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*Dipartimento dei Sistemi Agro-Ambientali, Università degli Studi di Palermo, v.le delle Scienze, edificio 4, Palermo, 90128,

Italy, †INVENTO s.r.l., via Nizza 52, Torino, 10126, Italy, ‡M.A.C. Minoprio Analisi e Certificazioni S.r.l. c/o Fondazione

Minoprio, Viale Raimondi 54, Vertemate con Minoprio (Co), 22070, Italy, §A.G.T. Advanced Gasification Technology S.r.l., Via

Trieste 2, Arosio (Co), 22060, Italy

Abstract

A poplar biochar obtained by an industrial gasification process was saturated with water and analyzed using

fast field cycling (FFC) NMR relaxometry in a temperature range between 299 and 353 K. Results revealed that

the longitudinal relaxation rate increased with the increment of the temperature. This behavior was consistent

with that already observed for paramagnetic inorganic porous media for which two different relaxation mecha-

nisms can be accounted for: outer- and inner-sphere mechanisms. The former is due to water diffusing from the
closest approach distance to infinity, whereas the second is due to water interacting by nonconventional

H-bonds to the porous surface of the solid material. In particular, the inner-sphere relaxation appeared to be

predominant in the water-saturated biochar used in the present study. This study represents a fundamental first

step for the full comprehension of the role played by biochar in the draining properties of biochar-amended

soils.
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Introduction

Biochar (BC) is a charred organic material, which is

applied deliberately to soils to improve fertility and to

contribute to the mitigation of global climate changes

through carbon sequestration in soils (Lehmann &

Joseph, 2009; Brewer et al., 2011; De Pasquale et al.,

2012). From a chemical point of view, BC is recognized

as a poly-condensed aromatic system where the degree

of poly-condensation may differ according to the tech-

nique used for its production (Warnock et al., 2007;

Lehmann & Joseph, 2009).

Clarkson et al. (1998) depicted biochar as a porous

material rich in paramagnetic centers having both inor-

ganic and organic nature. In particular, the inorganic

paramagnetic centers originate from the metals (e.g. Fe,

Cu, Mn etc.) usually present in the biomasses used for

biochar production. Conversely, the organic paramagne-

tism is due to the unpaired electrons of the delocalized

p-system generated during the charring reactions (De

Pasquale et al., 2012). Paramagnetic centers are distrib-

uted among surface-sites, also referred to as a-type, and
bulk-sites, also indicated as b-types (Clarkson et al.,

1998). As biochar is water-saturated, water can flow

between the a and b type sites through diffusional pro-

cesses, which can be hampered physically by the pore

sizes and chemically by the solid-liquid interactions

(Clarkson et al., 1998; Belford et al., 2000). The latter, in

turn, are described as hydrogen bonds between the oxy-

gen of water and the hydrogen atoms of the biochar

aromatic systems (Clarkson et al., 1998). However,

Belford et al. (2000) also indicated that possible water-

biochar interactions can occur between the electron-defi-

cient orbitals of the hydrogen atoms in water and the

orbitals containing the unpaired electrons of both the

inorganic and organic paramagnetic centers. These

interactions were also hypothesized by other authors

who examined the surface properties of paramagnetic

silica-based porous materials (Korb, 2001, 2006). Apart

from the diffusion between the a- and b-type sites,

water can also escape by the biochar surface toward the

bulk solution.

Nuclear magnetic resonance (NMR) techniques are

applied to recognize the dynamic properties of complex

systems (Conte et al., 2004; Kimmich & Anoardo, 2004).

