
Abstract. The thyroid hormones (THs) L-thyroxine (T4) and
L-triiodothyronine (T3) have a profound influence on the
development and maturation of the mammalian brain, both
before and after birth. Any impairment in the supply of THs to
the developing nervous system leads to severe and irreversible
changes in both the overall architecture and functions of the
brain and causes, in humans, neurological and motor deficits
known as cretinism. Pronounced neurological symptoms are
also commonly observed in adult patients suffering from both
hyperthyroidism and hypothyroidism, and it has recently
emerged that certain symptoms might result from the reduced
brain uptake, rather than the insufficient production, of THs.
Most of the effects of THs are mediated by two classes of
nuclear receptors (α and ß isoforms), which belong to the
c-erbA superfamily of transcriptional regulators and are
expressed in a tissue-specific and developmentally regulated
manner. Interestingly, the nuclear TH receptors (nTRs) act as
both ligand-independent gene repressors and ligand-dependent
gene activators. On the other hand, negatively-regulated genes,
which can be stimulated in the absence of THs and repressed
by THs, have also been observed. Due to this complex pattern
of regulation, the effects of receptor dysfunction do not
exactly overlap the effects of hormone deficiency or excess.
Moreover, non-genomic mechanisms of TH action have been
described in many tissues, including the brain, some of which
seem to be mediated by integrins and to be calcium-dependent.
Intracellular receptors, distinct from nTRs, are present in the
mitochondria, where a matrix-associated, T3-dependent
transcriptional regulator of approximately 43 kDa has been
described. Finally, complex patterns of pituitary and/or peri-
pheral resistance to thyroid hormones (RTH), characterized by
elevated plasma levels of THs and non-suppressible thyroid-
stimulating hormone (TSH), have been identified. This review
summarizes the major advances in knowledge of the molecular

mechanisms of TH action and their implication for the effects
of THs on the developing, as well as the adult mammalian,
nervous system.
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1. Introduction

Thyroid hormones (THs), which are found in all chordate
animals, are major regulators of normal brain development.
Within a century, the contributions of varied disciplines - from
biochemistry and physiology to molecular genetics and clinical
medicine - definitively linked cretinism and certain neuro-
logical disorders of the adult human to impaired thyroid
function. The first step in this direction was a report published
by the Clinical Society of London in 1888; following its
release, sheep thyroid extracts began to be used to treat
hypothyroidism (1). In 1914, Kendall isolated thyroxine from
thyroid extracts (2) and, in 1954, Gross and Pitt-Rivers
synthesized T3 for the first time (3).

In subsequent decades, it became increasingly clear that
THs act by binding to intracellular receptors, much as steroid
hormones do (1,4-16). Indeed, when glucocorticoid- (17) and
oestrogen- (18) receptors, as well as TH receptors (TRs)
(19,20), were finally cloned in the 1980s, it became evident
that they all belong to the same family of structurally-related
nuclear proteins, capable of recognizing specific DNA response
elements present in the 5'-flanking regions of target gene
promoters. In particular, TRs were identified as the products of
the cellular c-erbAα and ß proto-oncogenes present on human
chromosomes 17 and 3, respectively (19,20). At the same time,
it was demonstrated that some alternative splicing products
of the c-erbAα gene do not have a hormone-binding domain
(21-24). Curiously, one of these forms (c-erbAα2) is highly
enriched in the brain (25,26). Despite the two strains of evi-
dence suggesting, on the one hand, that THs are fundamental
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to brain development and activity, and, on the other, that they
act mainly by binding nuclear receptors, only a few genes are
known to be directly regulated by THs in the nervous system.
Expression of some of these genes is delayed only by hypothy-
roidism, and eventually reaches euthyroid-similar expression
levels (27). Nonetheless, the damage done to the brain is
irreversible, suggesting that the precise timing of the expression
of such genes is more important than their final expression
levels.

2. Thyroid hormone supply to the fetus

In 1949, Weiss and Noback reported that, when pregnant rats
were treated with thiouracil (an inhibitor of the peroxidase
involved in TH synthesis), the appearance of ossification
centers in 16-day-old fetuses was delayed (28). The authors
suggested that THs of maternal origin might be involved in
fetal development prior to the onset of fetal thyroid activity.
The idea that maternal thyroid function is important to the child
was not actually new; at the beginning of the 20th century,
physicians in different parts of the world involved in severe
endemic goiter and cretinism hypothesized that maternal
thyroid status had an effect on fetal development. Since, how-
ever, the mammalian placenta was believed to form a barrier
to THs, the effects of maternal hypothyroidism on fetal dev-
elopment were attributed by other researchers to a general
inability of the hypothyroid mother to maintain sufficient
placental function, and hence a good nutrient supply, to the
fetus (discussed in ref. 29). In biochemical terms, this barrier
results from the known activity of the selenocysteine iodo-
thyronine monodeiodinase enzymes (30), particularly of type 3
iodothyronine deiodinase (D3 enzyme) which, through de-
iodination of the inner-ring 5 position, inactivate both T4 and
T3 by transforming them into 3,3',5'-triiodothyronine (reverse
T3; rT3) and 3,3'-diiodothyronine (rT2), respectively (31). The
D3 gene is highly expressed in the human utero-placental unit
and might limit TH transfer from the mother to the fetus (32).

Then, in the 1970s and 1980s, the transplacental transfer
of both L-T4 and L-T3 was demonstrated by many groups,
suggesting that T4 and T3 found in early embryotrophoblasts,
embryos and placentas were indeed produced by the mother
(29,33-40). In addition, it was demonstrated that early maternal
thyroxinemia altered the histogenesis and cytoarchitecture of
the brain cortex (38). In more recent years, it has been defini-
tively accepted that fetal tissues are exposed to biologically-
relevant free THs during the first trimester of pregnancy (i.e.,
before the onset of fetal thyroid function) (41,42). At the
same time, the key role of the deiodinases, in particular D2
and D3, has been confirmed. These enzymes are integral
membrane proteins of the endoplasmic reticulum and the
plasma membrane, with active sites exposed to the cytoplasm
(30). D2 is less concentrated than D3 and is predominantly
found in the villous cytotrophoblast layer, suggesting this
enzyme isotype plays a role in the supply of active hormone
to the fetoplacental unit (41). On the other hand, D3 is
expressed in the villous syncytiotrophoblast layer, in contact
with the maternal blood (41). It is likely that D3 plays a role
in protecting the fetus from an excess of TH transfer from the
mother (‘barrier’ effect) (31,32,41,43-45). In addition, this
enzyme isotype might be involved in the release of iodine

into fetal circulation for late TH production (41). The concen-
tration of both proteins decreases during gestation. 

A complementary approach to understanding the impor-
tance of hormone transfer from the mother to the fetus has
been the study of the proteins directly involved in the transfer
itself. THs, given their lipophilic character, were assumed for a
long time to cross the plasma membrane by passive diffusion
though the lipid bilayer. However, the large body of evidence
that has accumulated over time shows without a doubt that
specific transporters are involved in both the uptake and the
export of these hormones through cell membranes (see section
4, ‘Thyroid hormone synthesis, transport and uptake into the
brain’). Although, to date, few reports have been published
concerning the specific transporter responsible for TH transport
across the human placenta, there is evidence to support the
involvement of different classes of membrane proteins, such as
the organic anion-transporting polypeptides (OATPs), the
L-type amino acid transporter (LAT1) and the monocar-
boxylate transporter family (MCT8) (discussed in ref. 41).

