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Wind power generation is growing rapidly in many locations around the world. Power systems are able
to absorb large amounts of wind capacity, but operational problems arise when the wind power penetra-
tion becomes high. Such factors as voltage dips, frequency variations, low power system stability, low
reactive power and power flow imbalances reduce the economic value and represent a barrier to the
unlimited development of wind energy. Hydrogen production from wind power that is not matched with
hourly electricity demand appears to be an attractive storage option capable of providing a balancing ser-

ﬁ%":g;gi vice to the electricity generators and suppliers for mitigation of the negative impacts due to the random
Wind energy nature of wind. Because of its multi-functionality, hydrogen can be used directly as a fuel, mixed with
Wind-hydrogen system methane, or transmitted through pipelines to the users. The aim of this paper is to produce useful sug-
Electrolysis gestions for the planning, development and sizing of wind-hydrogen systems by taking into account

the local and regional resources, demands, constraints and opportunities. This study considers both the
economic and technological variables and describes an optimisation method (OM) for analysing power
systems in which part of the electricity generated by a grid-connected wind plant is used to produce
hydrogen by electrolysis. An example application of this OM has been developed for a specific geograph-
ical area located in central Sicily. Our results identify the potential and the limitations connected to cases
that use excess wind power to produce hydrogen for civil applications.

© 2012 Elsevier Ltd. All rights reserved.

Energy storage

1. Introduction

The addition of wind power to power generation systems re-
duces the amount of environmentally hazardous emissions created
by electricity production and decreases the operational costs of the
power system because less fuel is consumed in conventional
power plants. Wind power also adds a capacity value to the power
system [1].

However, wind power increases variability and uncertainty
in power systems, which can induce potential impacts on the
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reliability and efficiency levels. In principle, these impacts can be
either positive or negative [2].

The negative impacts that wind power may have on a power
system would not offset the benefits of incorporating wind energy
into the system. The disadvantages of incorporating wind power
can be local (voltage dips, frequency variations and low power fac-
tors) and wide-scale (lower power system stability, lower reactive
power/voltage control and power flow imbalances) [1,3,4].

Electrical systems with high wind penetration levels contain
operational problems that reduce the economic value of wind en-
ergy and present a barrier to the unlimited development of wind
energy. The introduction of such new technologies and strategies
as forecasting, geographical dispersion, interconnections to neigh-
bouring systems and sophisticated power electronics will mitigate
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these problems. However, because these strategies cannot com-
pletely mitigate the random nature of wind, the large-scale use
of wind power will ultimately require uptake via energy storage.
Because of its multi-functionality, hydrogen represents an attrac-
tive storage option with the ability to provide a balancing source
for electricity generators and suppliers [5,6].

The hydrogen produced from electricity generated by grid-
connected wind power plants may be used in a variety of ways: it can
be used directly as a fuel, mixed with methane, transmitted through
pipelines to users, or used to enhance the performance of the wind
turbines and match their output with the user expectations [7].

Wind-hydrogen generation has been previously studied by sev-
eral authors.

Korpds and Greiner [8] have developed a logistic simulation
model to evaluate the performance of the wind-hydrogen plants.
Their project analysed a case study that simulates the use of excess
wind power in a weak distribution grid to produce H, for vehicles.
Their results show that introducing electrolytic H, production as a
controllable load can significantly increase the penetration of wind
power in an electrical power system.

Mantza and De Battista [9] have investigated the control
requirements necessary to simultaneously achieve the grid and
electrolyser specifications in a wind-hydrogen energy system by
exploiting the idle generation capacity of modern wind turbines
to produce hydrogen.

Jorgensen and Ropenus [10] performed a study using four dif-
ferent wind penetration scenarios to investigate the production
price of hydrogen from grid-connected electrolysis in the West
Danish electricity system. The results from their study yielded esti-
mations of a minimum hydrogen price of 0.41-0.45 €/Nm> (32-
35 €/G]), which is significantly higher than the suggested DOE
milestone of 18 $/G]J for 2015.

Shaw and Peteves [11] used a cost-benefit approach to evaluate
the final impact on the end-consumer of using the wind-hydrogen
systems. This group concluded that exploiting the synergies in the
European hydrogen and wind sectors through a Europe-wide
wind-hydrogen strategy has the potential to enhance the pros-
pects for commercialisation of the renewable electrolytic hydrogen
pathway in the short-term.

