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a b s t r a c t

Two adaptive type-2 fuzzy logic controllers with minimum number of rules are developed and

compared by simulation for control of a bioreactor in which aerobic alcoholic fermentation for the

growth of Saccharomyces cerevisiae takes place. The bioreactor model is characterized by nonlinearity

and parameter uncertainty. The first adaptive fuzzy controller is a type-2 fuzzy-neuro-predictive

controller (T2FNPC) that combines the capability of type-2 fuzzy logic to handle uncertainties, with the

ability of predictive control to predict future plant performance making use of a neural network model

of the nonlinear system. The second adaptive fuzzy controller is instead a self-tuning type-2 PI

controller, where the output scaling factor is adjusted online by fuzzy rules according to the current

trend of the controlled process. The performance of a type-2 fuzzy logic controller with 49 rules is used

as reference.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that traditional controllers cannot achieve
good performances when the process to be controlled
is characterized by high nonlinearities and parameter uncertain-
ties. In fact a PID controller can be tuned to be effective at
certain conditions, but it is not very robust and a change in
the value of some system parameters may also destabilize the
whole control system. For this reason nonlinear controllers like
fuzzy controllers are used to control such systems because
they are more robust than traditional controllers and can handle
changes in system parameters as well. Fuzzy logic systems come
in two types: type 1 and type 2 (Mendel, 2002; Zadeh, 1975). It
has been demonstrated that a type-1 fuzzy logic controller (FLC)
may find difficulty in minimizing the negative effects of all
uncertainties that may be present in a control system. Galluzzo
et al. (2008), Hagras (2007), Sepulveda et al. (2007) and Wu
and Tan (2004, 2006) have shown the superiority of type-2
FLCs over their type-1 counter-parts. Type-2 FLCs in fact can
handle uncertainties more efficiently than type-1 FLCs because
they are characterized by a larger number of parameters and
more design degrees of freedom. Applications in the field of
process control deal with plant control (Castillo et al., 2005),
marine diesel engines control (Lynch et al., 2006), liquid level

process control (Wu and Tan, 2006), control architecture for
autonomous mobile robots (Hagras, 2004; Martinez et al., 2008),
control for vehicle active suspensions (Cao et al., 2008) and
biochemical reactor (Galluzzo et al., 2008; Galluzzo and Cosenza,
2009).

The process that is considered in this work is a biochemical
reactor for aerobic growth of Saccharomyces using glucose and
ethanol as substrates. A dynamic analysis of the process model
showed that the region of dilution rate D within which multiple
steady states occur depends on feed concentration and kinetic
parameters as well. Consequently, multiple steady states may
occur over a relatively large range of dilution rates, changing the
inlet concentration or kinetic parameter values. The objective of
the control system is to properly modify the dynamic behaviour of
the system, taking into account all possible disturbances and
uncertainties, preventing it from reaching some steady states that,
although stable, could be unacceptable for operation of the process.

In order to improve the performance of the control system,
two different adaptive algorithms have been introduced in type-2
FLCs with the objective of making the control system more robust
and reactive to uncertainties and disturbances. Another intended
objective is to greatly decrease the number of controller rules and
consequently to reduce computational load.

In Section 2 type-2 fuzzy sets and type-2 fuzzy logic systems
(FLSs) are briefly described; Section 3 describes the process, its
nonlinear state space model and the control problems that may
arise; Section 4 describes characteristics of the designed fuzzy
controllers; in Section 5 simulation results are discussed; the
conclusion follows in Section 6.
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2. Type-2 fuzzy logic

2.1. Type-2 fuzzy sets

A fuzzy set ~A is characterized by a type-2 membership function
m ~A ðx,uÞ, where xAX, uAJxD[0,1], and is defined as

~A ¼

Z
xAX

Z
uA Jx

m ~A ðx,uÞ=ðx,uÞ, JD ½0,1� ð1Þ

In (1) 0rm ~A ðx,uÞr1 is the secondary grade while the primary

membership of x represents the domain of the secondary member-
ship function.

