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Mechanical behavior of carbon/flax hybrid
composites for structural applications

V Fiore1, A Valenza1 and G Di Bella2

Abstract

In this work, the influence of an unidirectional carbon fabric layer on the mechanical performances of bidirectional flax

fabric/epoxy composites used for structural applications was studied. Two different bidirectional flax fabrics were used to

produce flax fabric reinforced plastic (FFRP) laminates by a vacuum bagging process: one is normally used to make

curtains; the other, heavier and more expensive than the previous one, is usually used as reinforcement in composite

structures. In order to realize hybrid structures starting from FFRP, an unidirectional UHM carbon fabric was used to

replace a bidirectional flax fabric. Tensile and three-point bending tests were performed to evaluate the mechanical

properties of the laminates investigated (both FFRP and hybrids). Furthermore, the mechanical behavior of the different

bidirectional flax fabrics was analyzed by carrying out tensile tests. The experimental tests showed that the structures

reinforced with flax fabrics, normally used to make curtains, present better flexural properties than that of others while,

in tensile configuration, these last show higher modulus and strength. Moreover, both FFRP laminates show low mechan-

ical properties, which do not allow their use in structural applications while the presence of one external layer of

unidirectional carbon involves remarkable increase in their properties. According to this study, the hybrid composites

realized could be used in several structural applications (i.e., nautical and automotive).
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Introduction

Fabric reinforced plastic (FRP) materials are widely
used in several key applications such as ships, aircraft,
buildings, bridges, automobiles, and other transporta-
tion vehicles because of their good properties (i.e., high
mechanical strength and stiffness, high impact resis-
tance, low weight, corrosion resistance, and low main-
tenance cost).

In the last few years the use of natural fibers as rein-
forcement of composite materials, as an alternative to
the synthetics (e.g., glass, carbon, or kevlar fibers), has
received growing attention, owing to the following rea-
sons: their specific properties, price, advantages for
health, and recyclability.

Nevertheless, natural fibers also possess some of the
following negative characteristics that do not allow
their use as the only reinforcement of composite mate-
rials in several structural applications: high hydrophilic
behavior, low mechanical properties, and poor adhe-
sion with polymeric matrix. Moreover the mechanical,
physical, and chemical properties of these vegetable

fibers are strongly harvest dependent, influenced by cli-
mate, location, soil characteristics, and weather
circumstances.

There are a wide variety of different natural fibers,
which can be applied as reinforcements of composite
materials. Flax, hemp, jute, kenaf, and sisal are the
most widely used because of their properties and
availability.

Particularly, flax fibers (Linum usitatissimum) have
attracted the attention of many researchers in the com-
posites industry due to their better properties, when
compared to other natural fibers. Particularly, the ten-
sile strength and Young’s modulus of flax ultimate
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fibers are equal to about 1340MPa and 54GPa, respec-
tively. With a density of around 1400 kg/m3, the specific
properties of these fibers are comparable with those of
E-glass fibers, which have a tensile strength of
2000MPa, a Young’s modulus of 76GPa, and a density
of around 2560 kg/m3.1

The use of this type of natural fiber dates back to the
beginning of last century: in 1941, flax and hemp fibers
were used in resin matrix composites for the bodywork
of a Henry Ford car, which claimed to have an ‘impact
strength 10 times greater than steel.’2

Nowadays, flax is the most widely used natural fiber
in the European automotive industry, representing
71% of the natural fibers consumed in the year 2000.
Most of this is short-fiber flax obtained as a by-product
of the textile industry.3 As other natural fibers, flax is
typically combined with polypropylene, polyester, or
polyurethane to produce components like door and
trunk liners, parcel shelves, seat backs, interior sunroof
shields, and headrests.4

Several research works analyzed the behavior of
composite structures reinforced with flax fibers.
Musialak et al.5 improved the behavior of the flax
fibers by reducing percentage of pectin. Assarar et al.6

studied the effects of water aging on the tensile charac-
teristics, water absorption, and acoustic emission of
flax-fiber composites, compared with glass-fiber com-
posites. Lamy and Baley7 developed a model, validated
by an experimental analysis on flax/epoxy laminates, to
predict the stiffness of the flax fibers by varying their
diameter. Xiao-Yun et al.8 realized and tested compos-
ite boards with flax fibers as the reinforcement material
and polyactic acid fiber as the matrix. Flax fibers were
also used by Charlet et al.9 to produce unidirectional
composites by two different methods: hand impregna-
tion and compression molding.