Linnemann and Steinberger-Wilckens [12] have studied two
different wind-hydrogen systems and analysed the ensuing cost
of hydrogen per unit of energy service. This group investigated
two hydrogen generation plants: a small (305 kW) decentralised
installation and a large (297 MW) plant. Their results showed that
the total hydrogen cost (including the German petrol tax and
the VAT) of the small plant was more than two times the total
hydrogen cost of the larger plant. They also calculated the order
of magnitude between internal and external costs of gasoil and
hydrogen production in the large-scale installation as referenced
against the total fuel cost of vehicles per 100 km of travel. They
found that the ratio between the internal costs of hydrogen and
gasoil has a factor of 3. This ratio is reduced to a factor of 2, approx-
imately, if the total (internal + external) cost is considered.

Greiner et al. [13] have developed a method for assessing the
wind-hydrogen energy systems that enables optimised compo-
nent sizing and calculation of H, cost. This method was applied
to a case study on a Norwegian island. The sensitivity analyses
showed that a marginal decrease in the wind turbine and electro-
lyser cost could reduce the H, cost substantially in both the grid-
connected and isolated systems.

Pelacchi and Poli [14] have proposed the use of hydrogen
storage as a feasible policy for adoption in real-time by the Inde-
pendent System Operator (ISO) to maintain a certain level of
reliability within the hydro-thermoelectric systems. In a case
study calibrated on the electric power system of one of the

largest Italian islands, they found that the installation of a plant
for hydrogen production and storage becomes convenient as
soon as the installed wind capacity exceeds 10% of the peak
load.

Bernal-Agustin and Dufo-Lépez [15] compared several wind-
hydrogen systems (composed of wind turbines, a compressor, a
hydrogen tank and a fuel cell) to wind-only systems. They con-
cluded that “for the wind-hydrogen systems to have a similar
profitability as the wind-only systems, the selling price of the
electricity generated by the fuel cell would need to be very high:
171 c€/KW h for (...) the current situation and (...) about 43 c€/
kWh for the best future scenarios, in which the cost of the
hydrogen components is about 5% (...) of today’s costs (...) and
the electricity-hydrogen-electricity conversion is outstandingly
better than current standards”.

Gutiérrez-Martin et al. [16] have studied a Spanish wind farm,
placed in the northwest region, with a capacity of 48.8 MW which
generates 18.4% of the surplus electricity that cannot be evacuated
through the node during the off-peak hours. The authors have ana-
lysed and optimised an electricity-powered hydrogen production
system to manage this surplus energy. They calculated a hydrogen
production of 13 GW h per year, which can be used to produce
peak electricity using a stationary fuel cell, thus raising the power
of the hybrid system to 54.8 MW.

Rodriguez et al. [17] have analysed the potential for hydrogen
production from wind resources in the province of Cérdoba, the
second consumer of fossil fuels for transportation in Argentina.
They concluded that the single department of Rio Cuarto has,
by itself, the potential to provide 10 times the hydrogen amount
required for vehicular transportation in the entire province.

Finally, Troncoso and Newborough [18] assert that deploying an
electrolysis plant next to a new wind power plant to generate
“green” industrial hydrogen from curtailed energy will provide
an economically justifiable pathway for expanding onshore wind
up to a penetration of 100%.

2. Description of the optimisation method

The objective of this study is to give useful suggestions for the
planning, development and sizing of wind-hydrogen power sys-
tems by taking into account the local and regional resources, de-
mands, constraints and opportunities.

The study considers both the economic and technological vari-
ables and describes an optimisation method (OM) for analysing
power systems in which part of the electricity generated by a
grid-connected wind plant is used to produce hydrogen by
electrolysis.

The basic concept is the use of an electrolyser to shave the
output peaks from the wind farm when the power generation ex-
ceeds a given end-user demand.

An exemplary application of this OM has been developed for
a specific geographical area located in central Sicily. The results
from this investigation allowed us to identify the potential and
the limitations connected to the use of excess wind power to
produce hydrogen for civil applications.

The OM requires the following minimum set of input data:

A. Wind resource available on site (the monthly average wind
speeds or the wind potential).

B. Wind plant specifications (the power curves for wind
turbines).

C. Electrical load (the annual consumption).

D. Electrolyser specifications (the efficiency).

E. Cost of devices (the capital, replacement and operating costs).
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For a given nominal power from a wind plant, the OM follows
these steps:

1. Electrical load and wind resources are modelled (e.g., with

the HOMER tool).

A value of the electrolyser-rated power is fixed.

3. The annual hydrogen production according to the available
wind energy surplus is calculated.

4, The gas compression and storage sections are sized by an
optimisation loop.

5. The hydrogen production cost is calculated according to the
annual costs and revenues.

6. Steps 1-4 are repeated for a total of 15-20 values of the
electrolyser-rated power.

7. A hydrogen production cost curve (with electrolyser-rated
power on the x-axis) is drawn.

N

The minimum point of the hydrogen production cost curve
yields the optimal size of the electrolyser and consequently of
the gas compression and storage units.

