, INRA, UMR 1064, Campus international de Baillarguet, CS30016, F-34988 Montferrier sur Lez cedex, France

Received 14 June 2011; revised 2 September 2011; accepted for publication 2 September 2011

This is the first mitochondrial phylogeography of the common dormouse, *Muscardinus avellanarius* (Linnaeus, 1758), a hibernating rodent strictly protected in Europe (Habitat Directive, annex IV; Bern Convention, annex III). The 84 individuals of *M. avellanarius*, sampled throughout the distributional range of the species, have been sequenced at the mitochondrial DNA gene (cytochrome *b*, 704 base pairs). The results revealed two highly divergent lineages, with an ancient separation around 7.7 Mya and a genetic divergence of 7.7%. Lineage 1 occurs in Western Europe (France, Belgium, and Switzerland) and Italy, and lineage 2 occurs in Central–Northern Europe (Poland, Germany, Latvia, and Lithuania), on the Balkan Peninsula, and in Turkey. Furthermore, these two lineages are subdivided into five sublineages genetically isolated with a strong geographical association. Therefore, lineage 1 branches into two further sublineages (Western European and Italian), whereas lineage 2 contained three sublineages (Central–Northern European, Turkish, and Balkan). We observed low genetic diversity within the sublineages, in contrast to the significant level of genetic differentiation between them. The understanding of genetic population structure is essential for identifying units to be conserved. Therefore, these results may have important implications for *M. avellanarius* conservation. © 2012 The Linnean Society of London, *Biological Journal of the Linnean Society*, 2012, 00, 000–000.

ADDITIONAL KEYWORDS: conservation – cytochrome *b* – Europe – glacial refugia.

*Corresponding author. E-mail: amouton@ulg.ac.be

© 2012 The Linnean Society of London, *Biological Journal of the Linnean Society*, 2012, 00, 000–000.
INTRODUCTION

Climatic oscillations during the Pleistocene have greatly affected the pattern of distribution of many species in the Western Palearctic region, as well as their demographic history and patterns of population genetic differentiation (Avise, 2000; Hewitt, 2004). Three main peninsular refugia have been deduced from phylogenetic studies for most temperate species in Europe, namely Iberia, Italy, and the Balkans (Taberlet et al., 1998; Hewitt, 1999, 2001; Michaux et al., 2003; Krystufek, Bryja & Buzan, 2009). Increasing evidence suggests that the well-studied European southern and eastern refugia for thermophilous animal and plant taxa were supplemented by cryptic refugia in more northern Europe during the Late Pleistocene (Stewart & Lister, 2001). This hypothesis has received significant support with the discovery of northern refugia for small mammals (Jaarola & Searle, 2002, 2004; Brunhoff et al., 2003; Deffontaine et al., 2005; Kotlik et al., 2006). In addition, some studies pointed to the role of Mediterranean refugia as sites of endemism (Bilton et al., 1998; Stewart, 2003; Bhagwat & Willis, 2008; Provan & Bennett, 2008; Grill et al., 2009; Krystufek et al., 2009; Buzan et al., 2010). Nonetheless, all of these studies concern and give detailed phylogeographic patterns of species within the Muroid superfamily, whereas phylogeographic studies on Gliridae are almost non-existent, despite the interest in this group. Gliridae are one of the most ancient rodent families, emerging in the Eocene (between 54–37 Mya) (Nadachoswki & Daoud, 1995). They are small- to medium-sized rodents, mostly arboreal, and were restricted throughout their history to Europe, Asia, and Africa (Wilson & Reeder, 2005). The diversification of the Gliridae began in the early Eocene, continued during the Oligocene, and culminated in the Late Early Miocene of Europe, where they appear to have occupied many ecological niches. The decline of this family becomes apparent during the Late Middle Miocene (Vallesian). Casanova-Vilar et al. (2005) suggested that the diversity of forest-adapted rodents decreased significantly, not only in coincidence with the Vallesian climatic crisis, but also with the entry and spread of Muridae. Most of the 28 species contained in the family Gliridae (Holden, 2005) are now regarded as rare or endangered, attracting conservation-related research and active habitat management to assist their survival (Morris, 2003).

A recent phylogeographical study (cytochrome b) on the edible dormouse, Glis glis (Linnaeus, 1766), revealed three main haplogroups (Sicilian, Southern Italian, and European; Hürner et al., 2010). This work evidenced a great genetic homogeneity in Europe and a very low genetic diversity in the Mediterranean peninsulas. In this context, we feel that a clear understanding of the evolutionary history of the other members of the Gliridae family, obtained by comparative phylogeography, would allow the identification of biodiversity hot spots and increase awareness in conservation policies. In temperate regions, glirids are characterized by hibernation during winter, a behavior that has earned them a popular reputation for perpetual sleepiness (Nunome et al., 2007). Thermal dependence during hibernation can constrain the biogeography of species, and therefore could imply another evolutionary history, especially during the Quaternary glaciations.