In a previous work of the authors10 several bidirec-
tional flax fabrics, usually used to make curtains, were
employed as reinforcement of an epoxymatrix. Four dif-
ferent laminates were made by a vacuum bagging pro-
cess, varying both the areal weight and the treatment of
the fabrics. The experimental results showed that both
the parameters investigated (areal weight and treatment)
are greatly significant for the flexural properties of the
laminates while in tensile configuration, the areal weight
has a significant effect only on the modulus.

Definitely the laminate constituted by six layers of
bidirectional flax fabric, chemically treated (i.e., with-
ening and couloring) and with areal weight equal to
150 g/m2 showed the best mechanical performance
both in flexural (average values of failure stress and
Young’s modulus equal to 76.4MPa and 7.41GPa,
respectively) and in tensile properties (average values
of failure stress and Young’s modulus equal to
78.6MPa and 1.79GPa, respectively).

Aim of the present work is to compare the mechan-
ical properties of this last laminate with that of a new
one, reinforced with a different kind of bidirectional
flax fabric, used not to make curtains but rather as
reinforcement in composite materials.

Another aim of the authors is to increase the mechan-
ical properties of these FFRP laminates, making these
structures suitable for structural applications (e.g., in
nautical or automotive field). Owing to this, hybrid com-
posites were produced starting from FFRP laminates
and a layer of bidirectional flax fabric was replaced
with unidirectional carbon nonwoven fabric.

Hybrid composites are commonly used when a com-
bination of properties of different types of fibers needs
to be achieved, or when longitudinal performances as
well as lateral mechanical ones are required. In litera-
ture there are many works related to these compos-
ites11–16 but very few regarding hybrid composite
reinforced by natural fibers and carbon types.17 One
of the most recent applications of the latter is regarding
the realization of an ecologic prototype boat named
‘Araldite,’ which represents the smallest offshore
racing boat (hull length¼ 6.5m, hull width¼ 3m,
weight¼ 750 kg, sail surface¼ 120m2), which can sail
the Atlantic sea. This carbon/flax prototype was con-
structed at the IDB Marine de Tregnunc Shipyard in
Britanny (FR) by reaching an amount of flax fibers up
to 50% (75–80% for hull and deck) of the total rein-
forcement weight.18

Experimental setup

Materials and manufacturing

All the laminates investigated were realized with a
single lamination using the vacuum bagging technique,
cured at room temperature for 24 h and then post-cured
at 60�C for 8 h.

Two different bidirectional flax fabrics (Figure 1)
were used to produce FFRP laminates. The first one
(in the next ‘BD220’) is a balanced twill weave fabric,
having areal weight of 220 g/m2 and cost per unit of
area of 11.65E/m2. This is normally used as reinforce-
ment in composite structures.

The second one (in the next ‘BD150’) is an unbal-
anced plain weave fabric with areal weight equal to
150 g/m2 and cost per unit of area of 6E/m2. This
kind of flax fabric is treated through chemical treat-
ments of withening and couloring and normally used
to make curtains.

The hybrid structures were produced replacing in
each FFRP laminate a layer of bidirectional flax
fabric with one of unidirectional UHM carbon nonwo-
ven fabric with areal weight of 320 g/m2 (in the
next ‘C/UD320’).
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The stacking sequence of the laminates (both FFRP
and hybrids) is shown in Table 1: each structure is con-
stituted by six fabric layers in a matrix of epoxy resin
(Sicomin SR 8500). It is to be noted that the F150
structure is the one, which showed good mechanical
properties among the FFRP structures investigated in
the paper of the authors Di Bella et al.10 cited in the
introduction section. In each hybrid structure, one
external layer of bidirectional flax fabric is replaced
with one layer of unidirectional carbon fabric.