Type-2 fuzzy set operations require a prohibitive computation
load so that, at present, only a particular sub-case of type-2 fuzzy
sets is used in applications—the interval type-2 fuzzy sets. Also in
this paper only interval type-2 fuzzy sets are considered. An
interval type-2 fuzzy set ~AI is defined as follows:

~AI ¼

Z
xAX

Z
uA Jx D ½0,1�

1=ðx,uÞ ¼

Z
xAX
½

Z
uA Jx D ½0,1�

1=u�=x ð2Þ

The main characteristic of the interval set is that its secondary
grade is [0, 1] (Fig. 1). Uncertainty is an inherent part of any
control system but type-2 fuzzy logic in particular shows all its
potential in those environments that are full of uncertainties.
Type-2 fuzzy sets have a primary membership that is a fuzzy set
itself. Therefore, it is possible to define for them a bounded region
called the footprint of uncertainty (FOU; Karnik and Mendel,
2000a; Mendel and Liang, 1999).

All uncertainties present in a system can be taken into account
by a suitable use of FOU (Fig. 2) and their negative effects can
consequently be minimized as well. The FOU represents the entire
interval type-2 fuzzy set and its shading denotes interval sets for
secondary membership functions.

2.2. Type-2 fuzzy logic

As in type-1 fuzzy logic systems, type-2 fuzzy logic systems
contain four components as well: a rules base, a fuzzifier, an
inference engine and an output processor.

The last component represents the main difference between
type-2 and type-1 fuzzy logic systems (Mendel and Liang, 1999;
Karnik and Mendel, 1998). For a type-1 FLS it is just a defuzzifier,
while, for a type-2 FLS it consists of two sub-components: the first
maps a type-2 fuzzy set to a type-1 fuzzy set, while the second
sub-component is a normal defuzzifier that transforms a fuzzy
output to a crisp output (Fig. 3).

The centre of sets type reducer is one of the most used type-
reduction method and can be expressed as

YcosðxÞ ¼ ½yl, yr�

¼

Z
y1 A ½y1

l
,y1

r �

� � �

Z
yM A ½yM

l
,yM

r �

Z
f 1 A ½f 1 , f

1
�

� � �

Z
f M A ½f M ,f

M
�

1=

PM
i ¼ 1 f iyiPM

i ¼ 1 f i

 !

ð3Þ

In (3) Ycos(x) is an interval set, yl and yr are its end points,

½f i, f
i
� and [yi

l, yr
i] are, respectively, the interval firing level of the

ith rule and centroid of the consequent interval type-2 set.
Eq. (3) is solved using the Karnik–Mendel iterative

method (Karnik and Mendel, 2000b) with interval type-2
fuzzy sets. The defuzzified output is calculated as the average of
yl and yr:

yðxÞ ¼
ylþyr

2
ð4Þ

Fig. 1. Interval type-2 fuzzy membership function.

Fig. 2. FOU for a triangular membership function (shaded region).

Fig. 3. Type-2 fuzzy logic system structure.
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3. Model dynamics analysis

For the control simulation study presented in this paper, the
model of a bioreactor for aerobic growth of Saccharomyces

cerevisiae on a glucose limited medium, given by Lei et al.
(2001), was used as the system to be controlled. S. cerevisiae is
commonly used as baker’s yeast. The yeast bioreactor model was
developed using experimental results of the pyruvate metabolism
around the critical dilution rate and tested by Lei on steady-state
and dynamic experiments in glucose limited cultures.