In particular, longitudinal or spin-lattice relaxation rates

(R1) are the physical NMR parameters measured to

retrieve information on molecular dynamics. In fact,

spin-lattice relaxation occurs when the lattice experi-

ences magnetic fields fluctuating at frequencies resem-

bling those of the observed nuclei (e.g. protons).
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Fluctuating fields are generated by molecular motions,

which strongly affect dipolar interactions (Bakhmutov,

2004). However, it must be stated that single measure-

ments are not sufficient to assess a complete under-

standing of the dynamical properties of a complex

molecular system at a fixed magnetic field strength,

such as in the high field (or high resolution) NMR spec-

troscopy. In fact, relaxation rates are related to both

spectral densities [J(x)] at the appropriate magnetic

field frequency and the strength (C) of the dipolar inter-

actions being modulated. Both J(x) and C can be fully

evaluated only by running relaxometry experiments at

different temperatures, due to the strict dependence of

R1 values upon temperature (T) variations (Bakhmutov,

2004). Nevertheless, this approach can be routinely

applied only when temperature alterations of the matri-

ces under investigation are not attainable. Alternatively,

molecular dynamics can be monitored through the

modulation of the applied magnetic fields such as in

fast field cycling (FFC) NMR relaxometry (Kimmich &

Anoardo, 2004). The latter technique is considered as a

powerful tool for monitoring water dynamics in porous

systems with a wide variety of different chemical-physi-

cal properties (Korb, 2001, 2006; Kimmich & Anoardo,

2004; De Pasquale et al., 2012; Laudicina et al., 2012).

In our previous article (De Pasquale et al., 2012) we

have already suggested that relaxometry applied on

water-biochar systems allow to distinguish BC pore size

distributions. However, we also stated that paramagne-

tism prevents achievement of an absolute value for BC

pore sizes. In the present study, we intend to show that

paramagnetism can be used to monitor the nature of the

interactions at the water-biochar interface. This goal is a

very important step for the full comprehension of the

role played by biochar in the water dynamics in BC-

amended soils. We will make use of the knowledge

about FFC NMR properties of paramagnetic inorganic

materials for which very suitable physical models have

been already produced (Korb, 2001, 2006; Alhaique

et al., 2002; Strijkers et al., 2005; Caravan, 2006; Caravan

et al., 2007; Gossuin et al., 2008; Laurent et al., 2008).

Materials and methods

The biochar sample

The biochar sample was obtained from poplar (Populus spp. L.)

wood chips, which were in turn, retrieved from dedicated short

rotation forestry in the Po Valley (Gadesco Pieve Delmona, 45 °

10′13″ N, 10 °06′01″ E). The age of the forestry at the cutting

down was 5 years. The gasification process applied for biochar

production and the routine analyses for poplar biochar charac-

terization have been already reported in De Pasquale et al.

(2012).

Fast field cycling NMR experiments

The dried poplar biochar has been prepared as slurry for FFC

NMR relaxometry investigations according to the procedure

reported in Dunn et al. (2002). The theory describing FFC NMR

relaxometry can be found in Anoardo et al. (2001), Kimmich &

Anoardo (2004), Ferrante & Sykora (2005). The theory about the

pulse sequence applied in the present study has been described

in De Pasquale et al. (2012).
1H nuclear magnetic resonance dispersion profiles (i.e. relax-

ation rates R1 or 1/T1 vs. proton Larmor frequencies) were

acquired on a Stelar Spinmaster FFC2000 Relaxometer (Stelar s.

r.l.; Mede, PV, Italy) at temperatures of 299, 309, 323, 333, 343,

and 353 K. The proton spins were polarized at a polarization

field (BPOL) corresponding to a proton Larmor frequency (xL)

of 24 MHz for a period of polarization (TPOL) corresponding to

about five times the T1 estimated at this frequency. After each

BPOL application, the magnetic field intensity (indicated as

BRLX) was systematically changed in the proton Larmor fre-

quency xL comprised in the range 0.01–39.0 MHz. The period

τ, during which BRLX was applied, has been varied on 32 loga-

rithmic spaced time sets, each of them adjusted at every relaxa-

tion field to optimize the sampling of the decay/recovery

curves. Free induction decays (FID) were recorded following a

single 1H 90° pulse applied at an acquisition field (BACQ) corre-

sponding to the proton Larmor frequency of 16 MHz. A time

domain of 100 ls sampled with 512 points was applied. Field-

switching time was 3 ms, whereas spectrometer dead time was

15 ls. For all experiments a recycle delay of 12 s was used. A

non-polarized FFC sequence was applied when the relaxation

magnetic fields were in the range of the proton Larmor fre-

quencies comprised between 39.0 and 9.0 MHz. A polarized

FFC sequence was applied in the proton Larmor frequencies

BRLX range of 9.0–0.01 MHz (Kimmich & Anoardo, 2004).

