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ABSTRACT

Metallic copper nanowires have been grown into the pores of alumina membranes by electrodeposition
from an aqueous solution containing CuSO4and H3BO5 at pH 3. In order to study the influence of the
electrical parameters on growth and structure of nanowires, different deposition potentials (both in the
region where hydrogen evolution reaction is allowed or not) and voltage perturbation modes (constant
potential or unipolar pulsed depositions) were applied. In all cases, pure polycrystalline Cu nanowires
were fabricated into template pores, having lengths increasing with the total deposition time. These
nanowires were self-standing, because they retain their vertical orientation and parallel geometry even
after total template dissolution.

However, the electrical parameters influence the growth rate, length uniformity and crystal size of the
nanowires. Continuous electrodeposition resulted in higher growth rates but less uniform lengths of
nanowires grown inside different membrane pores, whilst a square pulse deposition produced a slower
growth but quite uniform lengths. Also the grain size, of the order of 50 nm, was slightly influenced by

the potential perturbation mode.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Building controlled nanostructures is very important for the
electronic and the electro-mechanic industry in order to fabricate
efficient devices to a smaller scale, which present higher
performances [1]. Among numerous nanostructured materials,
several works have been dedicated to the fabrication of Cu
nanowires (NWs) [2-7], because of their potential application in
several devices such as in wire-grid polarizers [8], electrostatically
dissipative devices [9], and current collectors for Li-ion batteries
[10]. For this last application, Taberna et al. [11] have shown that it
is possible to achieve an improvement by a factor of six in power
density over planar electrodes whilst maintaining the same total
discharge time using electrodes composed of Cu nanorods covered
by Fe304. Recently, it was demonstrated that Y-branched Cu NWs
can be used as near-infrared micropolarizers; this could have a
promising future in the field of photoelectricity integration [12].

Besides, substitution of aluminium with copper for intercon-
nections in integrated circuits and in high-performance multichip
modules constitutes a great improvement in the field of electronics
[13,14]. This has been possible, thank to a better control in the
electrodeposition process of metallic Cu; with this aim, optimiza-
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tion of bath composition was investigated, in order both to
increase its throwing power and to obtain very uniform thickness
of the metallic deposit [15,16]. The effect of various additives (such
as polyethylene glycol) on the morphological aspects of nanos-
tructures and on the growth kinetics was investigated and it was
showed that growth of Cu wires or nanotubes is significantly
influenced by their action [17].

In previous works [18,19], we presented a novel procedure to
obtain pure polycrystalline Cu NWs using commercial anodic
alumina membranes (AAM) as templates: a displacement reaction
into membrane pores was caused by a galvanic contact with a less
noble metal (Al). Using this procedure, all AAM pores were
progressively filled by Cu NWs in an economic way. However, pore
filling was quite slow: 3 days of immersion were needed in order to
obtain a NWs length of 44 pm. An alternative technique for the
fabrication of nanostructures is electrodeposition [1-6,20,21],
which allows a better process control through the electrode
potential, in comparison to others fabrication methods [22-24].

Despite numerous studies on the electrochemical deposition of
metal NWs, the literature data on the influence of the electro-
deposition conditions on the final deposit are rather contradictory.
In the case of Ni deposition, an influence of the potential
perturbation mode was found upon uniformity of template pore
filling by metal [25]; in particular, these authors claim non-
uniform length of metallic NWs under a constant deposition
potential, owing to a progressive depletion of metal ions into the
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pores. Moreover, we found that morphology of Ni nanostructures
changed depending on the kind of applied pulsed potential
waveform [26]. Contrasting conclusions were reached in [27],
where a scarce influence of potential waveform was observed upon
length uniformity of electrodeposited copper NWs. For these
authors, a continuous deposition produces the best pore filling but
it damages the template.