3. General mechanisms of thyroid hormone action

The molecular mechanisms by which THs regulate cell func-
tions have been investigated using two complementary
approaches: i) by directly probing the hormone-binding activity
of tissue extracts, and ii) by analyzing the effects of hormone
withdrawal or addition, both in vivo and in vitro. One initial
general conclusion (discussed in ref. 46) from both lines of
study was that THs, like steroids, exert their effects after a time
lag, during which RNA and protein synthesis is very often
required. However, certain cellular activities were found to
be immediately stimulated by THs. At the same time, it was
found that hormone-binding sites were present in different
subcellular compartments.

Nuclear TH receptors and TH effects on genome structural
organization: corepressors, coactivators and chromatin re-
modelling. Since the 1980s, most of the available evidence has
demonstrated that THs act predominantly through interaction
with nuclear TH receptors (nTRs) of high affinity and limited
capacity, which exhibit a higher affinity for T3 than for T4
(47-50). In 1986, the genes encoding these receptors were
independently cloned in two laboratories (19,20), and were
found to correspond to the cellular homologues of the viral
oncogene v-erbA. In the following years, they were demon-
strated to belong to a larger superfamily of nuclear receptors
(NRs) that included the receptors for retinoic acid, vitamin D,
steroid hormones, peroxisomal proliferator receptors (PPARs),
as well as ‘orphan’ receptors (i.e., receptors for which a ligand
has not yet been found). All these proteins share a general
domain organization: six regions (A-F), two of which (C and E)
are highly conserved and correspond, respectively, to a central
DNA-binding domain that contains two zinc-fingers, and to a
carboxy-terminal ligand-binding domain (51) that also contains
multiple contact surfaces involved in receptor dimerization and
interaction with other regulatory proteins (1,52-55).

Two different genes, THRA and THRB, encode α and ß
isoforms, respectively, and give rise, by alternate splicing, to
a variety of proteins. Four of these (α1, ß1, ß2 and ß3) are
functional receptors, while others (for example α2) do not

DI LIEGRO:  THYROID HORMONES AND THE BRAIN280

De Liegro 14/1  7/4/08  15:08  Page 280



bind THs. Fig. 1 provides a general summary of the domain
structure of the main nTRß and α.

The effects of NRs are primarily due to interaction with
specific DNA sequences known as TH response elements
(TREs) that are present in the regulatory regions of a variety
of target genes (1,54-59) and consist of two half sites each
formed by at least the AGGTCA consensus motif (56-59).
Most TREs are direct repeats of this consensus sequence,
generally separated by 4 nucleotides, but other types of combi-
nations (i.e., head-to-head and inverted tail-to-tail repeats),
spaced by different numbers of nucleotides, are also possible
(60). The hexamer motifs present in the naturally-occurring
TREs show a relatively low sequence conservation, suggesting
that divergence of the repeats might be a way to modulate the
degree of TH responsiveness of different target genes (57).

Unlike steroid receptors, which form homodimers, nTRs
preferentially form heterodimers with the retinoid X receptor
(RXR), another member of the NR family. RXR proteins,
which bind the 5' half repeat, enhance nTR binding to the 3'
repeat on DNA by reducing its dissociation rate (59,60).
However, nTRs have also been known to bind to structurally
different response elements as monomers and homodimers
(61-63). The ability of nTR dimers to bind TREs in such
different combinations suggests a flexible protein structure;
indeed, it has recently been proposed that the nTR D-domain
has the potential to form functionally-important extensions,
or even to unfold to permit nTR adaptation to different DNA
response elements (64). Moreover, certain nTR isoforms, such
as TRß, have been reported to bind as trimers to a subset of
naturally-occurring DNA elements (65). This mode of TRE
binding also results in an enhanced recruitment of coactivators
in vitro and in increased transcriptional activation (65).

Most of the known TREs are ‘positive’ regulators at which
transcription is repressed by T3-free nTRs and activated by T3-
bound nTRs. A few TREs are ‘negative’ regulators, at which
transcription is stimulated by hormone-free TRs and repressed
by hormone-bound TRs (52-54,57,58).

The interaction between nTRs and other NRs has been
demonstrated by different experimental approaches. For
example, nTRs interact with PPARs by sharing both binding
sites and heterodimeric partners, such as RXR (66).

The ability of THs to induce chromatin structural modifi-
cations has been known for some time, since it was discovered
that transcriptionally-active genes have sites of increased
sensitivity to DNase I. These are called hypersensitive sites
(67,68) and can be induced, by TH treatment, in some TH-
responsive genes, such as the growth hormone gene in pituitary
cells (69) and the gene encoding the malic enzyme in rat liver
(70).

More recently, the negative and positive transcriptional
effects of TRs were demonstrated to depend on their interaction
with co-repressors and coactivators, respectively (1,51-55,57,
58,71-77). The identified coactivators for nTR action include:
i) at least two proteins belonging to the p160 family, the steroid
receptor coactivator 1 (SRC-1), also called nuclear coactiva-
tor 1 (NCoA-1) and the transcriptional intermediary factor 2
(TIF2/GRIP-1/NCoA-2), ii) the cAMP-response element-
binding protein (CREB)-binding protein, also known as p300,
and the related p300/CBP-associated factor (p/CAF), and iii)
the so-called vitamin D receptor interacting protein/TR-asso-
ciated proteins (DRIP/TRAPs). Most coactivators can bind
different NRs and also a variety of other transcription factors
(53) such as CREB, the signal transducer and activator of tran-
scription (STAT) proteins, and the nuclear factor κB (NF-κB).
Indeed, combinatorial regulation of transcription involves not
only the binding of transcription factors to DNA, but also
protein-protein interactions among factors with different,
sometimes opposite, effects. This phenomenon is indicated as
transcriptional cross-talk. For example, a mutual transcription
antagonism has been found to exist between TRs and CREB;
TR inhibits the cyclic AMP (cAMP)-dependent transcriptional
activity of CREB without directly competing with it to bind to
cAMP-responsive elements. However, by binding to CREB,
T3-bound TR inhibits PKA-dependent phosphorylation and
the activation of CREB (78). Notably, in neuroblastoma cells,
T3-bound TRs are also able to antagonize the transcriptional
response mediated by oncogenic Ras (79) and to induce the
down-regulation of the c-myc gene and of cyclin D1 levels,
as well as inducing a sustained increase in the cyclin kinase
inhibitor p27 (kip1) (80).

Many coactivators possess histone acetyltransferase (HAT)
activity which, in the case of p/CAF, is primarily directed
at H3 and H4 histones (81-83). As the hyperacetylation of
histones correlates with chromatin remodelling and gene acti-
vation, these coactivators can have direct effects on chromatin
structural organization, which presumably facilitates the access
of transcription factors to gene promoters. However, in some
cases chromatin remodelling has been shown to be necessary
but not sufficient for transcription stimulation, and occasionally
chromatin disruption is not required at all. Thus, as HATs can
also acetylate other non-histone proteins, such as p53 or the
basal transcription factors TFIIE and TFIIF, gene activation
by nTRs might involve different steps and mechanisms for
different genes (53). In contrast with general coactivators,
which are able to bind many NRs and transcriptional factors,
the NR-interacting factor 3 (NRIF3) seems to bind specifically
to TR/RXR (84).

