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a b s t r a c t

A new methodology for the solution of the 2D diffusive shallow water equations over Delaunay unstruc-
tured triangular meshes is presented. Before developing the new algorithm, the following question is
addressed: it is worth developing and using a simplified shallow water model, when well established
algorithms for the solution of the complete one do exist?

The governing Partial Differential Equations are discretized using a procedure similar to the linear con-
forming Finite Element Galerkin scheme, with a different flux formulation and a special flux treatment
that requires Delaunay triangulation but entire solution monotonicity. A simple mesh adjustment is sug-
gested, that attains the Delaunay condition for all the triangle sides without changing the original nodes
location and also maintains the internal boundaries. The original governing system is solved applying a
fractional time step procedure, that solves consecutively a convective prediction system and a diffusive
correction system. The non linear components of the problem are concentrated in the prediction step,
while the correction step leads to the solution of a linear system of the order of the number of compu-
tational cells. A semi-analytical procedure is applied for the solution of the prediction step. The discret-
ized formulation of the governing equations allows to handle also wetting and drying processes without
any additional specific treatment. Local energy dissipations, mainly the effect of vertical walls and
hydraulic jumps, can be easily included in the model.

Several numerical experiments have been carried out in order to test (1) the stability of the proposed
model with regard to the size of the Courant number and to the mesh irregularity, (2) its computational
performance, (3) the convergence order by means of mesh refinement. The model results are also com-
pared with the results obtained by a fully dynamic model. Finally, the application to a real field case with
a Venturi channel is presented.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The 2D Saint-Venant (SV) [45], or shallow water (SW)
equations, are extensively used for hydrodynamic simulations in
rivers, lakes, estuaries and floodplains.

Within the framework of the original SV equations, the result-
ing mathematical model may be classified as dynamic, gravity, dif-
fusion and kinematic wave model, corresponding to different
forms of the momentum equation, respectively [19,58,17].

Dynamic wave model retains all the terms of the momentum
equation, whereas gravity wave model neglects the effects of bed
slope and viscous energy loss and describes flows dominated by
inertia. As a matter of fact, the acceleration terms in the SV

equations can be neglected in most practical applications of flood
routing in natural channels. The system is thus reduced to a single
parabolic equation known as the diffusive wave model. If the water
depth gradient term is further omitted, the kinematic wave equa-
tion is acquired.

The criteria for demarcating kinematic and diffusive waves have
been fully discussed [39–41,47–49,55]. The kinematic model can
be easily solved in the case of steep slope or in initially dry areas,
where solution of some diffusive models is plagued by instability
problems. On the other hand, the kinematic model is not able to
compute backwater effects and provides physically inconsistent
results when local minima are present in the topographic surface.

The choice of the model to be used for the SW equations solu-
tion (fully dynamic, diffusive wave, kinematic wave, 1D or 2D,
etc.) depends also on the available input data and on the capability
of generating the required hydraulic information in an appropriate
format and detail level [50]. These information are, for instance,
the topography, the hydraulic properties of the river reaches and
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the inundation zone, the shape of the input flood hydrographs. For
example, the solution of the fully dynamic equations is very sensi-
tive to the topographic error, as will be shown in the next section,
and simplified models such as the kinematic wave and the uniform
formulae do not enable to represent all hydraulic processes during
flood events. The diffusive wave used herein is robust with respect
to the input data approximations, but provides a higher order accu-
racy with respect to the kinematic wave and the uniform formulae.

With exception of catastrophic events like dam breaks, flow
over inundated plains is often a slow and shallow phenomenon
where local free surface slopes are very small. When flood events
occur, water is no more contained in the main channel and spills
onto the adjacent floodplains. The physical process becomes very
complex to simulate and is no longer satisfactorily represented
by a 1D scheme. 2D numerical techniques capable of simulating
floodplain inundations have been extensively developed in the last
years [24].

Numerical techniques, like finite volumes (FV) and finite ele-
ments (FE), as well as more conceptually approaches, like storage
cell solutions, have been implemented for the solution of these
type of problems.

In FV and FE methods the domain is partitioned into cells and
the governing equations, written in conservative form, are inte-
grated in each cell. These methods can be applied to both struc-
tured and unstructured meshes.

During the last two decades, FV Godunov-type schemes have
become popular in seeking the numerical solution of the SW equa-
tions. In such schemes a local Riemann problem is solved at every
cell interface. Most of these schemes [2,4,34,54,32] have the capa-
bility of shock capturing with high accuracy level, but perform well
for particular types of flows, for example discontinuous flows over
flat topographies and fail in cases of irregular and variable topog-
raphy or in the appearance of dry areas. Bermudez and Vazquez
[14] and Vazquez-Cendon [57] used an upwind discretization of
the source term over irregular topography and introduced the con-
cept of C-property: a numerical scheme is regarded as well bal-
anced or satisfying the C-property if it preserves steady-state at
rest (stagnant conditions). Upwinding of the source terms is com-
putationally expensive because the source terms have to be pro-
jected on a base of the eigenvectors. LeVeque [31] introduced a
Riemann problems inside a cell for balancing the source terms
and the flux gradients. The method preserve the C-property and
the quasi steady-state conditions, but cannot be directly applied
to unstructured grids.

Alcrudo and Benkhaldoun [3] used a topography discretization
such that a sudden change in the topography occurs at the inter-
face of two cells and solve a Riemann problem at the interface with
a sudden change in the bed elevation. This approach leads to sev-
eral cases of Riemann fan and results are computationally very
expensive.

Zhou et al. [61] introduced the surface gradient method, using
the water surface elevation to calculate the water depth at cell
interfaces. The proposed method maintains the C-property and
performs well over variable topography without extra efforts for
balancing the source terms and the flux gradients. However the
C-property does not hold for unstructured grids.

Several FE approaches have been developed for the SW
equations over the past two decades; see, for example, [27,28,
33,52,62]. Much of this effort has involved deriving methods which
are stable and non-oscillatory under highly varying flow regimes.

In recent years, FE methods based on discretizing the primitive
form of the SW equations using discontinuous approximating
spaces have also been studied [1,2,15,18]. This discontinuous
Galerkin (DG) approach has several appealing features; in particu-
lar, the ability to incorporate upwinding and post-processing sta-
bility into the solution of highly advective flows. This approach

generalizes and extends the Godunov methods: the higher-order
polynomials are naturally built into the method and they are de-
fined through the variational equation, instead of computing these
higher-order terms by means of ad hoc post processing proce-
dures; diffusive terms are incorporated in the method, while, on
the opposite, Godunov schemes do not provide any mechanism
for dealing with second-order derivatives.

The DG methods allows for the use of non-conforming grids,
that have very useful feature in dealing with complicated geome-
tries. Moreover, the DG method is ‘‘locally conservative’’, that is,
the primitive continuity equation relating the change in water ele-
vation to water flux is satisfied in a weak sense element by ele-
ment. The main drawback of DG methods compared to
continuous Galerkin methods is their additional cost. In a DG
method, the degrees of freedom of the solution are associated with
elements rather than nodal values, and in unstructured Finite Ele-
ment meshes, there can be substantially more elements than
nodes.

One of the main difficulty in the solution of the SW equations is
the flow computation over initially dry areas. If no special attention
is paid, standard numerical procedure may fail near dry/wet front,
producing unphysical oscillations and negative water depths.

During the last 30, 40 years hydrodynamic models have been
equipped with Wetting–Drying (WD) algorithms [26]. Maybe
the most natural WD approach would be to track the WD inter-
face in time, moving the boundary nodes and deforming accord-
ingly the computational mesh, but a significant computational
cost has to be paid for the mesh deformation. For the above men-
tioned reasons, most of the available WD methods have been
developed for fixed mesh. The fixed mesh approach can be di-
vided in two main categories. In the first one, either nodes or en-
tire elements are deactivated when become dry and excluded
from the computational domain. However, this inclusion/exclu-
sion of elements may violate the mass and momentum conserva-
tion and infringe the numerical stability. In order to describe WD
interface that do not match the element interface, some authors
[21] introduced transition elements – those where some, but
not all nodes, are dry – requiring special treatment. Commonly
the transition elements are explicitly detected and their pressure
gradient term is neglected. Such discontinuous switches (as can-
celling the pressure gradients) make these methods highly non
linear and may introduce oscillations and numerical instabilities.
Another class of fixed grid WD techniques is the artificial porosity
one [21], where the bed is assumed to be porous and non zero
water fluxes are allowed for negative depths. The main advantage
of this procedure is that the artificial pressure gradient problem is
circumvented. For more details about the WD techniques, see
[21,26].

Most of the recently proposed floodplains inundation models
couple a 1D and a 2D model [35,16,11,23]. In Cunge-type storage
models, cells correspond to distinct flood compartments and geo-
metric relationships based on water levels are constructed to
determine the storage for each flood basin. With the developments
in GIS software these relationships are automatically generated
from high resolution Digital Elevation Models (DEMs). The abun-
dance of topographic data processed, stored and manipulated
within GIS systems has recently led to a fusion of the storage cell
concept with raster data format. Such schemes normally use 1D
models for main channel flow routing and discretize the flood-
plains by structured Cartesian (or raster) grid. Each floodplain pixel
in the grid is treated as an individual storage cell with inter-cell
fluxes treated using uniform flow formulae [11]. The interaction
between the main channel and the floodplains is modelled by weir
type equations.

Compared to fully explicit Finite Elements, finite differences
and finite volumes models, raster-based models have an advantage
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in terms of easy formulation, though questions remain about their
simple representation of the flow process [60].

In the present work, a numerical methodology for the solution of
diffusive shallow water problem is presented. The governing Partial
Differential Equations (PDEs) are discretized over unstructured tri-
angulations using a procedure similar to the linear conforming P1
FE Galerkin scheme but with a different flux formulation.

The methodology follows a fractional time step approach, solv-
ing sequentially a prediction and a correction problem. The non
linear components of the original PDEs problem are concentrated
in the prediction step, while the correction step leads to the solu-
tion of a linear system, of the order equal to the number of compu-
tational cells. Numerical fluxes discretization is the same in both
prediction and correction steps. A proof is given to show that the
method is both locally and globally mass conservative.

The prediction step is solved applying the MArching in Space
and Time (MAST) methodology, recently proposed for the solution
of advection dominated problems [10,5], of the fully dynamic SW
equations [6,8], as well as of transport problems in saturated por-
ous media with variable density [7]. MAST peculiarity is to solve at
each time step one computational cell after the others according to
a given order, such that the mean entering flux is known before the
cell solution. This provides an unconditional stability with respect
to the time step size, also for Courant (CFL) number much greater
than 1. The requirement for the application of the MAST method-
ology is the existence of an exact or approximated scalar potential
for the flow field. In the present physical problem, an exact scalar
potential of the flow field exists and it is the piezometric head. At
the beginning of each time step, computational cells are ordered
according the their piezometric value. MAST solves a sequence of
Ordinary Differential Equations (ODEs), one for each computa-
tional cell, from the highest to the lowest potential value.