The level of detail of the analysis increases as further informa-
tion is added and as the analysis becomes more accurate.

The OM proposed in this paper can be applied to different “wind
energy penetration levels” in an electricity network area. “Wind
energy penetration level” (WP) can be defined as the percentage

Table 1
Cases and sub-cases.

Case 1 A - Hydrogen system includes a compressed gas
storage unit and oxygen is not handled and sold

B - Hydrogen system includes a compressed gas
storage unit and oxygen is handled and sold

C - Hydrogen system does not include any storage
unit and oxygen is not handled and sold

D - Hydrogen system does not include any storage
unit and oxygen is handled and sold

H, for transportation

Case 2 A - Hydrogen system includes a compressed gas
storage unit and oxygen is not handled and sold
B - Hydrogen system includes a compressed gas

storage unit and oxygen is handled and sold

H, for stationary use

Electricity
end-user

Power conditioning
and controls 1

1= IF “Puecs 2 Penduser”
1'= IF “1" AND (“Pyecs < Pigie” OR “Pyecs > Pe”)

2 - IF "Pwecs < Pengeuser”

of the electrical energy produced by wind generation in the electri-
cal system on an annual basis.

The main assumption of this study is the consideration of
hydrogen production and storage as a strategy to mitigate the neg-
ative impacts on the electrical system due to wind farm operation.
Hydrogen produced by the electrolyser is used in two alternative
ways: as the fuel for vehicles (Case 1) or as a method for produc-
tion of electricity for stationary uses via recombination with air
in a fuel-cell system (Case 2). These two alternative uses have been
split into four and two sub-cases (Table 1), respectively, according
to further assumptions regarding the O, use (sold or discarded)
and whether or not H, storage devices are present. These cases
are also shown schematically in Figs. 1 and 2.

In Cases 1 and 2, a Power Conditioning and Controls (PCCs) unit
manages the power flows among the multiple energy providers
(the wind plant, the grid and the fuel cell) and the users (electricity
end-users and the electrolyser).

The PCC unit includes a power regulator for matching of the
electrolyser polarisation curve (Case 1 and Case 2) and the fuel-cell
characteristic curve (Case 2) at any power level with minimum
conversion losses.

In Case 1, the PCC unit directs the power from the wind turbines
to the end-users and adds grid power when there is not enough
power from the wind farm. When the wind power generation ex-
ceeds the end-user demand, the PCC unit directs the excess power
from the wind turbines to the electrolyser to produce hydrogen
and storage of energy, thus avoiding grid overloads.

In Case 2, the PCC unit directs the power from the wind turbines
to the end-users and adds sequenced fuel-cell power and grid
power when there is not enough power from the wind farm. When
the wind power generation exceeds the end-user demand, the PCC
unit directs the excess power from the wind turbines to the elec-
trolyser to produce hydrogen.

The total surplus of wind energy includes the energy effectively
fed into the electrolyser and the two fractions that cannot be used
for hydrogen production: the power exceeding the electrolyser-
rated power and the power lower than the electrolyser idling
power (assumed equal to 20% of the stack-rated power) [19,20].

The entire wind-hydrogen grid-integrated system analysed
in this study has been modelled within the TRNSYS platform
[21]. The Wind Energy Conversion System (WECS), the power

WECS: Wind Energy Conversion System

Lo

Hourly surplus

- H (o)
Pywecs: Power generated by WECS e m Gas storage < _A’_ B_ . ,
P enduser: POWer required by end-user 1 svstem H . (s} : A, B, C, D B, D
Pyare: Idling power of the electrolyser 1 2 2 |
Pg: Electrolyser-rated power 1 1 |
AB ! H, 0 !'B I
H, 2y [
(- - O, trade |=== Compressor
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Fig. 1. Schematic of Case 1 and relative sub-cases (A-D).
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Fig. 2. Schematic of Case 2 and relative sub-cases (A and B).
conditioning unit, the AC-busbar, the electrolyser, the compressed Electrolyser
gas storage system, the multi-stage compressor and the fuel-cell 10000
system have been modelled using the types contained in the Sl g y= 7632 83502162
HYDROGEMS library [21]. The economic analysis has been carried 3 y LT
out using the economic model implemented in NREL's HOMER = S b S irmatiira
simulation tool [22]. W I
Each value of the electrolyser-rated power analysed in this ‘g 100
study designates a single simulation session carried out with TRN- o
SYS. Each simulation session includes several runs; each run repre- £ 0l
sents a step in an iterative optimisation process that determines o
the gas compression and storage unit sizes (step 3 of the OM). bt
The annual hydrogen production and surplus wind energy are 1 y ‘ y )
. g . . . 1 10 100 1000 10000 100000
two major outputs that are not altered within a single simulation Power [kW]
session. The annual costs and revenues are calculated with the eco-
nomic model implemented in HOMER using the following data: the Fig. 3. Electrolyser-specific capital costs.
system component specific costs, oxygen selling price, electricity
rates, real annual interest rate and project lifetime.
Storage
3. Economics of wind-H, systems: basic assumptions 10000
y=471.67x008%6
The cost of the hydrogen production was the key economic ¥ 1000 i —* -
parameter chosen for size optimisation of the hydrogen production ™) iR SRR LSS maLi
devices and storage devices and is expressed as: ‘g i i
Hydrogen production cost "
o Cann.tot E"_ 10 A
i, =5 M &
Cann.tot 1S the total annualised cost (i.e., the algebraic sum of the 1 T T 1 ‘ 1 ‘
0,001 0,01 0,1 1 10 100 1000 10000