3.1. Nonlinear state-space model

The state-space model of the isothermal nonlinear continuous
bioreactor is reported in Eqs. (5)–(23). The Michaelis–Menten
kinetics with a first order dependency on active biomass Xa is
assumed. Volume V and all physical–chemical properties are
assumed constant. For a more detailed description of each
reaction see Lei et al. (2001).

dsglu

dt
¼�ðr1þr7ÞxþðSf�sgluÞD ð5Þ

dspyr

dt
¼ ð0:978r1�r2�r3Þx�spyrD ð6Þ

dsacetald

dt
¼ ð0:5r3�r4�r6Þx�sacetaldD ð7Þ

dsacetate

dt
¼ ð1:363r4�r5�r8Þx�sacetateD ð8Þ

dsEtOH

dt
¼ 1:045r6x�sEtOHD ð9Þ

dx

dt
¼ ð0:732r7þ0:619r8�DÞx ð10Þ

dXa

dt
¼ 0:732r7þ0:619r8�r9�r10�ð0:732r7þ0:619r8ÞXa ð11Þ

dXAcdh

dt
¼ r9�r11�ð0:732r7þ0:619r8ÞXAcdh ð12Þ

r1 ¼ k1l

sglu

sgluþK1l
Xaþk1h

sglu

sgluþK1h
Xa

þk1e
sglu

sgluðK1tsacetaldþ1ÞþK1e
sacetaldXa ð13Þ

r2 ¼ k2
spyr

spyrþK2

1

sgluK1tþ1
Xa ð14Þ

r3 ¼ k3

s4
pyr

s4
pyrþK3

Xa ð15Þ

r4 ¼ k4
sacetald

sacetaldþK4
XaXAcdh ð16Þ

r5 ¼ k5
sacetate

sacetateþK5
þk5e

sacetate

sacetateþK5e

1

sgluK5tþ1

� �
Xa ð17Þ

r6 ¼ k6
sacetald�k6rsEtOH

sacetaldþK6þK6esEtOH
Xa ð18Þ

r7 ¼ k7
sglu

sgluþK7
Xa ð19Þ

r8 ¼ k8
sacetate

sacetateþK5e

1

sgluK5tþ1
Xa ð20Þ

r9 ¼ k9
sglu

sgluþK9
þk9e

sEtOH

sEtOHþK9e

� �
1

sgluK9tþ1
Xaþk9c

sglu

sgluþK9
Xa

ð21Þ

r10 ¼ k10
sglu

sgluþK10
þk10e

sEtOH

sEtOHþK10e

� �
Xa ð22Þ

r11 ¼ k11XAcdh ð23Þ

Values of the parameters used in the model are given in
Table 1.

3.2. Control objective and strategy

Different controllers have been proposed for bioreactor
control. Fredriksson (2001) developed a robust PID controller
with the purpose of keeping specific glucose uptake rate below
the critical specific uptake rate, in order to avoid over-flow
metabolism. A predictive control of fed-batch yeast growth
controlling ethanol production was instead developed by Preuß
et al. (2000). In this study the control of glucose concentration
inside the bioreactor using dilution rate D as a manipulation
variable was chosen. The growth behaviour of S. cerevisiae is
strongly influenced by glucose concentration as glucose is used as
the carbon and energy source. Furthermore an efficient control of
glucose concentration is important to avoid the Crabtree effect
(Postma et al., 1989). The control system objective is to keep
glucose concentration to the desired set-point value, reducing the
effects of disturbances represented by changes of substrate feed
concentration Sf and of some system kinetic parameters. The

Table 1
Parameters of the fermentation reactor.