Mechanical testing

The mechanical tests were performed on laminate struc-
tures by using a Zwick-Roell Universal Testing
Machine (UTM), equipped with a load cell of 600 kN,
according to ASTM standards.19,20 Five samples for
each structure were tested at room temperature both
for three-point bending configuration and for tensile
one.

Regarding the flax fabrics, the tensile characteriza-
tion was carried out by using an Instron UTM
equipped with a load cell of 1 kN, according to
ASTM standard.21

Results and discussion

Flexural characterization

Table 2 shows flexural properties of the structures
investigated. Regarding the FFRP laminates, it is pos-
sible to observe that the flexural properties of the F220
structure decrease when compared to those of F150.
Particularly, the F220 structure shows decreases of

about 38.5% and 25.2% in the flexural modulus and
strength, respectively.

These results can be explained considering the differ-
ent wave architecture of the flax fabrics used in the
structures investigated. Particularly, as shown in
Figure 1, the BD220 fabric is a balanced twill weave
fabric and presents the same number of yarns in both
warp and weft directions. On the other side, the BD150
fabric is an unbalanced plain weave fabric characterized
by a tighter weave architecture than the previous one

Figure 1. Wave architectures of (a) BD220 and (b) BD150 woven fabrics.

Table 1. Investigated structures

Layer

Laminate

F150 F220 F150/C F220/C

1 BD150 BD220 BD150 BD220

2 BD150 BD220 BD150 BD220

3 BD150 BD220 BD150 BD220

4 BD150 BD220 BD150 BD220

5 BD150 BD220 BD150 BD220

6 BD150 BD220 C/UD320 C/UD320

Thickness (mm) 1.57� 0.03 2.15� 0.02 2.47� 0.07 3.17� 0.04

Pf (%) 54.0� 0.5 45.6� 0.5 51.5� 3.3 49.4� 1.2

Table 2. Flexural properties of the laminates

E (GPa) � (MPa)

F150 7.41� 0.39 76.42� 3.59

F220 5.35� 0.21 61.05� 2.28

F150/C 23.84� 0.74 160.42� 10.46

F220/C 14.41� 1.38 85.00� 5.38
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(i.e., shows less gaps between the fibers in the weft and
warp directions).

Such different wave architectures allow the BD220
fabric to absorb more resin than the fabric used for
curtains since the resin, driven by vacuum pressure
during the productions process, fills better the gaps of
the BD220 fabric.

These considerations can explain the higher matrix
content (54.4% vs 46.0%), greater thickness (2.15mm
vs 1.57mm) and, consequently, bad flexural properties
of the F220 structure, when compared to F150.

Regarding the failure modes of the FFRP laminates,
unlike the F150 structure, the F220 shows a catastro-
phic yielding due to the premature degradation phe-
nomena of the matrix (e.g., matrix cracking), followed
by the delamination at the interface between two adja-
cent layers.

The degradation phenomena of the matrix, though
not visible, frequently affects composite structures char-
acterized by a resin excess, i.e., F220 in present work.
This is due to the brittle nature of the thermosetting
resins (e.g., epoxy), which can undergo only a limited
deformation prior to fracture:22 they show poor resis-
tance to crack propagation and low impact strength,
therefore they exhibit low toughness.23

The catastrophic yielding is confirmed by the sudden
stress drop of the stress–strain curve of the F220 struc-
ture (Figure 2). In the hybrid structures, the replace-
ment of one layer of bidirectional flax fabric with one of
unidirectional carbon leads to an increase in the flexural
properties for each structure investigated.

The F150/C hybrid structure shows improvements
of about 221.7% and 110% in the flexural modulus
and strength compared to those of the reference
FFRP structure (i.e., F150), respectively. On the
other hand, the hybrid structure reinforced with the
BD220 fabric (i.e., F220/C) shows an elastic modulus
and tensile strength in excess of 169.3% and 39.2%
compared to those of the reference structure,
respectively.

From these data it is possibile to note that the ben-
eficial effect of the carbon layer is higher for the struc-
ture that, as discussed above, already appear as the best
among those references (i.e., F150).