When bound to ‘positive’ TREs in the hormone-free form,
nTRs are part of protein complexes that include corepressors,
such as the nuclear corepressor (NCoR) and the silencing
mediator for RXR and TR (SMRT). Besides NCoR and SMR,
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Figure 1. Schematic summary of the domain structure of nTR proteins.
Percentages of homology in the DNA- (DBD) and the hormone- (HBD)
binding domains, in comparison with the nTRß1 isoform, are shown. The
numbers under the bars refer to amino acid positions (51,139).
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the corepressor complex can also include mSin3A and his-
tone deacetylases which, in turn, associate with methyl-CpG-
binding proteins, thus mediating methylation-dependent gene
silencing (85-87). Repression of NR activity by SMRT and
NCoR is crucial for development. For example, targeted elimi-
nation of mouse NCoR is lethal to the embryo, which develops
defects of the central nervous system (CNS) and blood tissue
(87), as well as impaired self-renewal of neural stem cells (88).
Moreover, it has been reported that Xenopus embryos lacking
specific SMRT isoforms develop abnormal heads (89).

Certain genes, such as those encoding TRH, TSHα- and
TSHß-subunit and prolactin, contain ‘negative’ TREs by
which transcription is repressed by hormone-bound nTRs and
activated by hormone-free nTRs. It has been found that nTRs
bind weakly to the putative negative TREs, and it is not yet
clear whether regulation depends on direct nTR binding or on
protein-protein interaction with other factors (83). For example,
nTRs can inhibit binding to the promoter of transcription
factors like AP-1. They can also interact with a recently dis-
covered class of ligand-dependent corepressors (LCoRs) that
were found to be able to bind a wide variety of NRs (90). In
general, however, the precise changes in chromatin organ-
ization that occur during negative regulation by THs are not
yet well characterized.

As mentioned, there are two distinct genes (TRα and TRß)
for nTRs from which a variety of isoforms are generated in
many species, such as amphibians, chickens, rats, mice and
humans (1). Alternative splicing of the primary transcript of the
TRα gene generates nTRα-1 and c-erbAα2. In the rat, the two
proteins are identical through the first 370 amino acids, but
completely diverge thereafter (21-24,26). A third form (TRVII
or α3) is identical to α2 but lacks the first 39 amino acids of the
α2-specific region (24). The α2 isoform does not bind THs
because it lacks amino acids critical to binding (21-24). In
addition, it shows changes in dimerization ability and reduced
DNA affinity (91-94). Given these properties and its ability
to inhibit nTRα/TRß in transiently transfected cells, c-erbAα2
protein has been suggested to be a physiological modulator/
inhibitor of nTH function (22).

Interestingly, the nTRα gene encodes yet another protein,
known as Rev-erbA, on the opposite strand with respect to
the one encoding the main α proteins (22,95). Rev-erbA also
belongs to the family of NRs and possesses a ligand-binding
domain. The actual ligand of this protein is not known, and it
is classified as an ‘orphan’ receptor (96). As Rev-erbA mRNA
is partially complementary to mRNAs encoding the main
α proteins, it is possible that it modulates the transcription
and/or maturation of these transcripts.

The TRß gene encodes two main TRß isoforms, ß1 and
ß2, which are derived from alternative promoters. The two
proteins diverge at the N-terminus but are identical for most
of their amino acid sequence and for their DNA-binding
properties (1,83).

Both nTRα1 and nTRß1 are expressed in almost all tissues.
There are, however, a few significant differences in their
abundances. nTRα1 has the highest expression in skeletal and
cardiac muscles, as well as in brown fat, while nTRß1 is more
concentrated in the liver, kidney and brain. nTRα2 expression
is highest in the brain and testis, and nTRß2 expression is
restricted to the anterior pituitary, hypothalamus and cochlea

(1,83). Differences have also been found in the timing of ex-
pression during development. In spite of these differences, it is
not yet known whether different nTR isoforms have different
effects on transcription..

TH-binding sites at the plasma membrane and TH non-
genomic effects. Besides TH action mediated by nTRs and
involving direct regulation of target gene transcription, a
number of rapid TH effects, which cannot be mediated by gen-
omic action and take place outside the nucleus, are becoming
increasingly evident (97-106). These non-genomic responses
are often mediated by secondary messengers, such as diacyl
glycerol, inositol trisphosphate (IP3), Ca++ ions and cAMP.

By the 1960s and 1970s, the existence of TH-binding
sites at the plasma membrane had already been reported
(discussed in ref. 46), and some of these sites were proposed
to be involved in triggering early hormonal effects, such as
increased uptake of amino acids, nucleosides and glucose into
target cells (107-112). However, over the following decades,
after the identification and cloning of the genes encoding
nTRs, most work focused on the nuclear pathway of TH
action. More recently, the extranuclear mode of action has
been widely acknowledged on the basis of a variety of lines of
evidence, including the rapid onset of responses (from seconds
to minutes), occurrence even after transcriptional blockage,
and the involvement of plasma membrane signalling pathways.
Although the specific targets and molecular mechanisms of
non-genomic action remain unclear, its existence is evident.
In L-6 myoblasts and chick embryo hepatocytes, for example,
THs have been shown to stimulate, by a non-genomic mech-
anism, the activity of the Na+/H+ exchanger type 1 (NHE-1)
(102). NHE-1 is a key phosphoglycoprotein that, besides
having a housekeeping role in the maintenance of intracellular
pH and cell volume, is involved in regulatory events triggered
by different growth-stimulating signals (102). The use of vari-
ous inhibitors, able to block specific steps of the intracellular
signal transduction pathway, has facilitated the demonstration
of the involvement of PKC and the MAPK pathway in the
activation of NHE-1 by THs (113). Through the formation of
IP3, THs also mobilize intracellular calcium ions (102). In a rat
pituitary cell line, THs stimulated phosphatidylinositol 3-kinase
(PI3K) and Rac activity, which in turn stimulated voltage-
activated potassium channels (83,114). Notably, in this latter
case, T3 was found to reduce the interaction between the
regulatory subunit p85α of PI3K and nTRß at the plasma
membrane (83). In other cases, the activation of PI3K and its
downstream signalling cascade was triggered by liganded TRß
in the cytosol (105).

The search for the identity of the proteins involved in TH
binding at the plasma membrane allowed for the identification
of integrin αVß3 as a binding site (100,101). It was shown
that T4 induces integrin binding to laminin. This interaction
activates MAPK and induces actin cytoskeleton remodelling.
Since physiological concentrations of T3/T4 can activate
MAPK and induce remodelling of actin filaments as well, a
link between integrins and THs was hypothesized. In parti-
cular, it was suggested that integrin itself is the binding site for
T4. Interestingly, T4 covalently linked to agarose is not able
to enter the cell, but can still promote MAPK activation (101).
A second important finding was made concerning nTRß1.
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Following T4/T3 treatment: i) nTRß1 is rapidly transferred
from the cytoplasm to the nucleus in association with MAPK,
ii) it is phosphorylated at Ser-142 by MAPK, iii) nTRß1
phosphorylation induces the release of corepressors and the
recruitment of coactivators, such as p300, a HAT that also
acetylates nTR itself, and finally iv) all of these events can be
induced by a physiological concentration of agarose-bound T4
(101). It is also worth mentioning that nTRß1-bound MAPK
can phosphorylate other nuclear proteins, such as the oestrogen
receptor ER (115) and p53 (116). One general effect of these
membrane-dependent TH actions is the stimulation of the
intracellular movement of proteins, which might be related to
cytoskeleton remodelling.

Recently, it has been shown that the membrane pathway is
also involved in the proliferation-stimulating and anti-apoptotic
effects of T4 on papillary and follicular thyroid cancer cell
proliferation in vitro (117).

TH-binding proteins have also been found in the cytoplasm.
Among these proteins, the reduced nicotinamide adenine
dinucleotide phosphate (NADP)-dependent cytosolic T3-bind-
ing protein, also known as μ-crystallin (CRYM), seems to play
a physiologically fundamental role (118). It might be involved
in the regulation of TH concentration in the extra-nuclear space
and, consequently, of the nuclear action of the hormone. From
a clinical point of view, CRYM mutations have been found
to affect the development of the inner ear (118).