Parameter Value

k1h 0.584

K1h 0.0116

k1l 1.43

K1l 0.94

k1e 47.1

K1e 0.12

K1t 14.2

k2 0.501

K2 2�10�5

K2t 0.101

k2 5.81

K3 5�10�7

k4 4.80

K4 2.64�10�4

k5 0.0104

K5 0.0102

k5e 0.775

K5e 0.1

K5t 440

k6 2.82

K6 0.034

k6r 0.0125

K6e 0.057

k7 1.203

K7 0.0101

k8 0.589

k9 0.008

K9 1�10�6

k9e 0.0751

K9e 13

K9t 25

k9c 3.99�10�3

k10 0.392

K10 2.3�10�3

k10e 3.39�10�3

K10e 1.8�10�3

k11 0.02

M. Galluzzo, B. Cosenza / Chemical Engineering Science 65 (2010) 4208–42214210
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selected working point of the bioreactor (without control) is
located in the low branch of the continuity diagram of Fig. 4(a),
where a high conversion can be obtained with a value of substrate
concentration equal to 0.065 g l�1. From the continuity diagrams
shown in the Fig. 4(a) and (b) it can be seen (curve with
pronounced stroke) that for this substrate concentration value,
the corresponding equilibrium values of dilution rate and biomass
concentration are 0.38 h�1and 6.9 g l�1, respectively (point A in
Fig. 4(a) and (b)). Let us suppose now that the value of kinetic
parameter k7 changes from the normal value 1.203 (Table 2) to
1.09. In Fig. 4 continuity diagrams for different intermediate
values between these extreme values are reported. For k7¼1.188
in correspondence with the dilution rate value of 0.38 h�1 the
new equilibrium value reached by substrate concentration
(without control) is higher than 0.065 g l�1 (point B). This new
operative condition, although stable, is characterized by lower
conversion of biomass as shown in the continuity diagram of
biomass concentration vs dilution rate in Fig. 4(b).

For k7¼1.09 in correspondence with D¼0.38 h�1, the new
equilibrium value reached by substrate concentration is
much higher than 0.065 g l�1 and it is not reported in Fig. 4(a)
due to scale problem. This new steady state is therefore
characterized by a very low conversion of biomass as shown by
point F in Fig. 4(b). Note that a small change (ffi9%) of a particular
kinetic parameter could cause a large decrease in biomass product
(ffi300%).

The objective of the control system is therefore to effectively
manipulate the control variable D to keep glucose concentration
to the constant value of 0.065 g l�1 in spite of kinetic parameter
variations, forcing therefore the system to stay in the lower
branches of the new continuity diagrams. This applies also to
disturbances in feed substrate concentration.

In Fig. 5(a) and (b) the effects of k7 change on glucose
concentration for the uncontrolled system are shown. The k7

change consists of a linear variation from the initial value of
1.203 at t¼0 to 0.953 in 50 h. Also a change in feed substrate
concentration obviously modifies the steady state of the
bioreactor with undesirable effects on biomass concentration.

In Fig. 6(a) and (b) the effects of a disturbance in substrate feed
concentration on reactor substrate and biomass concentrations
for the uncontrolled bioreactor are shown. Changes of glucose and
biomass concentrations for a step in Sf from an initial value of 15
to 14 (g l�1) at t¼20 h are not so significant if compared with the
previous simulation result, but the negative effects on biomass
concentration remain.

The analysis of full dynamic behaviour of the process leads to
the conclusion that the control of reactor temperature acting on
cooling flow rate cannot be carried out by a simple traditional PID
controller owing to the strong nonlinearity of the process for

Fig. 4. Continuity diagrams: substrate concentration (a) and biomass concentration (b) vs dilution rate, for k7 parameter value changing from 1.203 to 1.09.

Table 2
Fuzzy control rules.

e/int e NB NM NS ZE PS PM PB

NB NB NB NB NM NS NS ZE

NM NB NM NM NM NS ZE PS

NS NB NM NS NS ZE PS PM

ZE NB NM NS ZE PS PM PB

PS NM NS ZE PS PS PM PB

PM NS ZE PS PM PM PM PB

PB ZE PS PS PM PB PB PB

M. Galluzzo, B. Cosenza / Chemical Engineering Science 65 (2010) 4208–4221 4211
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disturbance and parameter change as illustrated by previous
considerations.

Some preliminary simulations carried out using a PID
controller confirmed the above conclusion and directed us, on
the basis of previous successful results with other nonlinear
processes with parameter uncertainty (Galluzzo et al., 2008;
Galluzzo and Cosenza, 2009), to the use of a type-2 fuzzy
controller or as an alternative to the development and experi-
mentation of two type-2 fuzzy adaptive controllers. These are
based on different approaches: one is a hybrid neuro-predictive
controller while the second has a self-tuning structure already
used with type-1 fuzzy controllers for the control of nonlinear
systems with bifurcations (Montana Lampo et al., 2002).