The present paper is organized as follows: the choice of the dif-
fusive model with respect to the fully dynamic one is first moti-
vated in Section 2 and the governing equations of the diffusive
SW equations are presented in Section 3, as well as the applied
fractional time step procedure. The spatial discretization of the ori-
ginal governing equation system and the MAST scheme are pre-
sented in Section 4, with the numerical flux formulation in a
Delaunay triangulation. In Section 5, a simple procedure to obtain
a Delaunay mesh from a given set of nodes, also including a subset
of fixed edges, is provided. Details of the semi-analytical procedure
for the solution of the prediction step are given in Section 6. Han-
dling wetting and drying processes is discussed in the same sec-
tion. The inclusion of the effect of vertical walls and hydraulic
jumps in the proposed model is described in Section 7. In Section
8, several numerical experiments have been carried out in order
to test the efficiency and stability of the proposed model with re-
gard to the size of the CFL number, the computational perfor-
mance, as well as the convergence order by mesh refinement,
which is close to 2. Numerical results in the case of flow in a rect-
angular channel are compared with the corresponding ones ob-
tained by other literature models. The flooding from a composite
trapezoidal cross section channel in steady-state conditions is
studied, as well as the application of a real field case with a Venturi
channel. Results of these two last tests are compared with the cor-
responding ones computed by the fully dynamic model proposed
in [12,13].

2. Why it can be worth using a diffusive model instead of a fully
dynamic one?

Before presenting the new algorithm for the solution of the 2D
diffusive shallow water problem (DSW), we provide some most
important motivations to prefer the diffusive model instead of

the fully dynamic one (FSW). The motivations can be summarized
as follows:

(1) The numerical solution of the diffusive model can be com-
puted more quickly, for given mesh size and simulated time, (2)
only one boundary condition (b.c.) is required at each boundary
point, where the appropriate number of b.c. in the fully dynamic
case can be zero, two or three depending on the local Froude num-
ber, and (3) most important, the sensitivity of the computed water
depth to the topographic error is much higher in the FSW model
than in the DSW one.

Motivation (1) is based on the possibility to merge the momen-
tum equations in the continuity equation, in order to get a single
higher order equation in only one unknown (instead of three un-
knowns as for the FSW model) and on the existence of an exact po-
tential. The exact potential and the irrotationality of the flow field
allow the application of the MAST procedure, with time steps lead-
ing to CFL numbers much larger than one. On the other hand, we
have already seen in the introduction that important advances in
the solution of the FSW model have recently attained a very good
computational efficiency and have made this motivation less com-
pelling than the others.

Motivation (2) is based not only on computational advantages,
but also on data limitation. For example, the availability of data
regarding supercritical flows entering the upstream domain
boundary is often missing and in the FSW solution the normal
(i.e. uniform) flow condition is usually adopted to relate water
depth to discharge.

Motivation (3) is the most important one. Guinot and Cappalla-
ere [22] have recently analyzed the sensitivity of a FSW 2D model
with respect to the parameter errors, where parameters are the
topographic elevation, the Manning coefficient and the bed slope.
They have shown that, in the very simple case of frictionless, hor-
izontal bed with uniform steady-state flow, the sensitivity can be
computed as the solution of a Laplace equation, where the source
term is proportional to the quantity:

a ¼ ð1� F2
r Þ
�1=2 ð1Þ

where Fr is the Froude number. It is well-known that the diffusive
model can be thought as a fully dynamic one where the gravity
force goes to infinity. This is equivalent to say that the Froude num-
ber goes to zero and, in Eq. (1), the quantity a attains its minimum
possible size.

The same conclusions can be obtained for the 1D case by
observing the behaviour of the water depth when a topographic
change is given for constant energy value. See in Fig. 1 the E(h)
curve, where h is the water depth and E is the energy per unit
weight and constant discharge, relative to the bed level
(E = h + V2/2g, where V is the mean flow velocity and g the gravity
acceleration). The straight line is the potential component of the
energy, that is the same water depth h.

When a topographic Dz change locally occurs, E decreases to
E � Dz. In the diffusive model, h decreases also to E � Dz and the
piezometric level remains constant. In the fully dynamic model a
larger variation Dh occurs (see Fig. 1), because the water depth
reduction has also to balance the velocity and the corresponding
kinetic energy increment. If the initial water depth is close to the
critical value, the water depth sensitivity in the fully dynamic
model approaches infinity, as also suggested by Eq. (1) when the
Froude number is close to one.

The sensitivity of the water depth with respect to the topo-
graphic error in the complete model strongly overcomes the same
sensitivity in the diffusive model only when the Froude number
approaches one. On the other hand, the difference between the re-
sults of the two models is significant only for the same range of
Froude number. If the flow is strongly supercritical, the water
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depth is likely to resemble its normal value; if the flow is strongly
subcritical, the inertial terms are negligible in the momentum
equation.

The choice of the model type still remains subjective and case-
dependent. In the case of dam-break flows or waves with a length
much shorter than the domain extension, inertial terms prevails in
the momentum equation and the use of a complete model is com-
pulsory. In all the other cases it is our opinion that diffusive models
provide more robust and reliable solutions, as it will be shown to
happen in the last two numerical tests, mainly because of the smal-
ler sensitivity to the input data error and uncertainty.

3. Governing equations system and the fractional time step
methodology

The 2D diffusive form of the shallow water equations can be
written as a system of three first order PDEs [56]:

@H
@t
þ @uh

@x
þ @vh

@y
¼ p ð2aÞ

rxH þ n2u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

h4=3 ¼ 0 ð2bÞ

ryH þ n2v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

h4=3 ¼ 0 ð2cÞ

where h is the water depth, H = z + h is the piezometric head (z is
the topographic head), u and v are the x and y velocity components,
n is the Manning coefficient, rx(y)H is the component of the spatial
gradient of the piezometric head in x(y) direction, p represents a
source term (e.g., rain intensity). Eq. (2a) is the mass conservation
equation and Eqs. (2b) and (2c) are the momentum equations in x
and y directions.

Initial and boundary conditions have to be specified to make
problem (2) well posed. Boundary conditions may be of Dirichlet
(prescribed piezometric head or water depth) or Neumann (pre-
scribed flux) type. If X is the spatial domain where problem (2)
is defined, initial and boundary condition can be written as:

hðx; tÞ ¼ hDðx; tÞ or Hðx; tÞ ¼ HDðx; tÞ; x 2 CD

qðx; tÞ � n ¼ gNðx; tÞ; x 2 CN

hðx;0Þ ¼ h0 or Hðx; 0Þ ¼ H0; x 2 X

ð3Þ

where C = CD [ CN is the boundary of X, CD and CN are the portions
of C where Dirichlet and Neumann boundary conditions hold

respectively, HD and hD are the assigned Dirichlet values for H and
h, gN is the assigned Neumann flux, q(x, t) is the boundary flow rate
vector, n is the unit outward normal to the boundary, x = (x,y) and
the subscript 0 marks the initial state in the domain.

Eqs. (2b) and (2c) can be merged in Eq. (2a), to get the final one:

@H
@t
� @

@x
h5=3

n
ffiffiffiffiffiffiffiffiffiffiffi
jrHj

p @H
@x

 !
� @

@y
h5=3

n
ffiffiffiffiffiffiffiffiffiffiffi
jrHj

p @H
@y

 !
¼ p ð4Þ

In the proposed procedure, numerical solution of Eq. (4) in the H un-
known is attained by means of a time-splitting approach, solving
consecutively a prediction and a correction system.

Assume a general system of balance laws:

@U
@t
þr � FðUÞ ¼ BðUÞ ð5Þ

where U is the vector of the unknown variables, F(U) is the flux vec-
tor and B(U) is a source term. Applying a fractional time step proce-
dure, we set:

FðUÞ ¼ FpðUÞ þ FðUÞ � FpðUÞð Þ ð6aÞ
BðUÞ ¼ BpðUÞ þ BðUÞ � BpðUÞð Þ ð6bÞ

where Fp(U) and Bp(U) are respectively a suitable numerical flux
and source term, further defined. After integration in time, system
(5) can be split in the two following ones:

Ukþ1=2 � Uk þr �
Z Dt

0
Fpdt ¼

Z Dt

0
Bpdt ð7aÞ

Ukþ1 � Ukþ1=2 þr �
Z Dt

0
Fdt �r � FpDt ¼

Z Dt

0
Bdt � BpDt ð7bÞ

where Fp and Bp are the mean numerical flux and source terms
computed along the prediction step, Uk+1/2 andUk+1 are the un-
known variables computed respectively at the end of the prediction
and the correction phases. Integrals FpDt and BpDt will be estimated
‘‘a posteriori’’ after the solution of the prediction problem, accord-
ing to the procedure explained in the next section. We call systems
(7a) and (7b) prediction and correction systems respectively. Ob-
serve that summing systems (7a) and (7b), the integral of the origi-
nal system (5) is formally obtained. The difference between Uk+1

and Uk+1/2 in Eq. (7b) is close to zero as far as the difference between
the predicted and mean in time values of the fluxes and source
terms is small. The advantage of using formulations (7) instead of
(5) is that, with a suitable choice of the prediction terms Fp(U)
and Bp(U), each of the two systems (7a) and (7b) can be much easier
to solve than the original system (5).

In the present case we have:

U ¼ H ð8aÞ

F ¼ � h5=3

n
ffiffiffiffiffiffiffiffiffiffiffi
jrHj

p rH ð8bÞ

B ¼ p ð8cÞ

We set:

Fp ¼ � h5=3

n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jrHjk

q ðrHÞk ð9aÞ

Bp ¼ B ð9bÞ

where index k marks the beginning of the time step (time level tk).
Observe that the flux formulation of the prediction step differs from
the original one (Eq. (4)) in the time level of the gradients of H. In
the prediction step, spatial gradients of the piezometric head are
assumed constant in time and equal to the values computed at
the end of the previous time step. The prediction equation to be
solved along the given time step is:

Fig. 1. Variations of water depth in the diffusive model and complete model
resulting from local elevation change.
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@H
@t
� @

@x
h5=3

n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jrHkj

q @Hk

@x

0
B@

1
CA� @

@y
h5=3

n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jrHkj

q @Hk

@y

0
B@

1
CA ¼ p ð10Þ

The prediction problem is solved in its integral form, as shown in
the following, while the correction problem is solved in its differen-
tial linearized form:

@g
@t
� @

@x

hkm
� �5=3

n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jrHkj

q @ðg� #Þ
@x

0
B@

1
CA� @

@y
ðhkmÞ5=3

n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jrHkj

q @ðg� #Þ
@y

0
B@

1
CA ¼ 0

ð11Þ

where

g ¼ H � Hkþ1=2 ð12aÞ

hkm ¼ hk þ hkþ1=2

2
ð12bÞ

# ¼ Hk � Hkþ1=2 ð12cÞ

with initial condition g = 0. Index k + 1/2 marks the solution of the
prediction Eq. (10).

