Novel non-invasive Adjunctive Techniques for Early Oral Cancer Diagnosis and Oral Lesions Examination

Valeria Mercadantea,*, Carlo Padernib and Giuseppina Campisib

aUniversity College London Eastman Dental Institute, London, UK; bSector of Oral Medicine “V. Margiotta”, Section of Oral Sciences, Department of Surgical and Oncological Disciplines, University of Palermo, Palermo, Italy

Abstract: Oral cancer is a potentially fatal disease with an increasing incidence and an unchanged 5-year mortality rate. Unfortunately, oral cancer is often still late diagnosed, which leads to an increase in the likelihood of functional impairment due to treatment and mortality rate. Definitive diagnosis of oral cancer must be confirmed by scalpel biopsy and histological assessment. However despite its benefits, scalpel biopsy is invasive and it is burdened by a potential morbidity. Furthermore, previous studies have suggested a high degree of intraobserver and interobserver variability regarding the histological evaluation of malignancy. As a consequence, in recent years there has been a growing and persisting demand towards developing new non-invasive, practical diagnostic tools that might facilitate the early detection of oral cancer. The most investigated non-invasive adjunctive techniques are vital staining, autofluorescence, chemiluminescence, narrow band imaging, and exfoliative cytology. Aim of the review is to critically describe these adjunctive aids and, after considering the literature data, an expert opinion on the effectiveness and the possible use of each technique will be provided.

Keywords: Oral cancer, potentially malignant disorder, early diagnosis, screening, vital staining, autofluorescence, chemiluminescence, narrow band imaging, exfoliative cytology, oral biopsy.

1. INTRODUCTION

Oral cancer is the sixth most common cancer worldwide with increasing incidence and mortality rate [1-3]. Its early detection is crucial to improve survival and reduce morbidity, disfigurement, loss of function, poor quality of life, duration of treatment and hospital costs [4, 5]. Despite numerous technological advances over the last fifty years, the survival rate linked to Oral Squamous Cell Carcinoma (OSCC) did not undergo a marked improvement, and it amounts to approximately 50% at five years [6]. The poor prognosis is due to several factors, including the advanced stage of disease (Stage III or IV) at diagnosis. Despite the oral cavity is a readily accessible site for a visual examination and palpation and the nature of the neoplastic process which is considered as a multi-stage phenomenon, often evolving from oral Potentially Malignant Disorders (PMDs), OSCCs are still late diagnosed [7]. The 5-year survival rate for patients with primary oral cancer is still one of the lowest between the most invasive cancers, with loco-regional recurrence as primary cause of death [8]. Consequently, an intensive follow-up regimen is set up to discover recurrences or a second primary cancer as early as possible. OSCC stage at the time of diagnosis influences also the therapeutic options available with significant risk of acute and chronic side effects above all related to surgical/non-surgical cancer therapy, reducing patient quality of life and the likelihood of long term survival [9].

The problem of the diagnostic delay could be partly solved by using two different approaches: first, screening programs to identify asymptomatic patients with suspected “high risk” lesions and then, improving the ability to detect early cancer lesions and to identify the PMDs having an increased risk of malignant transformation. To address these issues, several practical guides have been published and specific diagnostic tools have been developed to identify dysplasia and cancer lesions in asymptomatic patients with an oral abnormality.