The target of our study is the common dormouse, Muscardinus avellanarius (Linnaeus, 1758), a Gliridae that is protected in Europe (Habitat Directive, annex IV; Bern Convention, annex III), and is included on the national Red Lists of many countries. Muscardinus avellanarius occurs in Europe and northern Asia Minor (Turkey) (Fig. 1). In continental Europe, it is fairly widespread, although it is absent from Iberia, south-west France, and boreal forests of the majority of Fennoscandia and Russia. It is also absent from the steppe landscapes of the eastern Ukraine and southern Russia. Island populations occur in southern Britain and on Corfu and Sicily (Morris, 1999; Rossolimo et al., 2001). It is generally a lowland or mid-mountain species, although in the mountains M. avellanarius can reach an altitude of up to almost 2000 m a.s.l. (Kryštufek & Petkowski, 1990; Spitzenberger & Bauer, 2001; Juškaitis, 2008).

Population trends vary in different parts of the range: in some north-western areas (e.g. UK, the Netherlands, Denmark, and Belgium) populations are declining because of the interplay between the biological requirements of the species complex and habitat loss and fragmentation (Foppen, Verheggen & Boonman, 2002; Bright, Morris & Mitchell-Jones, 2006; Verbeylen, 2006; Mortelliti et al., 2010). In others parts of the range, like Sweden and Lithuania, the species is considered to be stable (Juškaitis, 2008; Wretenberg & Berglund, 2009). It is probably an excellent model for studying the effects of habitat fragmentation, climatic shifts, and climatic stochasticity (Bright & Morris, 1996). In addition, M. avellanarius exhibits differences in hibernation in different ecogeographical conditions, confirming the peculiar link between climate and hibernation length (Sara, Casamento & Spinnato, 2001; Panchetti et al., 2004). Fossil data suggests that the Miocene/Pliocene boundary led to the diversification of the genus Muscardinus into several lineages, based on the different body sizes and dental morphologies (Storch, 1978; Aguilar, 1982; Nadachoswki & Daoud, 1995; Aguilar & Lazzari, 2006; Alix et al., 2008). Towards the end of
the Pliocene most of these lineages vanished, and since the Middle Pleistocene only the extant species, *M. avellanarius*, survived in the European faunas (Nadachoswki & Daoud, 1995).

Incisive biological conservation of mammals or terrestrial vertebrates in Europe needs detailed data on the phylogeography, genetic diversity, and structure of the population of the species, as well as on the dynamics of past populations (Randi, 2003). The detection of phylogeographic structuring is important because it helps identify long-isolated populations that might have distinct gene pools and local adaptations; thus the conservation concern for *M. avellanarius* makes it an excellent candidate for such studies. We therefore subsequently defined the phylogeographic structure of the species, which has never yet been tackled. In particular we tried to answer the following questions: (1) is *M. avellanarius* structured phylogeographically; (2) how many distinct genetic lineages of *M. avellanarius* exist; (3) did the postglacial recolonization of Central Europe originate from the traditional Mediterranean refugia or from elsewhere; (4) did the Miocene/Pliocene boundary lead to the diversification of the genus *Muscardinus*; (5) what are the implications of our results for the conservation of the species?

MATERIAL AND METHODS

SAMPLE COLLECTION AND DNA EXTRACTION

We gathered a total of 83 sample tissues of *M. avellanarius* from 28 localities (between one and 12 samples per population) spread throughout the geographical range of the species (Fig. 1; Table 1). The specimens were obtained by the authors and their field collaborators (see the Acknowledgements). Tissues and hairs were preserved in 96% ethanol until DNA extraction. An additional sequence from Switzerland was downloaded from the GenBank database (Bentz & Montgelard, 1999). Total DNA was extracted using the DNeasy Tissue kit (Qiagen Inc., Valencia, CA, USA) following the manufacturer’s instructions. DNA samples were extracted and amplified in a separate room solely dedicated to DNA extractions.

PCR AMPLIFICATION AND MITOCHONDRIAL DNA SEQUENCING

A fragment of 704 bp was sequenced from cytochrome *b* (cyt *b*) of the mitochondrial DNA gene (mtDNA). PCR amplifications were carried out using primers designed by Andrea Grill specifically for *M. avellanarius*, modified from Bentz & Montgelard (1999): LMA14255, 5′-TGGTGGAATTTCGGTTCTCT-3′; RMA15192, 5′-GTTGGCCTCCAATTCATGTT-3′.

DNA isolated in some samples was highly degraded, and therefore the amplifications of the entire portion of the cyt *b* gene (> 700 bp) was unsuccessful. In order to recover this material, two further internally specific primers were designed by fragment alignment: MUSCAR_RINTERN, 5′-AAGGTGAACTATTACTAGGC-3′, combined with LMA14255 and
Table 1. Map references, geographic locations, corresponding sublineages, sample symbols, collectors, and GenBank accession numbers of *Muscardinus avellanarius* haplotypes used in this study