annual costs and revenues associated with each system component
over the project lifetime); Cinntor includes the annual outlay for
electricity and, when available, the revenue from electrolytic
oxygen sales; and Qy, is the annual amount of hydrogen produc-
tion [22].

The annual cost of a component is equal to its annual operating
cost plus its capital and replacement costs annualised over the pro-
ject lifetime. We performed a preliminary economic survey to as-
sess how the specific capital costs of the electrolyser, the
compressed gas storage system and the multi-stage compressor
vary according to the sizes of the devices. Our results are based
on many Refs. [13,23-40] and are graphically shown in Figs. 3-5.

Storage capacity [10% kg]

Fig. 4. Compressed gas storage system-specific capital costs.

We assumed that the replacement costs were equal to the cap-
ital costs, whereas annual operating costs (Table 2) have been fixed
according to a literature review [6,13,23-25,36,41-43].

The results of a survey investigating the lifetimes of hydrogen
production and storage devices are shown in Table 3, and the eco-
nomic parameters of WECS are presented in Table 4.
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Fig. 5. Compressor-specific capital costs.

Finally, we assumed a real annual interest rate of 6%, a project
lifetime of 25 yr, an oxygen selling price of 2 €/Nm? [46] and two
electricity rates: 0.04 €/kW h to remunerate the surplus wind en-
ergy used to produce hydrogen and 0.10 €/kW h to purchase elec-
tricity for the compressors and for the electrolyser operation in
standby mode (i.e., in which a polarisation current is commonly
applied to protect the electrodes from corrosion).

4. Application to a regional context

The wind resource and the electrical load of a given area in cen-
tral Sicily were managed by means of HOMER. We also assumed
the use of Vestas v52 (850 kW) turbine typology.

The electrolyser efficiency was calculated for each time step and
for each run included in the simulation sessions carried out with
TRNSYS. The value of the efficiency varies according to the load fac-
tor of the electrolyser.

In this context, the electrical load was referenced to a 20,000-
person community located in a mountainous region near Enna,
Sicily. We first established a base annual load-profile resulting
from the time combination of six typical days (cool, intermediate
and hot days, evenly subdivided into working days and holidays).
The typical daily load profiles were defined by using the statistical
data contained in Refs. [47,48] and by making several assumptions
regarding the consumption associated with a single-family unit.
Subsequently, we imported the base annual load-profile into
HOMER. We applied an hourly noise (10%) to add randomness to
the load data (Figs. 6 and 7).

The wind resource modelling followed a similar procedure. We
entered 12 average wind speed values, one for each month of the
year (Table 5) and defined four advanced parameters: the Weibull
shape factor, the autocorrelation factor, the diurnal pattern
strength and the hour of peak wind speed (Table 6). The Weibull
shape factor is a measure of the distribution of wind speeds
throughout the year. The autocorrelation factor is a measure of

Table 2
Annual operating costs.

Table 3
Lifetime of hydrogen production and storage devices.
Electrolyser Compressed gas storage Compressor
(yr) Source (yr) Source (yr) Source
20 [6] Gonzalez 30 [13] Greiner 10 [13] Greiner
15 [13] Greiner 30 [23] ALTENER 10 [23] ALTENER
20 [23] ALTENER 22 [31] Howes 22 [31] Howes
5 [32] Padro
20 [44] Smith
10 [45] Levene
Values used in the study
15yr 25yr 15yr
Table 4

Economic parameters of WECS [13,21,22,40].

Capital cost (€/kW)

Annual operating cost (% cap. cost)

Lifetime (yr)

1000 2

20

6,000

5,000
4,000
3,000
2,000
1,000

Primary Load [kW]

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Fig. 6. Annual electricity demand (20460 MW h/yr).

10
8 o
£
>
(%)
o
2 4
g
w
2 J
0 ! !
0 1,000 2,000 3,000 4,000 5,000 6,000
Value [kW]
Min=733kW  Max=5032kW  Average =2,336 kW  Median = 2,446 kW

Fig. 7. Probability density function of the annual electricity demand.