FFC NMR data elaboration

R1 values were achieved by interpolating the 1H magnetization

decay/recovery curves at each BRLX value (i.e. 1H signal inten-

sity vs. τ) with the stretched exponential function (also known

as Kohlrausch–Williams–Watts function) reported in Eqn (1)

after exportation of the experimental data to OriginPro 7.5 SR6

(Version 7.5885; OriginLab Corporation, Northampton, MA,

USA). This equation provided the best fitting with the largest

coefficients of determination (R2 > 0.998). The choice of this

function was due to the large sample heterogeneity resulting in

a multi-exponential behavior of the decay/recovery curves

(Morozova-Roche et al., 1999). This approach has the advantage

that it is able to handle a wide range of behaviors within a sin-

gle model. For this reason, assumptions about the number of

exponentials to be used in modeling NMRD data are not

necessary.

I sð Þ ¼ I0 exp � s=T1ð Þk
h i

ð1Þ

In Eqn (1), I(τ) is the 1H signal intensity at each fixed BRLX, I0
is the 1H signal intensity at the thermal equilibrium, T1 is the

average proton spin-lattice relaxation time, and k is a
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heterogeneity parameter related to the stretching of the decay

process. This function can be considered as a superposition of

exponential contributions, thereby describing the likely physi-

cal picture of some distribution in T1.

The NMRD profiles reporting the calculated R1 values vs.

Larmor angular frequency (xL) were exported to OriginPro 7.5

SR6 and fitted with a Lorentzian function of the type (Halle

et al., 1998):

R1 ¼
PN
n¼1

cn
sn

1þ xLsnð Þ2

PN
n¼1

cn

ð2Þ

In Eqn (2), R1 is the longitudinal relaxation rate, τ is the corre-

lation time, a typical parameter for spectral density which, in

turn, describes random molecular motions (Kimmich & Ano-

ardo, 2004; De Pasquale et al., 2012). The number n of Lorentz-

ians that can be included in Eqn (2) without unreasonably

increasing the number of parameters was determined by means

of the Merit function analysis (Halle et al., 1998). For the pres-

ent study, n = 4 was used for the mathematical fit of the

NMRD profiles. This contrasts with the description of the

NMRD profiles in De Pasquale et al. (2012) where a three-com-

ponent Eqn (2) was applied. The difference between the pres-

ent study and that reported in De Pasquale et al. (2012) consists

in the spanned magnetic field range. In fact, in the previous

article the magnetic field interval 0.01–10 MHz was investi-

gated. In this study, the magnetic field range was expanded up

to 39 MHz. This was possible due to the use of two different

NMR instruments. In De Pasquale et al. (2012) we used a Stelar

Smartracer FFC NMR relaxometer, which allows to investigate

only up to a magnetic field of 10 MHz. Here we used a more

powerful Stelar Spinmaster FFC2000 relaxometer (see above)

that can span magnetic fields up to 40 MHz. For this reason,

the application of the three-component Eqn (2) used in De

Pasquale et al. (2012) proved unsuccessful here.

The obtained eight fit parameters (c1, c2, c3, c4, τ1, τ2, τ3, τ4)
were used to retrieve an average correlation time according to

Eqn (3) (Halle et al., 1998):

sCh i ¼
P

n cnsnP
n cn

ð3Þ

Results

Nuclear magnetic resonance relaxometry experiments

were conducted at variable temperature and at different

magnetic field strengths by applying a fast field cycling

NMR setup (see above in Materials and methods).