The influence of electrolyte and electrodeposition time on the
uniformity of Cu NWs was studied by Chen et al. [10]. According
to these authors, free-standing Cu NWs (aspect ratio 17-20) can
be obtained in alkaline electrolyte, whilst NWs electrodeposited
in very acid electrolyte showed the worst uniformity. Liu et al.
[28], found that both morphology and crystalline structure of Cu
NWs were influenced by the deposition potential. Gao et al.
investigated the fabrication of Cu NWs from an almost neutral
copper sulphate-boric acid aqueous solution [29], only under
continuous deposition. They claimed that low cathodic over-
potentials are necessary in order to obtain monocrystalline Cu
NWs, growing along the (1 1 1) plane, and to avoid copper oxide
formation during continuous deposition. Different results were
obtained by Thongmee et al. [6]: they showed that single-
crystalline Cu NWs could be produced by potentiostatic
electrodeposition at relatively high deposition potential
(2.0 V(SCE)), whilst potentials lower or higher than 2 V(SCE)
resulted in polycrystalline NWs. Maurer et al. [30] observed a
preferential orientation along the (2 2 0) plane for fcc gold and
copper NWs deposited under direct current, and a growth along
the (2 0 0) plane under alternating current deposition. According
to these authors, this behaviour is due to the tendency of
minimization of surface energy during the electrodeposition
process: (220) and (200) correspond to the lowest energy
configuration for NWs obtained by direct and alternating
current deposition, respectively. The influence of temperature
on the crystallographic structure of copper NWs electrodepos-
ited in polycarbonate templates at low overvoltages was studied
in [31]: at room temperature fine-grained polycrystalline NWs
were deposited, with increasing temperature the grain size
gradually enlarged, until single crystals were obtained as
temperature of the electrochemical bath was maintained at
60 °C. In the last case, some wires show a twin structure,
resulting, according to the authors, from either the growth
process or a plastic deformation.

This overview of the literature data shows that results related
to the fabbrication of Cu NWs by template electrosynthesis are
very different, and in some cases, contrasting. In order to clarify
some of these aspects, we have undertaken a systematic
investigation upon the effect of potential value and perturbation
mode on growth and structure of copper NWs from a copper
sulphate-boric acid aqueous solution. In particular, we will
show the influence of selected deposition conditions on both
growth rate and uniformity of NWs length. For this aim, we have
investigated the electrodeposition under continuous and uni-
polar pulsed potential, in order to establish the electrochemical
conditions leading to the formation of uniform arrays of copper
NWs. This issue is of relevant importance, because a uniform
length of nanowires is a fundamental requirement for their
application.

We have chosen the AAM as template because, as shown in our
previous works, by electrochemical deposition into this template it
is possible to fabricate nanowires or nanotubes of metals, oxides
and alloys, like Ni [26,32], Cu,0 [33,34], CeO,, [35], PbO, [36], and
CoSn [37]. Moreover, using AAM, regular arrays of cylindrical
nanostructures are fabricated, in which every single wire has
identical morphology, unlike nanostructures obtained in poly-
carbonate membranes, whose pores show a non-constant cross-
section [31,38,39].

2. Experimental

Metallic Cu NWs were grown by template electrodeposition
into commercial AAM templates (Whatman, Anodisc 47) having a
nominal thickness of 55 wm, an average pore diameter of about
210 nm and a surface pore density of the order of 10'® pores/m?.
Before electrodeposition, one membrane surface was sputtered
with a gold layer, to provide the initial electrode surface for metal
copper nucleation; then it was mounted onto an aluminium stub
through a conductive paste ensuring the back electrical contact,
and insulated laterally with a lacquer.