After some simple manipulations, it can be shown that the qua-
si-linear differential form of the prediction problem is kinematic,
with only one characteristic line passing through each (x, t) point.
The prediction PDE system is equivalent to a single non-linear con-
vection equation, function of the gradient of the piezometric head
at time level tk, while correction system has the functional charac-
teristics of a pure diffusive process. For these reasons we call the
prediction and the correction systems respectively convective pre-
diction system and diffusive correction system.

The convective prediction problem has to be solved by giving
the known discharge as boundary condition to the upstream nodes.
The diffusive correction system is solved by setting to zero diffu-
sive flux in the upstream boundary nodes and by giving to the
downstream nodes the proper boundary condition required to sat-
isfy the boundary conditions of the original problem (2). For exam-
ple, if the downstream water level is known and equal to H⁄, the
correction g in the downstream boundary will be set equal to:
g = H⁄ � Hk+1/2.

4. The MAST procedure

The spatial discretization of the governing equations is carried
out on a generally unstructured triangular mesh that satisfies the
Delaunay property. A Delaunay triangulation in R2 is defined by
the condition that all the nodes in the mesh are not interior to
the circles defined by the three nodes of each triangle. Let
X � R2 be a bounded domain, Xh a polygonal approximation of
X and Th an unstructured Delaunay-type triangulation of Xh. The
triangulation Th is called basic mesh and the triangle kT 2 Th is called
primary element. Let Ph = {Pi, i = 1, . . . ,N} be the set of all vertices
(nodes) of all kT 2 Th and N the total number of nodes. The dual
mesh Eh = {ei, i = 1, . . . ,N} is constructed over the basic mesh. The
dual finite volume ei associated with the vertex Pi is the closed
polygon given by the union of sub-triangles resulting from the sub-
division of each triangle of Th connected to node Pi by means of its
axes (see Fig. 2). In the following of the paper the dual volumes e
are called also cells. The sub-triangles are called secondary elements
and are indicated as eII. Cells ei satisfy:

X ¼ [ei ð13Þ

The dual finite volume of the Delaunay triangulation, previously de-
fined, is called Voronoi cell or Thiessen polygon [42]. Each Voronoi
cell ei associated to node Pi consists of the points Q such that
d(Q,Pi) 6 d(Q,Pj) for j = 1, . . . ,N and j – i (d(Q,Pi) is the distance

between Q and Pi). The vertices of the Voronoi cells are the circum-
centres of the Delaunay triangulation.

The storage capacity is assumed concentrated in the cells
(nodes) in the measure of 1/3 of the area of all the triangles sharing
each node. A linear variation of the piezometric head H inside each
triangle of the mesh is assumed on the base of the values at its
three nodes. After integration in space, the differential form of
the prediction system (10) is:

Ai
dHi

dt
þ
X

j

Flout
i;j ¼

X
m

Flin
i;m þ Aipi; i ¼ 1; . . . ;N ð14aÞ

with

Flout
i;j ¼ Kk

i;jh
5=3
i ; Ai ¼

1
3

X
n¼1;NT

jkT jndi;n ð14bÞ

where Ai is the area of cell i, NT is the total number of triangles, jkTjn
is the area of triangle n, di,n is the Kronecker delta equal to one or
zero according if node i is or is not a vertex of triangle n; Flout

i;j is
the flux going from cell i to the any neighbouring downstream (in
the potential scale) cell j with Hk

j 6 Hk
i , flux coefficient Kk

i; j will be
further defined, Flin

i;m is the flux entering in cell i from any neigh-
bouring upstream cell m with Hk

i 6 Hk
m and pi is source term in node

i.
Solution of system (14a) can be disentangled in the sequential

solution of N equations by approximating the r.h.s. with its mean
value along the given time step, that is by setting:

Ai
dHi

dt
þ
X

j

Flout
i;j ¼

X
m

Flin
i;m þ Aipi ð15Þ

where Flin
i;m is the mean in time value of the flux entering from cell

m, previously solved, and pi is the pi mean value.
At each time step, the computational cells are ordered accord-

ing to the decreasing value of their potential (the piezometric
head), computed at the end of the previous time step and then
are sequentially solved throughout the computational domain.

After solution of each ODE (15), the mean in time total flux
going from cell i to the neighbouring downstream cells can be com-
puted by the local mass balance for cell i, that is

Flout
i ¼ Flini � Ai

hkþ1=2
i � hk

i

Dt
þ Aipi ð16Þ

where Flout
i and Flin

i are respectively the total mean leaving and
entering fluxes, with

secondary element 

Pi 
ei 

kT 

Fig. 2. The basic mesh and the dual finite volume mesh.
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Flin
i ¼

X
m

Flin
i;m ð17Þ

and hkþ1=2
i is the final value of the water depth computed by the pre-

diction step.
The mean flux Flout

i;j going from cell i to cell j with Hk
i > Hk

j can be
estimated by partitioning Flout

i according to the ratio between the
flux Flout

i;j and the sum of the leaving fluxes at the end of the predic-
tion step, that is:

Flout
i;j ¼ Flout

i

Flout
i;j

� �kþ1=2

P
l Flout

i;l

� �kþ1=2 ¼ Flout
i

Kk
i;jP

lK
k
i;l

ð18aÞ

where the sum is extended to all the neighbouring cells l with
Hk

l 6 Hk
i . Finally, the mean in time fluxes entering in cells j with

lower total head can be computed as:

Flout
i;j ¼ Flin

j;i ð18bÞ

After solution of the ODE corresponding to cell i, the next equation
to be solved is relative to the cell j with the maximum piezometric
head among the unsolved ones and Hk

j 6 Hk
i . Observe that, because

of the chosen equations sorting, the mean entering fluxes will be al-
ways known before each ODE solution.

Eq. (16) represents the local mass continuity equation inte-
grated in space and time inside the Voronoi cell and its application
guarantees the global conservation of the mass (see also Appendix
A). The solution of the prediction problem can be classified as ‘‘ex-
plicit’’, because it depends only on the initial state in the cell and
on the information (i.e. the flux) coming from the upstream (in
the potential scale) cells, previously solved.

Differently from the previous MAST formulations ([6,8]), we
compute the flux coefficient Kk

i;j (see Eq. (14b)) as:

Kk
i;j ¼ c1

i;jE
k
1 þ c2

i;jE
k
2

� �Hk
i � Hk

j

dij
ð19aÞ

with

c1
i;j ¼ d1

i;j; c2
i;j ¼ d2

i;j if d1
i;j P 0 and d2

i;j P 0 ð19bÞ

c1
i;j ¼ d1

i;j þ d2
i;j; c2

i;j ¼ 0 if d1
i;j P d2

i;j and d2
i;j < 0 ð19cÞ

c1
i;j ¼ 0; c2

i;j ¼ d1
i;j þ d2

i;j if d2
i;j P d1

i;j and d1
i;j < 0 ð19dÞ

where dij is the distance between nodes i and j and dm
i;j is the dis-

tance between the circumcentre of each element m = 1, 2 sharing
edge ij from the same edge, that is:

dm
i;j ¼
ðxm � x12Þðyj � yiÞ � ðym � y12Þðxj � xiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxj � xiÞ2 þ ðyj � yiÞ
2

q dðmÞ ð19eÞ

where xm, ym are the circumcentre coordinates, x12 and y12 are the
coordinates of the common edge midpoint (point P12 in Fig. 3)

and d(m) = �1 or 1 if direction ij is respectively counterclockwise
or not in triangular element m. Observe that dm

i;j < 0 if the angle
opposite to side ij in triangle m is obtuse. If the edge ij belongs to
the external boundary of the domain we set:

Kk
i;j ¼ d1

i;jE
k
1

Hk
i � Hk

j

dij
ð20Þ

and we assume that d1
i;j P 0 (as better explained in the next sec-

tion). Coefficient Ek
m is equal to:

Ek
m ¼

1

nm

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jDHk

mj
q ð21Þ

where sub-index m marks all parameters of triangular element m.
The new adopted space discretization is similar to the one of the

standard linear conforming Galerkin Finite Element scheme.
According to Eq. (14b) and Eqs. (19a)–(19e), the flux Flout;m

i;j moving
from cell i to cell j in each of the two triangles m sharing side ij, is
computed as:

Flout;m
i;j ¼ cm

i;jE
k
m

Hk
i � Hk

j

dij
h5=3

i ð22aÞ

It can be shown that in the Galerkin formulation the same flux is
computed as [42,43]:

Flout;m
i;j ¼ dm

i;jE
k
m

Hk
i � Hk

j

dij
ĥ5=3

m ð22bÞ

where ĥm is the average in space water depth inside triangle m. In
both cases Eqs. (22a) and (22b) approximate the flux between cells
i and j, through side dm

i;j of the Voronoi polygons of cell i and cell j,
due to the piezometric head difference Hk

i � Hk
j . The difference of

the MAST inter-cell flux formulation with respect to the Galerkin
scheme, motivated and discussed in the next section for the case
of Delaunay unstructured meshes, does not affect the flux computa-
tion between two cells with constant water depth and sharing parts
of two acute triangles.

Diffusive problem (11) and (12) is solved using the same spatial
discretization adopted in the prediction problem, as well as a fully
implicit time discretization. Integration of Eq. (11) inside each
Voronoi cell leads to the following system:

Ai

Dt
gi þ

X
n¼1;NT

Dk
i;jðgi � gjÞdi;n ¼

X
n¼1;NT

Dk
i;jð#j � #iÞdi;n; i ¼ 1; . . . ;N

ð23aÞ

with

Dk
i;j ¼

X
m¼1;2

cm
i;jE

k
m

dij
ðhkm

l Þ
5=3 ð23bÞ

where di,n is the Kronecker delta, equal to one or zero according if
node i is or is not a vertex of triangle n and the sum in Eq. (23b)
is extended to the two triangles m sharing side ij. l = i if
Hk

i P Hk
j ; l ¼ j if Hk

i < Hk
j . Differently from the previous formula-

tions of the diffusion coefficients Dk
i;j, the new one provides the same

flux estimation of the prediction problem, for given element param-
eter Ek

m and node variable difference, that is Hk
i � Hk

j in the predic-
tion problem and gi � gj in the correction problem.