Mitochondrial TH-binding proteins. Mitochondria contain a
small genome, the coding capacity of which accounts, in
mammals, for 13 proteins that are part of the vital respiratory
complexes (reviewed in ref. 119). All the other subunits of the
respiratory complexes, as well as the large variety of proteins
required for mitochondrial function, are encoded in the nuclear
genome, synthesized in the cytoplasm and imported into the
organelle by an energy-dependent process. Coordination of
the expression of the two genomes relies at least in part on
the nuclear respiratory factor-1 (NRF-1), which stimulates
the production of the nuclear-encoded transcription factors
required for intra-mitochondrial transcription, while enhancing
the synthesis of nuclear-encoded respiratory complex subunits
(119).

In liver cells, truncated versions of nTRs, TRα1 and RXR
have been found to bind mtDNA (120,121). One of the TRα
truncated forms (p43) binds to mitochondrial response elements
and activates TH-dependent transcription. A smaller isoform
(p28) lacks the DNA-binding domain. This protein is imported
into the mitochondrial inner membrane in a T3-dependent
manner and seems to be involved in the stimulation of oxidative
phosphorylation (83). The p43 protein has also been found in
the heart (122), where THs rapidly promote both nuclear and
mitochondrial transcription, suggesting that the effects of
THs on the mitochondria are, at least in part, not mediated by
the nucleus. More recently, the presence of other isoforms of
TRα1 and TRα2 in whole mitochondria, mitoplasts and other
mitochondrial subfractions has been described (123). As the
mitochondrial genome contains nucleotide sequences with
high similarity to known hormone-responsive elements, it is
likely that the TR isoforms identified in the organelle play an
important role in the regulation of mtDNA transcription in
response to hormones (124).

4. Thyroid hormone synthesis, transport and uptake into
the brain

L-thyroxine (T4) and L-triiodothyronine (T3) are both synthe-
sized in the thyroid gland through enzymatic reactions, starting
with the iodination of L-tyrosine residues present in thyro-
globulin. Thyroglobulin is stored in the gland follicles and,
from time to time, is endocyted as colloid droplets and hydro-
lysed in the lysosomes. Diiodinated and monoiodinated
tyrosines are then converted back to tyrosine by deiodination
while T4 and T3 are released into circulation, where they bind
to carriers for transport to the targets (46). Thyroid-stimulating
hormone (TSH) is the principal regulator of TH synthesis and
secretion, and also modulates both the proliferation and differ-
entiation of thyroid cells (125).

There are two main carriers for THs in the blood: i) the
monomeric thyroxine-binding globulin (TBG), which has the
highest affinity for THs and especially for T4 (10-fold higher
than it has for T3), and ii) the tetrameric thyroxine-binding
prealbumin (TDPA). In addition, albumin can bind T4 in
the serum, if only weakly, thus playing an important role in
controlling the actual physiological concentration of free THs,
the fraction available for interaction with receptors present in
the target cells (46,126).

To bind their intracellular receptors, T4 and T3 must enter
their target cells. As THs are small hydrophobic molecules,
they have been thought to cross the plasma membrane by
passive diffusion. However, they also have a polar amino acid
side chain that limits their passage and causes their partitioning
to the outer half of the lipid bilayer (126). It is now widely
accepted that most of their transport across the plasma mem-
brane is mediated by saturable carriers belonging to different
families of proteins, which are involved in the transport of a
variety of compounds.

The solute carrier proteins are one of the biggest transporter
superfamilies. Among them, the organic anion-transporting
polypeptides (OATPs) form a family that includes, in humans,
11 members expressed in different tissues including the kidney,
liver, intestine, placenta and brain (reviewed in ref. 127). These
proteins mediate the Na+-independent transport of many dif-
ferent amphipathic organic compounds: steroid hormones
and their catabolic derivatives, bile acids, prostaglandins, and
a variety of drugs and xenobiotics. Most OATPs have been
shown to be able to bind THs. However, their physiological
importance for TH uptake from blood into cells and/or for their
efflux into the blood is not yet clear. The class IC of OATPs,
which comprehends high-affinity T4 transporters, seems to be
important for TH metabolism (127). Other members probably
involved in TH transport are 1A2, 1B1, 1B3, 3A1, 4A1 and
4C1 (127).

THs, as well as rT3 - a naturally-occurring iodothyronine,
the concentration of which increases in catabolic states - are
able to bidirectionally cross the blood-brain barrier (BBB).
Interestingly, rT3 is a competitive inhibitor of TH uptake
by several transporter types. This finding could provide a
mechanism by which rT3 might negatively regulate TH
actions (126).

Two proteins of the OATP family could be of particular
relevance to the brain uptake of THs: i) OATP1A2, a glyco-
protein of 670 amino acids that is expressed in brain capillary

MOLECULAR MEDICINE REPORTS  1:  279-295,  2008 283

De Liegro 14/1  7/4/08  15:08  Page 283



endothelial cells (BCECs) which are responsible for BBB
formation (127-129), and ii) OATP1C1, a protein of 712 amino
acids expressed in different brain regions and also in BCECs,
where it may play a role in the entrance of THs into the brain
(130,131).

As the structure of iodothyronines is based on that of
thyrosine, amino acid transporters have also been analyzed for
TH transport ability. System LI (leucine preferring) permease
is an ion-independent carrier for large neutral amino acids, able
to transport branched-chain and aromatic amino acids (126).
In the early 1970s, it was observed that THs had an effect on
amino acid transport in Xenopus laevis embryos (132). Two
decades later, it was found that two different L-type amino
acid transporter systems (L1 and L2) are present in astrocytes,
and that tryptophan transport by L1, but not by L2, is competi-
tively inhibited by T3 in cultured astrocytes (133). System L
transporters are formed by two subunits: a hydrophobic light
chain (the permease) and a regulatory glycoprotein heavy
chain. Several different permeases have been cloned; however,
only two of them (LAT1 and LAT2) show transport charac-
teristics of System L (126).

Besides System L, a second amino acid transporter has
been identified which might be engaged in TH transport. This
is System T (tryptophan preferring), an ion-independent trans-
porter for aromatic amino acids (126). Although the role of this
system is still under investigation, it seems that both System
L and System T bind T4 and T3, with a preference for T3.

Since LAT1 is the major neutral amino acid transporter
expressed at the BBB, System L, in addition to the above-
mentioned OATP family of carriers, could play a role in TH
uptake to the brain. In light of this, a further comment con-
cerning phenylketonuria (PKU) should be made. It has been
proposed that an imbalance in the uptake of amino acids to the
brain, due to the excess of phenylalanine, contributes to mental
retardation in PKU. If, however, amino acid transporters at the
BBB are also used to drive THs into the brain, an imbalance
in TH delivery should also be considered (126).

Among the membrane transporter systems putatively
involved in TH delivery to the cells is a third group that
includes the monocarboxylate transporter 8 (MCT8), first
identified in functional assays performed in Xenopus laevis
oocytes (134). Immediately after discovery of the MCT8 gene,
patients with mutations in MCT8 with a severe neurological
syndrome were identified (135-137). The patients manifested
hypotonia, dystonic movements, nystagmus and impaired
hearing. They also had abnormally high levels of circulating
free T3, low levels of free T4 and almost normal levels of TSH
in the serum. After mutations in the MTC8 gene of these
patients had been identified, the MTC8 gene was also analyzed
in patients with Allan-Herndon-Dudley syndrome (AHDS), one
of the first X-linked mental retardation syndromes identified. In
fact, AHDS patients exhibited many features overlapping those
found in patients with MTC8 mutations. All of the AHDS
families analyzed had mutations in the MTC8 gene (137,138).
The complex pattern of defects in these patients probably
depended on two different aspects of TH impairment: i)
deficient uptake of T3 to the brain, which should be associated
with mental retardation, and ii) abnormally high levels of circu-
lating free T3 (peripheral hyperthyroidism), which could be
responsible for toxicity involving the muscle and liver (137).