Considering the constituents content, the great dif-
ference measured among between the FFRP structures
decreases due to the presence of unidirectional carbon
layer in the hybrid structures: the F150/C structure is
characterized by a slighty higher fiber content (51.5%)
than that of the F220/C (49.4%).

This is because in both FFRP structures two differ-
ent flax fabric that, as discussed above, absorb a vari-
able amount of resin according to different wave
architecture, are replaced with an identical carbon
layer that, vice versa, absorbs an equal resin amount.

Consequently to the similar values of fiber content
showed by the hybrid structures, no delamination
failure modes occur, as showed by the absence of any
catastrophic stress drop in the stress–strain curves
(Figure 3).

Tensile characterization

Table 3 shows tensile properties of the structures inves-
tigated. Considering the FFRP laminates, it is possible
to observe that that the structures investigated show a
different behavior when compared to the previous ones:
the structure reinforced with the BD220 fabric shows
better tensile properties than those of the structure with

Figure 2. Stress–strain curves of the FFRP laminates

(flexural test).

Figure 3. Stress–strain curves of the hybrid laminates

(flexural test).

Table 3. Tensile properties of the laminates

E (GPa) � (MPa)

F150 1.79� 0.04 78.63� 1.41

F220 4.5� 0.15 90.43� 1.47

F150/C 6.48� 0.32 288.03� 30.23

F220/C 5.09� 0.34 172.4� 25.5
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the fabric used to make curtains. Particularly, the ten-
sile modulus and strength of F220 structure are 151.4%
and 15.0% when compared to F150, respectively.

Despite the higher fiber content of the F150 struc-
ture, its tensile properties (especially the modulus) are
lower than those of F220. This could be explained
admitting that, for this configuration load, the
mechanical performance of the laminates are more
influenced by the mechanical properties of the flax
fabrics used than by the constituents content of the
laminates.

The mechanical properties of the bidirectional flax
fabrics were analyzed by carrying out preliminary ten-
sile tests along both the warp and the weft (or cross)
direction of each fabric, according to ASTM
standard.21

As expected from its unbalanced wave architecture,
the BD150 fabric showed different tensile behavior
when tested in weft or warp direction (Figure 4). This
could be attributed to the difference of yarn density in
both directions: in the weft direction there is 1.5 times
more yarns than in the warp direction.

Conversely, since the BD220 fabric shows the same
yarn density in the warp and weft directions (i.e., bal-
anced twill wave fabric), it shows similar tensile behav-
ior along both directions (Figure 5).

By comparing the mechanical performances of the
bidirectional flax fabrics along the weft direction, it has
been found that the breaking force of the BD220 fabric
(580.40� 46.73N) is greater than that of BD150
(499.90� 12.74N) while this last fabric shows an elon-
gation at break about two times greater (12.20� 0.17%
vs 6.67� 0.52%).

These dissimilar tensile properties shown by the flax
fabrics are strictly connected to their wave architec-
tures. Like other natural fibers, flax exhibits natural
defects, but many of these are also induced through
the spinning of the flax yarn and their weaving pro-
cess.24 By comparing the wave architectures of the fab-
rics, the BD220 twill fabric has fewer interlacing and
defects of the yarns than the BD150 plain fabric and,
consequently, higher tensile performances.

Keeping into account that, in tensile configuration
load, FFRP laminates are loaded along the weft

Figure 4. Tensile curves of the BD150 fabric.

Figure 5. Tensile curves of the BD220 fabric.
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direction of the fabrics, it is consistent that the different
tensile performance of the flax fabrics strongly influence
the mechanical behavior of the composite structures.

Indeed, as discussed above, the FFRP laminates
show very dissimilar values of tensile modulus and
comparable values of tensile strength, just like the flax
fabrics used as reinforcement.

As in the case of flexural loading, the replacement of
one layer of bidirectional flax fabric with one of unidi-
rectional carbon increases significantly the tensile prop-
erties of the structures investigated.