The diagnostic process begins with a comprehensive medical history and a head and neck examination. Dentists are professionally responsible for providing a comprehensive oral examination and follow-up for their patients: an early diagnosis of oral cancer could mean the difference between life and death. The Conventional Oral Exam (COE) under white light is a non-invasive and simple procedure whose goal is to detect any nodule, swelling, mucosal alteration (ulcerations, textural or colour changes) and/or unexplained neck lymph nodal adenopathy. COE has been considered as a life-saving test [10], which seems to be associated with a reduction in mortality among high-risk patients, especially when performed by highly qualified staff [11]. However, there is evidence that the COE alone may be of limited value as a method of screening for oral malignancies [12, 13]. On the contrary, a relatively high rate of sensitivity and specificity for COE has been reported [14]. Although the clinical examination has been increasingly used in the past and it has been considered as the first step of the diagnostic process in order to define a provisional diagnosis, which may be confirmed by further investigations, COE is strongly dependent on the experience in oral medicine of the clinician who performs it. The classic presentation of a potentially malignant disorder or early cancer lesions as a red or white lesion, persistent ulcer, provides some difficulties in the differential diagnosis with other benign conditions. In the presence of these lesions, COE is unable to identify those at “high risk” of progression. Furthermore, recent studies suggest that dysplasia or micro-invasive carcinoma can occur in clinically normal-appearing mucosa [15]. The clinical examination is absolutely useful in the discovery of oral lesions, but it seems not be able to identify accurately the biologically relevant lesions susceptible to neoplastic transformation. Currently, the gold standard diagnostic test for OSCC is an oral biopsy with histopathology. Unfortunately, available studies reported inter-observed and interobserver variability in the histologic diagnosis of dysplasia and SCC, with reported agreement rate of only 56 % [16]. Clinical features of the lesion, specimen characteristics, artefacts resulting from crushing, fulguration or incorrect fixation and freezing, experience of the pathologist may play a part in determining the diagnosis [17, 18]. The grade of malignancy and depth of invasion are also important prognostic factors, strongly influenced by the size and the depth of biopsy [19-21].
This finding suggests the need to reduce the variability in the diagnosis of oral malignant lesions. This goal can be achieved implementing techniques to early detect malignant alterations in the oral cavity.

However, there is a wide range of available tools that could be used in order to identify early signs of cancer. With so many commercial diagnostic aids and adjunctive techniques to choose from these days, it becomes hard for the dentist to determine if a diagnostic tool will be appropriate and useful for oral cancer screening.

Aim of the present paper is to present available evidence, if present, regarding the adjunctive techniques that may facilitate the early detection of oral cancer, citing and discussing also systematic review and meta-analysis on this topic. The diagnostic adjunctive techniques evaluated in this review are vital staining, chemiluminescence, direct autofluorescence, exfoliative cytology and narrow-band imaging.

2. VITAL STAINING

The vital staining is a technique that exploits the properties of certain dyes to highlight some tissues, cells or cellular organelles. Available studies reported that the examination of the oral mucosa can be performed by staining with rose Bengal, already widely used to diagnose various ocular surface disorders [22, 23], methylene blue, recently proposed for screening gastrointestinal or prostate tumors because it seems less toxic to the human [24, 25] and Lugol’s solution, used to evaluate esophageal, gastrointestinal and gynecological abnormalities [26-28]. However, the more common vital stain in oral medicine is the toluidine blue (TB), a vital acidophilic metachromatic stain of the thiazine group that has been effectively used in nuclear staining because of its binding to DNA nucleic acid. For this reason, it has been widely used to facilitate early detection of malignant lesions and by the surgeons to demarcate intra-operatively the extension of the lesion [29]. In recent years, the diagnostic ability of the TB staining was evaluated in a large number of studies. Epstein et al. showed the increase of the sensitivity of clinical examination after the application of TB in the detection of malignant lesions in high-risk patients [30]. There are some evidences that TB appears to improve precancerous lesion visualization by showing high-risk areas (areas of high cell proliferation), therefore guiding biopsy. In vivo, toluidine blue stains deoxyribonucleic acid and may be retained in intracellular spaces of dysplastic [31]. Furthermore, it can be found in dysplastic cells and malignant tissues at sites of loss of tumour suppressor genes, potentially predicting a malignant transformation of premalignant lesion or representing an OSCC at diagnosis [32]. Some Authors suggest also that the staining intensity after TB application may provide important information related to the binding of the stain with the molecular changes, predicting the neoplastic risk, most importantly in case of second OSCC or recurrence [33]. In another study, the Authors investigated the molecular profile of PMDs positive and negative after TB staining, by evaluating the relationship between intensity of staining and chromosomal aberrations [34]. The loss of heterozygosity, which occurs more frequently in samples positive to TB, may indicate an increased risk of neoplastic progression [35]. Zhang et al. showed a progression risk four times higher in lesions with mild dysplasia or benign histopathology, when they were positive to TB [33].