<table>
<thead>
<tr>
<th>Geographic origin</th>
<th>Sublineages</th>
<th>Total numbers of animals</th>
<th>Samples symbols</th>
<th>Haplotypes</th>
<th>Genbank accession number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macedonia</td>
<td>Mount Galičica</td>
<td>Balkans</td>
<td>5</td>
<td>Ma1</td>
<td>Hap01, 04, 05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Popova Šapka</td>
<td>Balkans</td>
<td>1</td>
<td>Ma2</td>
<td>Hap05</td>
</tr>
<tr>
<td>Serbia</td>
<td>Mount Pelister</td>
<td>Balkans</td>
<td>1</td>
<td>Ma3</td>
<td>Hap05</td>
</tr>
<tr>
<td>Slovenia</td>
<td>Mount Cer</td>
<td>Balkans</td>
<td>2</td>
<td>Slo1</td>
<td>Hap03, 05</td>
</tr>
<tr>
<td>Lithuania</td>
<td>Mount Krim</td>
<td>Balkans</td>
<td>1</td>
<td>Slo2</td>
<td>Hap02</td>
</tr>
<tr>
<td></td>
<td>Pogorelec</td>
<td>Central–Northern</td>
<td>12</td>
<td>Lit1</td>
<td>Hap06, 07, 08, 09</td>
</tr>
<tr>
<td></td>
<td>Mount Kocevski Rog</td>
<td>Central–Northern</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Šakiai district</td>
<td>Central–Northern</td>
<td>3</td>
<td>Let1</td>
<td>Hap11, 12,13</td>
</tr>
<tr>
<td>Latvia</td>
<td>Central–Northern</td>
<td>Central–Northern</td>
<td>1</td>
<td>?</td>
<td>Hap 16</td>
</tr>
<tr>
<td>Unknown</td>
<td>Central–Northern</td>
<td>Central–Northern</td>
<td>2</td>
<td>Po1</td>
<td>Hap10, 15</td>
</tr>
<tr>
<td>Poland</td>
<td>Central–Northern</td>
<td>Central–Northern</td>
<td>3</td>
<td>Ge1</td>
<td>Hap06, 14,18</td>
</tr>
<tr>
<td>Germany</td>
<td>Central–Northern</td>
<td>Turkish</td>
<td>1</td>
<td>Tur1</td>
<td>Hap17</td>
</tr>
<tr>
<td>Turkey</td>
<td>Mount Ulu dag</td>
<td>Turkish</td>
<td>6</td>
<td>Swi1</td>
<td>Hap19</td>
</tr>
<tr>
<td>Switzerland</td>
<td>Canton de Vaud</td>
<td>West European</td>
<td>1</td>
<td>Swi2</td>
<td>Hap22</td>
</tr>
<tr>
<td></td>
<td>(Bentz & Montgelard, 1999)</td>
<td>West European</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>Normandie</td>
<td>West European</td>
<td>2</td>
<td>Fr1</td>
<td>Hap20</td>
</tr>
<tr>
<td>Belgium</td>
<td>Mechelen</td>
<td>West European</td>
<td>6</td>
<td>Bel1</td>
<td>Hap21</td>
</tr>
<tr>
<td>Country</td>
<td>Location</td>
<td>Language</td>
<td>Area Code</td>
<td>Haplogroups</td>
<td>Accession Numbers</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Italy</td>
<td>Tevere Farfa (Lazio)</td>
<td>Italian</td>
<td>10</td>
<td>It10</td>
<td>Hap23</td>
</tr>
<tr>
<td></td>
<td>Castel di Guido (Lazio)</td>
<td>Italian</td>
<td>7</td>
<td>It7</td>
<td>Hap24, 27</td>
</tr>
<tr>
<td></td>
<td>Arcinazzo Romano (Lazio)</td>
<td>Italian</td>
<td>1</td>
<td>It8</td>
<td>Hap24</td>
</tr>
<tr>
<td></td>
<td>Viterbo (Lazio)</td>
<td>Italian</td>
<td>4</td>
<td>It11</td>
<td>Hap24, 26, 28</td>
</tr>
<tr>
<td></td>
<td>Filettino (Lazio)</td>
<td>Italian</td>
<td>1</td>
<td>It9</td>
<td>Hap25</td>
</tr>
<tr>
<td></td>
<td>Castelporziano (Lazio)</td>
<td>Italian</td>
<td>9</td>
<td>It6</td>
<td>Hap24, 27, 28</td>
</tr>
<tr>
<td></td>
<td>Perugia (Umbria)</td>
<td>Italian</td>
<td>2</td>
<td>It12</td>
<td>Hap24</td>
</tr>
<tr>
<td></td>
<td>Calabria</td>
<td>Italian</td>
<td>1</td>
<td>It3</td>
<td>Hap29</td>
</tr>
<tr>
<td></td>
<td>Cosenza (Calabria)</td>
<td>Italian</td>
<td>1</td>
<td>It4</td>
<td>Hap29</td>
</tr>
<tr>
<td></td>
<td>Catena Costiera (Calabria)</td>
<td>Italian</td>
<td>1</td>
<td>It5</td>
<td>Hap29</td>
</tr>
<tr>
<td></td>
<td>High Madonia (Sicily)</td>
<td>Italian</td>
<td>3</td>
<td>It2</td>
<td>Hap30, 32, 33</td>
</tr>
<tr>
<td></td>
<td>Low Madonia (Sicily)</td>
<td>Italian</td>
<td>2</td>
<td>It1</td>
<td>Hap31, 32</td>
</tr>
<tr>
<td></td>
<td>Out-groups</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Garden dormouse (Eliomys quercinus)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Bentz & Montgelard, 1999)</td>
<td></td>
<td>1</td>
<td></td>
<td>AJ225030*</td>
</tr>
<tr>
<td></td>
<td>(Bentz & Montgelard, 1999)</td>
<td></td>
<td>1</td>
<td></td>
<td>FM16427*</td>
</tr>
<tr>
<td></td>
<td>Asian garden dormouse (Eliomys melanurus)</td>
<td></td>
<td>1</td>
<td></td>
<td>FR848958</td>
</tr>
<tr>
<td></td>
<td>Edible dormouse (Glis glis)</td>
<td></td>
<td>1</td>
<td></td>
<td>FR848956</td>
</tr>
<tr>
<td></td>
<td>(Hürner et al., 2010)</td>
<td></td>
<td>1</td>
<td></td>
<td>FM16065*</td>
</tr>
</tbody>
</table>