The F150/C hybrid structure shows improvements
of about 262.0% and 266.4% in the tensile modulus
and strength compared to those of the reference
FFRP structure (i.e., F150), respectively. On the other
hand, the F220/C hybrid structure shows an elastic

modulus and tensile strength in excess of 13.1 % and
90.7% compared to those of the reference structure,
respectively.

As in the flexural characterization, it is possibile to
note that the beneficial effect of the carbon layer is
higher for the structure reinforced with the flax fabric
normally used to make curtains (i.e., the FFRP struc-
tures with higher fiber content).

In this case the presence of the carbon layer ‘over-
turns’ the tensile performances of the laminates inves-
tigated: while the F150 structure, with higher fiber
content, has lower tensile properties than F220 (due
to the mechanical properties of the fabric used), the
carbon layer allows to F150/C hybrid structure to
reach better tensile properties than those of F220/C.

The tensile curve stress–strain for hybrid structures are
shown in Figure 6 and it is evident that these laminates
exhibit different failure modes. Particularly the F220/C
structures fail for tensile failure of the fibers as shown in
Figure 7. The flax layers and the carbon one fail at the
same time and delamination failure does not occur. This
phenomenon prevails on the delamination failure that
does not occur.

On the other hand, for the F150/C structure, the
predominant failure mode is the tensile failure of the
carbon layer, followed by the delamination at the inter-
face between the carbon layer and the flax one adjacent.
Then there is decrease in stress with the crack growth
and increase in the delamination area until the tensile
failure of the flax layers occurs. Figure 8 shows the
F150/C sample with damaged carbon layer, the delam-
ination area, and the failure of the flax layers.

Figure 7. Failure mechanism of the F220/C laminate (tensile test).

Figure 8. Failure mechanism of the F150/C laminate (tensile test).

Figure 6. Stress–strain curves of the hybrid laminates

(tensile test).
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Conclusions

The objectives of this work was to compare the
mechanical properties of two FFRP laminates and to
evaluate the influence on the same properties of an uni-
directional carbon fabric layer.

Two different bidirectional flax fabrics were used to
produce FFRP laminates by vacuum bagging process:
one is normally used to make curtains; the other, heavier
and more expensive than the previous one, is usually
used as reinforcement in composite structures. In
order to realize hybrid structures, an unidirectional
UHM carbon fabric was used to replace the external
layer of bidirectional flax fabric in each FFRP laminate.

Tensile and three-point bending tests were per-
formed to evaluate the mechanical properties of the
laminates investigated (both FFRP and hybrids).

The flexural tests show that the structures reinforced
with flax fabrics, normally used to make curtains (i.e.,
F150) presents better properties in comparison with
others (i.e., F220). Conversely, in tensile configuration,
both the modulus and strength of the F220 structure is
higher than those of F150.

Nevertheless it is noted that both FFRP structures
present low mechanical properties, which do not allow
their use in structural applications.

Regarding the hybrid structures, the presence of one
external layer of unidirectional greatly increases the
mechanical properties of the laminates:

. In flexural, the F150/C hybrid structure shows
improvements of about 221.7% and 110% in the
modulus and strength compared to those of the ref-
erence FFRP structures (i.e., F150) while the F220/C
shows an elastic modulus and tensile strength in
excess of 169.3% and 39.2% compared to those of
the reference structure (i.e., F220), respectively.

. In tensile, the F150/C hybrid structure shows
improvements of about 262.0% and 266.4% in the
modulus and strength compared to those of the ref-
erence FFRP structure while the F220/C hybrid
structure shows an elastic modulus and tensile
strength in excess of 13.1 % and 90.7% compared
to those of the reference structure, respectively.

. Definitely the F150/C hybrid structure shows the
best mechanical performances both in flexural (aver-
age values of failure stress and Young’s modulus
equal to 160.4MPa and 23.8GPa, respectively) and
in tensile properties (average values of failure stress
and Young’s modulus equal to 288.0MPa and
6.5GPa, respectively). These values are comparable
with that of other conventional composite laminates
normally used in engineering applications.

In conclusion, these results highlight that the
carbon/flax hybrid composites realized in this work,

could be used in structural applications (e.g., nautical
and automotive).
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