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Abstract

We study the problem of asset and liability management of participating insurance policies with guarantees. We develop
a scenario optimization model for integrative asset and liability management, analyze the tradeoffs in structuring such pol-
icies, and study alternative choices in funding them. The nonlinearly constrained optimization model can be linearized
through closed form solutions of the dynamic equations. Thus large-scale problems are solved with standard methods.
We report on an empirical analysis of policies offered by Italian insurers. The optimized model results are in general agree-
ment with current industry practices. However, some inefficiencies are identified and potential improvements are
highlighted.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Insurance products become increasingly more innovative in order to face competitive pressures. Insurance
policies today come with guarantees on the minimum rate of return, bonus provisions, and surrender options.
These features make them attractive for investors who seek not only insurance but also investment vehicles.
However, the new policies are much more complex to price than traditional insurance products, and we have
witnessed an interest in applying financial pricing techniques to the valuation of insurance liabilities. The focus
is shifting away from the traditional actuarial pricing, from static models to stochastic models, see Vanderhoof
and Altman (1998), Babbel and Merril (1998) and Embrechts (2000). Among the most complex insurance
products today we find participating policies with guarantees.
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1.1. Features of policies with guarantees

Financial products with guarantees on the minimum rate of return come in two distinct flavors: maturity

guarantees and multi-period guarantees. In the former case the guarantee applies only at maturity of the con-
tract, and returns above the guarantee at some time before maturity offset shortfalls at other times. In the lat-
ter case the time to maturity is divided into subperiods – quarterly or biannually – and the guarantee applies at
the end of each period. Hence, excess returns in one sub-period cannot be used to finance shortfalls in other
sub-periods. Such guaranteed products appear in insurance policies, guaranteed investment contracts, and
some pension plans, see, e.g., Hansen and Miltersen (2002).

With the historically low interest rates of the last decade the management of such policies is becoming more
challenging. Reliance on fixed-income assets is unlikely to yield the guaranteed rate of return. For instance,
Italian guaranteed rates after 1998 are at 3%. The difference between the guaranteed rate and the 10-year yield
is only 1%, which is inadequate for covering the firm’s costs. In Germany the guaranteed rates after 1998 are at
3.5% differing from the 10-year yield only by 0.5%. Danish products offered guarantees of 3% until 1999,
which were reduced to 2% afterwards. In Japan Nissan Mutual Life failed on a $2.56 billion liability arising
from a 4.7% guaranteed investment, highlighting the difficulties faced by this industry.

In response to market pressures and regulatory conditions insurers offer currently very conservative guar-
anteed returns. Policyholders are compensated, however, by participating in the firm’s profits, receiving a
bonus whenever the return of the firm’s portfolio exceeds the guarantee, creating a surplus for the firm.
Bonuses may be distributed only at maturity, at multiple periods until maturity, or using a combination of
distribution plans. The earlier unit-linked policies would pay a benefit – upon death or maturity – which
was the greater of the guaranteed amount and the value of the reference portfolio. These simple were maturity
guarantees with bonus paid at maturity as well. At the other extreme of complexity we have the modern UK
insurance policies. These policies declare at each subperiod a fraction of the surplus as reversionary bonus
which is then guaranteed. The remaining surplus is managed as an investment reserve, and is returned to cus-
tomers as terminal bonus if it is positive at maturity or upon death. These policies are multi-period guarantees
with bonuses paid in part at intermediate times and in part at maturity. Further discussion on the character-
istics of products with guarantees is found in Kat (2001) and the papers cited below.

In this paper we consider multi-period guarantees with bonuses that are paid at each subperiod and are
subsequently guaranteed. The bonus is contractually determined as a fraction of the portfolio excess return
above the guaranteed rate during each subperiod. The guaranteed rate is also contractually specified. To
understand the nature of this product, we illustrate in Fig. 1 the growth of a liability that participates by
85% in a given portfolio while it guarantees a return of at least 3% in each period. The liability is lifted every
time a bonus is paid and the minimum guarantee applies to the increased liability: what is given cannot be
taken away.

1.2. Current models

The pricing of the option embedded in the early products with guarantees was addressed in the seminal
papers of Brennan and Schwartz (1976) and Boyle and Schwartz (1977). They analyzed unit-linked maturity
guarantee policies. Perhaps, the most complete analysis of modern life insurance contracts – complete in the
sense that it prices in a unified framework several components of the policy – is due to Grosen and Jørgensen
(2000). They decompose the liability of modern participating policies with guarantees into a risk-free bond
(the minimum guarantee), a bonus option, and a surrender option. The first two taken together are a Euro-
pean contract and all three together are an American contract, and the authors develop numerical techniques
for pricing both. Hansen and Miltersen (2002) extend this model to the pricing of contracts with a smoothing
surplus distribution mechanism of the form used by most Danish life-insurance companies and pension plans.
They use the model to study different methods for funding these products, either by charging the customers
directly or by keeping a share of the surplus. Similarly, Bacinello (2001) develops pricing models that permit
her to study the interplay between the volatility of the underlying asset portfolio, the participation level for
determining bonuses, and the guaranteed rate. Boyle and Hardy (1997) take this line of inquiry in a different
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direction by analyzing alternative reserving methods for satisfying the guarantee. More practical aspects of the
problem are studied by Giraldi et al. (2003).

It is worth noting that current literature assumes the asset side is given a priori as a well-diversified port-
folio which evolves according to a given stochastic process. For instance, Brennan–Schwartz, Grosen–Jørgen-
sen and Bacinello assume a geometric Browning motion, while Miltersen and Persson (1999) rely on the
Heath–Jarrow–Morton framework and price multi-period guaranteed contracts linked either to a stock
investment or the short-term interest rate. There is nothing wrong with these approaches, of course, except
that part of the problem of the insurance companies is precisely to determine the structure of the asset port-
folio. Indeed, all of the above references carry out simulations for different values of the volatility of the
assets. Brennan and Schwartz (1979) devote a section to the analysis of ‘‘misspecification of the stochastic
process’’. Bacinello goes on to suggest that the insurance company should structure several reference portfo-
lios according to their volatility and offer its customers choices among different triplets of guaranteed rate,
bonus provision, and asset portfolio volatility. To this suggestion of endogenizing the asset decision we
subscribe. It is a prime example of integrated financial product management advocated by Holmer and Zenios
(1995).

Independently from the literature that prices the option embedded in the liabilities, we have seen an interest
in the use of portfolio optimization models for asset and liability management for insurance companies. The
most prominent example is for a Japanese insurance firm – not too surprising given what has transpired in the
Japanese financial markets – the Yasuda Kasai model developed by the Frank Russel Company. This model
received coverage not only in the academic literature but also in the press, see Carinõ and Ziemba (1998).
Other successful examples include the Towers Perrin model of Mulvey and Thorlacius (1998), the CALM
model of Consigli and Dempster (1998) and the Gjensidige Liv model of Høyland (1998). These models have
been successful in practical settings but their application does not cover participating policies with guarantees.
One reason is that insurance firms pursued integrated asset and liability management strategies for those prod-
ucts they understood well. This has been the case for policies that encompass mostly actuarial risk such as the
fire and property insurance of the Yasuda Kasai model. Another reason is that the technology of scenario
optimization through large-scale stochastic programming has only recently been developed into computable
models, see, e.g., Censor and Zenios (1997). Finally, the combination of a guarantee with a bonus provision
introduces nonlinearities which complicate the model.
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Fig. 1. Typical returns of the asset portfolio and a participating policy with multi-period guaranteed return of 3% and participation rate
85%. The guarantee applies to a liability that is lifted every time a bonus is paid as illustrated at period seven. The asset portfolio
experienced substantial losses at period seven while the liability grew at the 3% guaranteed rate. Subsequent superior returns of the assets
allowed the firm to recover its losses by the 10th period and achieve a positive net return at maturity.
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1.3. Contributions of this paper

This paper extends current asset and liability management literature to address problems that have been
studied thus far only from a pricing perspective. We develop a scenario optimization asset and liability
management model for multi-period participating policies with guarantees. Our model optimizes the
choice of an asset portfolio to deliver the contractual obligations of the policy while maximizing shareholder
value.