Fully implicit time discretization provides unconditional stabil-
ity, along with some approximation error in the solution [30]. The
approximation error is small because its magnitude is of the same
order of the computed correction g, and the source term on the rhs
of Eq. (23a) goes to zero along with the time step size. Even during
abrupt potential changes, the potential correction will be small
with respect to the predicted change. This implies that the absolute
error in the estimation of the piezometric correction will onlyFig. 3. Circumcentres P1 and P2 of elements 1 and 2 sharing edge ij.
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weakly affect the piezometric final value computed at time level
k + 1.

The linear system resulting from Eqs. (23) has order equal to the
number of the nodes and is well conditioned, with a matrix that is
always symmetric, positive definite and, according to the new flux
formulation, strictly diagonally dominant, even in the case of Del-
aunay triangulations with obtuse triangles (see next section). It can
be shown (see Appendix B) that this last property guarantees the
steady-state monotonicity of the solution, that remains regular
also preserving the local mass conservation, even in the parts of
the domain with sharp topographic changes, like along the banks
of a trapezoidal channel.

After solution of the linear system (23) is obtained in the g un-
knowns, the piezometric heads H at the end of the time step are
obtained as:

Hkþ1 ¼ Hkþ1=2 þ g ð24Þ

A major property of the MAST scheme, as herein formulated, is that
in steady-state condition the correction component vanishes for
any arbitrary chosen time step size. This relevant result is due to
the use of the same spatial discretization for the computation of
both the convective and the diffusive fluxes.

The proposed scheme can be regarded as a finite volume (FV)
method where the control volume is the Voronoi cell, similar to
the standard conforming Galerkin Finite Element scheme. MAST
scheme is a locally conservative method, meaning that the sum
of the fluxes over each cell edges equals the accumulation term
plus any sources or sinks in the cell, and the flux is continuous
across each edge [29] (see Appendix C).

5. The required generalized Delaunay property

If one edge ij linking nodes i and j is opposite to the obtuse angle
of an element m, the distance dm

i;j of the circumcentre from edge ij,
defined in Eq. (19e), is negative and three possibilities exist.

The first possibility is that edge ij is common to two elements
and these have the sum of their distances sij ¼ d1

i;j þ d2
i;j greater than

or equal to zero, such that the circumcentre P1 of the obtuse trian-
gle is located on the axis of the edge ij between the same edge and
the circumcentre P2 (Fig. 4a). It can be shown [20,42] that this con-
dition is equivalent to have the third node of the first (or second)
triangle out of the circle defined by the three nodes of the second
(or first) triangle. This implies that the Delaunay property guaran-
tees the condition (see Fig. 4b):

d1
i;j þ d2

i;j P 0 ð25aÞ

for all the edges of the mesh shared by two triangles. Most of the
today available mesh-generators satisfy the Delaunay property,
even if some exceptions occur around internal boundaries, or when
the mesh density is forced to change in given subdomains. If the

Delaunay property is satisfied, both the inter-cell fluxes computed
by Eq. (22a) in the two elements sharing edge ij are either oriented
according to the difference between the water levels of the two cells
or zero. Observe that in the standard Galerkin Finite Element dis-
cretization, if the two element fluxes on the r.h.s. of Eq. (2c) are
computed with different parameters Ek

m, the sign of the total flux
from node i to node j can loose consistency with the piezometric
difference even if the mesh satisfies the Delaunay property and
the sum of the distances sij ¼ d1

i;j þ d2
i;j is positive.

The second possibility (Fig. 4b) is that the Delaunay property
is not satisfied. In this case it is still possible to obtain a new
mesh that satisfies condition (25a) for all the internal edges,
starting from the original one, without changing the original node
location. This can be done by a series of local edge swaps, where
two elements sharing the same edge are changed in a new cou-
ple, sharing the same nodes but a different edge, connecting the
two nodes opposite to the previous edge. See for example the
new triangles obtained in Fig. 5b by the original ones of Fig. 5a.
It can be shown [20] that the common edge satisfies the Delaunay
property in at least one of the two configurations. By iterating the
same control for all the edges, the Delaunay property is quickly
attained for all the edges of the mesh that are shared by two
triangles.

The third possibility is that the element m is a boundary ele-
ment and ij is a boundary edge opposite to an obtuse angle. In this
case the flux coefficient Kk

i;j in Eq. (20) remains negative, even if the
mesh satisfies the Delaunay property, because the distance of the
circumcentre from the boundary edge is negative. We define Gen-
eralized Delaunay mesh a Delaunay mesh where the condition:

d1
i;j P 0 ð25bÞ

holds for all the boundary edges.

Fig. 4a. Elements 1 and 2 satisfy the Delaunay property.

Fig. 4b. Elements 1 and 2 do not satisfy the Delaunay property.

l

k

i

jc
m=2

m=1 2

c1

 

Fig. 5a. Original not Delaunay triangulation.
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If condition (25b) does not hold for one or more boundary
edges, and/or common edges are fixed as internal boundaries, it
is still possible to obtain a Generalized Delaunay mesh, also saving
the internal boundaries. To this aim the two original triangles shar-
ing the internal boundary or the original triangle with a boundary
edge opposite to an obtuse angle are divided in new triangles by
adding new nodes along the original edge. The new triangles have
the same height as the original ones with respect to the boundary
edge, but the base length will be a fraction of the original one. After
this change, the same edge swap iterative procedure can be applied
to the resulting edges, with no exception for the new ones located
on the internal boundary. It can be easily shown (see Appendix D)
that the resulting mesh will satisfy the Generalized Delaunay prop-
erty, if the number of new nodes is large enough. See an example in
Figs. 6a and 6b where the boundary edges 2–3 and 1–4 do not sat-
isfy the Generalized Delaunay property (Fig. 6a). The mesh is first
changed in a new mesh by setting a new node in both edges 2–3
and 1–4 (Fig. 6b), and then changed in a Generalized Delaunay
mesh by applying the swap technique to the edge 4–5, that is chan-
ged with the new edge 3–7 (Fig. 6c).

The same spatial discretization adopted for the convective
fluxes is also applied for the estimation of the diffusive fluxes. In

Appendix E it is shown that this implies for the resulting linear sys-
tem matrix the so called M-property [59], that is the negativity of
all the extra-diagonal matrix coefficients. The M-property guaran-
tees inter-cell fluxes with a sign that is always consistent with the
sign of the corresponding water level difference. An important con-
sequence is the monotonicity of the steady-state solution, when
source terms are missing, as well as the lack of spatial oscillations
[59].

Observe that the diffusive fluxes computed with the spatial dis-
cretization of Eq. (11) according to the standard Galerkin approach,
are proportional to a parameter T assumed constant inside each
element m and equal to [42,43]:

Tm;k ¼ Ek
mĥ5=3

m ¼ ĥ5=3
m

nm

ffiffiffiffiffiffiffiffiffiffiffiffiffi
DHk

m

��� ���r ð26aÞ

The Galerkin approach guarantees the positive definite condition
(all the eigenvalues greater than zero) of the final linear system
matrix, even if the Generalized Delaunay condition does not hold,
but does not guarantee the M-property [30,42]. On the other hand,
if a non Generalized Delaunay mesh is used with the proposed
algorithm, the iterative methods used for the solution of the linear
system in the correction problem can fail, because of the negative
eigenvalues. This restricts the use of the proposed algorithm to tri-
angular meshes that satisfy conditions (25a) or (25b) in all the
edges.

Solving the convective and the diffusive problem using the
same computational cells and flux spatial discretization is very
important, because the use of different formulation for the compu-
tation of convective and diffusive fluxes can lead to small oscilla-
tions in space and in time even in the case of steady-state flow,
when the dissipative correction is expected to go to zero in the
MAST procedure. In the proposed algorithm, the fluxes computed
by Eq. (26a) are proportional to a parameter T given by:

Tm;k
i;j ¼ Ek

mh5=3
i ¼ h5=3

i

nm

ffiffiffiffiffiffiffiffiffiffiffiffiffi
DHk

m

��� ���r ð26bÞ

that cannot be thought as an element parameter. This implies that
the velocity is not constant inside the element and divergence is not
zero in each point of the domain, even if local and global mass con-
servation are both satisfied in the spatially discretized domain.

6. A semi-analytical solution of the prediction problem

In the previous formulation of the MAST algorithm the solution
of each ODE problem (15) has been sought after numerically,
adopting a Runge–Kutta scheme with a self adapting time step, a
fraction of the original one [6]. In the present formulation, an
approximated analytical solution is provided for the solution of
the problem (15). Call hk

i the water depth at the beginning of the

1c

2

m=1

m=2c j

i

k

l

Fig. 5b. Delaunay triangulation after the mesh correction (edge swap).

b

2 5

1

3

4

Fig. 6a. Original triangulation.

b/2

5
2

New node

6

1

7
b/2

3

4

New node

Fig. 6b. New triangulation after adding two new nodes.

5
2

6

1

3

4

Swaped edge
7

Fig. 6c. Generalized Delaunay triangulation after applying the swap technique.
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time step and hkf
i its asymptotic steady-state value (i.e. when dHi/

dt = 0), computed according to Eqs. (15) and (17), that is:

hkf
i ¼

Fl0iniP
j

Kk
i;j

0
BB@

1
CCA

3=5

ð27aÞ

with

Fl0ini ¼ Flin
i þ Aipi ð27bÞ

Eq. (15) can be written in dimensionless form as:

dn
ds
¼ 1� n5=3; n ¼ hi

hkf
i

; s ¼ dt Fl0ini

Aih
kf
i

if hkf
i > hk

i ð28aÞ

dn
ds
¼ n5=3

f � n5=3; n ¼ hi

hk
i

; s ¼ dt Fl0ini

Aih
k
i

hk
i

hkf
i

 !5=3

if hkf
i < hk

i ð28bÞ

A series solution of Eqs. (28a) and (28b) is possible, but a good
approximation can also be found with a smaller computational time
by setting:

n ¼ expðc1sÞ þ c2

expðc1sÞ þ c3
if hkf

i > hk
i ð29aÞ

n ¼ 1þ ðnf � 1Þ expðc1sÞ þ c2

expðc1sÞ þ c3
if hkf

i < hk
i ð29bÞ

with a proper choice of the c1, c2 and c3 coefficients. Using any c3va-
lue it is possible to match the initial value n0 and its first derivative
n00 by setting:

c2 ¼ n0ð1þ c3Þ � 1; c1 ¼ n00
ð1þ c3Þ2

ðc3 � c2Þ
if hkf

i > hk
i ð30aÞ

c2 ¼ �1; c1 ¼ n00
ð1þ c3Þ
ðnf � 1Þ if hkf

i < hk
i ð30bÞ

Observe that functions (29a) and (29b) always match the initial and
the asymptotic values of the real solution and guarantee its time
second order convergence for any given c3 value. The c3 coefficient
affects the maximum error that is obtained according to functions
(29a) and (29b) using different time step sizes. This optimum de-
pends on n0 for case (a) and on nf for case (b). The optimum coeffi-
cients have been computed numerically for different possible n0 and
nf values by comparing functions (29a) and (29b) with a numerical
solution computed using a very small time step. See in Table 1 and
in Fig. 7 the computed optimum c3 values.