Electrolyser Compressed gas storage Compressor

(% cap. cost) Source (% cap. cost) Source (% cap. cost) Source
3 [6] Gonzalez 2.0 [13] Greiner 4 [13] Greiner
4 [13] Greiner 0.5 [23] ALTENER

2 [23] ALTENER 0.2 [36] Amos

3 [24] Mann 23 [42] Cotrell

3 [25] Berry

6 [41] Da Silva

7 [42] Cotrell

Values used in the study

4% 1% 4%
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Table 5
Average wind speeds in Enna [47].

Average wind speed (m/s)

January 6.16 July 4.19
February 6.39 August 4.27
March 6.03 September 5.14
April 6.19 October 5.42
May 5.11 November 6.15
June 4.89 December 6.53
Table 6
Advanced statistical parameters.
Weibull shape factor (k) 1.83
Autocorrelation factor 0.85
Diurnal pattern strength 0.3
Hour of peak wind speed 15

how strongly the wind speed in 1 h depends on the wind speed in
the preceding hour. The diurnal pattern strength and the hour of
peak wind speed indicate the magnitude and the phase, respec-
tively, of the average daily pattern of the wind speed [50].

The Weibull shape factor is taken from Ref. [49], whereas the
values of the other advanced statistical parameters are within
the typical ranges reported in [51].

After entry the input data reported in Tables 5 and 6, HOMER
generated the synthetic hourly data composed of a set of 8760 val-
ues of the wind speed (one for each hour of the year), as shown in
Fig. 8.

According to the A, B and C input data (see paragraph, “Descrip-
tion of the optimisation method”), different WPs can occur. In this
study, we investigated four WP values: 22%, 41%, 59% and 75%.
These values were generated by varying the number of installed
turbines chosen with the same typology (Vestas v52-850 kW). In
other words, we changed the number of generators instead of their
power curves to vary the installed wind power. The amount of the
installed wind power required for each of the analysed WPs is dis-
played in Table 7.

The installed wind power capacity increases more rapidly than
its corresponding WP value because the wind speed varies ran-

30

25

20

Wind Speed [m/s)

Jan Feb Mar Apr May Jun Jul

Aug Sep Oct Nov Dec

Fig. 8. Wind speed annual time-profile.

Table 7
Variation of installed wind power with WP.

Peak power demand (MW)  5.032

N. turbines (850 kW) Installed power (MW)

22% 2 1.70
41% 4 3.40
59% 9 7.65
75% 21 17.85

s Wind energy to user . Grid ——Surplus wind energy

108
w
w

=N N W
v o uv o
I I 1 1

Electric energy [kWh]
=

o wu
I I

22% 41% 59% 75%
wp

Fig. 9. Contributions to the total electricity demand.

domly, which means that the wind power peaks rarely overlap
the electric demand peaks. Consequently, the surplus wind energy
increases rapidly with its corresponding WP value (Fig. 9).

The gas compression and storage unit sizes have been deter-
mined by an iterative optimisation process implemented directly
in TRNSYS. This process requires knowledge of both hydrogen
production and demand on an hourly basis. The annual hydrogen
demand has been estimated as equal to the annual hydrogen
production.

The purpose of the iterative process is to identify the size of the
hydrogen storage unit with a maximum pressure level of 0.9 over a
simulation run. Once the capacity of the storage unit is optimised,
the compressor-rated power is fixed according the corresponding
peak power consumption.

A single iterative optimisation process requires an average of
3-4 simulation runs. Because we investigated approximately 200
values of the electrolyser-rated power, the entire study required
more than 500 simulation runs.

The amount of hydrogen produced by the electrolysis depends
on the amount of surplus wind energy available and the efficiency
of the electrolysis process. Both the surplus wind energy and the
rated power affect the capacity factor of the electrolyser.

The capacity factor is an index of the productivity of the electro-
lyser, and Table 8 contains a summary of the annual hydrogen
production.

All previous results are general and are not influenced by the
choice of options regarding the use of the H, and O, produced by
the plant. Additional details on the analysis of these alternatives
are reported in the following sub-sections.

4.1. Case 1 - Hydrogen for transportation

In reference to the analytical methodology described in the last
section (step 2 of the OM) and in addition to the annual hydrogen
production, we also estimated the oxygen annual production,
which represents a key output of sub-cases B and D.

The storage section was sized only for sub-cases A and B. Sub-
case B also included an oxygen storage unit in addition to the
hydrogen storage unit. We assumed a maximum allowable pres-
sure of 400 bar for both the hydrogen and oxygen storage units
and a constant time profile for the annual hydrogen and oxygen
demand.