The specific contributions of this paper, and the findings from the empirical analysis, are as follows:

1. A model that endogenizes the asset structure which has been considered exogenous in the pricing literature
on guaranteed products. Exogeneity of the asset returns is justified for unit-linked policies, but is not quite
acceptable for modern participating policies whereby the issuer has control of the asset portfolio.

2. An analysis of the tradeoffs between shareholders and policyholders in offering guaranteed products. In this
respect, our paper addresses precisely the suggestion made by Bacinello by structuring optimal asset port-
folios. Thus it allows the insurance company to present policyholders with choices that are efficient.

3. The identification of optimal asset portfolio volatility for each target guaranteed return. Too low volatility
is associated with low expected returns and portfolios that are unlikely to meet the guarantee. High vola-
tility portfolios are associated with higher expected returns, and are more likely to meet the guarantee.
However, the embedded option is in this case expensive and may erode shareholder value. Siglienti
(2000) argued that portfolios with more than 10–15% in equities are likely to destroy shareholder value.
We find that, indeed, too high equity content destroys shareholder value, but for properly optimized port-
folios the cutoff point is around 20–25% in equities.

4. Flexibility in financing the guarantee either through reserving or by issuing long- or short-term debt. The
model explicitly recognizes that the reserves will depend on the asset structure – a fact also recognized in
Boyle-Hardy – and optimizes this asset structure viz-a-viz the liability.

5. A benchmark of the policies offered by Italian insurers against optimized policies. We see that policies
backed by optimized portfolios dominate in risk-return space policies backed by the typical portfolios of
Italian insurers.

The paper is organized as follows. Section 2 defines the dynamics of assets and liabilities and develops the
optimization model. Section 3 shows how the model analyzes risk and return tradeoffs for different policies,
and addresses questions pertaining to the cost of the guarantee and ways for funding this cost. It also analyzes
tradeoffs between policyholders and shareholders, and examines the ability of the firm to satisfy regulatory
requirements. Section 4 benchmarks the Italian policies and looks at international diversification and invest-
ments in credit products. The solution of the dynamic equations is given in Appendix A. Appendix B presents
extensive results with the use of the model and can be obtained from the authors.

2. The scenario optimization nonlinear programming model

We develop now the model for asset and liability management for multi-period participating policies with
guarantees. It is a mathematical program that models stochastic variables using discrete scenarios. All port-
folio decisions are made at t = 0 in anticipation of an uncertain future. At the end of the planning horizon the
impact of these portfolio decisions in different scenarios is evaluated and risk aversion is introduced through a
utility function. Portfolio decisions optimize the expected utility over the specified horizon.

2.1. Features of the model

In the model we consider three accounts: (i) a liability account that grows according to the contractual
guaranteed rate and bonus provision, (ii) an asset account that grows according to the portfolio returns,
net any payments due to death or policy surrenders, and (iii) a shortfall account that monitors lags of the port-
folio return against the guarantee. In the base model shortfall is funded by equity but later we introduce alter-
native reserving methods.
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The multi-period dynamics of these accounts are conditioned on discrete scenarios of realized asset returns
and the composition of the asset portfolio. Within this framework a regulatory constraint on leverage is
imposed. At maturity the difference between the asset and the liability accounts is the surplus realized by
the firm after it has fulfilled its contractual obligations. In the policies considered here this surplus remains
with the shareholders. Of course this surplus is a random variable, and a utility function is introduced to incor-
porate risk aversion.

2.2. Notation

We let X denote the index set of scenarios l ¼ 1; 2; . . . ;N , U the universe of available asset instruments, and
t ¼ 1; 2; . . . ; T ; discrete points in time from today (t ¼ 0) until maturity T. The data of the problem are as
follows:
rl

it rate of return of asset i during the period t � 1 to t in scenario l

rl
ft risk-free rate during the period t � 1 to t in scenario l

g minimum guaranteed rate of return
a participation rate indicating the percentage of portfolio return paid to policyholders
q regulatory equity to debt ratio
Kl

t probability of abandon of the policy due to lapse or death at period t in scenario l

The variables of the model are defined as follows:
xi percentage of initial capital invested in the i-th asset
yl

At expenses due to lapse or death at time t in scenario l

zl
t shortfall below the guaranteed rate at time t in scenario l

Al
t asset value at time t in scenario l

El
t total equity at time t in scenario l

Ll
t liability value at time t in scenario l

Rl
Pt portfolio rate of return during the period t � 1 to t in scenario l

yþl
t excess return over g at time t in scenario l

y�l
t shortfall return under g at time t in scenario l

2.3. Variable dynamics and constrains

We invest the premium collected (L0) and the equity required by the regulators (E0 ¼ qL0) in the asset port-
folio. Our initial endowment A0 ¼ L0ð1þ qÞ is allocated to assets in proportion xi such that

P
i2Uxi ¼ 1, and

the dynamics of the portfolio return are given by

Rl
Pt ¼

X
i2U

xirl
it; for t ¼ 1; 2; . . . ; T ; and for all l 2 X: ð1Þ

The investment variables are nonnegative so that short sales are not allowed.
We now turn to the modelling of the liability account. Liabilities will grow at a rate which is at least equal

to the guarantee. Excess returns over g are returned to the policyholders according to the participation rate a.
The dynamics of the liability account are given by

Ll
t ¼ ð1� Kl

tÞLl
t�1ð1þ g þmax½aRl

Pt � g; 0�Þ; ð2Þ
for t ¼ 1; 2; . . . ; T , and for all l 2 X.

Whenever the portfolio return is below the guaranteed rate we need to infuse cash into the asset portfolio in
order to meet the final liabilities. The shortfall account is modelled by the dynamics

zl
t ¼ Ll

t�1 max½g � aRl
Pt; 0�; for t ¼ 1; 2; . . . ; T ; for all l 2 X: ð3Þ

At each period the insurance company makes payments due to policyholders abandoning their policies be-
cause of death or lapse. Payments are equal to the value of the liability times the probability of abandonment,
i.e.,
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yl
At ¼ Kl

t L
l
t�1ð1þ g þmax½aRl

Pt � g; 0�Þ; ð4Þ

for t ¼ 1; 2; . . . T , and for all l 2 X.
In the base model shortfalls are funded through equity. We assume that equity is reinvested at the risk-free

rate and is returned to the shareholders at the end of the planning horizon. (This is not all the shareholders get;
they also receive dividends.) The dynamics of the equity are given by

El
t ¼ El

t�1ð1þ rl
ftÞ þ zl

t ; for t ¼ 1; 2; . . . ; T ; and for all l 2 X: ð5Þ

By assuming the risk-free rate as the alternative rate at which the shareholders could invest their money, we
analyze the excess return offered to shareholders by the participating contract modelled here, over the bench-
mark risk-free investment. In principle one could use the firm’s internal rate of return as the alternative rate,
and analyze the excess return offered by the policy modelled here over the firm’s other lines of business. In this
setting, however, the problem would not be to optimize the asset allocation to maximize shareholder value,
since this would already be endogenous in the internal rate of return calculations. Instead we could determine
the most attractive features for the policyholders – g and a – that will make the firm indifferent in offering the
new policy or maintaining its current line of business. This approach deserves further investigation. For the
purpose of optimizing alternative policies for the shareholders, while satisfying the contractual obligations
to the policyholders, the estimation of excess return over the risk-free rate is a reasonable benchmark. In Sec-
tions 3.2 and 3.4 we consider other alternatives for funding the shortfalls through long-term debt or short-term
borrowing.