The experiments performed at the proton Larmor fre-

quency of 39 MHz revealed that the proton longitudinal

relaxation time values of water in the water-biochar sys-

tem were directly proportional to the inverse of the tem-

perature (Fig. 1). This feature was further confirmed in

the whole 1H Larmor frequency range chosen for the

FFC NMR experiments as reported in Fig. 2. In fact, the

NMRD profiles (Fig. 2) revealed that increment of the

longitudinal relaxation rates (R1 = 1/T1, as stated in

Materials and methods) was obtained as temperature

was changed from 299 to 353 K.

The advantage in carrying variable temperature

experiments at different proton Larmor frequencies lays

the possibility to retrieve Arrhenius graphs such as

those reported in Figs 3 and 4. The latter, in particular,

was obtained by monitoring the temperature depen-

dence of the correlation times calculated according to

Eqn (3). Arrhenius graphs allow achievement of the

activation energy (see Discussion below) for the physi-

cal-chemical processes (described either by the R1 val-

ues in Fig. 3 or by the <τC> values in Fig. 4) occurring

in the water-biochar system as temperature is varied

(see Discussion below).

Discussion

As water saturates a porous material, two different pro-

ton longitudinal relaxation mechanisms can be recog-

nized. The first one is indicated as outer-sphere

relaxation mechanism. It is described by the outer-sphere

longitudinal relaxation rate (R1out = 1/T1out). This relaxa-

tion mechanism is due to the water diffusing by the bio-

char surface, from a distance d, indicated as distance of

closest approach (Hwang & Freed, 1975), and infinity.

This diffusion occurs when weakly bound water is

replaced by other similar molecules belonging to the

bulk water system. From a mathematical point of view,

Fig. 1 Thermal variation of the longitudinal relaxation time

(T1). The dots are the T1 values of the water-saturated poplar

biochar measured at 39 MHz for temperature values ranging

from 299 to 353 K. The continuous line is the simulation of the

temperature dependency of the dipolar proton longitudinal

relaxation time as reported in Bakhmutov (2004). The simula-

tion has been done to show the motional regime occurring for

the water-biochar system.
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R1out is related to the diffusion constant (D), the distance

of closest approach (d), the amount of paramagnetic cen-

ters ([C]), and the translational correlation time (τD)
through Eqn (4) (Lauffer, 1987; Laurent et al., 2008):

R1out ¼ Y
C½ �
dD

7J xSsDð Þ þ 3J xIsDð Þ½ � ð4Þ

Here, Y is a constant containing the Avogadro’s number

(NA), the Plank constant, the quantum spin number,

and the magnetogyric ratios (c) of protons and para-

magnetic centers, respectively J xIsDð Þ is the spectral

density depending on the Larmor frequency of the elec-

trons in the paramagnetic center (S) and that of the pro-

ton nuclei (I). The translational correlation time is

temperature (T) dependent as reported in Eqn (5) where

g is the viscosity of the medium and k is the Boltzmann

constant (Lauffer, 1987):

sD / gd2

kT
ð5Þ

According to Eqns (4) and (5), decrement of R1out is

obtained when temperature is increased due to the

reduction of the temperature dependent translational

correlation time values. In other words, relaxation rate

reduction is achieved because temperature increment

favors water molecular motion, thereby reducing the

efficiency of the dipolar interactions between water and

biochar surface (fast motion regime in Fig. 1) (De Pas-

quale et al., 2012). The second relaxation mechanism is

indicated as inner-sphere relaxation mechanism and it

is described by the inner-sphere longitudinal relaxation

rate (R1inn = 1/T1inn). This mechanism is related: (i) to

the diffusion of water molecules to and from the a and

b type biochar sites and (ii) to the chemical exchanges

between water and biochar. The inner-sphere relaxation

mechanism is mediated by the H-bonds retrieved by

overlaying the electron-deficient orbitals of the hydro-

gens in water with the orbitals containing the unpaired

electrons of the inorganic and organic paramagnetic

centers in biochar (Desiraju & Steiner, 1999; Belford

et al., 2000).