The analysis of the current scientific evidence suggests that the sensitivity is higher in cancer cases than in cases of dysplasia. Overall, the sensitivity of this technique for detection of oral cancer range from 0.78 to 1.00 and specificity from 0.31 to 1.00 [36]. Although TB is highly sensitive and moderately specific for malignant lesions, it is far less sensitive to PMDs with false-negative rates of up to 58% reported for identifying mild to moderate dysplasia [37]. False negatives occur in a minority of cases, especially in the most recent case series in which the product has undergone some improvements. Nevertheless, the binding of TB to the nucleic acid may occur also in the mucosal ulceration, granulation tissue and inflammatory lesions thereby contributing to the number of false positives. However, unlike in the malignant lesions, the coloration of these traumatic benign lesions does not persist for a long time and is often located on the periphery of ulceration. To reduce the number of inflammatory lesions that can cause false positives, it is highly recommended a further assessment of non-healing wound after 15 days at least.

There is evidence that the TB test is helpful in identifying oral cancers, confirmed by the positive clinical experience of clinicians that have used this approach for years. Nevertheless, there is insufficient evidence to recommend for or against the stand-alone use of TB to enhance the identification of potentially malignant lesions in the general population. [38]. However, considering the dramatic implications of undiagnosed OSCC, and being the application of toluidine blue staining fast, minimally invasive, inexpensive and well patient-accepted, in this review the Authors would support the use of TB as a diagnostic tools in the hands of clinicians adequately trained in the exact interpretation of its results (Fig. 1a-b). It is also strongly recommended not using it as a substitute for biopsy, but rather as a complementary aid during the diagnostic phase, guiding the choice of the biopsy correct site and in the follow-up phase in order to early detect any recurrence or secondary OSCC.

3. CHEMILUMINESCENCE

The term “chemiluminescence” refers to the emission of light radiation in the visible range after the electrons, excited by a chemical exogenic reaction, returning from the excited to the ground state; the potential energy of electronic transitions within the atoms or molecules is thus released in the form of light photons. This technique is correctly based on the reflectance phenomenon that indicates the proportion of incident light that a given surface is able to reflect. This technique has been used for many years as a diagnostic aid in the examination of cervical mucosa for the detection of potentially or malignant lesions.

Dehydration with acetic acid highlights the altered nuclear-cyttoplasmic ratio of the neoplastic epithelial cells and thus malignant tissues assume a characteristic “aceto-white” appearance [39-41]. This phenomenon can be further amplified by replacing conventional lighting with diffused blue-white chemiluminescent illumination.

Considering the morphological similarities between cervical and oral epithelia, recent this technique has been proposed also for the oral cavity [42]. Approved by the FDA and introduced into the market under the name of ViziLite Plus® (Zila Pharmaceuticals, Fort Collins, USA), MicroLux DL® (AdDent, Danbury, USA) and Orascoptic DK™ (Orascoptic, Middleton, USA), these diagnostic aids aim to enable a better identification, assessment and monitoring of oral mucosal abnormalities in populations at increased risk of oral cancer. The main difference between the available disposals is that ViziLite Plus involves the use of single-use chemiluminescent stick, while MicroLux DL and Orascoptic DX provide a blue-white LED fiber optic light.

ViziLite Plus® consists of the emission of light from a chemical reaction between hydrogen peroxide and acetylsalicylic acid inside a capsule stick. During the chemical reaction, is produced a light with a wavelength between 430 nm and 580 nm that lasts for around 10 min. In vivo, light with a wavelength of 430 nm is absorbed by the melanin present in the skin. This phenomenon is further amplified by replacing conventional lighting with diffused blue-white chemiluminescent illumination.
chronic inflammatory infiltrate, reflect the reflect light and appears white (aceto-white lesion) with distinct margins [43, 44]. Many studies have examined the reflectance of the tissue after rinsing with acetic acid as an aid to screening for oral cancer [36]. Although ViziLite is widely used in the United States for the evaluation of suspicious oral lesions, especially when used in association with the Toluidine Blue solution to mark the lesions to posterior biopsy, evidence is lacking in support of its effectiveness. A recent review [45] reported that sensitivity of this device was 100% and specificity ranged from 0%-14.2%, showing that this method is not able to discern between benign hyperkeratosis, inflammatory diseases, OSCC and PMDs [46-49]. Moreover, the reported high sensitivity could be related to the design of the studies, which often involved only patients with mucosal lesions previously visualized under conventional light. In short, the evidence supporting the use of the system to aid the early detection of OSCC and PMDs is actually quite scarce.