We now have the components needed to model the asset dynamics, taking into account the cash infusion
that funds shortfalls, zl

t , and the outflows due to actuarial events yl
At, i.e.,

Al
t ¼ Al

t�1ð1þ Rl
PtÞ þ zl

t � yl
At; for t ¼ 1; 2; . . . ; T ; and for all l 2 X: ð6Þ

In order to satisfy the regulatory constraint the ratio between the equity value and liabilities must exceed q.
That is,

V l
ET

Ll
T

P q; for all l 2 X; ð7Þ

where V l
ET is the value of equity at the end of the planning horizon T. If the company sells only a single policy

the value of its equity will be equal to the final asset value – which includes the equity needed to fund shortfall –
minus the final liability due to the policyholders, and we have

V l
ET ¼ Al

T � Ll
T : ð8Þ

Having described the assets and liability accounts in a way that the key features of the policy – guaranteed rate
and bonus provisions – are accounted for, we turn to the choice of an appropriate objective function. We mod-
el the goal of a for-profit institution to maximize the return on its equity, and, more precisely in this case, to
maximize any excess return on equity after all liabilities are paid for.

In details, at the end of the planning period the value of the assets worth Al
T , under each scenario. With this

amount the insurance company must liquidate its liability towards the policyholders (Ll
T ), and refund the

shareholders of the capital (El
T ) infused to cover shortfalls under the minimum guarantee. Note that El

T is eval-
uated at the risk-free rate (see Eq. (5)). The reward of the shareholders, under each scenario, is thus given by,

W l
T ¼ Al

T � Ll
T � El

T : ð9Þ

The ROEl must be calculated not only on the upfront investment (E0 ¼ qL0), but on the whole equity infused,
so we have that,

ROEl ¼ W l
T

El
T

¼ Al
T � Ll

T � El
T

El
T

: ð10Þ
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In terms of excess ROE (exROEl), we can write

exROEl ¼ Al
T � Ll

T

El
T

� 1: ð11Þ

The objective of the shareholders is to maximize the excess ROE, or in economic terms, the excess returns
for each unit of equity infused during the whole life of the insurance.1 Since return on equity is scenario depen-
dent we maximize the expected value of the utility of excess return. This expected value is converted into a
certainty equivalent for easy reference. The objective function of the model is to compute the maximal cer-
tainty equivalent excess return on equity (CEexROE) given by

CEexROE¼: U�1 Maximize
x

1

N

X
l2X

U
Al

T � Ll
T

El
T

� �( )
; ð12Þ

where Uf�g denotes the decision maker’s utility function and Al
T � Ll

T is the shareholder’s reward in scenario l.
We assume a power utility function with constant relative risk aversion of the form UðV Þ ¼ 1

cV
c, where V P 0,

and c < 1. In the base model we assume c ¼ 0 in which case the utility function is the logarithm corresponding
to growth-optimal policies for the firm. In Section 3.5 we study the effect of changing the risk aversion
parameter.

As a byproduct of our model we calculate the cost of funding the guaranteed product. Every time the port-
folio return drops below the guaranteed rate, we counterbalance the erosion of our assets by infusing cash.
This cost can be charged either to the policyholders, as soon as they enter the insurance contract, or covered
through shareholder’s equity or by issuing debt. These choices entail a tradeoff between the return to share-
holders and return to policyholders. We study in the next section this tradeoff.

The cost of the guarantee is the expected present value of reserves required to fund shortfalls due to port-
folio performances below the guarantee. The dynamic variable El

t models precisely the total funds required up
to time t, valued at the risk-free rate. However, El

t also embeds the initial amount of equity required by the
regulators. This is not a cost and it must be deducted from El

t . Thus, the cost of the guarantee is given as
the expected present value of the final equity El

T adjusted by the regulatory equity, that is,

OG ¼
1

N

XN

l¼1

El
TQT

t¼1ð1þ rl
ftÞ
� qL0

 !
: ð13Þ

OG is the expected present value of the reserves required to fund this product. This can be interpreted as the
cost to be paid by shareholders in order to benefit from the upside potential of the surplus. A more precise
interpretation of OG is as the expected downside risk of the policy. This is not the risk-neutral price of the par-
ticipating policies with guarantees that would be obtained under an assumption of complete markets for trad-
ing the liabilities arising from such contracts. This is the question addressed through an options pricing
approach in the literature cited above, Brennan–Schwartz, Boyle–Schwartz, Bacinello, Grosen–Jørgensen,
Hansen–Miltersen, Miltersen–Persson.

2.4. Linearly constrained optimization model

The model defined in the previous section is a nonlinearly constrained optimization model. The max and
min operators further increase its complexity turning the problem to a discontinuous nonlinear programming
model (DNLP), which is computationally intractable for large-scale applications.

The only reliable way to solve a DNLP model is to reformulate it as an equivalent smooth NLP model.
Moreover, due to the high dimensionality of the problem, it is advisable to move the nonlinear constraints
to the objective function, leaving only linear equations in the constraints.

1 It can be argued that the shareholders could not sustain very high levels of equity. Note that, since the equity is at the denominator, the
optimization process will select solutions (investment portfolios) such that high levels of the equity are strongly penalized. In those cases
where the optimal solution implies values of the final equity too high to be endorsed by the shareholders, it is possible to add appropriate
constraints to limit this variable. This issue is also analysed in Section 3.3 where we study, through post-optimality analysis, how the equity
level can affect the performance of the asset decisions.
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To this purpose, we can rewrite Eqs. (2) and (3) as follows:

Ll
t ¼ ð1� Kl

tÞLl
t�1ð1þ g þ yþl

t Þ; ð14Þ
zl

t ¼ Ll
t�1y�l

t ; ð15Þ

where,

yþl
t ¼ max½aRl

Pt � g; 0�; ð16Þ
y�l

t ¼ max½g � aRl
Pt; 0�: ð17Þ

The reader will recognise that Eqs. (16) and (17), taken together, define the following absolute value,

jaRl
Pt � gj: ð18Þ

The absolute value can be reformulated by introducing a positive and negative deviations as extra variables, so
we have that,

aRl
Pt � g ¼ yþl

t � y�l
t ð19Þ

yþl
t ; y

�l
t P 0: ð20Þ

The discontinuity has been converted into lower bounds on the new variables, but bounds are handled rou-
tinely by any NLP solver. Note, however, that the definition of absolute value requires that yþl

t y�l
t ¼ 0. Unfor-

tunately, we cannot add such constraints since the marginal change methods used by most NLP solvers is not
able to move from one half space to the other, and the solution gets stuck at the half space first reached.

Provided the objective function has some terms that tries to minimize the new variables introduced, either
yþl

t or y�l
t will become zero and the absolute value will end with its proper value (see Appendix A.1 for a dis-

cussion about this point).
The nonlinear constraints (2)–(6) are definitional constraints which determine the value of the respective

variables at the end of the horizon. We solve these dynamic equations analytically (Appendix A) to obtain
end-of-horizon analytic expressions for Al

T , Ll
T , and El

T . These expressions are substituted in the objective func-
tion to obtain the equivalent linearly constrained nonlinear program below. The regulatory constraint (7),
however, cannot be linearized. For solution purposes the regulatory constraint is relaxed and its validity is
tested ex post. Empirical results later on demonstrate that the regulatory constraint is not binding for the pol-
icies considered here and the generated scenarios of asset returns. However, there is no assurance that this will
always be the case, and we may need to resort to nonlinearly constrained optimization for solving this model.