Equation (6) describes the R1inn dependency upon the

molar fraction of water bound to biochar (fM), the pro-

ton longitudinal relaxation time of water coordinated to

the biochar paramagnetic centers (T1M) and the

exchange correlation time, τM, which measures the

mean residence time of the bound water (Korb, 2001,

2006; Alhaique et al., 2002; Caravan, 2006):

R1inn ¼ fM
T1M þ sM

ð6Þ

According to Lauffer (1987), the value of T1M is

described by the Solomon–Bloembergen equation (not

Fig. 2 NMRD profiles of water-saturated biochar at different

temperatures.

Fig. 3 Arrhenius graph of the longitudinal relaxation rate (R1)

at some different proton Larmor frequencies.

Fig. 4 Arrhenius graph for the correlation time (τC) of the

water-saturated biochar.
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reported here), which contains a dipolar (i.e. through

space) and a scalar, or contact (i.e. through bonding-

electrons), relaxation contribution. The two contribu-

tions are field dependent, therefore, they are discernible

by operating with fast field cycling NMR relaxometry

(Korb, 2001, 2006). Namely, scalar contribution to T1M

predominates at low magnetic fields, whereas the dipo-

lar contribution can be monitored at high magnetic

fields (Lauffer, 1987).

The total relaxation rate of the water-saturated bio-

char system is given by (Alhaique et al., 2002):

R1tot ¼ R1inn þ R1out ð7Þ
According to the mechanisms outlined above, vari-

able temperature fast field cycling NMR relaxometry

experiments can discern whether inner- or outer-sphere

relaxation contributions predominate in water-saturated

biochar systems. In fact, due to the temperature depen-

dence of the diffusional correlation time (Eqn 5), a

decrease of R1tot in the entire interval of the investigated

magnetic field frequencies must be observed if the

outer-sphere relaxation mechanism predominates (fast

motion regime). Conversely, two different cases must be

considered when R1inn prevails. In the fast motion

regime (Fig. 1) where τM � T1M, the chemical exchange

is fast, thereby indicating that R1tot is proportional to 1/

T1M (Eqn 6). Since T1M increases as temperature is

raised up because of a reduced efficiency of the dipolar

and the scalar relaxation contributions, a decrease of

R1tot must be obtained in the whole range of the mag-

netic fields spanned by FFC NMR relaxometry. When

τM � T1M, the slow motion regime occurs (Fig. 1). In

this case, R1tot depends upon the inverse of τM values

(Eqn 6). Due to the increasing water mobility as temper-

ature is raised, reduction of τM values is retrieved and

displacement of the NMRD profiles toward higher R1tot

values must be observed.

The black dots in Fig. 1 are the T1 values of the

water-saturated poplar biochar studied here. They are

measured at variable temperature at the proton Larmor

frequency of 39 MHz. All the points fall in the slow

motion regime region, thereby revealing that among the

different mechanisms outlined above, the relaxation is

dominated by the inner-sphere mechanism. This is fur-

ther confirmed by the NMRD profiles reported in Fig. 2,

where the curves move toward higher R1 values as tem-

perature is increased.

According to the inner-sphere relaxation mechanism,

we can infer that water molecules penetrate into the bio-

char pores and adhere to the surface of this carbona-

ceous material due to the formation of nonconventional

hydrogen bonds (Desiraju & Steiner, 1999).

In our previous article (De Pasquale et al., 2012) we

reported that a small amount of oxygenated functions

may be present in the poplar biochar due to the par-

tially oxidative conditions during gasification or to the

storage post production conditions. However, if O–con-

taining functions were present, they should have been

revealed by high resolution solid-state NMR spectros-

copy. Indeed, the spectrum of poplar biochar (not

reported here) only shows an intense aromatic carbon

signal centered at 126 ppm. This signal is generated

by the electronic currents produced by the delocalized

p-electrons in extended aromatic structures or graphite-

like micro-crystallites (De Pasquale et al., 2012). More-

over, the poplar biochar used in this study also contains

some potentially paramagnetic centers such as Fe, Cu,

and Mn (0.57, 0.30, and 0.035 g kg�1, respectively, see

De Pasquale et al., 2012 for details). For this reason we

suggest formation of nonconventional H-bonds (Desir-

aju & Steiner, 1999) between water molecules and the

inorganic and organic parts of poplar biochar. Accord-

ing to Belford et al. (2000), such H-bonds can arise by

the overlay between the electron-deficient orbitals of

protons in water and the orbitals containing the

unpaired electrons of the paramagnetic centers in

biochar (i.e. metals and aromatic system).