However, available evidence suggests the use of chemiluminescence to enhance visual parameters of the lesions in terms of brightness, sharpness (margin delineation), surface texture and, in some cases, size of lesion compared with parameters after conventional light. Due to the improved visual parameters, chemiluminescence-based device can be considered a useful tool for investigating oral mucosa and improving the visualization of white lesions [50], but does not increase the early detection of PMDs and is not recognized an additional clinical benefit, since the additional costs that arise from its use [51, 52].

The above-mentioned Microlux/DL®, which shares the basic principles of ViziLite, consists of a light-emitting diode (Power LED), a reusable light source that produces a diffused light. A recent study evaluated the sensitivity and specificity of Microlux/DL, showing values of 77.8% and 70.7% respectively, although it is a poor discriminator for inflammatory, traumatic, and malignant lesions.

Available studies reported that this approach does not seem to be significantly more useful than a clinical examination under conventional LED white-light [53] (Fig. 2a-b).

Further controlled trials are needed to determine specifically the ability of these devices in early detecting PMDs clinically not visible under conventional light.

4. DIRECT AUTOFLUORESCENCE IMAGING

The direct autofluorescence is a method that exploits the ability of some molecules (fluorophores) to absorb a light of a particular wavelength and release it with a greater wavelength after short time. Normal healthy cells contain endogenous fluorophores such as Nicotinamide Adenine Dinucleotide (NADH), Flavin Adenine...
Dinucleotide (FAD) and the cross-linked collagen, which show broad excitation spectra (250–450 nm) and release 500 nm light when subjected to a blue-violet light (400–460 nm), appearing as a green-apple areas. It has been demonstrated that changes in the structure and metabolism of the mucosae alter the distribution of fluorophores within the tissue [36].

Abnormal cells have been shown not able to reflect fluorescent light, and thus absorb it, appearing as dark areas under 400–460 nm light.

Recent studies have shown that the autofluorescence imaging represents an incredibly promising tool in screening and diagnosis of premalignant conditions of the lung, cervix, skin, and finally the mouth [54-57]. The mechanism behind tissue autofluorescence tissue has been extensively described elsewhere [58, 59]. Briefly, loss of autofluorescence is believed to reflect the complex and progressive morphological and biochemical changes, typical of squamous epithelial carcinogenesis [60]. During cancer progression, the optical properties of epithelial surface and underlying stroma are altered, due to changes in structure (e.g. hyperkeratosis, hyperchromatin and increased cellular nuclear pleomorphism) and metabolism (concentration of FAD and NADH within the epithelium as well as changes of the sub-epithelial stroma in terms of composition of the collagen matrix and elastin) [61]. These changes can alter the distribution of tissue fluorophores and as a consequence, an increased light absorption or diffusion after stimulation with a blue (400–460 nm) light can be observed, which in turn reduces and modifies the detectable autofluorescence.

Several studies have evaluated the possibility of using tissue autofluorescence to differentiate and early detect cancers of the oral cavity [62, 63]. Commercially available diagnostic tools based on direct autofluorescence imaging are VELscope® (LED Dental, Vancouver, British Columbia, Canada) and Sapphire® Plus (Den-Mat Holdings, Santa Maria, CA). These tools consist of portable devices developed in order to improve the detection capability of OSCC and PMDs [64, 65], by highlighting the loss of tissue fluorescence correlated with some oral diseases, thanks the use of a 400–460 nm light with a wavelength compatible with the emission spectrum of the endogenous fluorophores [66].