See in Figs. 8a and 8b the numerical solution of Eqs. (28a) and
(28b) in the case of respectively n0 = 0 and nf = 0, compared with
the semi-analytical solutions (29a) and (29b) corresponding to
the optimal c3 values (respectively 0.7469 and �0.8171). The max-
imum error computed with the initial conditions n0 = 0, for
hkf

i > hk
i , or nf = 0, for hkf

i < hk
i , is the worse one and it is smaller

than 10�3. See also, in the same figures, the semi-analytical solu-
tions corresponding to c3 = 0 and c3 = 1. These two solutions are
equivalent to the analytical closed form solution of Eqs. (28) when
the power exponent is approximated respectively to 1 or 2.

Observe that no special additional treatment for wetting and
drying procedure is required in the proposed algorithm. An impor-
tant feature of Eq. (15), in facts, is that it can be solved also with
zero initial water depth value. Unless the spatial water level gradi-
ent at time level k is close to zero around the cell, the kinematic
wave of the prediction problem propagates beyond the dry cell
and this allows the use of Courant number greater than one.

Table 1
c3 coefficient that provides the smallest error for any possible s value.

n, nf hkf
i > hk

i hkf
i < hk

i

c3 c3

0.0 0.746910 �0.817120
0.1 0.579450 �0.605480
0.2 0.460290 �0.473940
0.3 0.366280 �0.374090
0.4 0.288870 �0.293430
0.5 0.223400 �0.226030
0.6 0.166990 �0.168420
0.7 0.117660 �0.118360
0.8 0.074026 �0.074301
0.9 0.035066 �0.035129

Fig. 7. Function c3.

Fig. 8a. Comparison of the solution obtained by the semi-analytical method and the
exact solution: case n0 ¼ 0� hkf

i > hk
i .

Fig. 8b. Comparison of the solution obtained by the semi-analytical method and
the exact solution: case nf ¼ 0� hkf

i < hk
i .
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Observe that the semi-analytical solution also exists in the case
n0 ¼ 0 ðhkf

i > hk
i Þ. If, after the solution of the prediction step,

hkm
i ¼ 0, the corresponding extra-diagonal terms of the system ma-

trix are zero as well and zero fluxes are computed in all the ele-
ments surrounding cell i.

7. Local head losses due to vertical walls

Diffusive models are fully suitable for the reconstruction of
water level profiles and of the vertically averaged velocities in
most of the computational domain, for the simulation of natural
floods. In some cases and for some special purposes, where vortic-
ity or vertical velocity components have to be estimated, diffusive
models are no more adequate, but in other cases it is possible to
account for the effect of downstream local energy losses by means
of a fictitious change of the Manning coefficient. One of these cases
is the restriction of a river cross section given by vertical or sub-
vertical walls.

Modelling a river stream flow with a diffusive 2D model is
equivalent to compute the total discharge as the integral of the dis-
charge per unit width, computed along the direction transverse to
the flow with a vertically averaged velocity that is different on each
element crossed by the vertical section. The same methodology is
applied by most of the 1D models using the so called Divided Chan-
nel Method (DCM), along with making the further assumption of a
single energy slope inside the section [51]. The inconvenient of this
approach is that it underestimates the flow resistance in the case of
vertical or subvertical walls, because the velocity reduction occur-
ring near the wall is not accounted for by the model.

The reduction of conveyance capacity, caused by walls, can be
restored by giving to the elements inside the restriction an equiv-
alent roughness coefficient np, different from the natural one. np is
the roughness coefficient the provides, in steady-state flow condi-
tion, the same discharge per unit width qp calculated taking into
account the shear stress induced by the walls.

The effective conveyance capacity is estimated at the beginning
of the time marching procedure, applying the Interacting Divided
Channel Method (IDCM) proposed by Huthoff et al. [25]. The IDCM
is based on a parameterization of the interface stress between adja-
cent flow compartments; assuming steady-state and 1D flow the
authors have proposed the following equations to compute the flow
velocity per unit bed slope in the compartments (see Fig. 9):

qgAj ¼ qfjPjV
2
j þ hj�1=2 � sj�1=2 þ hjþ1=2 � sjþ1=2 ð31Þ

where q is the density, g is the gravity acceleration, Aj is the com-
partment area, hj�1/2 refers to the interface on the left and hj+1/2

to the interface on the right of compartment j. The corresponding
shear stress and the dimensionless bed roughness are

sjþ1=2 ¼
1
2
aqðV2

jþ1 � V2
j Þ ð32Þ

fj ¼
gn2

j

R1=3
j

ð33Þ

where a is a dimensionless interface coefficient empirically set
equal to 0.02 [25], nj is the natural Manning’s roughness coefficient
and Rj is the compartment hydraulic radius. Observe that, if the
interface coefficient is set equal to 0, namely the lateral momentum
transfer is neglected, Eq. (31) is equivalent to the standard DCM for
a large enough number of compartments. This is because, if the
compartment width is small enough, also the velocity and the dis-
charge per unit width in the two lateral compartments become neg-
ligible, but this affects the velocity distribution inside the entire
section only if a – 0. In Fig. 10 we can see how the mean hydraulic
radius, defined as:

R ¼ q

r
ffiffi
i
p

� �3=2

ð34Þ

changes for normal flow inside a rectangular section according to
the choice of the a coefficient. The third curve of the same graph
shows the hydraulic radius computed as the simple ratio between
the total cross section area and its wetted perimeter. We can ob-
serve that this value is intermediate between those estimated
assuming a compartment segmentation and a = 0 or a = 0.02.

Before starting the marching in time simulation, the discharge
per unit slope versus piezometric level in the pth restriction is
computed as:

Qp ¼
X

j

bjVjhj ð35Þ

At the beginning of each time step k, the equivalent roughness coef-
ficient np is be computed as:

np ¼
ðhkÞ5=3Bp

Q pðh
kÞ

ð36Þ

where Bp is the restriction width.
Inside cross section restrictions, like between the piles of a

bridge, a major head loss can also be given by the existence of an
hydraulic jump. Once again, it is possible to take into account the
jump effects by an artificial increase of the natural Manning coef-
ficient, after the jump existence is checked out at each time level.
The jump existence is tested by neglecting the transition effects
and comparing the uniform flow energy upstream the restriction

Fig. 9. Subdivision of the cross-section and notations. Fig. 10. Dimensionless hydraulic radius.
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with the minimum possible energy inside the restriction, for equal
total discharge. The upstream uniform flow energy E0 is equal to:

E0 ¼
n � rr � qpffiffi

i
p

� �3=5

þ
i � ðrr � qpÞ

4=3

n2ð2gÞ5=3

 !3=5

ð37Þ

where n is the natural Manning roughness coefficient, rr is the con-
traction coefficient given by the ratio between the total width in-
side and upstream the section restriction and qp is the discharge
per unit width computed at beginning of time level k in a given ele-
ment inside the restriction. The minimum critical energy is equal
to:

Ek ¼
3
2

q2
p

g

 !1=3

ð38Þ

Observe in Fig. 11 the comparison between the uniform flow and
the critical state energy, as function of parameters rr and i.

The uniform flow energy is smaller than the critical state en-
ergy, with subsequent hydraulic jump existence, only within a re-
stricted slope range. Similarly, one can see by comparing the qp

exponents on the rhs of Eqs. (37) and (38) that uniform flow energy
can be greater than critical state energy for very small or very large
discharge values.

This implies that temporal discontinuity of the profile may ap-
pear upstream the restriction during very slow increment of the
discharge qp in quasi-steady flow conditions, even without a wave
front spatial propagation.

If the uniform flow energy inside the restriction is too small to
allow the computed discharge, a total head loss reduction will oc-
cur before the restriction, and the saved energy will be dissipated
with an hydraulic jump. The flow depth hm in the section immedi-
ately upstream the restriction can then be computed using the fol-
lowing rating curve, for fixed minimum Ek energy calculated by Eq.
(38):

h3
m � Ekh2

m ¼ �
q2

m

2g
ð39Þ

where qm is the upstream discharge per unit width immediately be-
fore the restriction.

The fictitious roughness coefficient nr is computed in order to
obtain a total head loss inside the restriction equal to the differ-
ence between the minimum upstream energy and the piezometric
level Hv immediately downstream the restriction. This can be done
by integrating the following diffusive momentum equation:

dH
dx
¼ �

n2
r q2

p

ðH � zÞ10=3 ð40Þ

to get:

hm þ zm � Hv ¼ n2
r

Z x2

x1

q2
p

ðH � zÞ10=3 dx ð41Þ

where x1 and x2 (see Fig. 12) are the initial and final restriction ab-
scissa. The fictitious Manning coefficient nr is computed as the root
of Eq. (41).

If the restriction width is constant, computation can be simpli-
fied by assuming a constant average bed elevation za inside the
integral, to get:

n2
r ¼

7ðhm þ zm � HvÞ
3q2

p

1

ðHm � zaÞ7=3 �
1

ðHv � zaÞ7=3

" #�1

ð42Þ

The procedure has been compared with literature results. Tang et al.
[53] compare the discharge hydrographs computed at the end of a
rectangular channel using three different types of 1D Muskin-
gum–Cunge models: two VPMC (Variable Parameters Muskin-
gum–Cunge) and one CPMC (Costant Parameters Muskingum–
Cunge) methods. The channel has 50 m width, 100 km total length,
0.025% bed slope and 0.035 s/m1/3 Manning’s coefficient.

The computational domain has been discretized using a mesh
with right-angle triangles and two parallel lines of 2001 nodes,
each one with a distance of 50 m from the next one. The flow depth
corresponding to a constant discharge of 100 m3/s has been used as
initial condition. The Dirichlet boundary condition was applied to
the two downstream final nodes. Even if the depth/width ratio is
smaller than 1:10, we can see in Fig. 13 that the routed discharge
hydrograph is strongly affected by the choice of the a coefficient in
Eq. (32), that is by the type of velocity distribution assumed in the
vertical cross sections.