Electrodeposition bath was prepared dissolving 0.2 M of
CuS04-5H,0 and 0.1 M of H3BOs in distilled water; pH of the
solution was adjusted to 3 adding H,SO,4. Before electrodeposi-
tion, sample was immersed into the deposition bath for several
hours, to let membrane pores be filled by the electrolyte.
Electrodepositions were performed at room temperature, in an
aerated three electrode cell, having a graphite counter electrode
and a standard calomel reference electrode (SCE, E°=0.24
V(SHE)). Electrodeposition potentials were -0.3, —0.45 and
—0.6 V(SCE), well negative with respect to the equilibrium
potential of the Cu?*/Cu reaction (about 0.07 V(SCE), at the given
Cu?* concentration); they were chosen considering the con-
current cathodic reaction of H, evolution (Eeq = —0.47 V(SCE), at
pH 3), in order to realize copper electrodeposition under three
different situations: absence of hydrogen evolution, slow
hydrogen gas formation and vigorous H, bubbles evolution.
For each potential, three different potential perturbation modes
were also adopted: (a) a continuous electrodeposition at the
chosen potential, (b) a unipolar square pulsed wave between the
deposition potential and 0 V(SCE), (c¢) a unipolar trapezoidal
pulsed wave between the same potential limits. Parameters of
the pulsed perturbation methods are reported in Table 1. In
order to control NWs length, total deposition time was varied
from 1 to 6h. An EG&G (mod. 273A) potentiostat/sweep
generator was employed for polarizing the working electrode;
deposition current was monitored and acquired to a desk
computer using an analogic interface, controlled through a
home-made LABVIEW 7™ software.

Morphological characterization of samples was performed
using a scanning electron microscope (ESEM XL 30), equipped
with an X-ray energy dispersive spectrometer; prior to
examination, samples were gold sputtered to avoid electrostatic
charging effect. Sometimes template was dissolved by immer-
sion in 1M NaOH solution before SEM analysis. The crystal-
lographic structure of NWs was investigated using a X-ray
diffractometer, having a Philips generator (mod. PW 1130) and a
PW goniometer (mod.1050); diffractograms were obtained in
the 20 range from 10 to 100 degrees with a step of 0.02 degrees
and a measuring time of 0.5 s for step, using the Cu Ka radiation
(A =0.154 nm).

Table 1
Parameters of pulsed waves employed for electrodeposition of Cu nanowires.

Parameters Square wave Triangular wave
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Fig. 1. Current density vs time plot during the growth of Cu nanowires at the
constant potential of —0.3 V(SCE) (3 h). Inset: Current density vs time plots during
the growth of Cu nanowires at different constant potentials (1 h).

3. Results and discussion
3.1. Constant potential depositions

Fig. 1 shows the current density vs time plot for a potentiostatic
deposition performed at —0.3 V(SCE). The time interval (3 h) was
enough to fill completely the membrane pores (see below);
besides, a continuous Cu overlayer was visible on the top surface of
the template. The figure reveals a monotonous increase of the
reduction current, starting from about —0.7 mAcm™2. This
behaviour can be justified with the decrease of electrical resistance
within pores, owing to the progressive substitution of the
electrolytic solution with the metallic wires. Hence, at this
potential the process seems to occur under an ohmic control.

Similar features show the deposition curves at —0.45 and
—0.6 V(SCE), but with some interesting peculiarities for shorter

times. In fact, an initial flash of negative current, more pronounced
at the most negative potential, occurs in the first seconds soon after
closing the circuit; as shown in the inset of Fig. 1, where 1h
deposition experiments at all investigated potentials are reported
for a better comparison. Such phenomenon must be ascribed to an
initial flash of H, evolution occurring on the sputtered gold film;
this causes sudden gas bubbles formation into the alumina
channels, with increase of solution resistance, followed by
nucleation of metallic copper on gold. After the initial spike, the
current gradually increases with the deposition time, like in the
previous case, but with a higher slope with respect to the
deposition performed at —0.3 V, due to the faster growth of metal
NWs into membrane pores. At both potentials, more vigorous
hydrogen bubbling was observed for the first few minutes,
suggesting that kinetics of the concurrent process is much slower
on Cu surface. It is worth to mention that a sudden increase of
current density, expected as the complete filling of pores
simultaneously occurs, it is not evident [1,4] under continuous
electrodeposition, because the growth rate of the NWs is not
uniform inside each pore (see below). Some NWs grow more
rapidly, therefore they reach the surface template before others.