In his study on paramagnetic silica-based porous

materials, Korb (2001, 2006) suggested that the Arrhe-

nius graphs reporting R1 values at different tempera-

tures and magnetic fields (Fig. 3) provide the apparent

activation energy (Ea) for the proton mobility (e.g.

exchange) in the surface of the porous systems. Fitting

of the datasets reported in Fig. 3 gives an apparent acti-

vation energy of 5.8 kJ mol�1. According to Desiraju &

Steiner (1999) this Ea value is typical for H-bonds classi-

fied as ‘weak’ and it is typical for water bound to p-sys-
tems such as in the alkines (Nishio et al., 1998). It must

be stated that water-saturated biochar is a very complex

system, therefore, a distribution of H-bonds with differ-

ent energies and strengths must be conceivably hypoth-

esized. For this reason, the Ea value of 5.8 kJ mol�1

must be intended as an average apparent activation

energy accounting for all the possible interactions

between water and poplar biochar.

Application of Eqn (2) to fit the profiles in Fig. 2 pro-

vided a set of parameters (see Materials and methods)

used to retrieve an average correlation time as reported

in Eqn (3). The correlation time describes the random

molecular motions of molecular systems in porous

media (Kimmich & Anoardo, 2004; De Pasquale et al.,

2012). Namely, <τC> measures the time taken for a mol-

ecule to rotate one radian or to move a distance of the

order of its own dimension (Bakhmutov, 2004). As

expected, reduction of <τC> values with temperature

increment is observed (Fig. 4). In fact, as temperature is

raised, the kinetics of water molecules increases, thereby

allowing water to span the same volume in a shorter

© 2012 Blackwell Publishing Ltd, GCB Bioenergy, 5, 116–121
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time. However, due to the above evidenced predomi-

nance of the inner-sphere relaxation mechanism, we

suggest that the <τC> value of the water-saturated pop-

lar biochar corresponds to τM, which has been defined

as the parameter measuring the mean residence time of

the bound water. According to Bakhmutov (2004), corre-

lation time-vs.-T curve decays exponentially following

Arrhenius equation (Fig. 4) from which an activation

energy (i.e. the energy needed for the molecular motion)

of around 2 kJ mol�1 can be retrieved. Due to the

impossibility to collect more data points at temperatures

higher than those investigated here, the Arrhenius equa-

tion cannot be fitted properly. In fact, to obtain a good

estimate of a function parameter (Ea, in the present

study), it is necessary, from a mathematical point of

view, to cover the entire range of that function. In our

case, only the range of temperature comprised between

299 and 353 K was analyzed. This range covers only the

linear part of the exponential shape of the Arrhenius

equation. For this reason, we argue that the two Ea val-

ues (i.e. 5.8 and 2 kJ mol�1) cannot be considered differ-

ent within the experimental error. Both of them ensure

that water molecules are weakly bound by H-bonds

either to the inorganic paramagnetic centers or to the

paramagnetic hydrophobic organic part of the poplar

biochar.

The evaluation of the relaxometry properties of a

water-saturated poplar biochar suggested that water

molecules are bound to the solid carbonaceous material

through nonconventional hydrogen bonds. The compre-

hension of the mechanisms of the water-biochar interac-

tions is a preliminary step for the understanding of the

molecular mechanisms through which water can be

drained into biochar-amended soils, thereby affecting

soil physico-chemical properties. This knowledge is

very crucial to address biochar agronomical and envi-

ronmental uses and to allow meaningful pre application

quality assessments. However, it must be also pointed

out that this study deals with only one biochar from

poplar residues. To validate the model of the water-bio-

char interactions suggested here, further studies are

ongoing on biochars from different biomasses, and on

those obtained at different charring temperatures.
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