In the case of interface coefficient a equal to 0 (equivalent to
using the DCM method), the routed discharge hydrograph com-
puted by the proposed MAST-2D diffusive model is equal to the
hydrograph obtained by the DORA 1D diffusive model [38] adopt-
ing the DCM method and has a peak value higher than that com-
puted by the Muskingum–Cunge models (Fig. 13). This seems
correct, because assuming a = 0 is equivalent to neglect the wall ef-
fects and underestimate the hydraulic resistance. If the lateral
momentum transfer is not neglected (a = 0.02), the results show
a greater peak reduction with respect to the Muskingum–Cunge
model, that compute the hydraulic resistance as function of the
hydraulic radius of the overall section. This is consistent with the
result already shown in Fig. 10, where different ways of computing
the average hydraulic radius in normal flow conditions have been
compared.Fig. 11. Dimensionless energy E0/(nqp)3/5 and Ek/(nqp)3/5 versus parameters i and rr.

Fig. 12. Restriction scheme and notation.
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8. Numerical experiments

In this section, we present five numerical tests for the model
validation in the most general 2D-case.

8.1. Test 1. Stability with regard to the Courant number

In the first test we investigate the stability of the model results
against the size of the element CFL number, computed as:

CFL ¼ Ve � Dtffiffiffiffiffi
Ae
p ð43Þ

where Ae and Ve are respectively the element area and the velocity
computed in the center of the element assuming a water depth
equal to the average value at the element nodes.

A symmetric square [10,000 m � 10,000 m] domain has been
discretized with the unstructured Delaunay computational mesh
shown in Fig. 14, with 1961 nodes and 3758 elements. In order
to magnify the irregularity of the mesh, three internal boundaries
have been assigned to the domain. The open source mesh genera-
tor NETGEN [37,46] has been used to generate the initial mesh. The
algorithm presented in Section 5 has been finally used to obtain
the final mesh and to guarantee the Generalized Delaunay prop-
erty, without changing the assigned internal and external

Fig. 13. Outflow discharge hydrographs computed by the proposed and the Muskingum–Cunge models.
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Fig. 14. Test 1. Computational mesh.
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boundaries. The Manning coefficient is 0.025 s/m1/3, the bottom
elevation of point (0,0) is equal to zero and the bottom slope is
0.001 in both x and y directions. A constant zero water depth has
been assigned on the East and South external domain sides as
Dirichlet boundary conditions. A symmetric triangular inflow hyd-
rograph in the boundary inflow nodes shown in Fig. 14, with peak
discharge equal to 2500 m3/s and peak time equal to 8 h, has been
given as Neumann upstream boundary condition at the North and
West side. Initial condition is h0 = 0.

Five simulations with different time step size have been carried
out on the same mesh. Table 2 shows the time step size Dt, the
maximum CFL value calculated according to Eq. (43) in the domain
during the entire simulation, the mean CPU time per computa-
tional node and per iteration and the relative error e of the solution
at the peak time, between the 1st and mth simulation, calculated
as:

em ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhm � href Þ2

ðhref Þ2

vuut ð44Þ

where hm is the maximum water depth computed in node i during
the mth simulation and href is the same water depth computed dur-
ing the 1st simulation with the minimum time step size. Node i is
located in the center of the domain.

Observe that the stability and accuracy of the model is obtained
also for very large values of the CFL number. In this test case, if CFL
is less than 21.5, the maximum relative error e is less than 1%.
Moreover, the increase in the CFL number does not lead to any in-
crease in the mean CPU time. If the CFL number is greater than 70
the stability of the model is guaranteed, but in the transient solu-
tion there is a numerical diffusion, leading to a flattening and a
deformation of the water depth curve (Fig. 15).

To test the robustness of the model with respect to the mesh
irregularity, the solution of the second simulation (Dt = 40 s) at
the peak time t = 32,000 s (see Fig. 15) has been compared with
the results obtained over an unstructured mildly distorted mesh
with 1931 nodes and 3700 elements (see Fig. 16a). Fig. 16b shows
the absolute values of the relative difference between water levels
calculated over both the mildly and highly unstructured meshes.
The relative difference has been computed as:

Dhðx; yÞ ¼ hre � hir

ĥre
ð45Þ

where hreand hir are the water depths computed with respectively
the more and less regular mesh and ĥre is the average water depth
value computed with the regular mesh over all the domain. Observe
that the relative difference is less than 1% over most of the compu-
tational domain and the larger differences are close to the

Table 2
Test 1. max. CFL numbers, errors and mean CPU times.

Simulation Dt [s] Max CFL Mean CPU times [s] e

1 15 0.54 1.06E�02 –
2 40 1.44 1.05E�02 1.15E�04
3 150 5.38 1.11E�02 1.29E�03
4 600 21.5 1.15E�02 8.73E�03
5 2000 73.54 1.31E�02 3.48E�02

Fig. 15. Test 1. Water depth curve in the center of the domain.

Fig. 16a. Test 1. Mildly distorted unstructured mesh.
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boundaries, where the solution is strongly affected by the element
size, but the same difference is very small around the internal
boundaries, where the mesh is more distorted.

8.2. Test 2. Computational performance investigation

In the second numerical experiment, the computational perfor-
mance of the proposed model has been investigated, using the
same mesh of the previous experiment (see Fig. 14). The original
mesh has been refined by dividing each element in four equal tri-
angles and connecting the midpoints of the three sides of each tri-
angle. See in Fig. 17 the refinement scheme. Three refinement
levels have been carried out. After each refinement, the General-
ized Delaunay condition was guaranteed by changing the nodes

connection according to the same procedure described in Section
5. Moreover, the same boundary and initial conditions as in test
1 have been applied. For the first simulation (coarsest mesh), a
time step of 150 s has been used, with a maximum CFL number
equal to 5.38. In order to obtain a CFL number similar in each re-
fined mesh, the time step has been halved at each refinement.

The CPU time of the total simulation, of the convective step and
of the diffusive step, has been recorded for each mesh. Table 3
shows the specific CPU times of a single processor Intel Q9400
2.66 GHz, per node and per time step.

The trend of the CPU time versus the number of nodes is differ-
ent for the prediction and correction steps. The mean specific CPU
time for the convective step remains almost constant, with a
growth due only to the cells sorting. The specific CPU time for
the solution of the linear system associated to the diffusive prob-
lem grows very slowly, and the total CPU time is only a bit more
than proportional to the number of nodes. The growth rate b, mea-
sured as the exponent of the relationship:

CP ¼ Nb ð46Þ

where N is the number of nodes and CP is the average CPU time per
each time step, is only 1.10 in the proposed test (see Fig. 18).

8.3. Test 3. The convergence rate

The third numerical test is focused on the order of convergence
of the proposed model. Because test cases to be used for compari-
son between analytical and numerical solutions in 2D transient
conditions are not available, a different procedure has been
applied. The following arbitrary analytical solution H = H(x,y, t) is
given for Eq. (4), where the source term on its rhs is computed
by time and space differentiation of the known H on the lhs of
the same Eq. (4),

H ¼ �0:001

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
ffiffiffi
2
p þ h�

2
tanh k ut �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p� �� �
þ 1

h i
ð47Þ

where x and y are the domain point coordinates, t is the time and k,
u, h⁄ are constants equal to 0.0015, 1 and 3 respectively. The analyt-
ical solution has been assigned on the same [10,000 m � 10,000 m]

Fig. 16b. Test 1. Absolute value of the relative difference between water surface
calculated on the mildly and highly distorted mesh.

Fig. 17. Test 2. Refinement scheme.

Table 3
Test 2. Mean CPU times.

Refinement Number of elements Number of nodes Mean CPU times (convective) [s] Mean CPU times (diffusive) [s]

0 3758 1961 2.2310E�06 3.9138E�06
1 15,028 7677 2.4635E�06 4.5460E�06
2 60,104 30377 2.8008E�06 4.8425E�06
3 240,400 120849 3.0772E�06 6.0018E�06

Fig. 18. Test 2. Trend of the CPU times in Eq. (46) required for the solution of the
convective and diffusive steps.
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domain used in the previous tests. The Manning coefficient is
0.025 s/m1/3 and the following bottom elevation z is given:

z ¼ �0:001
xþ yffiffiffi

2
p ð48Þ

Function H in Eq. (47) is shown in Fig. 19 at time t = 7000 s. Given
the solution H, the source term p in Eq. (4) is computed in each
point and at any time by solving the lhs of the same equation. Ob-
serve that the proposed function H has zero flux along the South
and West sides of the domain and it is assigned as Dirichlet bound-
ary condition in the two other sides.

The same mesh refinement as in test 2 has been used. The time
step Dt is 100 s for the coarsest mesh, corresponding to a maxi-
mum spatially averaged CFL number equal to 1.74. The time step

has been halved at each refinement in order to maintain almost
constant the CFL number from one refinement to the other.

The relative error on each node and for each mesh has been esti-
mated by Eq. (49a) at the simulation time t = 7000 s:

em ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhn

i � ha
i Þ

2

ðha
i Þ

2

s
ð49aÞ

where hn
i and ha

i are respectively the numerical and the analytical
water depth computed in node i.

The rate of convergence is defined by comparing the relative er-
rors of two consecutive mesh levels. Assuming the relative error
obtained for mesh level m proportional to a power of the linear size
of the area of the mean triangle in the mesh, that is:

em ¼
ffiffiffiffiffiffi
Am

p� �rc

ð49bÞ

where Am is the area of the mean triangles in the mesh refinement
level m and

ffiffiffiffiffiffi
Am
p

represents a measure of its linear size, the rate of
convergence rc is computed by comparing the relative errors of two
successive refinement levels m and m + 1:

rc ¼
log em

emþ1

� �
log 2

ð50Þ

Table 4 shows the rates of the convergence calculated at three
nodes located respectively on the front, upstream and downstream
the advancing wave (see Fig. 20). The results show that: (a) the rate
of convergence increases along with the mesh density and this
guarantees robustness in the case of very coarse meshes, (b) the
asymptotic rate of convergence is higher in the areas with larger
piezometric gradients, even greater than 2, but smaller around

Fig. 19. Test 3. Plot of the exact solution for the piezometric head of Eq. (47) at
t = 7000 s.

Table 4
Test 3. Convergence rates.

Refinement rc upstream node rc front wave node rc downstream node

1 0.97 1.14 0.86
2 1.13 1.83 1.00
3 1.38 1.94 1.31

Fig. 20. Test 3. Selected nodes for the convergence rate calculation.
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flatter areas. This can be explained by the proportionality of the
fluxes to the root of the norm of the piezometric gradient, that leads
to an infinite sensitivity of the fluxes with respect to the piezomet-
ric gradient around its zero value.

8.4. Test 4. Comparison with wetting–drying literature tests

Gourgue et al. [21] have validated the WD option of their fully
dynamic model using a test already proposed by Balzano [9] in
one-dimensional form. They proposed a flux limiting WD approach
for a DG FE method for the solution of the fully dynamic SW equa-
tions. A basin with uniform bottom slope, length 13800 m in x
direction and width 7200 m in y direction is discretized by an
unstructured triangular mesh. The adopted mesh (Fig. 21) has a
node density similar to the mesh in [21], with 690 elements and
383 nodes. Manning coefficient is 0.02 s/m1/3, bottom elevation is
constant in y direction while the slope i in x direction is 0.00036.