Fig. 2 a and b shows the cross-section of the template after,
respectively, 1 and 3 h of deposition at —0.3 V. From Fig. 2a, it is
evident that although the growth process involved all pores, NWs
length is not uniform already after 1h of deposition. At this
potential, lengths ranging between 25 and 39 m were observed,
whilst after 2 h of deposition the difference in length between
different rods was smaller (34-39 wm). This finding agrees with
experimental observations on the potentiostatic electrodeposition
of Cu and other nanostructures [4,26]; however, we mention that
uniform lengths of Cu NWs were obtained in [27] by using very
high overvoltages. Moreover, the comparison between average
lengths measured after 1 and 2 h of deposition suggests a slower
growth rate for longer times, likely caused by a progressive
depletion of Cu?* ions within membrane channels. This means that,
already at this potential, the copper ions consumption is faster

Fig. 2. Cross-section views of anodic alumina membranes filled with Cu nanowires obtained by continuous deposition. ((a) and (b)) —0.3 V(SCE) after (a) 1 h.and (b) 3 h. ((c)
and (d)) —0.6 V(SCE) after 1 h of electrodeposition in central part of the cross-section (c) and in proximity of the template surface (d).
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than their transport toward the electrode surface [4,31,38]. After
3 h of deposition at —0.3 V most channels are completely filled and
a continuous metal overlayer, about 20 pm thick, is formed upon
the external template surface exposed to the bath (Fig. 2b).

Similar results were obtained at more negative potentials, with
the only difference of a faster growth of metallic NWs into the
channels: complete pore filling and growth of an external metal
layer were observed after 2 h of electrodeposition at —0.45 V(SCE),
and already after 1 h (see Fig. 2c and d) at —0.6 V(SCE). This means
that growth rate is higher than 55 pwm/h at the most negative
potential investigated. Anyway, we note that also in this case some
pores were still partially filled (Fig. 2c), due to the non-uniform
growth rate, and this explains the island-like morphology of the
external deposit (Fig. 2d).

Composition and structure of deposited NWs were analyzed:
the EDS spectra showed that NWs consist of pure copper metal.
This was confirmed by X-ray diffractograms revealing a
polycrystalline structure of the deposited metal (see Fig. 3)
[6,13,31,38]. Identification of peaks, which are relative to the
cubic structure of copper, was performed by comparison with
the ICDD data-base, card no. 4-836 [40]. Moreover, comparison
between samples grown for different times revealed different
preferential growth, as evident from Fig. 5 a and b, pertaining to
NWs deposited at —0.3 V. Fig. 5a shows the XRD pattern of the
deposit when NWs length is less than template thickness. It can
be observed that copper deposit is polycrystalline, with
preferential growth along the (11 1) and (2 2 0) planes. After
3 h of deposition, NWs reach the surface of the membrane and a
copper layer 20 wm thick is present. Therefore, in this case, a
composite structure is formed, with a copper layer overlaying
NWs filling the pores of the template. XRD patterns for surface
deposit (Fig. 5b) shows that the most intense peak is relative to
the (2 2 0) plane, indicating that copper compact layer prefer-
entially grows along this plane. A confirmation of this different
structure derives from the diffractogram (not shown here)
performed on the back surface (that in contact with the gold
substrate at pore bottom) of the sample of Fig. 3b, that is fully
similar to that of Fig. 3a. Other differences of Fig. 3b with respect
to Fig. 3a are the disappearance of the peaks relative to gold and
the attenuation of the broad region around 26 = 25°, arising from
the amorphous alumina template. Both originates from the
coverage of the external membrane surface with a thick copper
layer after 3 h deposition.

Diffractograms recorded for depositions performed at —0.45
and —0.6 V(SCE) were quite similar, taking into account the higher
growth rate of membrane pores: e.g., the X-ray pattern of a sample
after 2 h deposition at —0.45 V was coincident with that of Fig. 3b;
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Table 2
Grain size, estimated through Eq. (1), of Cu nanowires grown by potentiostatic
electrodeposition at different applied potentials and for different times.