In humans, expression of MCT8 was indeed demonstrated
in the heart, kidney, placenta, liver and, importantly, in the
brain (139). In the murine central nervous system (CNS),
MCT8 is present in a number of neuronal populations of both
the cerebral and cerebellar cortex, hypothalamus, striatum and
hippocampus (140). In addition, it is expressed in the choroid
plexus (139). Further evidence of the significance of MCT8
in TH transport was based on the analysis of MCT8-deficient
mice. Although these animals do not show neurological
symptoms comparable to those found in humans, they do show
homologous altered serum concentrations of THs (139).

In conclusion, over the last few years different families of
membrane transporters have been involved in TH delivery to
their targets and, most important, to the brain. These findings
suggest that the neurological symptoms associated with hypo-
thyroidism might be the result not only of reduced production
and secretion of THs, but also of deficient uptake of THs into
the CNS (139-141).

A final important requirement for TH action on target cells
is the conversion of T4 into T3 (the active intracellular hor-
mone) by 5'-iodothyronine deiodinases 1 and 2 (D1 and D2).
In the brain, this reaction is carried out by the D2 enzyme,
present primarily in astrocytes (142,143). Notably, the main
targets of T3 are neurons. Thus, by locally producing T3,
astrocytes might regulate T3 delivery to nerve cells (125). The
catabolism of both T4 and T3 to rT3 and T2, respectively, is
finally carried out by the type 3 deiodinase (D3), primarily
present in neurons (125).

Fig. 2 shows some putative pathways of entrance into the
brain, metabolism and sites of action of THs.

5. Resistance to thyroid hormones

In 1967, Refetoff et al described a familial syndrome character-
ized by deaf-mutism, stippled epiphyses, goiter and abnormally
high protein-bound iodine levels, and suggested that the
syndrome could depend on target organ refractoriness to THs
(144). Since then, many other patients have been described
with variable symptoms, including goiter, mental retardation,
hearing loss, short stature, tachycardia and dyslexia. The
hallmark of the syndrome is a variable degree of resistance to
thyroid hormones (RTH), with high levels of circulating THs
and TSH and a clinical pattern of mixed hypothyroidism and
hyperthyroidism (1,144-148).

After the cloning of the genes encoding nTRs, a link was
found between RTH and the TRß gene (149). Since then, a
number of different mutations (in most cases, single nucleotide
substitutions, but also deletions, frameshift mutations, and
mutation-generated stop codons) have been identified in the
TRß gene of RTH patients (150-155). The mutations are
mainly grouped in the ligand-binding domain of the nTRß, and
in fact the in vitro translated mutant proteins show a variably
reduced ability to bind T3 (145). In most families with RTH,
the affected individuals have one normal and one mutated
THRB allele, in agreement with the autosomal dominant
pattern of RTH inheritance (145). Individuals with a single wt
TRß allele (due to deletion of the other allele) are normal.
Thus, a single gene for nTRß is enough for TH responsiveness.
However, individuals expressing a mutant allele (mnTRß)
present RTH because of the so-called ‘dominant negative
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effect’. In most cases, the mnTRß is not able to bind T3, but
can still bind DNA and presumably dimerize and/or bind co-
regulators, thus interfering with the functions of the wt nTRß
(148).

As mentioned in the previous section, different tissues
show different combinations and relative abundances of TRs.
As a result, the degree of RTH differs among tissues. Tissues
that mainly rely on nTRß (for example, the hypothalamus)
show symptoms of hormone deprivation (hypothyroidism),
while tissues (such as the heart) that mainly depend on nTRα
exhibit signs of hormone excess (hyperthyroidism).

Notably, no germline nTRα mutations have been identified
in humans (147).

In order to understand the defects found in RTH and to
predict hypothetical phenotypes of nTRα mutations, animal
models have been produced by introducing, into corresponding
positions of mouse nTR genes, some of the mutations found
in humans. One important initial finding was that both α
and ß nTRs could be deleted without compromising vitality.
In contrast, athyreotic mutant mice died prior to weaning.
This apparent paradox was attributed to excessive ‘negative’
signalling by hormone-free nTRs, as confirmed by the fact
that removal of the nTRα gene rescued the mutant mouse
from death (147). Second, the mutant mice allowed for a corre-
lation to be drawn between nTRß1 deficiency and hearing
defects, and between nTRß2 and colour blindness. In addition,
TRßKO mice exhibited tachycardia, which normalized after
the reduction of TH levels, suggesting that tachycardia
depends on excessive stimulation of nTRα. The creation of a
mouse model (TRßPV) that carried a mutation discovered in
the nTRß of a patient with RTH (156) also allowed for the
elucidation of a novel oncogenic activity of the nTRß mutant
PV that did not depend on the nuclear activity of nTRß, but
rather involved an ability to physically interact with the
regulatory p85α subunit of PI3K in both the nuclear and
cytoplasmic compartments (reviewed in refs. 146,157).

Recently, it has been suggested that acquired RTH can be
much more frequent than congenital RTH, and that a generally
reduced sensitivity to THs in peripheral tissues can occur for
different defects involving the various steps through which THs
enter the cells and activate a nuclear response (147,148). Such
steps, as mentioned in the previous sections, include: i) the
secretion and blood delivery of THs, ii) TH transport across the
plasma membrane of target cells, iii) the intracellular formation
of T3 from T4 by deiodinases, iv) T3 binding to nTRs, and v)
the dissociation from nTRs of corepressors and the association
of coactivators. It has recently been suggested that a further
step might concern TH transport from the cytoplasm to the
nucleus and involve carnitin (reviewed in ref. 148).

In actual fact, the intracellular distribution of nTRs in both
the absence and presence of THs appears to be of importance.
Yen et al (158) produced a family of green fluorescent fusion
proteins containing either wt or mutated nTRß in order to
study, by confocal microscopy, their distribution. They found
that approximately 90% of wt nTRß is nuclear both in the
presence and absence of T3. Interestingly, this distribution is
not altered in mutants that cannot bind the ligand or cannot
dimerize. Most important, nuclear localization is not modified
in mutants that cannot bind DNA. In contrast, a mutant that
cannot bind the N-CoR corepressor shows a predominantly
cytoplasmic distribution (158).

Finally, as previously discussed, non-genomic TH effects
are also possible. 