The domain has upstream zero flux boundary, downstream open
boundary and the initial condition is piezometric head equal to
zero. At the open downstream boundary, a sinusoidal water level
variation is assigned. The amplitude and the period of the oscilla-
tion are respectively 2 m and 12 h.

In this case the results of the diffusive model is similar to the
results of the complete model, because the time period of the
downstream boundary condition is large enough with respect to
the travel time of the generated wave, needed to cover the domain
length. Observe in Fig. 22 the free surface shape computed by both
models every 20 min. The wet-dry limit is very similar at all the
investigated times and negative depths, as well as artificial spatial
oscillations are missing in both models. The peculiarity of our mod-
el is that no special treatment is needed for the elements located
near the wet-dry limit.

The proposed numerical model has been tested also for the
third Balzano test. The basin contains a small reservoir and the ele-
vation of the bottom is calculated by the following analytical
expressions:

z ¼ �x=2760 if x 6 3600 m or x P 6000 m
z ¼ x=2760� 60=23 if 3600 m < x 6 4800 m
z ¼ �x=920þ 100=23 if 4800 m < x < 6000 m

ð51Þ

The initial condition is a piezometric head equal to 2 m and the
boundary condition is a sinusoidal decay applied at the open
boundary. At the open boundary the water depth decreases from
7 m to 3 m within 6 h (half the sinusoidal period). After this period,
the water depth at the open boundary is left indefinitely at 3 m in
order to test whether water is leaking through the dry area. The
computational mesh is composed of 518 elements and 296 nodes
(see Fig. 23). The surface in the reservoir should asymptotically
reach an horizontal plane at the level of the local peak of the
bathymetry in the pond. Many numerical models fail in represent-
ing the water surface profile because water fluxes do not vanish asFig. 21. Test 4. First Balzano test. Computational mesh.

Fig. 22. Test 4. First Balzano test. Water surface every 20 min (thin lines) and bottom channel (thick line). Results of the MAST model (a) and (c); Gourgue et al. [21] model
results (b) and (d).
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long as the pressure gradient term operates, even when the mean
surface level inside the reservoir is below the local peak of the
bathymetry and the pond dries up. When water depth is zero at
x = 4800 m (the right end side of the pond), numerical fluxes com-
puted in the proposed model according to Eq. (22a) vanish. In
Fig. 24, the computed water surface profiles are shown and com-
pared with the ones computed by [21] after 100 h. Observe that
the expected final water level is perfectly simulated in the reservoir.
The reference results have been computed using a similar unstruc-
tured mesh (see [21]).

8.5. Test 5. Comparison with a complete model using an overflow test
case

In this last numerical test the results of the diffusive model have
been compared with the results of a fully dynamic model. In this
test case both models could be reasonably applied for the water le-
vel and velocity computation.

The complete model applied here for comparison is the Godu-
nov-type finite-volume model of BreZo [12,13], that solves the
depth-averaged Shallow Water Equations on an unstructured grid
of triangular cells. The algorithm of BreZo uses Roe’s approximate
Riemann solver to compute fluxes, a multidimensional limiter for
second-order spatial accuracy and predictor–corrector time step-
ping for second-order temporal accuracy. The model features a
special technique for the treatment of the partially wetted cells
based on equations that define exactly the relationship between
free surface elevation and water content of each cell (Volume/
Free-surface Relationships, VFRs). These equations are applied at
each time step to consistently track fluid volume and the free sur-
face elevation (which is important for flux evaluation) in partially
submerged cells. As for the solution algorithm, in the predictor step
the solution is updated by solving the SW equations in terms of the
primitive variables, to improve the computational efficiency, while
in the corrector step the conservative, integral form of the SW
equations is solved. Whereas the continuity equation is updated
in all cells, the momentum equations are not solved in partially
wetted cells (i.e., where at least one of the three nodes is not sub-
merged), where the velocity is set to zero in order to avoid spurious
accelerations.

The test case is the steady-state reconstruction of a river flood-
ing. The spatial domain is given by a trapezoidal channel crossing a
flat area with a channel depth reduction in the central part of the
domain (see in Fig. 25 the plan view and the cross section).

A first unstructured mesh adopted for spatial discretization has
10759 nodes and 20464 elements. In this mesh, only few nodes
were used to represent each channel section morphology and zero
nodes were located inside the area of the river banks. The

steady-state discharge is 9 m3/s, distributed as Neumann boundary
condition along the central part of the upstream boundary side
(from y = 21 m to y = 29 m); the Manning coefficient is 0.03 s/m1/

3 and the Dirichlet water depth, at the downstream boundary, is
equal to normal flow depth corresponding to the upstream condi-
tion. Simulation time is 10,000 s, large enough to get steady-state
flow in the channel, starting from completely dry bed condition.
The adopted Dt for the MAST simulations is 5 s (2000 total time

 

Fig. 23. Test 4. Third Balzano test. Computational mesh.

Fig. 24. Test 4. Third Balzano test. Bottom channel (thick line) and position of the
water surface at initial time and at equilibrium (thin lines). Results of the MAST
model (a); Gourgue et al. [21] model results (b).

(a) Plan

(b) Cross section
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Fig. 25. Test 5. Compound channel.
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iterations), while BreZo scheme adapts the time step size according
to the condition CFL = 0.9; Dt at steady-state conditions is 2.48 s. In
the lower part of the channel, flow remains inside the trapezoidal
section, while flooding occurs in the central and in the upper parts.
The comparison of the solutions obtained with the proposed model
and the complete BreZo model shows significant differences in the
flooded areas (see Fig. 26).

The computational mesh has been refined as previously ex-
plained. Time step for MAST simulations has been reduced to
2.5 s, while the Dt at steady-state conditions for BreZo simulations
is in this case 0.012 s. After the refinement, the proposed model
provides a solution very similar to that obtained with the first
mesh (see Fig. 27a). On the other hand, the complete model gives
in this case a solution different from the solution obtained with
the first mesh and similar to the one computed by the MAST model
using the same refined mesh. According to this result, BreZo solu-
tion underestimates the flooded area using the coarse mesh (see
Fig. 27b).

A first motivation of this difference is that in BreZo the momen-
tum equations are not solved in partially wetted cells, which adds a
‘‘numerical’’ friction in these cells. This effect is noticeable when
coarse mesh are used, and quickly decreases as the computational
grid is refined, as described in [13]. A second motivation can be
found in the different topography represented by the two meshes.
Different node elevations correspond to different source term and,
for given specific energy, to different water levels. The results of
this tests are consistent with the observation of Section 2 and sug-
gest that the stronger stability of the diffusive model can lead to
better results in the computation of the water levels even when

the approximation of the ground elevation is due not to measure-
ment error, but to the same spatial discretization.

Fig. 28 shows the velocity field computed by the MAST scheme
and Fig. 29 shows the scatters from the one computed by the BreZo
model. Main differences occur in the flooded areas, eventhough,
due to the different scales adopted for the graphics, these differ-
ences are very low.

A comparison of the CPU times required by the MAST and BreZo
models for the solution of the present test using the finer mesh and
a single processor Intel Q9400 2.66 GHz has been done. Total com-
putational time required by MAST scheme is 2838.52 s (13% for the
solution of the prediction step and 87% for the solution of the cor-
rection step). Computational time of the BreZo model is approxi-
mately 39 times higher.

The water depths in two nodes of the bank (see Fig. 30) com-
puted using the coarse mesh along the time are shown in Fig. 31.
Observe that numerical oscillations never occur and the diffusive
correction g obtained by the solution of Eq. (11) quickly converges
to zero.

8.6. Test 6. Application to a real case: Venturi channel of Imera river
(Sicily)

The proposed model has been applied for the simulation of the
backwater profile caused by the Venturi channel located in the
southern part of the Imera river, in Sicily. Fig. 32a shows the geom-
etry of the structure. Fig. 32b shows the vertical walls of the
restriction immediately after a flood event and the maximum level

Fig. 26. Test 5. Steady-state water depth upstream the flat area. (a) MAST model and (b) BreZo model [12] (coarse mesh).

Fig. 27. Test 5. Steady-state water depth upstream the flat area. (a) MAST model and (b) BreZo model [12] (refined mesh).
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Fig. 28. Test 5. Detail of velocity field in the refined mesh calculated by MAST
model.

Fig. 29. Test 5. Detail of the scatters between velocity fields calculated by MAST
model and by BreZo model (refined mesh).

Lower node

x = 400 m

Fig. 30. Test 5. Monitored nodes position.

Fig. 31. Test 5. Computed water depth at the monitored nodes.

Fig. 32a. Test 6. Geometry of the Venturi channel.

Fig. 32b. Test 6. Historical water surface profile.
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reached by the water surface during the event is marked with a red
line.

In a previous study [36] the Manning’s coefficient has been esti-
mated equal to 0.04 s/m1/3 and the maximum discharge, assumed
constant along all the Venturi channel, equal to 1600 m3/s. Normal
flow depth has been assumed in the downstream section. In order
to calculate the backwater profile, the roughness coefficient inside
the restriction has been automatically calculated using the proce-
dure described in Section 7.

The water levels computed by the proposed model have been
compared with both the marked elevations and the steady-state
water surface profile calculated by the complete model of BreZo
using the same mesh.

Fig. 33 shows the central vertical cross section of the water sur-
face profile. In spite of the many parameter uncertainties and er-
rors, we can observe in the upstream section of the Venturi
channel a good match between the results of the MAST model
and the historical data, due to the reconstruction of the local en-
ergy dissipation carried out with the procedure explained in Sec-
tion 7. Results of the complete model are more close to the
historical data only inside the Venturi channel, where the diffusive
model is unable to reproduce the profile of the supercritical flow.

9. Conclusions

A new algorithm for the simulation of parabolic 2D SW equa-
tions in strongly unstructured meshes has been developed, starting
from the numerical structure of the previous DORA model [56]. The
algorithm is aimed mainly to the simulation of gradually varying
flows, with continuous head losses, but the backwater effect of
two types of localized head losses, mainly the effect of vertical
walls and hydraulic jumps, can be easily included in the model.
The most important merit of the algorithm is the conservation of
mass, the time step unconditional stability, its robustness with re-
spect to abrupt parameter changes, like the topographic gradient,
and, most important, the very low growth of the computational
burden versus the number of nodes. The power law exponent of
the computational burden is about 1.10, that is very close to the
value of the explicit algorithms.