Putting altogether, the smooth, linearly constrained, NLP model is given by,

Maximize
xP0

1

N

X
l2X

U ð1þ qÞ
YT

t¼1

ð1þ Rl
PtÞ þ

XT

t¼1

ðy�l
t � Kl

tð1þ g þ yþl
t ÞÞ

YT

s¼tþ1

ð1þ Rl
PsÞ

"( Yt�1

s¼1

ð1� Kl
sÞð1þ g þ yþl

s Þ

�
YT

t¼1

ð1� Kl
tÞð1þ g þ yþl

s Þ
#
= q

YT

t¼1

ð1þ rl
ftÞ þ

XT

t¼1

y�l
t /ðt; T Þ

Yt�1

s¼1

ð1� Kl
sÞð1þ g þ yþl

s Þ
" #)

ð21Þ

s:t: X
i2U

xi ¼ 1; ð22Þ

aRl
Pt � g ¼ yþl

t � y�l
t for t ¼ 1; 2; . . . T ; and for all l 2 X; ð23Þ

Rl
Pt ¼

X
i2U

xirl
it for t ¼ 1; 2; . . . T ; and for all l 2 X: ð24Þ

The inverse utility function U�1 of the optimal objective value of this problem is the CEexROE.
Standard NLP solvers are based on gradient methods that evolve through a feasible point to another. For

this reason, we determine an initial feasible solution by solving the systems of Eqs. (22)–(24) augmented by the
inequalities Al

T � Ll
T > 0, for all l 2 X. Note that by using a log utility function, we implicitly introduce a bar-

rier which penalizes those solutions such that Al
T � Ll

T ’ 0. It might be possible that for a given sample of sce-
narios no feasible solution exists. In this case the user might allow that under some scenarios Al

T � Ll
T < 0. By
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adding a positive quantity, say �, such that the most violated equation yields Al
T � Ll

T þ � > 0, we are able to
determine a feasible solution from which to start.

2.5. Model extensions

We point out possible extensions of this model. Periodic premia can readily be incorporated, as well as
bonus policies based on averaging portfolio performance. Guaranteed rates and bonus rates that are functions
of time, gt and at, are easy to incorporate. Similarly, we can incorporate liabilities due to lapse, although a
lapse model must first be built and calibrated such as the one given by Asay et al. (1993), Zenios (1993) or
Nielsen and Zenios (1996). Incorporating participation rates that are functions of the asset returns – as is
the case with the UK insurance policies – complicates the model and requires additional work.

The base model developed here funds shortfalls through equity. Extensions to deal with the funding of
shortfalls through long- or short-term debt are given in Sections 3.2 and 3.4, respectively. Furthermore, unlim-
ited access to equity for funding shortfalls is assumed in the base model. We could do away with this assump-
tion by imposing additional constraints, but this would complicate the model rendering it computationally
intractable. The probability of insolvency is analyzed through post-optimality analysis in Section 3.3, and
is used to guide the debt structure in funding shortfalls through a combination of equity and debt.

3. Model testing and validation

We now turn to the empirical testing of the model. First, we show that the model quantifies the tradeoffs
between the different targets of the insurance firm: providing the best products for its policyholders, providing
the highest excess return to its shareholders, satisfying the guarantee at the lowest possible cost and with high
probability. Some interesting insights are obtained on the structure of the optimal portfolios as the tradeoffs
vary across the spectrum. Second, we analyze different debt structures whereby the cost of the guarantee is
funded through equity or through debt with either long or short maturities. Third, we will see from the empir-
ical results that the Italian insurance industry operates at levels which are close to optimal but not quite so.
There is room for improvement either by offering more competitive products or by generating higher excess
returns for the benefit of the shareholders. How are the improvements possible? The answer is found in the
comparison of the optimal portfolios generated by our model with benchmark portfolios. We will see that
the benchmark portfolios generate tradeoffs in the space of cost of guarantee vs net excess return on equity
that are inefficient. The optimized portfolios lead to policies with the same cost but higher excess return on
equity.

The asset classes considered in our study are 23 stock indexes of the Milano Stock Exchange, and three
Salomon Brother indexes of the Italian Government bonds (Appendix B). We employ a simple approach
for generating scenarios using only the available data without any mathematical modelling, by bootstrapping
a set of historical records. Each scenario is a sample of returns of the assets obtained by sampling returns that
were observed in the past. Dates from the available historical records are selected randomly, and for each date
in the sample we read the returns of all assets classes realized during the previous month. These samples are
scenarios of monthly returns. To generate scenarios of returns for a long horizon – say 10 years – we sample
120 monthly returns from different points in time. The compounded return of the sampled series is one sce-
nario of the 10-year return. The process is repeated to generate the desired number of scenarios for the 10-year
period. With this approach the correlations among asset classes are preserved.

Additional scenarios could also be included, although methods for generating them should be specified.
Model-based scenario generation methods for asset returns are popular in the insurance industry – e.g., the
model Wilkie (1995) – and could be readily incorporated into the scenario optimization model. Alternatively,
one could use expert opinion or ‘‘scenario proxies’’ as discussed in Dembo et al. (2000).

For the numerical experiments we bootstrap monthly records from the 10-year period January 1990 to Feb-
ruary 2000. The monthly returns are compounded to yearly returns. For each asset class we generate 500 sce-
narios of returns during a 10 year horizon (T ¼ 120 months). We consider an initial liability L0 ¼ 1 for a
contract with participation rate a ¼ 85% and equity to liability ratio q ¼ 4%. The model is tested for guaran-
tees ranging from 1% to 15%.
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The probability that a policyholder abandons the policy is ProbðdeathÞ þ ProbðlapseÞ. In our experiments we
set lapse probabilities to zero and use probabilities of death from the Italian mortality tables. For each model
run we determine the net annualized after-tax CEexROE

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CEexROE

T
p

� 1Þð1� jÞ; ð25Þ
where j is the tax rate set at 51%.

3.1. Analysis with the base model

The tradeoffs between the guaranteed rate and the net CEexROE is shown in Fig. 2. Fig. 3 shows the opti-
mal asset allocation among the broad classes of bonds and stocks for different target guaranteed returns.
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At first glance the portfolio structures appear puzzling. One expects that as the guarantee increases the
amount of stock holdings should grow. However, we observe that for low guarantees (less than 7%) the hold-
ings in stock increases with lower guarantees. For low g the embedded option is far out of the money even
when our assets are mostly in equity and very volatile. The asset allocation strategy maximizes CEexROE
by taking higher risks in the equities market. A marginal increase of the shortfall cost allows higher CEex-
ROE. This is further clarified in Fig. 4, showing the tradeoff between cost of the guarantee and net annualized
CEexROE. At values of g less than 7% the option embedded in the liability is out-of-the-money and any excess
return is passed on to the shareholders thus improving CEexROE. As the guarantee increases above 7% the
option goes deeper into the money, the cost of the guarantee increases significantly and CEexROE erodes.
Note from Fig. 3 that higher values of the guarantee must be backed by aggressive portfolios with high equity
content, but in this case the portfolio volatility is not translated into high CEexROE but into higher guaran-
teed returns for the policyholders. This is consistent with the conclusion of Siglienti (2000) that excessive
investments in equity destroy shareholder value. However, for the guaranteed rates of 3–4% offered by Italian
insurers it appears that the optimal portfolios consist of 20–25% in equities, as opposed to 15% that was
obtained by Siglienti using simulations.

Finally, we show in Fig. 5 the distribution of the equity to liability ratio (cf. Eq. 7) for a guarantee of 5%.
Similar figures were obtained for guarantees ranging from 1% to 10%. This figure shows that for different val-
ues of the guarantee the minimum ratio of equity to liability is greater than the regulatory requirement. For
the type of policies analyzed here, and for the scenarios sampled from the past 10 bullish years, the regulatory
constraint is satisfied without explicitly including it in the model.