The existence of all these steps offers, on one hand, a
variety of regulatory mechanisms, acting either on the hypo-
thalamus-pituitary-thyroid axis to control TH concentration
in the blood, or locally to control actual availability of active
hormone at the level of specific target cells. On the other hand,
changes at any of the regulatory steps may result in chronic
acquired RTH. Since these modifications should affect locally
active hormone concentrations, it could be difficult to infer
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Figure 2. The putative uptake of T4 into brain cells across the blood-brain
barrier (BBB) and its metabolism and mode of action in neurons and
astrocytes. T4 has been proposed to cross brain capillary endothelial cells
(BCECs), which form the walls of blood vessels (BV), via specific trans-
porters, such as the organic anion transporting polypeptides (OATP), the
System LI (leucine preferring) permease (LAT) and the monocarboxylate
transporter 8 (MCT8). Transporters of the same families have been reported
present in astrocytes (LAT) and neurons (MCT8) as well. T4 seems to be able
to induce short-term responses in both neurons and astrocytes by binding to
membrane receptors (integrins, in at least some cases). Once in the astrocyte,
T4 is deiodinated by D2 to produce T3. T3 either enters the nucleus, where
it binds to nTRs, or leaves the astrocyte to enter neurons, again to enter the
nucleus and bind to nTRs. T3-binding sites have also been reported to be
present in mitochondria (mt). As is illustrated, in most cases the nuclear action
of T3 depends on the dimerization of nTR with the retinoic acid X receptor
(RXR) and on the binding of the dimer to thyroid hormone response elements
(TREs) present in the 5'-flanking region of the target genes. Many different
coactivators (Coact) bind to the nTR/RXR dimer, thus forming a protein
complex that is able to remodel chromatin in order to allow formation of an
initiation transcriptional complex. The chromatin remodelling complex
possesses histone acetyltransferase (HAT) activity. Question marks indicate
intracellular signal transduction pathways that remain to be clearly defined.
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non-congenital RTH conditions from blood TH and TSH
assays (discussed in ref. 148). Interest in RTH has been roused
beause of its peculiar effects on the nervous system. Besides
the syndrome described by Refetoff and AHDS, due to MCT8
mutations, other neurological disorders, such as certain forms
of depression (159), might be caused by RTH.

6. Thyroid hormone effects on the nervous system

The influence of THs on the development and maturation of
the mammalian brain, both before and after birth, has been
known for over two decades (160). Any impairment in the
supply of THs to the developing nervous system leads to severe
and irreversible abnormalities of brain structure and function,
causing mental retardation in humans (161-166). A particu-
larly TH-sensitive stage of brain development is one at which
post-mitotic neurons undertake the outgrowth of axonal and
dendritic processes and start establishing and stabilizing the
synaptic contacts, while oligodendroglial cells are actively
engaged in myelin synthesis. In addition, neurological
symptoms are commonly observed in adult patients suffering
from hyperthyroidism and hypothyroidism.

Ontogenesis of TH receptors in the brain. The analysis of
nTH ontogenesis has been crucial to inferring the timing of TH
action in the fetal brain. In 1984, Bernal and Pekonen reported
that T3 receptors are present in the human fetal brain from
the 10th week of gestation (167). More recently, the mRNas
encoding nTRα1 and nTRß1 were detected in human brain
samples at as early as 8 weeks of gestation (168). In the rat
brain, T3 NRs are found from the 14th day of development.
Their expression follows a bimodal pattern of accumulation:
an initial increase between the 14th and 16th day of gestation,
and a later peak at around the 6th day after birth (169). This
pattern of receptor accumulation might reflect two differ-
ent and successive modes of action of THs on the brain as
a whole. Alternatively, it might reflect the emergence of dif-
ferent cell populations sensitive to the hormone at different
stages of brain maturation. Indeed, the concentration of T3-
binding sites is not homogeneous in the various regions of the
rat brain, with the density in the pituitary > cerebral hemisphere
> brain stem > cerebellum > hypothalamus. Moreover, during
the first two weeks of postnatal development, nuclear binding
capacity changes differently in the cerebral hemispheres, brain
stem and cerebellum (170). In general, in both the mammalian
and non-mammalian vertebrate brain, nTRß mRNA was found
to be expressed later in development, while nTRα mRNA
was expressed at earlier stages (26,171,172). In the chick,
differential expression of nTRα and ß mRNAs is particularly
evident in the cerebellum, where, by in situ hybridization, the
nTRß mRNA concentration was found to increase in white
matter and granule cells after the migratory phase, while nTRα
mRNA was expressed in the earlier proliferating and migrating
granule cells and in the more mature granular and Purkinje cell
layers after hatching. Both nTRs are already expressed at even
earlier phases, such as embryonal day 9, with nTRß mRNA
restricted to the ventricular epithelium of the metencephalon
and nTRα mRNA expressed in migrating cells and the early
granular layer (173). On the other hand, Strait et al (174) found,
by immunohistochemistry, that the rat cerebellum contains

significant amounts of nTRß1, mostly present in the nuclei of
Purkinje cells, in spite of low nTRß1 mRNA levels. They also
observed high levels of nTRα2 in the nuclei of granule cells
(174). Independent and somehow complementary expression
of α and ß isotypes of nTRs was also found in other regions
of the rat brain, such as the cerebral cortex and hippocampus,
suggesting that the different isotypes play different roles during
brain development, as well as in the adult brain (175,176).
More recently, as expected, specific roles of the nTR isotypes
have been argued on the basis of defects shown by knockin
mutant mice (58). However, the specific roles of nTR isoforms
in brain development have yet to be clarified, and one of the
most critical challenges for the future is to understand how
local cellular context may modulate the isoform-dependent
effects of THs.

TH effects on the developing brain. Most TH effects on the
developing brain have been studied in the rat, where it has been
inferred that THs do not affect early neural developmental
processes (i.e. neural induction, neurulation and establishment
of polarity and segmentation), but instead influence later events
in brain development and maturation, such as cell migration,
cortical layer formation, proliferation and the differentiation
of specific neuronal and glial cell populations and synapto-
genesis (125). As mentioned, fetal and/or maternal hypothy-
roidism in this critical phase results in severe abnormalities
in cell migration and connectivity, as well as in the overall
cortical layer architecture (31,125,177). In the cerebellum,
hypothyroidism delays the proliferation and migration of
granule cells; the precursors of these cells originate from the
edge of the 4th ventricle and, after migrating to the external
germinal layer of the cerebellum, continue to proliferate for a
while. They then begin migrating inward to the internal
granular layer, along the radially-oriented processes of the
Bergmann glial cells, and differentiate on their way (125). In
hypothyroid animals, all these processes are severely delayed.
However, the delay can be reversed if THs are administered
within 2 weeks of birth (1). Purkinje cells of the cerebellum,
together with the pyramidal neurons of the cerebral cortex and
hippocampus, are among the neuronal classes most affected
by hypothyroidism, causing a lower number and an abnormal
distribution of dendritic spines and synaptic connections
(125). These classes of cells have also been found to express
significantly lower amounts of nTR isoforms in human
fetuses with intrauterine growth restriction, the major cause
of perinatal mortality and morbidity, associated with reduced
circulating free T4 and T3 (178).

Since T3 effects are mainly mediated by nTRs, a large body
of work has been devoted to the search for T3 target genes in
the CNS. In Purkinje cells, for example, at least three genes
have been found to be regulated by THs: the Purkinje cell
protein 2 (Pcp-2), calbindin, and the inositol-trisphosphate
(IP3) receptor (27). Interestingly, the Pcp-2 gene promoter
contains, in addition to two TREs that mediate gene activation
during the second and third weeks of rat postnatal life, a ‘T3
response silencing element’ that mediates the repression of
T3-dependent gene activation in the fetal and neonatal rat
brain (179). This element binds other nuclear factors not
present/active in the T3-responsive brain, suggesting that the
presence or absence of repressor proteins may contribute to
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establishing the precise timing of expression of T3-responsive
genes (179).

Another group of T3-responsive genes expressed in the
brain are those encoding neurotrophins: nerve growth factor,
neurotrophin-3 (NT-3), and brain-derived neurotrophic factor
(180-182). Recently, it has been suggested that nTR action on
these genes can be enhanced by the retinoic acid receptor-
related orphan receptor α (RORα); in the mutant mouse stag-
gerer (sg), which has a deletion in the RORα gene and which
shows aberrant cerebellar development, the expression of
various neurotrophins is down-regulated, probably as a conse-
quence of the failure of the mutant RORsg to enhance nTR
activity (183).