*Accession numbers downloaded from the GenBank database.
MUSCAR_LINTERN, 5′-ACCTTAGTGAATGAAATCTGA-3′, combined with RMA15192. Those specific primers amplified two small overlapping cyt b fragments (300–400 bp), which were then aligned to give a sequence of 704 bp.

Amplifications were carried out following the protocol described by Michaux et al. (2003), and were performed in a Labover PTC100 thermal cycler employing 40 cycles (30–45 s at 94°C, 30–45 s at 50°C, and 45–90 s at 72°C), with a final extension at 72 °C (for 10 min). Products were visualized on an agarose gel to verify the success of amplification. All sequencing procedures were performed by Macrogen Inc. (Seoul, Korea). The sequences were edited and then aligned using the CLUSTALW algorithm in BIOEDIT 7.0.9.0 (Hall, 1999).

PHYLOGENETIC AND PHYLOGEOGRAPHIC ANALYSIS

The model of nucleotide substitution that best fits the data set was identified with the web application FINDMODEL, developed from MODELTEST (Posada & Crandall, 1998) and WEIGHBOR (Bruno, Socci & Halpern, 2000). A maximum-likelihood (ML) tree was constructed with PHYML 3.0, using the method described by Guindon & Gascuel (2003). The robustness of the trees was assessed by 1000 bootstrap replicates (Felsenstein, 1985).

The Bayesian phylogeny reconstruction (Yang & Rannala, 1997) was implemented in MRBAYES 3.1.1 (Huelsenbeck et al., 2001). Bayesian posterior probabilities were picked from the 50% majority rule consensus of trees sampled every 1000 generations, discarding the trees obtained before the chains reached stationary distribution (‘burn in’, empirically determined by checking the likelihood values). A 50% majority-rule consensus tree was generated in PAUP 4.0b10 (Swofford, 2000).

A minimum spanning haplotype network was constructed using the MINSPNET algorithm available in ARLEQUIN 3.0 (Schneider, Roessli & Excoffier, 2000), in order to more effectively portray the relationships among sequences for populations with low sequence diversity (Crandall & Templeton, 1993). To infer the relationships between haplotypes, a median-joining network was also constructed with the same combined sequence data set using NETWORK 4.5 (Bandelt, Forster & Röhl, 1999).

ANALYSIS OF GENETIC DIVERSITY AND DIFFERENTIATION

Haplotype (h) and nucleotide (π) diversities (Nei, 1987), and their standard deviations (Tajima, 1989), and gene flow and genetic differentiation (using population pairwise F_{st} analysis) between the two major lineages, and sublineages, were estimated using DNASP 5 (Librado & Rozas, 2009). The net distance between groups and average distances within groups were calculated in MEGA 4 (Tamura et al., 2007).

The genetic structure of populations was examined using an analysis of molecular variance (AMOVA) performed in ARLEQUIN 3.0. AMOVA was conducted at three hierarchical levels of population subdivisions: among genetic groups (corresponding to the two lineages); among populations within each genetic group (corresponding to the sublineages); and within each population. The significance of these parameters was estimated by 10 000 random permutations of the distance matrix.

DIVERGENCE TIME

Relative rate tests and an approximate time of divergence between the observed mtDNA lineages were calculated as described in Michaux et al. (2003). The divergence time between *Eliomys quercinus* (Linnaeus, 1766) and *Eliomys melanurus* (Wagner, 1839) (7 ± 0.9 Myr; Montgelard, Matthee & Robinson, 2003) was used as a calibration point.

Another estimate of the divergence time of the main lineages of *M. avellanarius* used a Bayesian approach implemented in BEAST 1.5.4 (Drummond & Rambaut, 2007). We used the *E. quercinus*/E. melanurus divergence as a fossil point calibration. We included the entire set of mitochondrial sequences for the Muscardinus group as well as two sequences of *E. melanurus* (Table 1) and two sequences of *E. quercinus* (Table 1). Analyses were performed under the GTR + G substitution model parameter (previously estimated by FINDMODEL), an uncorrelated lognormal molecular clock, and a Bayesian Skyline plot demographic model (Drummond et al., 2005). All other settings were defaults provided by BEAST. Two independent runs were performed, with 80 000 000 Markov chain Monte Carlo (MCMC) samples every 1000th generation. Results were visualized using TRACER 1.5.