The compression devices were required in all of the sub-cases.
In sub-cases A and B, the compressors had a maximum discharge
pressure (m.d.p.) of 400 bar, whereas in sub-cases C and D, the
compressors had an m.d.p. of 20 bar (in sub-cases C and D, we as-
sumed that the gases from the electrolyser were directly pumped
into a piping system with an operating pressure of 20 bar).
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Table 8
Summary of the annual hydrogen production.

WP

22% 41% 59% 75%

Peectr. (kW) H, production (Nm?/yr)  Pgecer. (KW)  Hy production (Nm3/yr)  Pgecer, (kW)  Hy production (Nm3/yr)  Pgectr. (kW) H, production (Nm?/yr)
10 457 30 7745 90 62,937 200 212,435
20 1009 60 15,460 180 124,415 400 417,423
40 2046 120 29,807 360 243919 1000 985,764

100 4766 300 68,078 900 571,482 2000 1,822,300
125 5697 400 86,431 1350 814,580 3000 2,573,200
150 6610 500 102,400 1800 1,035,100 4000 3,249,900
175 7473 600 115,484 2250 1,232,600 5000 3,864,100
200 8244 700 127,551 2700 1,404,500 6000 4,422,400
225 8950 800 138,167 3600 1,671,700 8000 5,402,600
250 9564 900 147,275 4500 1,820,200 10,000 6,193,400
275 10,172 1200 173,408 4950 1,857,400 11,000 6,522,800
300 10,597 1500 190,504 5400 1,886,200 12,000 6,800,400
400 12,060 1650 196,288 5850 1,900,300 13,000 7,017,100
450 12,414 1800 199,934 6300 1,910,500 14,000 7,125,500
500 12,494 1950 202,228 7200 1,922,300 16,000 7,217,900
550 12,565 2100 202,743 8100 1,929,800 18,000 7,262,300
600 12,478 2400 205,890 9000 1,935,600 20,000 7,292,200
800 12,346 2700 205,993

1000 11,549 3000 205,862

For a given value of the electrolyser-rated power, the hydrogen
production cost can be calculated according to Eq. (1) when the fol-
lowing variables are known: the size of the storage and compres-
sion devices, the annual amount of electricity fed into the
system, the annual hydrogen production and (eventually) the
annual oxygen production. By repeating this calculation for a total
of 15-20 values of the electrolyser-rated power, it is possible to ob-
tain the hydrogen production cost curve. The results for each sub-
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Fig. 10. Hydrogen production cost compared to gasoline price (WP: 22%).
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Fig. 11. Hydrogen production cost compared to gasoline price (WP: 41%).

case and for each WP value investigated in the study are displayed
in Figs. 10-13, in which the curves of hydrogen production cost are
compared with the gasoline price and with the amount of the an-
nual surplus of wind energy not usable for producing hydrogen and
therefore fed into the grid and delivered to remote users. The gas-
oline price refers to 3.84 L of fuel, because this volume of fuel con-
tains the same amount of energy as 1 kg of hydrogen.

It must be noted that the “surplus wind energy to grid” is the
sum of the two fractions that are not useful to produce hydrogen
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Fig. 12. Hydrogen production cost compared to gasoline price (WP: 59%).
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Fig. 13. Hydrogen production cost compared to gasoline price (WP: 75%).
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because the power is higher than the electrolyser-rated power or
lower than its idling threshold.

The hydrogen production cost generally decreases when the WP
increases, if we assume that the oxygen is sold (sub-cases B and D),
or if we assume the storage section is removed (sub-cases C and D).
Only when the WP is 22% do we observe a different result: the
hydrogen production cost increases from sub-case A to sub-case
B. In other words, the annual costs associated with the oxygen stor-
age and the compression devices are higher than the revenue from
the sale of the oxygen produced throughout the year. This observa-
tion is mainly due to the low productivity of the electrolyser, which
operates with a maximum capacity factor of 2.2%.

Negative values of the hydrogen production cost can be ob-
served for the higher WPs, such as the case in which we assume
that the oxygen is sold and remove the storage section (sub-case
D). This occurs because the income from selling oxygen is higher
than total annual costs.

The hydrogen is competitive with gasoline only in sub-case D
and for WPs higher than 50%.

The minimum point of the hydrogen production cost curve
never matches the minimum point of the curve associated with
the surplus wind energy not used to produce hydrogen. In other
words, the economic and energetic optimums do not coincide in
any of the sub-cases that we investigated. However, for the higher
WPs (especially in sub-cases C and D), the peak-shaving effect can
be maximised with a small increase in the hydrogen production
cost by moving from the economic to the energetic optimum.

To better analyse the option of using hydrogen as a fuel for vehi-
cles, we considered two additional cases:

i. Hydrogen for public transportation.
ii. Hydrogen for private transportation.