T3 dependence has also been described in genes encoding
cytoskeletal proteins, such as different tubulin isotypes
(184-186), actin (186) and various isoforms of microtubule-
associated proteins (185,187). Regulation of the expression
of these proteins is often complex, indicating transcriptional
as well as post-transcriptional components. For example,
Lorenzo et al (188) found that the effects of T3 on the Tα1
tubulin gene promoter are indirect, and that the hormone also
affects the half-life of the Tα1 tubulin mRNA. Similarly, it
was found that T3 regulates the splicing of juvenile and adult
τ mRNAs (189). However, the regulation of τ mRNA splicing
probably depends on the transcriptional regulation of the
musashi-1 (msi-1) gene, which encodes an RNA-binding
protein induced by T3 during rat brain development and in
N2a cells (190). T3 increases the msi-1 mRNA level in an
actinomycin D-sensitive, cycloheximide-resistant fashion
without affecting its half-life, which suggests a transcriptional
effect (190). The HuD gene, which encodes another neuron-
specific, RNA-binding protein that modulates mRNA stability,
is also regulated by T3 (191). HuD expression is strongly up-
regulated in specific areas of the hypothyroid rat brain, and is
down-regulated by T3 in rat PC12 and mouse N2a cells.
Furthermore, T3 inhibited the transcription of HuD in run-on
assays (191). Since HuD protein binds with high affinity to
acetylcholinesterase mRNA, it was suggested that HuD
mediates certain T3 effects by altering the half-life of mRNAs
for acetylcholinesterase and other genes (191).

TH-responsive genes are, among others, those encoding
RC3/neurogranin (192), rhes (a Ras-homolog small GTPase
enriched in the striatum) (193), N-CAM (194), nTRß (195), M1
muscarinic acetylcholine receptor (196), GAP-43 (196,197),
glucose transporters 1 and 3 (GLUT1 and GLUT3) (198) and
the synaptosomal-associated protein of 25 kDa (SNAP-25)
(199). Moreover, THs affect the synthesis of SRC-1 and the
nuclear corepressor NCoR (200).

Four additional TH-responsive genes have been identified
in rat brain neuronal cultures: basic transcription element-
binding protein, nuclear pore glycoprotein P62, bone morpho-
genetic protein-4 and the neuronal apoptosis-inducing gene
(DPS). The first three genes are up-regulated and the last one
down-regulated by T3 (201). Moreover, by comparing the
gene expression profiles of control newborn mice at the 4th
postnatal day (P4) with age-matched experimentally hypo-
thyroid mice and hypothyroid mice treated with tiroxine,
Takahashi et al (202) identified six novel TH-responsive genes
expressed in the developing cerebellum: orc11, galr3, sort1,
nlgn3, cdk5r2 and zfp367. Three of these genes (sort1, cdk5r2

and zfp367) were immediately up-regulated by a single injec-
tion of tiroxine in hypothyroid as well as control animals (202).

Besides neurons, glial cells are also highly sensitive to THs
during differentation.

During the 1970s, it was discovered that, in hypothyroid
rats, the number of oligodendrocytes was reduced (203-206)
and that, after the induction of experimental hypothyroidism,
neonatal rats at P15-P40 showed much less CNS myelin than
did age-matched controls (204,207,208). On the other hand,
hyperthyroid rats showed a higher accumulation of myelin at
P13 (204). Curiously, as development progressed, the mature
composition of myelin was reached in both cases, although in
hyperthyroid rats the myelin yield was ~20% less than it was
in the euthyroid rats (discussed in ref. 209).

It is known that, after the critical period of TH action on
the development of the CNS (the first two weeks after birth
in rats), the expression of many genes altered by perinatal
hypothyroidism eventually reaches the same levels as in
euthyroid animals - in spite of morphological abnormalities in
brain structures (125,179,209,210).

Oligodendrocytes (OLs) are derived from oligondendro-
cyte progenitor cells (OPCs), also called oligodendrocyte
type-2 astrocyte (O-2A) progenitors (reviewed in ref. 209).
OPCs can be induced to divide by different mitogens, the
most important of these being platelet-derived growth factor
(PDGF-AA) both in vivo and in vitro (211,212). Their growth
arrest is probably under the control of an intrinsic timing
mechanism (206), not yet understood. However, since in other
cell systems the decay of positive regulators, such as cyclins
and cyclin-dependent kinases (Cdks), and the accumulation
of negative regulators, such as Cdk inhibitors p21 and p27,
have been shown to induce withdrawal from the cell cycle, a
possible role of these proteins in OPC differentiation has been
investigated (209). An increase in p27 has been found to be
part of the mechanism leading to OL differentiation. Notably,
the increase in p27 in OPCs is paralleled by an increase in
the levels of nTRß (213). Moreover, retroviral vector-driven
ectopic expression of nTRß in fibroblasts causes a dramatic
arrest in proliferation, accompanied by changes in the main
cell cycle regulators involved in the G1-S transition. This
finding suggests that nTRß controls OPC proliferation inhi-
bition in a ligand-independent way (209). Moreover, the
expression of nTRs helps maturing OPCs to respond to TH and
start terminal differentiation (206,209). In addition, it has been
reported that T3 is a survival factor for developing oligoden-
drocytes (214). T3 is also important for OL maturation, as the
hormone regulates the expression of many genes involved in
myelination, such as those encoding myelin basic protein
(MBP), proteolipid protein (PLP) and myelin-associated
glycoprotein (MAG). The first two genes are, at least in part,
regulated at the transcriptional level, while MAG regulation is
mostly post-transcriptional (reviewed in refs. 209,215).

One of the differences between normal and hypothyroid
rat cerebellum at postnatal day 4 is the lack of differentiated
astrocytes in the internal granular layer (216). Moreover, the
normal developmental pattern of expression by astrocytes of
intermediate filament proteins is altered in hypothyroid rats;
the vimentin-glial fibrillary acidic protein (GFAP) transition
is delayed and most differentiated astrocytes remain in the
white matter (216). As astrocytes contain both α and ß isotypes
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of nTRs, they are probably direct targets of THs. Notably, it
was also noticed that THs had an effect on GFAP phosphor-
ylation and cytoskeletal organization, which seemed to be
mediated by a pathway involving the RhoA small GTPase
and to depend directly on T4 (217).

Similarly, it was recently reported that both T4 and rT3, but
not T3, directly regulate the F-actin content of elongating
neurites of cerebellar neurons in culture through a non-genomic
mechanism. In turn, modulation of the actin cytoskeleton has a
profound influence on the ability of neurons to migrate from
the explants onto a laminin substrate and to emit neurites.
These effects are blocked by synthetic peptides that compete
with the RGD (arginine-glycine-aspartic acid) integrin
recognition sequence, and by antibodies directed against ß1
integrin (218). A further event that seems to be non-genomic
in brain cells in culture is the regulation by THs of type II
5'-deiodinase (D2) (219,220). Moreover, T4 and rT3 (but not
T3) have been reported to have, in vivo, the effects on D2
activity and actin polymerization already observed in brain
cultures (104). These findings suggest that THs may influence
brain maturation through additional mechanisms, independent
of regulated gene expression (see section 3, ‘General mecha-
nisms of thyroid hormone action’). In agreement with this
finding, it had already been reported that laminin and THs had
synergistic effects on the polarity of rat cortical neurons in
culture. In more detail, it was observed that the addition of T3
to the medium of differentiating neurons, cultured on laminin,
had no effect on the average concentration of different cyto-
skeletal proteins, such as the neurofilament 68-kDa component
(NF-68) or the microtubule-associated protein 2 (MAP-2). T3,
however, seemed to be critical for the sub-cellular localization
of these proteins (221).