4. Fuzzy controller structure

4.1. Type-2 fuzzy controller

As previously said, three type-2 fuzzy controllers were
designed, two of which are adaptive. The type-2 fuzzy controller
T2FC with 49 rules was designed with two inputs, error (e),
integral of error (int e), one output (control variable) and a zero-
order Sugeno inference method (Sugeno, 1985). For each input
variable, seven Gaussian membership functions were chosen.
Fig. 7 shows the fuzzy sets for the first and second inputs and
Table 2 shows instead the rule base (49 rules) chosen for the
simple type-2 fuzzy controller.

For the control of processes with time varying parameters the
adaptive control represents a better alternative in terms of

efficiency and in terms of computational load. Therefore, although
the controller with a large number of rules resulted in a robust
controller in the simulation results previously reported, for this
particular system, in which many parameters are time varying,
two different adaptive fuzzy controllers were designed.

4.2. Type-2 fuzzy neuro-predictive controller

The first adaptive controller has a hybrid type-2 fuzzy
predictive-neural-control structure (T2FNPC). The part of the
controller regarding the predictive control action uses the
receding horizon technique and the part of the controller
regarding the neural network provides, after a training stage,
the model of the system from which prediction of plant response
is obtained.

The prediction is carried out by a numerical optimization
program that determines the control signal that minimizes a
performance criterion over a specified horizon as follows:

J¼
XN2

j ¼ N1

ðyrðtþ jÞ�ymðtþ jÞÞ2þr
XNu

j ¼ 1

ðu
000

ðtþ j�1Þ�u
000

ðtþ j�2ÞÞ ð24Þ

The tracking error and incremental control action are eval-
uated over the horizons defined by N1, N2 and Nu; yr and ym are
the desired response and the neural network model response,
respectively; r is the control weighting factor.

The whole adaptive mechanism is therefore divided into two
parts: the neural network plant model and the optimization block
(Fig. 8). The optimization block determines the value of u

00

t that
minimizes J and then the optimal value u

00

multiplied by a
constant K1 is sent to the product operator. The measured output

Fig. 5. Glucose concentration (a) and biomass concentration (b) for a linear change of k7 from the initial value of 1.203 to 0.953 in 50 h.

M. Galluzzo, B. Cosenza / Chemical Engineering Science 65 (2010) 4208–42214212
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of the control system, substrate concentration, constitutes
also the input signal of the predictive-neural network
controller.

The type-2 feedback fuzzy controller is characterized by two
inputs: error of the controlled variable and integral of the same
error. The output of the controller constitutes the manipulation
variable, i.e. dilution rate. The inference method used for the type-2
fuzzy controller is a first-order Sugeno method.

In Fig. 8 the input variables of the type-2 fuzzy controller
(error e and integral of the error int e) are fuzzified as type-2 input
fuzzy sets. The input type-2 fuzzy sets are given in Eqs. (25) and
(26) and are shown in Fig. 9(a) and (b). The outputs are linear
functions of e and int e e given by Eqs. (26):

NBlower¼ expð�0:5ððe�0:002641Þ=0:003041Þ2Þ

NBupper¼ expð�0:5ððe�0:002641Þ=0:0048Þ2Þ

Fig. 6. Glucose concentration (a) and biomass concentration (b) for a step change of Sf from an initial value of 15 to 14 (g l�1) at t¼20 h.

Fig. 7. Fuzzy sets (error and integral of error) for the type-2 fuzzy controller with 49 rules.