3.2. Financing shortfalls through long term debt

So far we have assumed that the cost of the guarantee is covered by shareholders. It is possible, however,
that such costs are charged to the policyholder or be funded by issuing debt. (Note that for mutual insurance
firms the policyholders are the shareholders so the point of who pays for the cost is mute. However, the issue
of raising debt remains.) In either case there are advantages and disadvantages. In particular, if we let the pol-
icyholder assume the total cost, we run the risk of not being competitive, loose market share, and experience
increased lapse. If we issue debt, we are liable for interest payments at the end of the planning horizon which
could reduce our final return. Furthermore, companies face leverage restrictions. It may not be possible to
cover all the cost of the guarantee by issuing debt because it will increase the leverage of the company beyond
what is allowed by the regulators or accepted by the market.
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Another important point in pursuing this question concerns the maturity of the issued debt. To issue long
term debt we determine the amount of cash that we need to borrow in order to cover, with a certain proba-
bility, future expenditures due to shortfalls over all scenarios. If we indicate by b a confidence level we are
searching for the b-percentile Ob

G such that the cost of the guarantee Ol
G in scenario l satisfies

P ðOl
G P Ob

Gjl 2 XÞ ¼ b: ð26Þ

The cost of the guarantee in scenario l is given by Eq. (13) as

Ol
G ¼

El
TQT

t¼1ð1þ rl
ftÞ
� qL0: ð27Þ

Note that Ob
G need not to be raised through the issue of debt only. It is just the reserves needed to fund short-

falls. Strategic considerations will subdivide Ob
G among policyholder charges, CG, issue of debt or direct bor-

rowing from money markets, DG, and/or equity supplement, ES. Thus, we have

Ob
G ¼ CG þ DG þ ES : ð28Þ

Given the debt structure implied in (28), we determine the final income Il
T , for each scenarios l 2 X, as

Il
T ¼ Al

T � Ll
T � DGð1þ rbÞT þ ðCG � J SÞ

YT

t¼1

ð1þ rl
ftÞ; ð29Þ

where J S are the fixed costs (in percentage of the initial liability) and rb is the borrowing interest rate. Debt
structures for which at least one Il

T < 0 should be discarded as leading the firm into insolvency, even if the
probability of such events is very low.

The net return-on-equity (ROE) corresponding to a given debt structure in each scenario is given by

ROEl ¼ Il
T ð1� jÞ
qL0 þ ES

: ð30Þ

This is not the ex ante excess return on equity optimized with the base mode, but the ex post realized total
return on equity achieved when the structure of debt has also been specified. This measure can be used to ana-
lyze the probability of insolvency when all the cost of the guarantee is funded by shareholders instead of being
charged, at least in part, to policyholders.
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In Appendix B we report results with the analysis described here. Tables are generated to study the tradeoffs
between leverage, policyholder charges, and shareholder returns. Similarly, we can study the effects of different
guaranteed returns to the policyholder charges and shareholder returns.

3.3. Insolvency risks

So far we analyzed alternative decisions based only on the net CEexROE and market constrains (policy-
holder charges, leverage, etc.). Our analysis is missing a measure of risk of the ROE. It is not yet clear
how alternative guarantees and debt allocations according to Eq. (28) affect the risk of ROE in Eq. (30).
One could argue that the risk aversion of the decision maker is embedded in the utility function of the opti-
mization model. This is true, but the utility function was used only to guide decisions on the asset side, and
estimating the net total CEROE from (30) does not incorporate risk aversion when choosing a debt structure.
Furthermore, the utility function ensures the solvency of the fund by covering shortfalls with infusion of
equity. However, under certain conditions no external sources of equity will be available. The analysis we
carry out here compensates for these omissions. It considers the risk of insolvency when structuring the debt
structure, thus incorporating risk aversion in structuring the debt in addition to structuring the asset portfolio.

Define RI as the expected excess return over the risk-free rate for this line of business and rf as the expected
risk-free rate. The rate at which we must discount the final income Il

G is given by Rl ¼ rf þ RI . For our
shareholders Il

G represents the value of the equity at the end of the planning period and they are willing to
stay in this business if the discounted value of this equity is not less than the initial capital invested. The share-
holders will keep their shares if the excess value per share (EVS) is greater than zero with a high probability.
Recalling that the initial amount of equity is qL0 þ ES (ES could be equal to zero) the EVS in each scenario is
given by

EVSl ¼ Il
Gð1� jÞ
ð1þ RlÞT

� ðqL0 þ ESÞ: ð31Þ

The risk related to a specific debt allocation is given by the probability that EVS is less than zero, i.e.,
P�EVS ¼ P ðEVSl < 0jl 2 XÞ. This is the probability of insolvency and can be determined by calculating the
EVSl for each l 2 X, order from the lowest to the highest and look for the rank of the first EVSl that is negative,
i.e.,

P�EVS ¼
rankðEVSl < 0Þ

N
: ð32Þ

The EVS can be used to determine the amount of policyholder charges required to make P�EVS equal to a given
confidence level. Recall that I l

G, and consequently EVSl, is a function of CG, ES, and DG. If we fix EG then IG is
a function of CG (DG is determined from Eq. 28). Through a linesearch we can determine C�G such that

P ½EVSðC�GÞ < 0� ¼ b: ð33Þ

In our experiments we set RI ¼ 6% and the probability of insolvency b ¼ 1%. Fig. 6 shows the results of the
line search which solves Eq. (33) for different values of equity supplement ES. We observe that for guarantees
higher than 6% the CEROE increases. How is it possible that higher guarantees can yield higher returns? The
puzzle is resolved if we note that the increase in returns is accompanied by a significant increase of policy-
holder charges. The increases in the policyholder charges fund the guarantee and preserve equity from falling
below its present value.

Significant increase in charges would be unacceptable to policyholders and would lead to increased lapses.
Our analysis can be used as a demarcation criterion between ‘‘good’’ and ‘‘bad’’ levels of the guarantee. For
instance the Italian insurance industry offers products with g in the range 3–4%. Our analysis shows that they
could consider increasing g up to 6% without significant increase of charges to policyholders or reduction of
CEROE. (One may justify the difference from the operating guarantee of 4% to the peak optimized value of
6% as the cost of running the business. If so this cost is high.) For guarantees above 6% we note a substantial
increase to policyholder charges at a marginal improvement in CEROE, and this is clearly unacceptable to
both policyholders and shareholders.
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3.4. Short term financing of shortfalls

To this point our analysis has determined the cost of the shortfalls Ob
G and funded it through a combination

of debt DG, charges to policyholders CG, and equity ES. Now, let us fix CG and ES, and let DG fluctuate accord-
ing to the shortfall Ol

G realized in each scenario. This is equivalent to funding part of the shortfall through
short term financing. Instead of issuing a bond for a notional equal to DG and maturity T, we will borrow
money when a shortfall occurs. The debt for each scenario is given by

Dl
G ¼ Ol

G � CG � ES : ð34Þ

We assume that it is possible to borrow money at a spread d over the risk-free rate. The definition of the final
income becomes
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Il
T ¼ Al

T � Ll
T � Dl

G

YT

t¼1

ð1þ rl
ft þ dÞ þ ðCG � J SÞ

YT

t¼1

ð1þ rl
ftÞ: ð35Þ

We can apply the analysis of the previous section to determine policyholder charges CG, and estimate the dis-
tribution of Dl

G. We solve Eq. (33) and display in Fig. 7 the C�G for different levels of the guarantee, and for
d ¼ 2%. Note that policyholder charges C�G are substantially lower than those obtained by solving (33) in the
previous section as reported in Fig. 6. This is expected as short-term financing of the cost is a dynamic strat-
egy, as opposed to the fixed strategy of issuing long-term debt. These findings are consistent with the compar-
ison of the two reserving methods in Boyle–Hardy. Since Dl

G is scenario dependent, it compensates for those
scenarios with high shortfalls, while it is low (or null) for those scenarios with low shortfalls.
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Fig. 7. The levels of policyholder charges, and net CEROE for different guarantee such that P ½EVSðC�GÞ < 0� ¼ 1%.

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0 0.2 0.4 0.6 0.8 1 1.2

Cost of Minimum Guarantee

N
et

 C
Ex

R
O

E

g = 8% g = 11%

g = 12% g = 15%

Fig. 8. Tradeoff of CEexROE against cost of the guarantee with varying risk aversion for target guarantees 8% (left), 11%, 12% and 15%
(right).