Potential V(SCE) Time (h) Grain size (nm)
-0.3 1 46.0

-0.3 2 46.3

-03 3 43.0

-0.3 3 106 (layer)
-0.45 1 45.0

-0.45 2 46.8

-0.6 1 43.2

in fact, also in this case, some pores were completely filled and a
metallic layer was deposited onto the AAM external surface
exposed to solution. However, at these more negative potentials,
the main peak relative to the external layer was that pertaining to
the (11 1) plane, at variance with the results obtained at —0.3 V.
Contrary to the conclusions reached in [29], these results
indicate that also at more negative potentials NWs consist of
pure copper metal.

For all samples, the crystalline grain dimension (dg) was
estimated using the Scherrer equation [41]:

dg = 0.9 (Bcosa) ! (nm) (1)

where B is the half-height width of the main diffraction peak, A is
the incident wavelength (0.154 nm, in our case) and « the
diffraction angle. Results for the different samples are summarized
in Table 2, where data relative to NWs and metallic overlayer were
reported. From the data in Table 2, it appears evident that
crystallites size of NWs is independent of deposition potential
(45 4 2 nm) and sensibly smaller than the size of grains grown on the
external surface (about 105 nm), the latter being also not appreciably
influenced by potential. These results are in agreement with data
reported in [31] and [38].

In conclusion, we may affirm that copper deposition under
continuous potential produces a not uniform growth of cubic
polycrystalline copper NWs with grain size of about 45 nm and
without marked preferential growth along crystallographic planes.
This structure is different from that of the compact metallic layer
formed onto the template external surface, which shows a
preferential orientation along the (220) or the (111) plane,
depending on potential, and double crystallite size. More negative
overvoltage results in the acceleration of the growth process,
whilst the concurrent hydrogen evolution process seems to have
little influence both on morphology and crystalline structure of the
deposited metal.

(b) Cu(220) ah

Cu(111)
Cu(311)

[re——

20 40 60 80 100
20 /| Degree

Cu(200)

Fig. 3. X-ray diffractograms of anodic alumina membranes filled with Cu nanowires obtained by continuous deposition at —0.3 V(SCE) after different electrodeposition times:

(a)1h; (b)3h.
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Fig. 4. Applied potential waveform (curve a) and current transients at different
deposition times (curves b-g) recorded during a square pulsed electrodeposition of
Cu nanowires performed between 0 and —0.3 V(SCE).

3.2. Depositions under pulsed potential

Square pulsed deposition was performed according to the
conditions reported in Table 1. Usually, pulsed polarization is
employed in order to replenish the double layer by inverting the
polarity of the current. In this case, the potential pulse form was
chosen in order to change only the value of current density,
keeping polarity, because the fundamental objective was tuning
deposition rate. By this way, a high deposition current was
circulating during t,,, whilst it was very low during t.. Also the
cathodic pulse length was rather higher than usually done, even if
there is no general rule indicating the best value of pulse length.
The only significant parameter is the duty cycle, ton/(ton * tofr), in
this case equal to 9.1%, and therefore very far from a DC
polarization [42].

Current transients after different deposition times are reported
in Fig. 4 for a square pulsed deposition performed at —0.3 V: apart
from small spikes at the beginning of each transient, the current
follows the potential perturbation, so that maximum (iax) and
minimum (in;,) current values in each step are very close.
Interestingly, both values decrease during the first 50 min of
deposition (from about 12-9 mA cm~2), and then increase again
gradually (up to 15 mAcm 2 after 6 h of deposition (see also
Fig. 5)). Very similar current transients were observed as square
pulsed depositions was conducted between 0 and —0.45 or —0.6 V,
confirming that deposition occurs always under ohmic control.
Also for the other potentials, the change of current values with the
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-30 F —0— -0.45V min
—&— -0.6V max
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-35 1 1 1
0 100 200 300

Time / min

Current density / mA em™2

Fig. 5. Maximum and minimum current values measured at different total deposition
times during the square pulsed transients of Cu nanowires electrodepositions.