This technique involves first a clinical examination under conventional white light and, after turning off the lights, a further clinical examination by using the handpiece device, keeping at a distance of about 5 cm from the oral cavity to optimize the visualization of tissue fluorescence.

In the healthy oral cavity, there are components that may positively or negatively affect the tissue fluorescence. Some components such as the blood hemoglobin and melanin have been shown able to reduce fluorescence, while fibrin, keratin and porphyrin appear to increase the fluorescence.

For this reason, a pattern of fluorescence within the oral mucosa can be normally described, depending on the oral site. For example, the fungiform papillae on the tongue dorsal surface appear as dark areas, since the end of filiform papillae are keratinized and emits a fluorescent light; along the tongue ventral surface, blood vessels appear dark, because of the high blood flow and finally the attached gingiva is often clear for its ultrastructural characteristics, being rich in keratin.

In addition, the oral cavity is naturally exposed to various degrees of mild inflammation and chronic irritation, and thus some oral sites could show a darker appearance characterized by poorly defined boundaries, caused by the increased inflow of blood.

If a dark area appear during direct fluorescence visualization, the oral lesion must be considered as a suspected one and the clinical examination should be repeated by applying a pressure with the back of a dental mirror or a similar tool with a sweeping motion, in order to remove blood from the examined area. If the normal apple-green fluorescence returns after this pressure, the lesion is likely to have an inflammatory component (Fig. 3a-b).
Unfortunately, this approach often fails because neoplastic or dysplastic areas often can be detected in surgical margins [77]. Therefore, the feasible use of tissue fluorescence as a guide for the detection of field alterations and the extension of tumour margins during surgical excision is extremely interesting, but still a number of efforts should be performed to validate this hypothesis.

There is also evidence of significant clinical value of this device in a referral clinic specialized in diagnosing and treating oral cancer [78]. This non-invasive tool should be seen as complementary device that cannot fully replace the histopathological assessment during diagnosis and monitoring steps (Fig. 4a-c). During the diagnostic moment, such device could enhance the visualization of clinical features of lesions and in particular, it could help clinicians in selecting the correct site or sites to be submitted to biopsy, thanks to highlighting the margins. During the follow-up step, this tool could be useful, especially within an oral medicine secondary care facility, in clinical monitoring of OPMDs with definite histological diagnosis and in patients with a previous history of OSCC [79, 80].

5. EXFOLIATIVE CYTOLOGY

Exfoliative cytology consists in collecting cell samples from mucosal surfaces by means of scraping, brushing or rinse in order to detect any cytological alteration. This technique was first designed for cervical cancer early detection [19] and it has recently proposed in oral medicine to detect primitive cell changes related to malignancy. This technique is also useful for the diagnosis of oral lesions related to viral and fungal diseases [81]. However, the main limitation of this method is the collection of disaggregated cells, which therefore does not allow the pathologist to reach a definitive diagnosis. Available studies reported that sensitivity and specificity of conventional exfoliative cytology in detecting OSCC lesions, ranged between 76.8%–100%, and 88.9%–100%, respectively [82]. Brushing proved to be a more convenient collecting method compared with the wooden spatula when dealing with oral lesions [83]. The combined use of TB staining and brush cytology was found to be highly sensitive and moderately specific for OSCC lesions (6% false-negative rate) but less sensitive to the PMD lesions with a sensitivity of 89% and a specificity of 92% [37].

Liquid-Based Cytology (LBC) is a sample filtration method originally developed to provide a near-monolayer of superficial cervical cells, which can be more easily inspected. A study reported that the application of LBC on oral cell samples collected by brushing can significantly improve cell distribution and smear thickness, leading to an easier identification of abnormal cells and reporting an higher sensitivity and specificity (95.1% and 99.0% respectively) [84]. However, the LBC method was designed just for superficial cytology samples, thus it leads to the destruction of epithelial fragments, so it is likely that the use of LBC for diagnosing oral lesions is of minimal value [51].