394 A. Consiglio et al. / European Journal of Operational Research 186 (2008) 380–404



Author's personal copy

3.5. Choice of utility function

The decision maker’s risk aversion specifies unique asset portfolio to back each guaranteed policy. Clearly
increased risk aversion will lead to more conservative portfolios with higher contents of fixed income. The
result will be a simultaneous reduction in both the CEexROE to shareholders and the cost of shortfalls
required to fund the policy. Fig. 8 illustrates the tradeoff as the risk aversion parameter c varies from 0 (base
case) to �2 (increased risk aversion) for five different target guarantees.
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Fig. 9. Performance of benchmark portfolios (diamonds) against the optimized portfolio (square) for g = 4%. Asset allocation for the
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Note that for low target guarantees increased appetite for risk results in higher CEexROE for a marginal
increase in cost of the guarantee. For higher target guarantees (e.g., 15%) we note a substantial increase in the
cost of the guarantee as the embedded option goes deep in the money when we increase the risk tolerance and
invest into volatile assets. These results confirm our expectations on model performance, and allow users to
generate efficient tradeoffs that are consistent with the contractual obligations and the firm’s risk tolerance.

4. Benchmarks of Italian insurance policies

In order to asses the effectiveness of our model we compare the optimal portfolios with industry bench-
marks. We take as benchmark a set of portfolios with a fixed broad asset allocation between bonds and stocks,
and random allocation among specific assets. In order to be consistent with the usual fixed-mix strategies and
follow industry practices we set the broad asset allocation between bonds and stocks to 90/10, 80/20, and 70/
30. The results of this experiment are reported in Fig. 9. Note that the optimized portfolios always dominate
the benchmark portfolios in the cost-of-guarantee vs CEexROE space. This figure justifies the integrative
approach taken in this paper, whereby the insurance policy is analyzed jointly with the asset allocation deci-
sion instead of being analyzed for an a priori fixed asset portfolio.

The results of this section can be extended to incorporate other assets permitted by regulations, such as
mortgages, corporate bonds and international sovereign debt. Italian insurers are allowed to invest up to
10% of the value of their portfolio in international assets. We run the base model for a guarantee of 4%,
and allowing investments in the Morgan Stanley stock indices for USA, UK and Japan and the J.P. Morgan
Government bond indices for the same countries. The internationally diversified portfolio achieves CEexROE
of 0.14 at a cost of the guarantee of 0.02. By contrast, the results of Fig. 4 show that domestic investments in
the Italian markets fund the guarantee at the same cost but yield a CEexROE of only 0.11. Similarly, invest-
ments in the US Corporate bond market improves the CEexROE to 0.16, but this comes at an increase of the
cost to 0.033.

The results of this section are in general agreement with the current practices of Italian insurers. However,
the optimized results suggest that improved policies and associated asset strategies are still possible.

5. Conclusions

We have developed an integrative asset and liability management model for endowments with guarantees.
It has been demonstrated that the integrative model generates asset structures for specific insurance policies
that are efficient as opposed to asset strategies developed in a non-integrated model.

Several interesting conclusions can be drawn from the use of the model on data from the Italian insurance
industry. First, we have quantified the tradeoffs between the different targets of the insurance firm: providing
the best products for its policyholders, providing the highest excess return to its shareholders, satisfying the
guarantee at the lowest possible cost and with high probability. Some interesting insights are obtained on
the structure of the optimal portfolios. In particular, we observe that too little equity in the portfolio and
the insurer cannot meet the guarantee, while too much equity destroys shareholder value.

Second, we have analyzed different debt structures whereby the cost of the guarantee is funded through
equity or through debt with either long or short maturities. The effects of these choices on the cost of the guar-
antee and on the probability of insolvency can be quantified, thus providing guidance to management for the
selection of policies.

Third, we have seen from the empirical analysis that Italian insurers operate at levels which are close to
optimal but not quite so. There is room for improvement either by offering more competitive products or
by generating higher excess returns for the benefit of the shareholders and/or the policyholders.

A significant extension for the long time horizons of the products considered would be to a multi-stage
model where decisions are revised at time instances after t = 0 until maturity. Such dynamic stochastic pro-
grams with recourse have been developed for asset and liability management by the references given in Section
1. However, for the highly nonlinear problem we are addressing here such models are difficult to develop. The
linearization of the single-stage model developed in Appendix A does not apply directly to multistage formu-
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lations. Specialized algorithms for stochastic programming must be employed for the solution of multistage
extensions of this model.

Appendix A. Solving the nonlinear dynamic equations

In this section, we show how to solve the nonlinear equations (2)–(6) in order to obtain the objective func-
tion (12). At time t = 0, the liability is the pure premium L0. At t = 1 (to simplify the notation we drop the
scenario superscript) we have

L1 ¼ L0ð1� K1Þð1þ g þ yþ1 Þ: ð36Þ

At t = 2 we use the value of L1 from (36) to obtain

L2 ¼ L1ð1� K2Þð1þ g þ yþ2 Þ ¼ L0ð1� K2Þð1� K1Þð1þ g þ yþ1 Þð1þ g þ yþ2 Þ: ð37Þ

Applying this process recursively for each t we obtain the final liability as

LT ¼ L0

YT

t¼1

ð1� KtÞð1þ g þ yþt Þ: ð38Þ

For the equity dynamics we have that E0 ¼ qL0. At t ¼ 1

E1 ¼ qL0ð1þ rf 1Þ þ y�1 L0: ð39Þ

At t = 2 and substituting for E1 and L1 from (39) and (36) we obtain

E2 ¼ E1ð1þ rf 2Þ þ y�2 L1 ¼ qL0ð1þ rf 1Þð1þ rf 2Þ þ L0y�1 ð1þ rf 2Þ þ L0y�2 ð1� K1Þð1þ g þ yþ1 Þ: ð40Þ

At t = 3 we have

E3 ¼ E2ð1þ rf 3Þ þ y�3 L2

¼ qL0ð1þ rf 1Þð1þ rf 2Þð1þ rf 3Þ þ L0y�3 ð1þ rf 2Þð1þ rf 3Þ þ L0y�3 ð1þ rf 3Þð1� K1Þð1þ g þ y�1 Þ
þ L0y�3 ð1� K2Þð1� K1Þð1þ g þ yþ1 Þð1þ g þ yþ2 Þ: ð41Þ

Applying this process recursively for each t we obtain after some simple algebra

ET ¼ L0 q
YT

t¼1

ð1þ rftÞ þ
XT

t¼1

y�t /ðt; T Þ
Yt�1

s¼1

ð1� KsÞð1þ g þ yþs Þ
 !" #

; ð42Þ

where /ðt; T Þ ¼
QT

s¼tþ1ð1þ rf sÞ is the cumulative return of the short rate during from t to T.
With the same arguments it is possible to show that

yAt ¼ L0Ktð1þ g þ yþt Þ
Yt�1

s¼1

ð1� KsÞð1þ g þ yþs Þ: ð43Þ

For the asset dynamics we have that A0 ¼ L0ð1þ qÞ. At t = 1,

A1 ¼ A0ð1þ RP1Þ þ y�1 L0 � yA1 ¼ L0ð1þ qÞð1þ RP1Þ þ y�1 L0 � yA1: ð44Þ

At t = 2 substituting L1 from (36) we obtain

A2 ¼ A1ð1þ RP2Þ þ y�2 L1 � yA2

¼ L0ð1þ qÞð1þ RP1Þð1þ RP2Þ þ y�1 L0ð1þ RP2Þ � yA1ð1þ RP2Þ þ y�2 L1 � yA2: ð45Þ

The value of the assets at maturity is given by

AT ¼ L0ð1þ qÞ
YT

t¼1

ð1þ RPtÞL0

XT

t¼1

y�t
YT

s¼tþ1

ð1þ RPsÞ
Yt�1

s¼1

ð1þ g þ yþs Þ
Yt�1

s¼1

ð1� KsÞ �
XT

t¼1

yAt

YT

s¼tþ1

ð1þ RPsÞ:

ð46Þ
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By substituting yAt with the expression in (43) we obtain

AT ¼ L0ð1þ qÞ
YT

t¼1

ð1þ RPtÞ þ L0

XT

t¼1

y�t
YT

s¼tþ1

ð1þ RPsÞ
Yt�1

s¼1

ð1þ g þ yþs Þð1� KsÞ

� L0

XT

t¼1

Ktð1þ g þ yþt Þ
YT

s¼tþ1

ð1þ RPsÞ
Yt�1

s¼1

ð1þ g þ yþs Þð1� KsÞ: ð47Þ

Collecting terms we obtain

AT ¼ L0ð1þ qÞ
YT

t¼1

ð1þ RPtÞ þ L0

XT

t¼1

y�t � Ktð1þ g þ yþt Þ
� � YT

s¼tþ1

ð1þ RPsÞ
Yt�1

s¼1

ð1þ g þ yþs Þð1� KsÞ: ð48Þ

A.1. A heuristic evaluation of the optimal solution

We show in this section that the optimal solution of problem (21)–(24) implies that yþl
t y�l

t ¼ 0, for
t ¼ 1; 2; . . . T , and for all l 2 X.

Let us suppose that there exists an s 2 X and a time step k such that the solution is optimal with respect to
problem (21)–(24), and that yþs

k ; y
�s
k are both positive. Let d ¼ minfyþs

k ; y
�s
k g, and subtract d > 0 from both

yþs
k ; y

�s
k . That leaves constraints (23) unchanged, but it modifies the three components of the objective function,

As
T ; L

s
T ;E

s
T , accordingly,2

Table 1
Asset classes used in testing the model

Code Description

SBGVNIT.1-3 Salomon Brother Italian Government Bond 1–3 years
SBGVNIT.3-7 Salomon Brother Italian Government Bond 3–7 years
SBGVNIT.7-10 Salomon Brother Italian Government Bond 7–10 years
ITMSBNK Milan Mib Historic Banks
ITMSAUT Milan Mib Historic Cars
ITMSCEM Milan Mib Historic Chemicals
ITMSCST Milan Mib Historic Construction
ITMSDST Milan Mib Historic Distribution
ITMSELT Milan Mib Historic Electronics
ITMSFIN Milan Mib Historic Finance
ITMSFPA Milan Mib Historic Finance Holdings
ITMSFMS Milan Mib Historic Finance Misc
ITMSFNS Milan Mib Historic Finance Services
ITMSFOD Milan Mib Historic Food
ITMSIND Milan Mib Historic Industrials
ITMSINM Milan Mib Historic Industrials Misc
ITMSINS Milan Mib Historic Insurance
ITMSPUB Milan Mib Historic Media
ITMSMAM Milan Mib Historic Minerals/Metals
ITMSPAP Milan Mib Historic Paper
ITMSMAC Milan Mib Historic Plants & Machine
ITMSPSU Milan Mib Historic Pub. Util. Serv
ITMSRES Milan Mib Historic Real Estate
ITMSSER Milan Mib Historic Services
ITMSTEX Milan Mib Historic Textile/Clothing
ITMST&T Milan Mib Historic Transportation & Tourism

2 Since the objective function is separable over l 2 X, the change induced by d affects only the terms relative to the scenario s.
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DðAs
T Þ ¼ As

T � dð1�Ks
kÞ Wðk;T Þ

Yk�1

s¼1

ðKs
sÞð1þ gþ yþs

s Þþ
XT

t¼kþ1

ðy�s
t �Ks

t ð1þ gþ yþs
t ÞÞWðt;T Þ

Yt�1

s¼1
s 6¼k

ð1þ gþ yþs
s Þ

2
664

3
775

¼ As
T � dð1�Ks

kÞGA;

where Wðk; T Þ ¼
QT

s¼tþ1ð1þ RPsÞ, and GA is term among square brackets.

DðLs
T Þ ¼ Ls

T � d
YT

s¼1
s 6¼k

ð1þ g þ yþs
s Þ ¼ Ls

T � dGL;

and, finally,
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Fig. 10. Asset allocation for different levels of guarantee.

Table 2
Net CEexROE and cost of the guarantee (OG) for different levels of guarantee (g)

g CEexROE OG

0.01 0.1347 0.0235
0.02 0.1288 0.0266
0.03 0.1215 0.0256
0.04 0.1134 0.0240
0.05 0.1043 0.0208
0.06 0.0944 0.0255
0.07 0.0838 0.0370
0.08 0.0717 0.0819
0.09 0.0605 0.1372
0.1 0.0488 0.1780
0.11 0.0378 0.2407
0.12 0.0284 0.4117
0.13 0.0212 0.5755
0.14 0.0152 0.7635
0.15 0.0098 0.9809
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DðEs
T Þ ¼ Es

T � d /ðk; T Þ
Yk�1

s¼1

ðKs
sÞð1þ g þ yþs

s Þ þ
XT

t¼kþ1

y�s
t /ðt; T Þ

Yt�1

s¼1
s 6¼k

ð1þ g þ yþs
s Þ

2
664

3
775 ¼ Es

T � dGE:

By substituting in the objective function and by rearranging the terms, we obtain that,

DðCEexROEÞ ¼ As
T � Ls

T þ d½GL � ð1� Ks
kÞGA�

Es
T � dGE :

Provided that ½GL � ð1� Ks
kÞGA� > 0 and GE > 0, the objective function can be further maximized by increas-

ing the numerator of d½GL � ð1� Ks
kÞGA�, and by decreasing the denominator by dGE. That contradicts the

assumption that the solution is optimal. Therefore, it must be that yþs
k y�s

k ¼ 0.
Unfortunately, while GE is always greater than zero by construction, the same cannot be stated, in general,

about ½GL � ð1� Ks
kÞGA�.
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Fig. 11. Equity-to-liability ratio at the end of the planning horizon for minimum guarantee 1% and 10%.
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In the post-optimality phase, we analysed the optimal solutions to check that yþl
t y�l

t ¼ 0, for t ¼ 1; 2; . . . ; T ,
and for all l 2 X. For the set of parameters defining the policies modelled here, we found that the above con-
straints are always satisfied.

In case yþl
t y�l

t was different from zero, for some l and t, and the violation was sizeable, specialized algorithm
for DNLP must be implemented to be sure that, under all possible combinations of data and parameters, the
optimization model (21)–(24) delivers a feasible solution.

Appendix B. Asset classes and further empirical results

The asset classes used in testing the model are given in Table 1. They consist of bond indices for short, med-
ium and long-term debt of the Italian government, and stock indices of the major industrial sectors traded in
the Milano stock exchange.

The broad asset allocation shown in Fig. 3 is broken down among the different indices as shown in Fig. 10.
Table 2 displays net CEexROE and OG for the range of guarantees reported in Fig. 4. The difference of cost
between guarantee levels g ¼ 0:01 and g ¼ 0:05 is just 0.2%. Further results on the distribution of equity to
liability, for different levels of guarantee, are shown in Fig. 11. These results are in agreement with Fig. 5 pre-
sented in the main paper.