ANALYSIS OF DEMOGRAPHIC HISTORY

The hypothetical presence of glacial refugia was checked by searching for the possibility of population expansion. To avoid biased conclusions, we examined only the sublineages including more than 15 samples. We inferred past demographic trends for three sublineages: the Western, the Central–Northern, and the Italian sublineages. As the Italian sublineage is well structured in three groups, we also decided to infer the past trend for the central Italian group (*N > 15*). Coalescent-based Tajima’s D was calculated to test for selective neutrality (calculation using the total number of mutations; Tajima, 1989), and population
history was also inferred by testing departures from neutrality using \(R_2 \) (Ramos-Onsins & Rozas, 2002) and Fu’s \(F_S \) (Fu, 1996) in DNASP 5 (Librado & Rozas, 2009). Strobeck’s \(S \) statistic (Strobeck, 1987) is the probability of having an equal number or fewer haplotypes than observed, based on the gene frequency distribution derived from the inferred mutation rate \(\theta \). High \(S \) probability values (0.9–1.0) indicate a deviation from neutrality resulting from either selection or population expansion. Strobeck’s \(S \) statistic was also calculated using DNASP 5 (Librado & Rozas, 2009). A Bayesian Skyline reconstruction performed in TRACER 1.5 allowed us to examine the historical demography of each lineage. We checked that the settings were clearly able to capture the model parameters. For example, an estimate of effective sample size (ESS) higher than 200 would indicate a good convergence of MCMC within chains, as suggested by Drummond & Rambaut (2007). The demographic histories of the sublineages of \(M. \) avellanarius were also examined using a mismatch distribution of pairwise nucleotide differences estimated in DNASP 5 (Librado & Rozas, 2009) for populations including more than 15 samples only. Multimodal mismatch distributions would correspond to a condition of demographic stability, whereas sudden population expansions would generate unimodal patterns (Slatkin & Hudson, 1991). The overall validity of the estimated demographic model was tested by obtaining the distribution of a test statistic, the sum of squared differences (SSD), between observed and expected mismatch distributions. A significant SSD value is considered as the evidence of departure from the estimated demographic model of a sudden population expansion using ARLEQUIN 3.0. Furthermore, we calculated the raggedness index (Harpending, 1994) of the observed mismatch distribution for each of the populations according to the population expansion model implemented in ARLEQUIN 3.0. Small raggedness values represent a population that experienced sudden expansion, whereas higher values of the raggedness index suggest stationary or bottleneck populations.

RESULTS

PHYLOGENETIC AND PHYLOGEOGRAPHIC ANALYSIS

A total of 33 haplotypes was identified among the 84 \(M. \) avellanarius specimens (Table 1). The total data matrix comprised 33 \(M. \) avellanarius haplotypes. This matrix provided 704 bp, 120 of which were variable, 102 were parsimoniously informative, and 18 were singleton-variable sites. The average transitions/transversions ratio was 5935 and the nucleotide frequencies were: 28.2, 26.6, 13.7, and 31.4% for A, C, G, and T, respectively. The best model of sequence evolution identified by the Akaike information criterion in FINDMODEL was the GTR + G model. The shape parameter of the Gamma distribution was 0.250. Three other sequences (two \(E. \) quercinus and one \(G. \) glis; Table 1) were chosen as out-groups according to a molecular phylogenetic study of Gliridae (Montgelard et al., 2003).

The ML and Bayesian inference (BI) phylogenetic trees showed the same tree topology (Fig. 2). The haplotypes segregated into two lineages that gained strong support in ML (bootstrap support, BS: 97%) and in BI (Bayesian probability, BP: 100%). The cyt-\(b \) net genetic distance between these is very high (7.7%) (Table 2). The minimum spanning network (MSN) (Fig. 3) and the median joining network revealed a clear geographical partitioning of the haplotypes, with a considerable divergence between genomes occurring in different regions of the species range. They also reproduced exactly the same topology as ML and BI trees. The two major lineages are separated by 68 mutational steps.

The first lineage (hereafter lineage 1) split into two well-supported sublineages (BS 99%; BP 100%), the first of which encompassed individuals from Western Europe (Belgium, Switzerland, and France), whereas the second comprised all the haplotypes from Italy (including Sicily). These two sublineages are highly separated, with 28 mutational steps and a genetic net distance of 3.2%. The Italian sublineage further diverged into two supported groups (BS 96%; BP 100%), the first comprising specimens from

Figure 2. Maximum-likelihood tree for the 33 haplotypes of \(M. \) avellanarius. Numbers indicated on the branches correspond to bootstrap support obtained in the ML analysis (left) and Bayesian probabilities (right). Haplotypes origins are indicated in Table 1.
central Italy and the second comprising specimens from southern Italy. The latter was further split into two subgroups (a Sicilian and a Calabrian group), which found support only in BP (100%). These groups were separated by six mutational steps between each of them, and a net distance of 0.8 and 0.7%, respectively, between central Italian and Calabrian groups and between Calabrian and Sicilian groups.