Au layer

Conductive
Paste

Fig. 6. Schematic representation of the Au layer covering pore bottom of the
alumina template, and of the growing Cu deposit.

deposition time is non-monotonic, as shown in Fig. 5. This last
figure evidences the differences arising from a different deposition
potential; higher current values were measured at more negative
potentials. Moreover, the minimum current is shifted toward
shorter times, owing to the faster growth of NWs.

Considering that at —0.3V the hydrogen evolution cannot
occur, the behaviour depicted in Fig. 5 seems related to the initial
morphology of the electrode surface. In fact, SEM pictures (not
shown here) reveal an extremely rough gold surface obtained by
sputtering at pore bottom, which implies high real area for initial
copper deposition. Whilst NWs grow, their top offers the new
electrode surface for further deposition, and it is much smoother
than the initial one. This means that during the first minutes of
deposition the electrode surface area is diminishing, and this effect
overcompensates the gradual increase in current due to pore
filling, until NWs length is some tens of pum and gold is completely
covered (see the scheme reported in Fig. 6). This occurs at shorter
times for more negative potentials, where growth process is faster,
and it explains the shift in current minimum of Fig. 5. From this
point, only the effect of resistance lowering is present, and the
cathodic current increases with time. Moreover, the larger
differences between i,.x and iy, at negative potentials should
be ascribed to the presence of the H, evolution reaction.

Similar results were observed performing a trapezoidal pulsed
electrodeposition from the same bath (see Table 1). Also with this
kind of perturbation, the current transients have the same shape of
potential wave, as shown in the inset of Fig. 7. No evident current
spikes are present. Again the current values decrease for short

=]

1<}

w

<
Z
25

1

Current density / mA cm 2

0 100 200 300
Time / min

Fig. 7. Maximum and minimum current values measured at different total
deposition times during the trapezoidal pulsed transients of Cu nanowires
electrodepositions. Inset: Applied potential waveform (curve a) and typical
current transients (curves b) recorded during a trapezoidal pulsed electrodeposition.
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Table 3
Grain size, estimated through Eq. (1), of Cu nanowires grown by pulsed
electrodepositions for 1 h.

Potential wave Potential V(SCE) Grain size (nm)

Square -0.3 52.5
Square —0.45 45.7
Square -0.6 41.7
Triangular -0.3 40.9
Triangular -0.45 38.5
Triangular —0.6 343

deposition times, and then they again gradually increase (Fig. 7),
with a minimum value after about 50 min total deposition at
—-0.3V, and shifting toward shorter times at more negative
deposition potentials. Rationale for this behaviour is the same
discussed above for the square pulsed deposition.

Analogous to the case of continuous deposition, for both
unipolar pulsed depositions the membrane pores were filled
uniformly with pure polycrystalline Cu NWs. X-ray diffraction
patterns present the same peaks of those displayed in Fig. 3, and
crystallites sizes, calculated by means of Eq. (1), are of the same
order of magnitude (see Table 3). However, for pulsed depositions,
a slight decrease of grain size is observed at more negative
deposition potentials; moreover, the data in Table 3 evidence that
grains are a little smaller when a trapezoidal potential pulse is
applied, likely because the shortest permanence time at the
deposition potential does not allow a further growth of the
nucleated crystalline phase. For pulsed depositions, a continuous
metallic layer deposited onto the membrane external surface was
never observed, but only sporadic islands sometimes, because the
lower growth rate (see below) prevented complete pore filling
even after 6 h of deposition.