Recently, a new technique has been developed to improve the reliability of this method in investigating mucosal lesions not subjected to biopsy. OralCDx® (OralScan Laboratories, Inc., Suffern, NY) is a computer-assisted method for the analysis of cellular samples collected by using a patented brush. This technique method, unlike the conventional cytology, allows obtaining a complete transepithelial sample in which all epithelial layers (superficial, intermediate and basal) are represented. The full-thickness epithelium sampling is essential for a correct diagnosis [85].

The sampling is obtained from a brush specifically designed to improve the inadequate samples of standard cytology, which re-
The cytology is not comparable to the histological diagnosis and these two techniques should not be considered antithetical, but complementary: in case of abnormal cytology, it is strongly recommended that patient undergo a conventional biopsy [96].

6. NARROWBAND IMAGING

The NarrowBand Imaging- NBI (Olympus Optical Co. Ltd, Tokyo, Japan) is a novel endoscopic technique based on the use of special optical filters that narrow the light bandwidth to enhance the visualization of the mucosa surface and microvasculature [97, 98]. NBI is a method to visualize the structure of the surface capillaries, in particular the intrapapillary capillary loops, and the vascular architecture of the submucosa, allowing the physician to have additional information to early identify atypical tissues. In neoplastic lesions, blood vessels are modified by dilation, meandering and calibre irregularities distinguishable from healthy oral mucosa [99]. Their morphological changes are useful for early diagnosing cancers, determining the depth of invasion and the margin of resection [100].

The NBI system was first used by Gono et al. [101] and today is widely used for the examination of the esophageal and pharyngeal mucosa [102]. Since oral mucosa and esophagus are both covered by squamous epithelium presenting similar vascular architecture, it is likely that it could be powerful in detecting OSCC. In scientific literature only few case series have been reported in which the NBI system was used for early detection of precancerous lesions of the head and neck region, including pharynx and floor of the mouth [103]. Authors reported that the identification of the resection margin of the lesions thanks to NBI device was signifi-

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>May assist dental care providers, who have advanced training in the clinical assessment of potentially malignant disorders and in the selection of the optimal biopsy site.</td>
<td>Insufficient evidence to recommend for or against the stand-alone use of toluidine blue to enhance the identification of potentially malignant lesions in the general population.</td>
</tr>
<tr>
<td>Could help identify potentially malignant lesions that may not be visible to the naked eye.</td>
<td>There is some evidence that VELscope may improve the determination of surgical margins and selection of the optimal biopsy site; there is insufficient evidence that these devices improve patient compliance and that devices based on autofluorescence improve the detection of potentially malignant lesions.</td>
</tr>
<tr>
<td>Could enhance visual parameters of the lesions in brightness, sharpness, surface texture and size of lesion.</td>
<td>There is insufficient evidence that devices based on tissue reflectance improve the detection of potentially malignant lesions.</td>
</tr>
<tr>
<td>May help the practitioner identify the presence of atypical cells in mucosal lesions.</td>
<td>There is no published evidence regarding the utility of narrowband imaging in oral cancer detection.</td>
</tr>
<tr>
<td>May help the practitioner to enhance the visualization of the mucosa surface and microvasculature.</td>
<td>There is insufficient evidence that devices based on tissue reflectance improve the detection of potentially malignant lesions.</td>
</tr>
</tbody>
</table>

Table 1. The main non-invasive aids developed for oral cancer screening: indications and literature evidence; adapted from “Evidence-based clinical recommendations regarding screening for oral squamous cell carcinomas”- by Rethman M.P.-2010 [64]
cantly improved when compared with other conventional systems, suggesting that this device may play an important role in the management of OSCC of the oral cavity [104]. NBI has several advantages as a diagnostic tool. The equipment is easy to manage. It is non-invasive and stress-free for the patient. It can be used for post-operative monitoring, for the PMDs follow-up and for establishing the lesion margin of resection. A recent study recommend a routine follow-up with NBI in patients with OSCC after treatment [105]. Since evidence is lacking, no firm conclusion can be drawn regarding the usefulness of NBI in early detection of oral cancer, but further studies are needed.