In both cases, we estimated the annual potential hydrogen de-
mand associated with a fleet of vehicles for the regional context
under examination.

To assess the vehicle consumption for public transportation, we
used the hydrogen consumption figures provided by the CUTE pro-
ject [52], which are based on a Mercedes-Benz Fuel Cell Citaro city
bus. We also used the data collected from Ref. [53] on the buses
operating in Sicily and on the average distance covered per bus
(Table 9).

Using the figures from Table 9, we obtained the annual hydrogen
demand associated with a single bus and the size of the bus fleet
serving the entire population analysed in the study (Table 10).

In the second case, we used the technical specifications of the
HONDA FCX-Stack [54], the average distance covered per car [55]
and the number of cars per inhabitants in Italy [56] (Table 11).

Using the data listed in Table 11, we assessed the annual
hydrogen demand associated with a single private car and the size

Table 9
Preliminary data for estimating the hydrogen demand for public transportation.
Average hydrogen consumption per bus (kg H,/km) 0.246
Average distance covered per bus (Sicily) (km/yr) 36,946
Buses operating in Sicily 3107
Sicily population (inhabitants) 4,968,991
Population investigated in this study (inhabitants) 20,000
Table 10
Hydrogen demand for public transportation.
Buses per inhabitant 0.000625278
Annual H, demand per bus (kg/yr) 9089
Size of the bus fleet (vehicles) 13

Table 11
Preliminary data for estimating the hydrogen demand for private transportation.
Fuel Hydrogen gas
Technical specifications of the HONDA - FCX Stack
Pressure of storage (MPa) 35
Tank capacity (L) 157
Fuel cell stack power output (kW) 86
Top speed (km/h) 150
Range, consumption (km) 430

Other preliminary data
Average distance covered per car (km/yr) 15,000
Cars per inhabitants in Italy 0.747

Population investigated in this study (inhabitants) 20,000
Table 12
Hydrogen demand for private transportation.
Tank capacity (20 °C) (kg) 4.57
Hydrogen consumption per car (kg Hp/km) 0.011
Annual H, demand per car (kg Ha/yr) 159
Size of the private car fleet (vehicles) 14,940
WP:
——22% —=—41% ——59% ——75% | ---- Busfleet
1000,000 -
100,000 -
£ 10,000 -
@
@ 1,000 -
o
f‘ 0,100 A
0,010 A
0,001 T T T T
1 10 100 1000 10000

Electrolyser rated power [kW]

Fig. 14. Wind-hydrogen for public transportation: number of H, buses as a
function of WP and electrolyser-rated power.
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Fig. 15. Wind-hydrogen for private transportation: number of H, cars as a function
of WP and electrolyser-rated power.

of the private car fleet used by the entire population investigated in
the study (Table 12).

Figs. 14 and 15 show a comparison for each WP between the
number of vehicles (buses and private cars, respectively) that can
be fuelled with the hydrogen produced annually from wind power
and the size of the vehicle fleet serving the entire population.
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The hydrogen demand for public transportation can be fully
met only for the cases related to the highest WPs (59% and 75%),
whereas the hydrogen demand for private transportation cannot
be entirely satisfied in any case.

If we assume a WP of 22%, the low production volumes and the
high production cost of hydrogen make the wind-hydrogen-
transportation chain an unsuitable solution. By increasing the
WP from 22% to 41%, the annual hydrogen production becomes
more highly significant, but the hydrogen production cost is still
too high for economic gain. In this case, the wind-hydrogen
integration can be justified by placing the electrolytic products
on the industrial gas market.

The wind-hydrogen-transportation chain becomes economi-
cally sustainable when the WP is greater than 60%, the storage sec-
tion is drastically reduced (or not considered) and the oxygen is sold
on the market. Under these conditions, the hydrogen production
cost is comparable to or lower than the gasoline price, and the
hydrogen production volumes are high enough to cover the entire
(or almost the entire) annual demand for public transportation or
a significant portion of the annual demand for private transportation.

4.2. Case 2 - Hydrogen for stationary use

In this case, the hydrogen plant includes a fuel-cell generator in
addition to the electrolyser and the storage and compression units.
For a given value of the electrolyser-rated power, the fuel cell is
sized using an iterative optimisation process. This iterative optimi-
sation process has been developed directly in TRNSYS to identify
the fuel-cell size that minimises the gap between the hydrogen
production and demand according to the fuel-cell physical model
implemented in the HYDROGEMS library.

In contrast to Case 1, the time-profile of the hydrogen demand
in this case cannot be assumed as constant because it depends on
how and when the fuel cell generator is operated. Moreover, be-
cause the hydrogen is produced when the fuel cell generator does
not operate, a larger storage section is required to balance the
hydrogen production and the consumption.