The results of the proposed model have been compared with the
results of a well-known complete model, with a completely
different numerical structure. The results suggest that the use of
diffusive models instead of a complete one can lead not only to
computational time saving, but also to more accurate prediction,
because of the smaller sensitivity of the diffusive model to the
input topographic error with respect to the sensitivity of the com-
plete model.

All these properties make the algorithm specially suited for its
implementation in the context of early warning systems.
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Appendix A. Mass conservation

According to Eq. (16), it is possible to write Eq. (18a) as:

DtFlout
i;j ¼ Fl0ini Dt � Ai hkþ1=2

i � hk
i

� �� � Kk
i;j

Dt
P

lK
k
i;l

ðA:1Þ

where

Fl0ini ¼ Flini þ Aipi ðA:2Þ

Summing all Eq. (A.1) for i = 1, . . . ,N, one gets:X
i

Ai hkþ1=2
i � hk

i

� �
¼ Dt

X
i

Fl0ini � Flout
i

� �
ðA:3Þ

Because for each linked couple of internal cells i and j (see Eq.
(14b)),

Flout
i;j ¼ Flin

j;i ðA:4Þ

the rhs of Eq. (A.3) is equal to the difference among the incom-
ing and leaving boundary fluxes, plus the sum of the source terms
applied to the computational domain (if different from zero), that
is:X

i

Ai hkþ1=2
i � hk

i

� �
¼ Dt Flin

bou � Flout
bou

� �
þ P

_

ðA:5Þ

where

Fig. 33. Test 6. Steady-state profiles in the middle of the channel.
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P
_

¼
X

i

piAi ðA:6Þ

and Flin
bou and Flout

bou are the sum of the incoming (assigned) and leav-
ing convective boundary fluxes.

In the correction system (23), each term proportional to coeffi-
cient Dk

i;j represents a diffusive flux between the linked cells i and j.
Diffusive fluxes are discretized as the convective ones and analo-
gously to Eq. (A.4), the leaving diffusive flux from cell i to cell j is
equal to the flux entering cell j from cell i. The sum of all these
terms, for i = 1, . . . ,N, is zero, so that the sum of all Eq. (A.5) times
Dt gives:X

i

Ai hkþ1
i � hkþ1=2

i

� �
¼ Dt Fldir ðA:7Þ

where Fldir is the diffusive boundary flux computed through the
Dirichlet nodes. Summing Eqs. (A.5)–(A.7) you finally get:X

i

Ai hkþ1
i � hk

i

� �
¼ Dt Flin

bou � Flout
bou þ Fldir

� �
þ P

_

ðA:8Þ

that can be viewed as a global mass balance.

Appendix B. Monotonicity of the steady-state solution for ‘‘M’’
systems

The M-property implies that each diagonal element of the ma-
trix R is opposite to the sum of all the extra-diagonal elements of
the same equation. In steady-state condition the ith linear equation
can be written as:X
j–i

HjRij � Hi

X
j–i

Rij ¼ 0 ðB:1Þ

as well asX
j–i

ðHj � HiÞRij ¼ 0 ðB:2Þ

where all the extra-diagonal Rij coefficients are smaller than zero.
The second equation implies that Hi cannot be neither the minimum
nor the maximum with respect to the surrounding Hj values.

Appendix C. Numerical flow vectors in the MAST procedure

Assume a triangular element m in the computational mesh,
with nodes i, j, l and assume for instance Hl > Hi > Hj. Fig. C.1 qual-
itatively shows the corresponding flow vector q = vh according to
the standard linear Galerkin FE scheme, where v is the averaged
vertical velocity and h is the water depth. In the same Galerkin
FE scheme the flux given by Eq. (22b) is obtained by approximating
the flow vector q in each triangle with a piecewise constant func-
tion, given by (see for example [30])

qm ¼ �
X
s¼i;j;l

Kmrwm
s Hs ðC:1Þ

where Km is the diffusion coefficient of element m that, with the
notation used in this paper (see Eq. (22b)), is:

Km ¼ Ek
mĥ5=3

m ðC:2Þ

where wm
s is the piecewise linear Galerkin basis functions for node s

in the element m and rwm
s is its constant gradient. wm

s is a linear
function, equal to one on node s and zero on the other nodes.
rwm

s is a constant vector orthogonal to side opposite to node s,
with module 1/as (as is the triangle height measured from node s
to the opposite side (see Fig. C.1)), that can be written as [43] (see
Fig. C.1):

rwm
s ¼

ns

as
ðC:3Þ

where ns is the unitary vector pointing to node s, orthogonal to the
opposite side.

Fluxes between cells i and j and between cells i and l, given in
Eq. (22b), are:

Flout;m
i;j ¼ dm

i;jE
k
m

Hk
i � Hk

j

dij
ĥ5=3

m ¼ Kmdm
i;j

Hk
i � Hk

j

dij
ðC:4aÞ

Flout;m
i;l ¼ dm

i;lE
k
m

Hk
l � Hk

i

dil
ĥ5=3

m ¼ Kmdm
i;l

Hk
l � Hk

i

dil
ðC:4bÞ

Fluxes through the segment i0Om and l0Om connecting midpoint i0 of
side ij and midpoint l0 of side il with the triangle circumcentre Om

(see Fig. C.1), due to a unitary piezometric heads difference between
cells i and j and between cells i and l are respectively equal to [43]:

bm
ij ¼

Z
1ij

�Kmrwm
i � dn ðC:5aÞ

bm
il ¼

Z
1il

�Kmrwm
i � dn ðC:5bÞ

where 1ij ¼ i0Om; 1il ¼ l0Om and n is the unitary normal to 1ij (1il)
pointing opposite to node i. The sum of the fluxes between cells i
and j and between cells i and l in element m is:

X
s–i

ðHk
s � Hk

i Þ
Z

1is

�Kmrwm
i � dn

 !
¼
X

s

bm
is Hk

s

¼ bm
ij Hk

j þ bm
il Hk

l þ bm
ii Hk

i ðC:6Þ

where s = j, l and bm
ii ¼ �bm

ij � bm
il . According to Eqs. (C.1) and (C.2)

can be written as:

bm
ij Hk

j þ bm
il Hk

l þ bm
ii Hk

i ¼
X
s–i

Z
1is

qm � dn ðC:7Þ

Eq. (C.7) represents the sum of the fluxes between cells i and j and
between cells i and l given by Eqs. (C.4), that are the fluxes through
the boundary of the Voronoi cell of node i lying in element m.
Applying this procedure to all triangles sharing node i, the flux
through the boundary of the Voronoi cell of node i is obtained.

The same steps can be followed in the MAST approach to obtain
the fluxes computed in Eq. (22a), that are:

Flout;m
i;j ¼ cm

i;jE
k
m

Hk
i � Hk

j

dij
h5=3

s ¼ K 0mcm
i;j

Hk
i � Hk

j

dij
; K 0m ¼ Ek

mh5=3
s

ðC:8aÞ

with s = i if Hk
i P Hk

j ; s ¼ j if Hk
i < Hk

j and

Flout;m
i;l ¼ cm

i;lE
k
m

Hk
l � Hk

i

dil
h5=3

s ¼ K 0mcm
i;l

Hk
l � Hk

i

dil
; K 0m ¼ Ek

mh5=3
s

ðC:8bÞFig. C.1. Velocity field in the standard conforming linear Galerkin FE scheme and
notations.
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with s = i if Hk
i P Hk

l ; s ¼ l if Hk
i < Hk

l . To get the flux through the
edges of the Voronoi cells given by Eq. (22a), two different flow vec-
tors have to be assigned in two different parts of each element.
According to the above assumption Hl > Hi > Hj, the two flow vectors
are:

qð1Þm ¼ �
X
s¼i;j;l

Ek
mh5=3

l rwm
s Hs ðC:9aÞ

qð2Þm ¼ �
X
s¼i;j;l

Ek
mh5=3

i rwm
s Hs ðC:9bÞ

See in Fig. C.2 a possible partition of element m. All the partitions
that leave the edges of the Voronoi cell of node l inside the sub-ele-
ment with flow vector qð1Þm and the remaining edge of Voronoi cell of
node i in the sub-element with flow vector qð2Þm provide the same
fluxes given by Eq. (22a).

Observe that in both standard Galerkin FE scheme as well as
MAST scheme flow vectors have discontinuous normal
components across sub-element boundary. This leads the veloc-
ity field satisfies the mass balance equation only in the weak
sense [44].

Appendix D. Computation of a generalized Delaunay mesh

In a given triangulation, call e1 and e2 two triangles with nodes i,
j, k and i, j, m, sharing edge ij. The two triangles will satisfy the Del-
aunay condition with respect to edge ij if:

(1) the distances dk;1
i;j and dm;2

i;j of both nodes k and m with
respect to the midpoint of edge ij are greater than dij/2,
where dij is the distance between nodes i and j.
The proof of the previous statement is the following.
Observe that according to condition (1) nodes k and m will
be external to the circle having the centre on the midpoint
of edge ij and radius dij/2. All the points on this circle form
with nodes i and j right triangles, all the external nodes acute
triangles, all the internal nodes obtuse triangles. Because
dk;1

i;j > dij/2 and dm;2
i;j > dij/2, both triangles with nodes i, j, k

and i, j, m are acute triangles and edge ij satisfies the Dela-
unay property.
For a similar reason, the distance of the circumcentre of each
triangle with nodes i, j, k from its edge ij on the external
boundary is always positive if:

(2) the distance dk;1
i;j of node k with respect to the midpoint of

edge ij is greater than dij/2.
To guarantee the convergence of the swap iterative process
to a mesh that satisfies conditions (25), without changing
the edges that are overlapping internal boundaries, it will
be sufficient to: (a) start with a mesh that has all the internal
and external boundaries overlapping one or more element
edges ij and (b) guarantee that condition (1) (or (2)) is satis-
fied for all the potential triangles formed by edges ij and a
third node. This is true if all the nodes in the mesh different

from i and j have a distance from the midpoint of ij greater
than dij/2 and this can be easily obtained by reducing the
length of the edges ij.

Appendix E. Matrix M-property of the proposed correction
system

The linear system (23a) can be written in vector–matrix form
as:

Rg ¼ b ðE:1Þ

where

Rii ¼
Ai

Dt
þ
X

n¼1;NT

Dk
i;jdi;n ðE:2Þ

Rij ¼ �
X

n¼1;NT

Dk
i;jdi;n for i – j ðE:3Þ

and

bi ¼
X

n¼1;NT

Dk
i;jð#j � #iÞdi;n ðE:4Þ

Because all coefficients Dk
i;j computed by Eq. (23b) are positive, all

the extra-diagonal coefficients (E.3) are negative and all diagonal
coefficients (E.2) are positive and greater or equal than the opposite
of the sum of all the extra-diagonal coefficients of the same
equation.
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