Shape of potential perturbation influences NWs growth rate
and its uniformity between different membrane pores. Performing
a square pulsed deposition at —0.3 V(SCE), non-uniform lengths
are observed between different channels since 1 h total deposition
time, and this feature is enhanced for longer times. The average
NWs length increases quite linearly with time, with an average
growth rate of about 5.2 um/h (see curve a of Fig. 8). However, the
same kind of deposition carried out at more negative potentials
results in much more uniform growth in different channels: in this
case the initial growth rate is much higher (up to 15 pm/h during
the first hour), but diminishing with time, as shown by curve b of

60 T T T T T T

—e— 2a) -0.3 V(SCE)
50 - —— b)-0.6 V(SCE) -

40 ~ =
30 - N

20 ~ -

Nanowires length / um

10 - -

0 1 1 1 1 1 1
0 1 2 3 4 5 6 7

Time / h

Fig. 8. Nanowires average length vs total electrodeposition time during square
pulsed Cu electrodepositions at different potentials: (a) —0.3 V(SCE); (b)
—0.6 V(SCE). Error bar represents nanowire length variation between different
template channels.

Fig. 9. Cross-section view of an anodic alumina membrane filled with Cu nanowires
obtained by trapezoidal pulsed electrodeposition at —0.6 V(SCE), after 3 h total
deposition.

Fig. 8 for a square deposition between 0 and —0.6 V. The slow down
of the growth process could be due to a depletion of Cu?* ions into
the channels, faster in those pores where higher initial rates occur;
this should explain more uniform lengths observed at longer
deposition times. Anyway, an effect of the hydrogen evolution
reaction cannot be ruled out. We note that growth rates are far
below those observed under continuous deposition at the
corresponding potentials, as expected owing to the large time
intervals elapsed at 0 V(SCE), where copper deposition occur with a
very low current density.

Even slower growth is observed during pulsed trapezoidal
depositions at the same potentials. Here the effect of deposition
potential upon length uniformity is different with respect to the
previous case. At —0.3V, the growth of NWs in different
membranes pores is quite uniform for the first 3 h, with an initial
rate close to 5.5 um/h, whilst for longer deposition times it
becomes less uniform, giving lengths ranging between 32 and
36 wm after 6 h, and thus the channels are never completely filled.
The same holds at more negative deposition potentials, as revealed
by the SEM picture of Fig. 9: at this potential, the growth almost
stops between 1 and 3 h and then increases again, but with
different rates in different channels, so that after 6 h lengths
ranging between 25 and 35 pm are observed.

Whilst it is easy to conclude that with this perturbation
potential mode it is desirable to work at —0.3 V(SCE) in order to
obtain more uniform lengths, and that square pulse deposition at
—0.45 or —0.6 V gives higher and more uniform lengths of copper
NWs, a rationale for these findings is not simple. It is obvious that
the higher growth rates observed under square pulsed potential
perturbation with respect to the trapezoidal one, must be ascribed
to the longer net time elapsed at the lowest (deposition) potential
in the former case; however, the results about the uniformity of
NWs length seem contradictory, because choosing a more negative
deposition potential seems beneficial for the square pulsed
deposition and detrimental when a trapezoidal potential pertur-
bation is imposed. Seemingly, in the latter case a heavier
interference of the concurrent hydrogen evolution process occurs,
causing random bubbles accumulation into some pores that slows
down further metal deposition, whilst under a square perturbation
the produced hydrogen is more rapidly consumed during the high-
potential step. However, this aspect needs more investigations in
order to be clarified.

3.3. Self-standing free nanowires
Anodic alumina is not only a suitable template for metallic NWs

fabrication, but it constitutes also an ideal environment for their
use into small devices. In fact the perfect insulating behaviour of
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Fig. 10. SEM pictures, taken after template dissolution in 1 M of NaOH, of Cu nanowire arrays formed under square pulsed depositions for 1 h total deposition time. (a) Tilted
view of the cross-section relative to a nanowire array deposited at —0.6 V(SCE); (b) top view of a nanowire array formed at —0.45 V(SCE); ((c) and (d)) tilted and top views of a

nanowire array formed at —0.3 V(SCE).