The time profile of the annual oxygen demand is assumed to be
constant.

The electricity delivered by the fuel cell generator is directly
supplied to the user. The contribution of the fuel cell generator
to the total electricity demand depends on the annual hydrogen
production and increases with the size of the electrolyser and with
the WP, as shown in Figs. 16-19.

For the lower WPs, the impact of the fuel cell generator on
the total electricity demand is insignificant. The wind-
hydrogen-electricity chain makes greater economic sense when
the WP is higher than 50%.
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Fig. 16. Contributions to the total electricity demand as a function of the
electrolyser-rated power (WP: 22%).
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Fig. 17. Contributions to the total electricity demand as a function of the
electrolyser-rated power (WP: 41%).
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Fig. 18. Contributions to the total electricity demand as a function of the
electrolyser-rated power (WP: 59%).

WP: 75%
100% -~
80% A
T 80% -
g 70% A
S 60%
-: 50% - mFC
> 40% - mGrid
-2 30% Wind
E 20% -
W 10% o
0% ——r—— T
CC O 0000000 C OO0 0000
OO0 0000000000000 Q09
N OO0 000000 C OO0 0000
— NN T W WL WO NN WO O
Lo I T B B o IR o IO o B Y |

Electrolyser rated power [kW]

Fig. 19. Contributions to the total electricity demand as a function of the
electrolyser-rated power (WP: 75%).

When we assume a WP of 75%, the surplus wind energy avail-
able to produce hydrogen is high, and we find that a 4-MW electro-
lyser and a 6-MW fuel cell generator are sufficient to cover the
remaining 25% of the electricity demand. Consequently, if we in-
crease the size of the electrolyser (maintaining a constant size of
the fuel cell generator), then a surplus of hydrogen arises. This sur-
plus hydrogen can be used in a variety of applications in the energy
and industrial sectors. Fig. 20 shows a comparison between the
number of vehicles (buses and private cars) that can be fuelled
on an annual basis with the surplus hydrogen produced by install-
ing electrolysers larger than 4 MW and the size of the vehicle fleet
serving the community investigated in the study.
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Fig. 20. Surplus hydrogen for public and private transportation.

An electrolyser larger than 5 MW is able to meet the total
hydrogen demand for public transportation and a significant por-
tion of the hydrogen demand for private transportation but not
greater than 20% of the demand for private transportation.

5. Conclusion

Wind-hydrogen integration is a promising approach to support
the deployment of wind energy in the electricity supply systems.

This paper presents a study of the use of wind power that is not
matched with hourly electricity demand to produce hydrogen via
electrolysis as a strategy to mitigate the negative impacts due to
wind farm operation in a high-wind-energy penetration power sys-
tem. The sizes of the hydrogen production and storage devices have
been optimised using a specific analytical method that can be ap-
plied to any wind-hydrogen grid-connected system. The accuracy
of this method depends upon the accuracy and reliability of the ini-
tial data and the costs and lifetimes of the devices included.

In general, the economic and business feasibility of a wind-
hydrogen system depends on many other factors not considered
in the study, such as the policy, tariff and regulatory aspects of
renewable power generation. The optimisation method suggested
in this work can be a useful starting tool for the further develop-
ment of business plans for wind-hydrogen power systems and
gives useful information regarding the design criteria and the pro-
duction cost of the hydrogen in such applications.

As a result of the study, hydrogen production by electrolysis has
been confirmed as a valuable option for reducing the amount of
surplus wind power fed into the grid in the off-peak periods.

In each of the cases analysed, the hydrogen plant configuration
that minimised the hydrogen production cost was not the same as
the plant configuration that minimised the annual amount of sur-
plus wind energy fed into the grid.

The wind-hydrogen-transportation chain (Case 1) makes sense
only for the higher WPs due to the corresponding high annual
hydrogen production. The wind-hydrogen-transportation chain
is more feasible if the storage section is reduced as much as possi-
ble, and the electrolytic oxygen is sold to the market to reduce the
hydrogen production cost.

In Case 2 (hydrogen for stationary use), a relatively large storage
section is required because the hydrogen production and con-
sumption are time-decoupled. This scenario makes the reduction
of the hydrogen production cost difficult to put into practice
(mainly for the higher WPs).

For a given WP, a hydrogen plant larger than that corresponding
to the economic optimum yields both advantages and disadvan-
tages. The major advantages include an increase in the peak-
shaving effect and a larger amount of hydrogen produced annually
for use as a fuel for transportation or for electricity generation. The

disadvantages include a higher hydrogen production cost and a
lower capacity factor for both the electrolyser and fuel cell gener-
ator. Each of these aspects can play a major role in hydrogen plant
construction.
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