M. Galluzzo, B. Cosenza / Chemical Engineering Science 65 (2010) 4208–4221 4213
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PBlower¼ expð�0:5ððe�0:07823Þ=0:00278Þ2Þ

PBupper¼ expð�0:5ððe�0:07823Þ=0:0058Þ2Þ

NB0lower¼ expð�0:5ððint e�0:004794Þ=0:088Þ2Þ

NB0upper¼ expð�0:5ððint e�0:004794Þ=0:09288Þ2Þ

PB0lower¼ expð�0:5ððint e�0:08044Þ=0:0643Þ2Þ

PB0upper¼ expð�0:5ððint e�0:08044Þ=0:09943Þ2Þ ð25Þ

Output1¼ 28:21eþ30:98int e�2:4540

Output2¼ 28:16eþ30:35int e�2:423 ð26Þ

The rules of the type-2 fuzzy controller are as follows:
If e is NB and int e is NB0 then u0 is Output1
If e is PB and int e is PB0 then u0 is Output2
The output of the type-2 fuzzy inference engine is a type-2

fuzzy set and must be type-reduced. The centre of sets reported in
Eq. (3) was used for type reduction.

In (3) Ycos(x) is an interval set determined by its two end points,
yl and yr, while ½f i, f

i
� is the interval firing level of the ith rule and

[yi
l, yr

i] the centroid of the consequent interval type-2 fuzzy set.
Eq. (3) can be computed using the iterative method of Karnik

and Mendel (2000b):

� for i¼1,y, N set yi ¼ yi
l or yi ¼ yi

r;
� arrange yi in ascending order;
� for i¼1,y, N set f i ¼ f i

þ f
i
=2; y0 ¼

PN
i ¼ 1 yif i=

PN
i ¼ 1 f i;

� do y00 ¼y0;
� find kA[1, N�1] such that ykry0ryk + 1;
� for irk set f i ¼ f

i
or f i ¼ f i

� for iZk+1 set f i ¼ f i or f i ¼ f
i
; y0 ¼

PN
i ¼ 1 yif i=

PN
i ¼ 1 f i;

� while y0ay00 yl¼y0 or yr¼y0.

The defuzzified output u0 is an interval type-1 fuzzy set and is
calculated following Eq. (4) as a simple average of yl and yr:

u0 ¼
ylþyr

2
ð27Þ

The output of type-2 FLC u0(t), multiplied by the scaling factor
K, is multiplied to K1u00(t) and the result of the product u(t) is sent
to the plant (Fig. 8).

Fig. 8. Diagram block for the type-2 fuzzy neural network predictive control

system.

Fig. 9. Fuzzy sets for the type-2 fuzzy controller with 2 rules: (a) error (e) and (b) integral of error (int e).

M. Galluzzo, B. Cosenza / Chemical Engineering Science 65 (2010) 4208–42214214
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4.3. Type-2 self-tuning fuzzy controller

The second adaptive controller is a robust type-2 self-tuning
fuzzy controller (T2STFC). It was designed taking into account the
controller proposed by Mudi and Pal (2000). In this particular
adaptive mechanism, the fuzzy rules of a secondary fuzzy
controller adjust online the output scaling factor (SF) of the main
fuzzy controller according to the current trend of the controlled
process. A type-1 fuzzy controller with a hierarchical structure
based on the same scheme proposed by Mudi and Pal has been
already used for the control of a bubble column that presents
bifurcation (Montana Lampo et al., 2002).

The type-2 self-tuning fuzzy controller used here is character-
ized by a normal type-2 fuzzy controller with 2 rules and by an
adaptive mechanism constituted, as above referred, by a type-1
fuzzy controller with 2 rules as well.

The control variable from the type-2 fuzzy controller u0(t),
multiplied by the scaling factor K, is updated (with the
product operator) by the signal that comes from the type-1
fuzzy controller K1u00(t) and then sent to the plant as u(t) as
shown in Fig. 10. The inputs of the two fuzzy controllers,
the main and the adaptive, are in this case the error (e) and the
integral of the error (int e). The input type-1 fuzzy sets of the
adaptive fuzzy controller are given in Eq. (28) and shown in
Fig. 11(a) and (b). The outputs are linear functions of e and int e

given by Eq. (29).