The second major lineage (hereafter lineage 2) gathers populations from the remainder of the species range, in Central–Northern Europe (Lithuania, Latvia, Germany, and Poland), the Balkan Peninsula (Macedonia, Slovenia, and Serbia), and Turkey. The Balkans sublineage and the single Turkish haplotypes are separated by 17 and 28 mutational steps, respectively, from the Central–Northern European sublineage, and by a net distance of 2.6 and 3.3%. A further substructuring was poorly evident in lineage 2; however, the Balkan samples may hold a sister position against those from Central–Northern Europe.

ANALYSIS OF GENETIC DIVERSITY AND DIFFERENTIATION

The AMOVA analysis showed that 70.43% \((P = 0.000) \) of the total mtDNA variation was distributed between the two genetic groups: 26.30% \((P = 0.000) \) among populations within groups, and 3.26% \((P = 0.000) \) within populations.

Our results are summarized in Table 3 and generally indicate a very low level of diversity for the two lineages (lineages 1 and 2), with a \(\pi \) value of 0.02. The highest nucleotide diversities were found in the Balkan and the Italian sublineages, with \(\pi \) values of 0.00668 and 0.006 respectively. \(F_{ST} \) values (Table S1, Supporting Information) are very high and significant among all the sublineages.

DIVERGENCE TIME

The relative rate did not show any difference of evolutionary rate among the observed lineages. This allowed us to apply a molecular clock so that the approximate time of divergence between the observed mtDNA sublineages could be calculated.

According to the mean Kimura two-parameter (K2P) distance between *E. quercinus* and *E. melanurus*, the gross estimate of the evolutionary rate for the Gliridae is around 1% per Myr. The application of this rate to the different dichotomies obtained within the *M. avellanarius* tree resulted in the following approximate molecular dating: 7.7 Myr for the split between lineages 1 and 2 (10.81 Myr with BI); 3.2 Myr between the Western sublineage and the Italian sublineage (3.53 Myr with BI) and between the Central–Northern sublineage and the Turkish sample (2.71 Myr with BI); and 2.6 Myr between the Balkan sublineage and the Central–Northern sublineage (3.9 Mya with BI). Finally, the separation between the Central Italian and the Calabrian groups, and between the Calabrian and the Sicilian groups, should have taken place around 0.8 and 0.7 Mya, respectively (1.19 Myr between the Central Italian and the Calabrian–Sicilian groups with BI).

Therefore, divergence times calculated using the coalescent approach were similar to the K2P-corrected distances, except for the divergence time between the two lineages. These values are summarized in Figure 4. Because of the wide uniform priors we used.
Figure 3. A minimum spanning network constructed using the 33 haplotypes of mitochondrial cytochrome b gene sequences. Geographic origins (Table 1) are noted. Numbers correspond to the mutational steps observed between haplotypes, numbers in parentheses correspond to the number of animals presenting this haplotype, and the size of the circle is proportional to the numbers of haplotypes represented.

Table 3. Summary of haplotypes (Hd) and nucleotide diversity (Pi), and their standard deviations, observed within the main genetic groups of *Muscardinus avellanarius*

<table>
<thead>
<tr>
<th>Sample Size (N)</th>
<th>Pi (± SD)</th>
<th>Hd (± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>84</td>
<td>0.05992 ± 0.00193</td>
</tr>
<tr>
<td>Lineage 2</td>
<td>33</td>
<td>0.0211 ± 0.00262</td>
</tr>
<tr>
<td>Balkans</td>
<td>11</td>
<td>0.00668 ± 0.00294</td>
</tr>
<tr>
<td>Turkey</td>
<td>1</td>
<td>–</td>
</tr>
<tr>
<td>Central–Northern Europe</td>
<td>21</td>
<td>0.00337 ± 0.00707</td>
</tr>
<tr>
<td>Lineage 1</td>
<td>51</td>
<td>0.0225 ± 0.00</td>
</tr>
<tr>
<td>Western Europe</td>
<td>15</td>
<td>0.00168 ± 0.00013</td>
</tr>
<tr>
<td>Italy</td>
<td>36</td>
<td>0.006 ± 0.00125</td>
</tr>
<tr>
<td>Central Italy</td>
<td>28</td>
<td>0.00151 ± 0.00024</td>
</tr>
<tr>
<td>Sicily</td>
<td>5</td>
<td>0.002 ± 0.00081</td>
</tr>
<tr>
<td>Calabria</td>
<td>3</td>
<td>0.00095 ± 0.00045</td>
</tr>
</tbody>
</table>
for the calibration points, the confidence interval (3.34–19.66 Mya) remains large, so we decided to use the value of the substitution rate between the two lineages.

ANALYSIS OF DEMOGRAPHIC HISTORY

Neutrality tests of Tajima’s D, Fu’s F_s, R_2 revealed non-significant values in all populations (Table 4). Furthermore, the R_2 values fall within the range expected under the model of constant population size, thereby accepting the null hypothesis of constant population size in all populations. Non-significant Strobeck’s S and negative Fu’s F_s values were obtained for the Western, Italian, and central Italian sublineages. However, Fu’s test for neutrality (Fu, 1996) and the Strobeck’s S-test indicated a deviation from neutrality, resulting either from selection or from population expansion for the data set.
of the Central–Northern European lineage (Fu’s \(F_S = -6318, P = 0.000; S = 1, P = 0.001 \)).