B.1. Leverage, policyholder charges and shareholder returns

In Table 3 we summarize data that assist the decision maker to take a position according to her strategic
views and constrains. If no entries are displayed these choices cannot be implemented, either because some Il

T

Table 3
Net CEROE for different combinations of leverage and policyholder charges

Leverage
levels

Policyholder charges

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0 0.121125 0.124595 0.128295 0.132256 0.136515 0.141118 0.146123 0.151602 0.15765 0.164391
0.125 0.123946 0.127684 0.131656 0.135891 0.14043 0.145317 0.150612 0.156387 0.16274 0.169795
0.25 0.126654 0.13064 0.13486 0.139346 0.144137 0.14928 0.154834 0.160873 0.167495 0.174827
0.375 0.12926 0.133474 0.137923 0.142638 0.147659 0.153033 0.158821 0.165097 0.17196 0.179538
0.5 0.13177 0.136197 0.140857 0.145783 0.151014 0.156599 0.162599 0.169089 0.176169 0.183968
0.625 0.134193 0.138817 0.143673 0.148794 0.154219 0.159997 0.16619 0.172875 0.180151 0.188151
0.75 0.136533 0.141343 0.146381 0.151682 0.157285 0.163242 0.169612 0.176475 0.183932 0.192114
0.875 0.138798 0.143781 0.148989 0.154458 0.160227 0.166348 0.172882 0.179909 0.18753 0.195879
1 0.140991 0.146137 0.151505 0.15713 0.163053 0.169327 0.176013 0.183191 0.190964 0.199468
1.125 0.143118 0.148417 0.153935 0.159706 0.165774 0.172189 0.179016 0.186335 0.19425 0.202896
1.25 0.145182 0.150626 0.156285 0.162194 0.168396 0.174944 0.181903 0.189353 0.197399 0.206177
1.375 0.147188 0.152769 0.15856 0.164599 0.170928 0.177601 0.184682 0.192255 0.200423
1.5 0.149138 0.154849 0.160766 0.166927 0.173375 0.180165 0.187362 0.19505 0.203333
1.625 0.151037 0.156871 0.162907 0.169183 0.175744 0.182644 0.18995 0.197745
1.75 0.152886 0.158837 0.164986 0.171371 0.178039 0.185044 0.192452 0.200349
1.875 0.154688 0.160751 0.167007 0.173497 0.180265 0.187369 0.194875
2 0.156446 0.162616 0.168974 0.175562 0.182427 0.189624 0.197222
2.125 0.164433 0.17089 0.177572 0.184528 0.191814
2.25 0.166207 0.172757 0.179529 0.186571 0.193942
2.375 0.167938 0.174577 0.181435 0.188561
2.5 0.16963 0.176354 0.183294 0.190499
2.625 0.178089 0.185108
2.75 0.179785 0.186879
2.875 0.181443
3 0.183064
3.125
3.25
3.375

The table is built for a guarantee g = 4% at a confidence level b = 1%.
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are negative (this occurs when charges to policyholders are very low and high debt levels yield a negative final
income), or because the amount of money necessary to cover shortfalls is absorbed by the policyholder
charges, implying negative debt levels.

For example, by choosing a leverage level equal to 0.5, the highest yearly net CEROE is 0.183. Note that, if
the firm wishes to achieve higher performance level, then the leverage should also increase. Also, observe the

Table 5
Relationship between P�EVS – the probability that excess value per share will fall below zero – leverage and policyholder charges

Leverage
levels

Policyholder charges

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0 0.58 0.522 0.462 0.4 0.344 0.278 0.208 0.148 0.096 0.042
0.125 0.534 0.478 0.416 0.366 0.302 0.242 0.172 0.112 0.072 0.02
0.25 0.508 0.444 0.394 0.338 0.274 0.212 0.15 0.1 0.06 0.012
0.375 0.476 0.416 0.368 0.306 0.252 0.188 0.134 0.092 0.042 0.012
0.5 0.444 0.396 0.346 0.284 0.226 0.162 0.118 0.076 0.032 0.006
0.625 0.418 0.374 0.322 0.266 0.212 0.152 0.106 0.068 0.022 0.004
0.75 0.404 0.366 0.304 0.258 0.198 0.144 0.098 0.056 0.016 0.002
0.875 0.4 0.354 0.286 0.234 0.184 0.136 0.092 0.05 0.012 0.002
1 0.378 0.33 0.28 0.224 0.162 0.124 0.088 0.04 0.012 0.002
1.125 0.37 0.318 0.266 0.216 0.156 0.114 0.078 0.036 0.008 0.002
1.25 0.364 0.31 0.264 0.208 0.146 0.108 0.074 0.032 0.008 0.002
1.375 0.356 0.296 0.254 0.2 0.146 0.104 0.07 0.026 0.004 0.002
1.5 0.35 0.286 0.24 0.196 0.142 0.098 0.062 0.026 0.004
1.625 0.332 0.282 0.234 0.188 0.136 0.096 0.06 0.02
1.75 0.322 0.276 0.224 0.178 0.132 0.094 0.054 0.016
1.875 0.316 0.266 0.22 0.162 0.126 0.092 0.052
2 0.314 0.266 0.214 0.156 0.122 0.086 0.05
2.215 0.264 0.214 0.15 0.118 0.084
2.25 0.264 0.208 0.418 0.116 0.08
2.375 0.26 0.202 0.146 0.112
2.5 0.244 0.202 0.146 0.11
2.625 0.198 0.146
2.75 0.196 0.144
2.875 0.196
3 0.19
3.125
3.25
3.375

The table is built for a guarantee g = 4% and confidence level b = 1%.

Table 4
The relation between net CEROE, policyholder charges and guarantee

Policyholder
charges

Minimum guarantee

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

0 0.144564 0.139163 0.135832 0.13177 0.130433 0.120909 0.110348 0.099402
0.01 0.148057 0.142648 0.139726 0.136197 0.136011 0.126397 0.115193 0.102442
0.02 0.151703 0.146281 0.143803 0.140857 0.141965 0.132226 0.120278 0.105562
0.03 0.155517 0.150077 0.148086 0.145783 0.148361 0.138457 0.125641 0.10877
0.04 0.15952 0.154056 0.152599 0.151014 0.155289 0.145166 0.131326 0.112075
0.05 0.163732 0.158239 0.157375 0.156599 0.162863 0.152453 0.13739 0.115487
0.06 0.168182 0.162651 0.162452 0.162599 0.171238 0.16045 0.143903 0.119017
0.07 0.1729 0.167323 0.167876 0.169089 0.180626 0.169337 0.150957 0.122676
0.08 0.177925 0.172291 0.173703 0.176169 0.191338 0.17937 0.15867 0.126479
0.09 0.183304 0.177599 0.180007 0.183968 0.190924 0.167202 0.130443
0.1 0.189093 0.183304 0.18688 0.192664 0.176778 0.134586

The table is built with confidence level b = 1% and liability (debt-to-equity ratio) equal to 0.5.
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inverse relation between leverage and policyholder charges. The greater the amount we charge to the policy-
holder, the lower is the leverage level and the higher the annualized net CEROE.

Our model can generate similar tables to study the many interactions of endowment with guarantee. For
example, we could be interested in investigating the effect of different guarantee levels to the policyholder
charges and yearly returns. We first estimate, at a given confidence level b, the cost of the guarantee Ob

G,
and then apportion this cost to policyholders (CG in Eq. 28) and fund the rest through debt or equity sur-
charge. Depending on CG we observe a change in the CEROE to shareholders.

Table 4 shows this relationship. We observe the same behavior we had seen between OG and net CEexROE.
The model chooses more aggressive strategies for low g because it is then possible to achieve higher levels of
CEexROE at little cost. Recall that we are working with percentiles and the impact of aggressive strategies is
much more evident on the tails. When the guarantee is low at g = 0.01 we need higher policyholder charges to
reach the highest return, while for g = 0.05 lower charges are required.

The results in Table 3 should be examined taking into account the measure of risk P�EVS associated with the
CEROE of every combination of policyholder charges and leverage level. The probabilities corresponding to
Table 3 are shown in Table 5. Observe that the upper-left entry has a P�EVS equal to 0.58. This means that in
58% of the cases the present value of the final equity is less than the amount invested today by the shareholder,
even though, net CEROE is acceptable (12%). This position is risky. The reason why this position is quite
risky is due to the fact that we are asking our shareholders to fund the total b-percentile cost of the guarantee.
No charges are passed on to policyholders.
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