NBa¼ expð�0:5ððe�0:005128Þ=0:01557Þ2Þ

PBa¼ expð�0:5ððe�0:03743Þ=0:01316Þ2Þ

NBa0 ¼ expð�0:5ððint e�0:1962Þ=0:03909Þ2Þ

PBa0 ¼ expð�0:5ððint e�0:01015Þ=0:02933Þ2Þ ð28Þ

Output_a1¼�0:0146eþ�0:01084int eþ1:496

Output_a2¼�0:001117eþ�0:002098int eþ1:495 ð29Þ

The rules of the type-2 fuzzy controller are as follows:
If e is NBa and int e is PBa0 then u0 is Output_a1
If e is PBa and int e is NBa0 then u0 is Output_a2
The union of traditional PI actions (proportional and

integrative), type-2 fuzzy logic structure and a simple type-1
fuzzy adaptive mechanism allows obtaining of a robust and
efficient control able to handle all disturbances that normally
characterize all real systems, from the simplest to the more
complex.Fig. 10. Diagram block for the type-2 self-tuning fuzzy control system.

Fig. 11. Fuzzy sets for type-1 adaptive fuzzy controller with 2 rules: (a) error and (b) integral of error.

M. Galluzzo, B. Cosenza / Chemical Engineering Science 65 (2010) 4208–4221 4215
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5. Comparison of controller performance

The objective of bioreactor control is to keep the system in
the chosen initial equilibrium point, with glucose concentration
equal to 0.065 g l�1 (point A in Fig. 4), even in the presence of
disturbances and parameter changes. The performance of the
type-2 fuzzy controller with 49 rules described in Section 4 was
compared by simulation with the performance of the two
adaptive controllers: the T2FNPC and the T2STFC. Each adaptive
type-2 fuzzy controller is characterized by a very few number of
rules (¼2). This allows considerable decrease in computational

load and makes all simulations faster, in spite of the presence of
an adaptive loop, than those obtained with the non-adaptive
type-2 fuzzy controller.

In Fig. 12 the simulation result obtained on disturbing the
system with a negative step in Sf from 15 to 14 g l�1 is shown.
Each type-2 fuzzy controller leads glucose concentration to the
set-point value, removing the effects of disturbance. The two
adaptive fuzzy controllers perform better than the simple T2FC,
with T2STFC showing the best performance. TST2FC in fact has the
fastest control action and the lowest deviation amplitude after the
disturbance.

Fig. 12. Response of the controlled system to a Sf disturbance (step from 15 to 14 g l�1 at t¼10 h): (a) glucose concentration, (b) dilution rate and (c) zoom of (b).

M. Galluzzo, B. Cosenza / Chemical Engineering Science 65 (2010) 4208–42214216



Author's personal copy
ARTICLE IN PRESS

In Fig. 12(b) the manipulated variable, i.e. dilution rate, is
reported. From the figure it seems that all controllers have the
same manipulative variable values. In effect if a zoom of the
figure is done (Fig. 12(c)) it can be observed that the manipu-
lative variable has different trends even if they are initially very
close.

In Fig. 13 the simulation results obtained on imposing a
ramp disturbance to the k7 kinetic parameter (Table 1), starting
at t¼10 h and lasting until the end of simulation time
with �0.002 h�1 slope and a step disturbance to Sf (step from

15 to 14 g l�1 at t¼30 h) are shown. In this case all the three
type-2 fuzzy controllers are not able to remove the negative
effects of k7 parameter drift, all producing an offset, more
accentuated in the case of the simple type-2 fuzzy controller.
Also in this case T2STFC minimizes in the best way effects of the
kinetic parameter disturbance while the dilution rate variable
shows small differences for the three cases.