The Bayesian skyline plot reconstruction (Fig. 5) showed that the four lineages appear to have experienced a long period of constant population size, followed by a decline that started around 1 Mya. Also, the mismatch distribution for the four clusters above did not show the bell-shaped curve that is consistent with the hypothesis of rapid population expansion (Fig. 6). The mismatch population test statistics SSD and raggedness index values were also consistent with constant population sizes (Table 4).

DISCUSSION

GENETIC STRUCTURE AND TIME OF DIVERGENCE OF MUSCARDINUS AVELLANARIUS

Consistent with palaeontological data and the resulting 7-Myr period of divergence, we hypothesized that the putative ancestors of *M. avellanarius* (*Muscardinus hispanicus* de Bruijn, 1966 and *Muscardinus pliocaenicus* Kowalski, 1963; Garcia-Alix et al., 2008) must have split from one another very early, and subsequently by allopatry became two highly divergent genetic lineages in Europe.

Our mtDNA study suggests that the Late Miocene/Early Pliocene was an important period for the diversification of European mammals. Several other Western and Eastern European mammalian taxa are known to have diverged at about the same time, such as *Talpa* spp. (Colangelo et al., 2010), *Erinaceus europaeus* Linnaeus, 1758 and *Erinaceus roumanicus* Barrett-Hamilton, 1900 (Santucci, Emerson & Hewitt, 1998), or the eastern and western clade of *Cervus elaphus* Linnaeus, 1758 (Ludt et al., 2004). A closer sampling in the possible zones of overlap between the two ancient lineages could reveal a contact zone, as shown in previous studies, e.g. for yellow-bellied and fire-bellied toads (*Bombina variegata* (Linnaeus 1758) and *Bombina bombina* Linnaeus 1761; Szymura, 1993), oaks (*Quercus robur* group; Ferris, Oliver & Davy, 1993), and shrews (*Sorex araneus* Linnaeus, 1758 group Taberlet, Fumagalli & Hausser, 1994).

During the Late Pliocene, and throughout the Quaternary, a substantial subdivision of extant *M. avellanarius* lineages into further sublineages seems to have occurred. Based on the results and on our estimation of divergence time, lineage 1 split into Western European and Italian sublineages around 3.2 Mya. Lineage 2 split into Central–Northern European, Turkish, and Balkan sublineages around 3.2 Mya. Coincident with these divergence times around 3 Mya at the Pliocene–Pleistocene boundary, a further strong climatic deterioration occurred with the intensification of glaciations and the establishment of the great northern ice sheets in America and in Europe (Santucci et al., 1998). The Early Pleistocene saw the definitive decline of Tertiary forests in north-western Europe (West, 2000), and
the disappearance of such rich floristic habitats might have promoted the further isolation of *M. avellanarius* lineages.

Past demography

The generalized Bayesian Skyline reconstruction showed that the sublineages have experienced a long period of constant population size, followed by a general decline that started around 1 Mya. The fragmentation of the habitat, leading to a contraction of the effective size of the habitat area, the intensification of glaciations, and competition with the Muridae family could explain the demographic decline observed since the Early Pleistocene (1 Mya). This is further evidenced by the neutrality tests (mismatch analysis), as none of the mismatch graphics showed a bell-shaped curve that would indicate a population expansion. The only exception concerns the Central–Northern European sublineage, where Strobeck’s *S*-test, the star-like topology of the network, and Fu’s *F*_S values all indicate a signal of population expansion. There is no clear evidence of recent expansion in the Bayesian plot for the Central–Northern European sublineage, as the confidence interval can reveal either an expansion or a decline.

Refugia and postglacial recolonizations

The phylogeographic analysis allowed the reconstruction of refugia for *M. avellanarius*, although in some cases more sampling and additional analysis is needed (e.g. Central–Northern European sublineage, Balkan sublineage, Turkish specimen).

Italian sublineage

The high level of genetic diversity (Table 3) indicates that the Italian region was one of the refugia for *M. avellanarius*. Furthermore, the mismatch analysis and the neutrality tests suggest the existence of a stable population in the Italian region. During Quaternary glaciations this sublineage was able to survive the general cooling, and diversified genetically in different parts of the peninsula. This led to the appearance of three genetic groups corresponding to the following regions: Central Italy, Sicily, and Calabria. This separation is confirmed by the *F*_{ST} values, which are very high and are significant among the three groups (Supporting information). These groups are probably the result of geographic isolations in three different refugia, associated with the fragmentations of forests that appeared during Quaternary cold stages (Magri et al., 2006). The long-term
isolation of Sicily and southern Calabria from the rest of Italy resulted from the marine-flooded graben in central Calabria, which appeared for most of the Pleistocene, as attested by the presence of several endemic plants (Pignatti, 1982) and animals in these regions (Malatesta, 1985; Caloi, Malatesta & Palombo, 1989; Santucci, Nascetti & Bullini, 1996; Canestrelli et al., 2010). Our approximate time of divergence, with a separation between the three groups around 1 Mya, seems to corroborate such biogeographic scenarios. This result strongly suggests the possible existence of refugia within refugia in the Italian peninsula, as has already been observed for several other species (Michaux et al., 2003; Canestrelli et al., 2006, 2007, 2008; Castiglia et al., 2007; Grill et al., 2009; Vega et al., 2010).