CONCLUSIONS

Early diagnosis of oral cancer is essential to ensure a better prognosis for patients in terms of disease-related morbidity and mortality. Screening by means of conventional clinical exam by using the incandescent light has been confirmed useful in detecting early and advanced oral cancer. However, the clinical features of the lesions alone cannot really allow distinguishing between benign and malignant lesions or selecting the potentially malignant lesions, which have a higher transformation risk. Up to now, oral biopsy is the only method to provide a definitive diagnosis in presence of oral suspicious lesions. Despite some limitations associated with the sampling site and the difficulty of classifying dysplasia, oral biopsy still represents the gold standard for OSCC and PMDs diagnosis. Furthermore, in presence of potentially malignant disorders, biopsy may allow distinguishing lesions at higher risk of transformation, but currently markers useful to detect oral lesions with inevitable risk of transformation are still lacking.

In a recent clinical trial conducted in India, where the prevalence of OSCC is very high, the Authors concluded that the conventional clinical exam couldn’t lower the rate of disease-specific mortality in the general adult population. Considering this aspect, the Authors conclude that any procedure that facilitates visualization of suspicious lesions could help the clinician in its detection [106].

After reviewing the latest literature on the non-invasive methods for OSCC and PMDs diagnosis, there is insufficient evidence to recommend for or against the stand-alone use of these methods for identifying potentially malignant lesions.

Despite the lack of strong evidence that toluidine blue is a cost-effective method of screening in the general population, toluidine blue can be used by clinicians experienced in oral medicine, thanks to its non-invasive nature and its capability to provide information regarding lesion margins and to guide the choice of biopsy site.

In the other reported studies, there is no evidence that devices based on tissue reflectance and autofluorescence can improve the detection of potentially malignant lesions. Some Authors have highlighted the possibility of early recognition of clinically occult lesions thanks to the direct visualization of tissue autofluorescence. However, these studies are only case series and therefore have a low level of evidence. The technique based on tissue autofluorescence provides an improvement in the visualization of some lesion clinical features, such as the margin extensions, and therefore, it should be considered as a complementary exam for the margin determination and selection of the optimal biopsy site in large or multifocal lesions or during surgery, by using oral biopsy as the “gold standard”.

In a recent paper, tissue autofluorescence method reported relatively low values of sensitivity, indicating the probability of giving false negatives [107]. This is a great limitation in using this technique as screening tool in “high risk” population, since it cannot always identify lesions with dysplasia, especially in case of mild dysplasia, which could represents the first histological change during oral carcinogenesis. However, specificity values are high, suggesting that the probability to give false positives is low.

Evidence in the literature to recommend the chemiluminescence method for early detection of oral cancer and potentially malignant disorders is strongly limited. Based on the collected data, the technique could be used just as an additional tool to improve clinical visualization, but only in case of white oral lesions. Moreover, although it has been reported that these light-based methods can provide an aid in the detection of malignant lesions, the limitation of conventional clinical examination in discerning the low-risk lesions from those at high risk of transformation is not completely resolved.

Brush cytology, and in particular OralCDx®, has demonstrated validity as a method for identifying atypical cells disaggregated but, nevertheless, it must be emphasized that atypical findings can frequently be obtained if the test is performed on reactive or inflammatory lesions. If the brush test is performed on oral lesions that may mimic clinically potentially malignant disorders, without considering the patient’s history and the clinical history of the lesion, it can lead to false positives. This method should not be considered an alternative exam to biopsy, rather there are some recommendations about the usefulness of the technique in some specific clinical situations. These may include patients that have multiple oral lesions without a history of oral cancer, or patients with poor compliance, which poorly accept the possibility of being subjected to several biopsies during the follow-up.

In conclusion, we should explain that “insufficient evidence” does not necessarily mean that the technique is effective or not is, but instead means that the literature review did not find sufficient evidence to support a recommendation of using these methods.

CONFLICT OF INTEREST

The authors confirm that this article content has no conflicts of interest.

ACKNOWLEDGEMENT

None declared.

REFERENCES