aluminium oxide ensures the unidimensional current flow through
the array of metallic NWs closely spaced, once electrical contacts
are placed onto the external membrane surfaces. Despite this fact,
it is important to check the mechanical stability of the metallic
NWs alone, as well as the possibility to retain their geometrical
order (in particular, the parallelism between different wires)
independent of the template support. Moreover, it is important to
assess the adherence of copper NWs to the gold layer constituting
the initial electrode surface. In order to check this issue, for a
certain number of samples, we performed a complete dissolution
of the alumina membrane after copper nanostructures fabrication.
This was achieved by immersion of the template in 1 M NaOH
aqueous solution at room temperature for a suitable time. The
latter was of the order of 2 h for membrane total dissolution, but it
was varied when partial dissolution was desired. Afterwards, the
samples were examined by scanning electron microscopy.
Results of such an investigation are reported in Fig. 10, showing
SEM pictures of the Cu nanowire arrays formed under square
pulsed deposition at different potentials and for 1h total
deposition. Fig. 10a, which is relative to an array deposited at
—0.6 V(SCE) evidences that template dissolution does not alter the
alignment between NWs, which are firmly hammered in the thin
gold layer visible at the bottom [13]. Moreover, an acceptably
uniform length is visible. The enormous surface density of NWs is
perceptible from the top view of Fig. 10b, relative to an array
formed at —0.45 V, for the same time and deposition method. Since
the Cu deposition occurred in each pore, such a density is the same
of pore population of the alumina membrane, i.e., of the order of
10'3 wire m 2. More details about NWs geometry are discernible
from the enlarged views of Fig. 10c and d, where the cylindrical
shape of NWs (diameter: 210 nm) is distinguishable. These last
pictures are relative to an array formed at —0.3 V(SCE) for 1 h
under square pulsed deposition, resulting in non-uniform lengths
(see above), as evidenced in Fig. 10c. Analogous results were
observed for the other potential perturbations after template

dissolution. In conclusion, copper NW arrays fabricated by
electrodeposition from the selected bath retain their parallel order
even after membrane dissolution.

4. Conclusions

A systematic investigation has been carried out in order to
study the influence of the electrochemical parameters on growth
rate, length and crystalline structure of metallic copper NWs
electrodeposited into the pores of alumina templates from a Cu?*
ion-containing bath at pH 3. For this purpose, different deposition
potentials and voltage perturbation modes were employed. The
potential was varied in order to carry out the growth in the absence
of hydrogen evolution (at —0.3 V(SCE)), as well as in the presence
of such a concomitant reaction, both with small and high
overvoltage (at —0.45 and —0.6 V, respectively). Depositions under
either continuous or unipolar pulsed potential were carried out. In
the latter case, either a square or a trapezoidal wave form were
applied, both between 0 V(SCE) and the deposition potential.

Regardless of the deposition potential and perturbation mode,
the electrodeposition process resulted always in the formation of
pure polycrystalline copper NWs, with preferential orientation
along the (11 1) or (2 2 0) plane. Crystalline grain size was about
45 nm, independent of the applied potential, for continuous
electrodeposition. With this method, the length of NWs was not
uniform, and complete filling of several pores was reached after
reasonably short deposition times (3 hat —0.3V, 1 hat —0.6 V). At
this point, NWs having an aspect ratio of about 260 were obtained,
but a metal layer began to form onto the membrane external
surface exposed to the solution, having a polycrystalline structure
with a larger grain size (about 100 nm).

Remarkable influence was exerted by deposition method and
potential on both the NW growth rate and length uniformity. In
particular, quite uniform length of NWs grown in different pores
was achieved performing a square pulsed deposition at more
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negative potentials, even if growth rate was sensibly smaller in
comparison to the formation at constant potential, and further
decreasing with the total deposition time. This implies that complete
pore filling was achieved after about 7 h of deposition. On the
contrary, a trapezoidal pulsed deposition was detrimental for both
the growth rate (even slower) and non-uniform length of NWs.
An interesting result is that in all cases the metallic NWs are self-
standing mechanically, i.e., they retain their vertical parallel
geometry even after total membrane dissolution, stemming out
from the basal gold layer. Thus, the template structure is not essential
for their use in a device, even if the ideally insulating properties of
alumina could help in obtaining the desired performances.
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