Western sublineage

The high endemism of the Italian sublineage strongly suggests that such a population did not contribute to the postglacial recolonization of Western Europe. This implies that *M. avellanarius* living in France, Belgium, and Switzerland, and now grouping in the Western sublineage, had other refugia outside of the 'traditionally accepted' refugia. There were areas situated outside the permafrost during the maximum cooling period (Sommer & Nadachowski, 2006) that were within the current range of the Western sublineage, e.g. the area of the Dordogne in south-western France.

Balkan sublineage

The high level of genetic diversity (Table 3) indicates the Balkan region was another glacial refuge for *M. avellanarius*. The Balkan Peninsula is topographically the most diverse landscape in Europe (Reed, Krystufek & Eastwood, 2004), and such variability could have provided a suitable environment for altitudinal shifts in response to climatic change during glacial–interglacial oscillations, and also for small-scale allopatric isolation (Krystufek et al., 2007). This latter hypothesis could be confirmed by the high number of mutation steps within the Balkan sublineages in the minimum spanning network (Fig. 3). Recent studies suggest multiple glacial refugia in the Balkan Peninsula for different species, such as *Dinamromys bogdanovi* (Martino, 1922) (Krystufek et al., 2007), *Rana* (*Pelophylax*) (Lymerakis et al., 2007), and *Spermophilus citellus* (Linnaeus, 1766) (Krystufek et al., 2009).

Central–Northern European sublineage

The star-like topology in the minimum spanning network, the Fu's *F*_S* value, and the Strobeck's *S* index suggest a rapid expansion/colonization event for the Central–Northern European sublineage. However, the refugium of this sublineage is unclear. All analyses (Maximum Likelihood, Minimum Spanning Network, genetic distance analysis, and *F*_ST value) showed that the Balkan sublineage is highly divergent from the Central–Northern European sublineage. These results tend to imply that the Balkan sublineage did not contribute to the colonization of Central–Northern Europe. As suggested for several other species (Seddon et al., 2002; Deffontaine et al., 2005; Kotlik et al., 2006), modern populations of *M. avellanarius* from Central–Northern Europe could be derived from populations that survived in the Carpathian region, as it was covered with patches of mixed coniferous and deciduous forests instead of a uniform steppe-like landscape (Willis, Rudner & Sümerge, 2000). Fossil data tend to suggest such a hypothesis. Indeed, numerous fossil records of *M. avellanarius* have been found during the Late Vistulian (Pleistocene) period in the Deseczowa Cave in southern Poland (Nadachowski, 1989).

Turkish sublineage

The single Turkish specimen is also highly divergent compared with the Central–Northern European specimens. During the last glacial maximum, temperate forest remained in northern Turkey in a narrow band along the southern shore of the Black Sea, with a patchy extension to the south-west Caucasus (Adams & Faure, 1997). Pollen records indicate that deciduous oak was present in the southern, and particularly south-western, part of the Caucasus region from at least 12 000 years BP (Huntley, 1990, 1992). It seems possible therefore that this area of northern Turkey could be the site of a glacial refuge (Seddon et al., 2002). This hypothesis would need to be confirmed by a more extensive sampling of this region.

TAXONOMIC AND CONSERVATION IMPLICATIONS

The genetic divergence between lineage 1 and lineage 2 (approximately 7.7%) falls within the range of inter- and intraspecific *cby* distances observed in mammals (Bradley & Baker, 2001), more specifically in the Arvicolineae (Conroy & Cook, 2000; Jaarola & Searle, 2002, 2004; Haynes, Jaarola & Searle, 2003) and in the Glirinae (Bentz & Montgelard, 1999). Thus, the West European and Italian populations could be described under the phylogenetic species concept (Cracraft, 1983), like a subspecies or even an allo-species separated from a second subspecies formed by the Central–Northern European, Balkan, and Turkish populations. However, such a phylogenetic approach based on only one genetic marker is no longer widely accepted (Avise & Ball, 1990). Additional data from genetically independent loci is required before solid taxonomic conclusions can be made.
Corbet (1978) tentatively recognized five subspecies of *M. avellanarius* (including anglicus, corilinum, and muscardinus) in Sweden; *M. a. kroecki* Niethammer & Bohmann, 1950 in Bulgaria; *M. a. pulcher* Barrett-Hamilton, 1898 (including niveus and speciosus) in Italy and Sicily; *M. a. zeus* Chaworth-Musters, 1932 in Greece; and *M. a. trapezius* Miller, 1910 in Asia Minor. Namely, the geographic variation has never been assessed throughout the range of the species, and discontinuities in morphological variation have not been demonstrated. A more recent view observed great morphological homogeneity among the European populations, which does not allow the delineation of different subspecies (Wilson & Reeder, 2005). According to our results, there is no congruence of different subspecies (Wilson & Reeder, 2005).

Canestrelli D, Cimmaruta R, Nascetti G. 2007. Phyloge-

Chaworth-Musters JL. 1932. A contribution to our knowledge of the mammals of Macedonia and Thessaly. *Annals and Magazine of Natural History* 16: 166–171.

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of this article:

Table S1. Pairwise FST between lineages. *P < 0.5.

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.