Several years ago, we observed that T3 in rat cortical
neurons in culture can induce the structural reorganization of
chromatin that characterizes the terminal differentiation of
cortical neurons in vivo (222,223). This chromatin structural
reorganization was probably linked to the synthesis and
incorporation of differentiation-specific histone replacement
variants, such as the linker histone H1˚ and the core histone
H3.3 (224). The expression of the two histone variants was
found to be regulated mostly at the post-transcriptional level
(224). Since post-transcriptional regulation very often relies on
regulatory RNA-binding proteins (reviewed in ref. 225), we
looked for proteins able to bind histone mRNAs. In the course
of this search, we identified a cold shock-domain (CSD)-
containing protein that seemed able to bind H1˚ and H3.3
mRNAs (226-228) and was present both in the nucleus and
the cytoplasm of brain cells (227). As other CSD-containing
proteins have the ability to interact with both RNA and
chromatin, we investigated the possibility that PIPPin binds
to chromatin. We also looked for effects had by T3 on
PIPPin expression by comparing newborn euthyroid rats with
newborns delivered by rats treated with 6-propyl-2-thiouracyl
(PTU) during the last week of pregnancy. In parallel, we
analyzed rat cortical neurons cultured in a chemically-defined
medium (Maat Medium: 229) with or without T3, and found
a significant difference between newborn euthyroid and hypo-
thyroid rats concerning the sumoylation of nuclear PIPPin,
which was abolished by hypothyroidism (230). In addition,
we showed that a higher proportion of nuclear PIPPin localized

to the nuclear periphery in T3-treated cells than in control
neurons. As specific localization of nuclear proteins has been
often reported to require post-translational modifications,
such as ubiquitination or sumoylation, we suggested that
intranuclear localization of at least one fraction of PIPPin
depends on TH-dependent sumoylation (230).

As a final comment on genes regulated by THs during
brain development, it is worth mentioning that the genes
responsible for TH action, such as those encoding nTRs and
deiodinases, are also TH-responsive. For example, the activity
of mammalian type II iodothyronine deiodinase (D2) increases
in the brain of hypothyroid animals (231). Thus, it is probably
part of a feedback loop that contributes to maintaining T3
concentration in the brain (232). On the other hand, D3, which
inactivates both T3 and T4, is induced by T3 and decreases
in the hypothyroid brain (233). These observations suggest
that the coordinated expression of D2 and D3 is critical for
TH homeostasis in the developing CNS (209). However, it
was recently found that D2 knockout mice (D2KO) show
neurological defects much milder than those observed in
hypothyroid animals. Moreover, the levels of mRNAs encoded
by T3-responsive genes are unaffected or only slightly affected
in D2KO. On the basis of these findings, it has been proposed
that other significant compensatory mechanisms must be at
work to minimize functional abnormalities in the absence of
D2 (234).

THs and the adult brain: examples of putative TH-dependent
neurological disorders. Although the effects of TH deficiency
on CNS development have been well established, much less is
known concerning its influence on the adult brain where, in
contrast, α1, α2 and ß1 isotypes of nTRs are widely expressed
(172). Adult hypothyroidism does not cause the severe
structural defects found in developmental hypothyroidism.
However, a TH deficit in adulthood is associated with
impairment in learning, verbal fluency, spatial tasks (235,236)
and affective homeostasis (237), as well as in some psychiatric
illnesses (238). The fact that adult hypothyroid rats have
cognitive deficits and depression suggests that the brain areas
involved in learning/memory and mood control, such as the
hippocampus, are altered (239). Desouza et al (240) indeed
found that adult-onset hypothyroidism significantly decreases
hippocampal neurogenesis. The main reason for this deficit
seems to be a significant decrease in the survival and differ-
entiation of the progenitor cells (240).

The relationship between THs and affective disorders is
complex and bidirectional. For example, thyroid diseases can
induce psychiatric disorders that, in turn, may be responsible
for thyroid diseases (241,242). 

One such common psychiatric condition is bipolar disorder
(manic-depressive illness), characterized by cyclic episodes
of mania and depression. This condition is successfully treated
with lithium, although the molecular basis of its effect is still
unknown. Since lithium has been shown to regulate a number
of different genes in the rat brain and cultured cells, it has
been proposed that its mood-stabilizing activity depends on
the regulation of gene expression (243). Among the lithium-
regulated genes are those encoding nTRs (244), and it was
recently found that short-term LiCl-treatment modifies the
relative concentrations of nTRs in an isoform-specific manner
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(i.e. nTRα1 increases, nTRα2 decreases and nTRß1 is unaf-
fected), and affects the cytoplasmic availability of thyroxine in
the adult rat brain (245). Diazepam (also known as valium or
stedon), one of the most widely used tranquillizers, has also
been reported by the same authors to affect the nTR expression
levels in the adult rat brain (246). In contrast, adjuvant T3
treatment accelerates the effects of antidepressants in some
patients (247,248), and T4 has been used in the therapy of
depression. Interestingly, it has been recently suggested that
chronic T4 treatment induces a significant increase in the
5-HT2A serotonin receptor in the mouse brain (249).

Multiple sclerosis (MS) is an inflammatory, demyelinating
disease of the CNS that ends up causing lesions of the myelin
sheath and axonal damage. In theory, since a significant
number of OPCs are present in the CNS, repair of the lesions
should be possible. However, remyelination is morphologically
and functionally abnormal (250). The reason for remyelination
failure is not clear, especially when considering that new
oligodendrocytes are spontaneously generated in the course of
MS. Since myelination during development is regulated, as
discussed previously, by THs, the possibility has been explored
of promoting myelination in chronic experimental allergic
encephalomyelitis (EAE), a widely used experimental model
of MS, by treating the animals with THs (reviewed in ref. 251).
The results of this study suggest that the clinical course of the
EAE animals was positively affected by TH. In the course of
treatment, up-regulation of the genes encoding myelin
components, as well as of the genes encoding neurotrophins,
was observed (251).

A final example of the possible involvement of THs in
adult CNS disorders concerns neuroserpin, a serine protease
inhibitor with a putative role in the regulation of anxiety.
Some neuroserpin mutations cause alterations in protein
conformation, resulting in the aggregation and formation of
inclusion bodies in CNS neurons (252). Neuroserpin mRNA
contains an AU-rich element in the 3'-untranslated region,
recognized and bound by the previously mentioned RNA-
binding protein HuD (191), which acts as an mRNA stabilizer.
Neuroserpin mRNA is down-regulated in various regions of
the hypothyroid brain, including cortical layers II/III and VIa,
and the hippocampus, but not elsewhere, such as cortical
layer V (253). THs do not affect the transcription of the
neuroserpin gene, but do induce the stabilization of its mRNA,
probably via an increase in HuD levels (253).

7. Conclusions

THs have profound effects on the nervous system. As
discussed, severe TH deficiency during pregnancy results in
cretinism, while mild hypothyroidism is associated with
insufficient cognitive development. Moreover, TH fluctuations
in adulthood are associated with mood alterations, and the
adult brain metabolism probably adapts to maintain TH
homeostasis. Although it has been known since the 1980s that
most of the effects had by THs are mediated by NRs, in the
last decade there has been increasing interest in the molecular
mechanisms that mediate rapid TH action, probably involving
plasma membrane receptors. In addition, membrane trans-
porters seem to regulate TH access to the brain. Even more
interest has recently been aroused regarding THs and their

effects on the CNS, and in the future the challenge will be to
understand how the different pathways of TH action interact
in order to drive the development of the CNS and to contribute
to the homeostasis and the correct functioning of the adult
brain.
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