The simulation results shown in Fig. 14 are concerned with a
random variation of the k7 kinetic parameter and again confirm
the best behaviour of T2STFC. In this case in fact the answer of the

Fig. 13. Response of the controlled system to a k7 disturbance (ramp starting at t¼10 h) and to a Sf disturbance (step from 15 to 14 g l�1 at t¼30 h): (a) glucose

concentration, (b) dilution rate and (c) zoom of (b).
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system is the fastest (Fig. 14(a)), very different from those
obtained with the other two controllers (T2FNPC and T2FC).

The dynamics of the dilution rate for the bioreactor controlled
by the T2STFC and T2FC are very similar (Fig. 14(b)), with some
oscillations that have an amplitude value slightly larger than that
of T2FNPC and a lower frequency.

In Fig. 15 the response of the bioreactor to a Sf step from 15 to
14 g l�1 at t¼5 h is shown; a second step was imposed to k7

from 1.203 to 1.1 at t¼25 h; a third and a fourth step were
imposed at t¼45 h to other two kinetic parameters: K1l from

0.94 to 1 g l�1and k3 from 0.501 to 0.48 h�1. Even though the
simulation results in Fig. 15(b) and (c) show similar perfor-
mances of the three fuzzy controllers, from Fig. 15(a) it is evident
that the two adaptive fuzzy controllers outperform their non-
adaptive counterpart. It seems that the change of the two kinetic
parameters kil1 and k3 has no effects on the bioreactor controlled
by adaptive fuzzy controllers. In particular T2STFC is very fast
and robust to changes of feed substrate concentration and the
kinetic parameters, in comparison with the other two fuzzy
controllers.

Fig. 14. Response of the controlled system to a random variation of k7 and to a Sf1 disturbance (step from 15 to 13 g l�1 at t¼2 h): (a) glucose concentration, (b) dilution

rate and (c) zoom of (b).

M. Galluzzo, B. Cosenza / Chemical Engineering Science 65 (2010) 4208–42214218



Author's personal copy
ARTICLE IN PRESS

In Figs. 16–18 the unforced response of the system starting
from various non-equilibrium points is reported. In all cases it is
clear from the simulations that the dynamics of the control
system is faster than when disturbance or parameter changes are
present. In all cases both when the initial point (i.e. sglu¼0.063,
Fig. 14) is close to set-point value and when it is further (i.e.
sglu¼0.085, Fig. 15; sglu¼0.045, Fig. 16) the performance of
STT2FC is better than that of T2FNPC and T2FC.

6. Conclusions

Three main conclusions can be drawn from the simulation
study results:

(1) it is confirmed that the use of type-2 fuzzy logic controllers is
an effective solution for control of systems characterized by
parameter uncertainty;

Fig. 15. Response of the controlled system to disturbances in Sf (step from 15 to 14 g l�1 at t¼5 h), in k7 (step from 1.203 to 1.1 at t¼25 h), in K11 (step from 0.94 to 1 lg�1)

and in k3 (step from 0.501 to 0.48 h�1 at t¼45 h): (a) glucose concentration, (b) dilution rate and (c) zoom of (b).
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(2) introduction of an adaptive loop improves performance of the
type-2 controller, in some cases in a significant way, and
allows reduction of the number of rules and computation
load;

(3) type-2 self-tuning fuzzy controller has in all cases the best
performance in terms of robustness, response speed and
effectiveness; the simplicity of the structure makes its
implementation easy and straightforward.

Nomenclature for fuzzy sets

~A type-2 fuzzy set
Fi fuzzy set in X (antecedent set)
FOU footprint of uncertainty
G fuzzy set in Y (consequent set)
Jx intervalD[0,1]
R rule

Fig. 16. Response of the controlled system starting from a non-equilibrium point (sglu¼0.063).

Fig. 17. Response of the controlled system starting from a non-equilibrium point (sglu¼0.085).

Fig. 18. Response of the controlled system starting from a non-equilibrium point (sglu¼0.045).
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x input variable (crisp input)
y output variable (crisp output)
Y y domain
Ycos interval set
½ f i, f

i
� interval firing level of the ith rule

½Yi
l ;Y

i
r � centroid of the consequent interval type-2 set
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