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It has been proposed that retinoblastoma is ‘caused’ by two sequential mutations affecting

the RB1 gene, but this is a rather outdated view of cancer aetiology that does not take into

account a large amount of new acquisitions such as chromosomal and epigenetic altera-

tions.

Retinoblastoma remains probably the only cancer in which the rather simplistic ‘two hit’

mutational model is still considered of value, although cancer is known to be associated

with genomic and microsatellite instability, defects of the DNA mismatch repair system,

alterations of DNA methylation and hystone acethylation/deacethylation, and aneuploidy.

Moreover, as it is shown herein, the predictions made by the ‘two hit’ model, are not ful-

filled by the clinical and epidemiological data reported so far. Moreover, while the role of

mutational events in cancer has been largely questioned in the more recent literature,

no serious effort has been done to investigate the role of epigenetic alterations and aneu-

ploidy in retinoblastoma.

Through the analysis of the specialised literature and a set of original epidemiological

and biological data concerning retinoblastoma, the authors illustrate the evidences arguing

against the ‘two hit’ hypothesis and propose that epigenetic factors and aneuploidy play

central roles in the disease.

� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Retinoblastoma (Rb) is a tumour affecting the retina of one

(unilateral Rb) or both eyes (bilateral Rb) in children. Enucle-

ation (i.e. the surgical ablation of the affected eye), with con-

sequent blindness, still represents a common modality in the

management of the disease, even if more ‘conservative’ ap-

proaches have become increasingly practiced in recent years,

thanks to the availability of newer and more sophisticated lo-

cal treatment modalities.1

A large amount of highly specialised information on reti-

noblastoma is presently available through the Internet and

at easy reach by anyone wanting to get detailed information

on this eye tumour affecting young children.
er Ltd. All rights reserved

fax: +39 577 369185.
Mastrangelo).
However, the honourable purpose of spreading informa-

tion that can be invaluable for affected patients and their par-

ents, should not lead to disregarding the absolute necessity of

a strict control on the quality and reliability of the informa-

tion itself, particularly when the ‘audience’ is as large as that

of the worldwide web users.

A closer look at the information reported on retinoblas-

toma by some groups of qualified scientists in this field,

gives us the opportunity to discuss some of the statements,

concepts and ideas regarding this disease that, to our opin-

ion, are far from being definitively demonstrated and

accepted.

One example is represented by the definition of the role

of the RB1 gene in retinoblastoma. As reported in one of
.
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the most recent and complete Internet reports on this dis-

ease ‘. . .Retinoblastoma occurs in cells that have a predis-

posing mutation of the RB1 gene’ and also: ‘...RB1 is the

only gene known to be associated with retinoblastoma’, and

finally: ‘Hereditary retinoblastoma, caused by germline (RB1)

mutations, is inherited in an autosomal dominant manner’.2

Although both the web and the current literature seem to

confirm these different views concerning the role of the

RB1 gene in retinoblastoma,3–5 it is not difficult to see that

‘association’, ‘predisposition’, and ‘causation’ are not one and

the same concept and that they cannot all be attributed to

the RB1 gene without generating a certain amount of

confusion.

What ‘predisposes’ to cancer or any other disease cannot

possibly be viewed as a ‘cause’ in itself, but rather as a favour-

ing condition or co-factor. On the other hand, the ‘association’

of a certain feature (such as a gene mutation) with a given dis-

ease, is not necessarily a proof of its role as a ‘causative’ or

‘predisposing’ factor, unless the association is 100% sensitive

(all affected patients have the mutation), 100% specific (all

non affected patients do not have the mutation), 100% accu-

rate (no false positive and false negative cases), and clinically

and biologically sound (evidence must show a close and logi-

cal relationship between the feature associated to the disease

and the disease itself).

Regarding the RB1 gene mutations, the following must be

outlined about their ‘association’ with retinoblastoma:

1. They have been reported to vary from 10–20% in some

reports6 to around 89% in others,7 using experimental pro-

cedures and selection criteria biased toward the inclusion

of a large excess of bilateral cases.7,8 Globally, RB1 gene

mutations can be found in no more than 50% (low sensitiv-

ity) of all cases, according to some of the most recent

reports9;

2. they are commonly found in a great number of non retino-

blastoma cancers9,10 such as osteosarcoma, breast, blad-

der, lung, head and neck cancer, acute leukaemia, etc.

(poor specificity);

3. as a consequence, they are neither accurate nor clinically

and biologically sound or relevant with respect to their

possible role in the genesis of retinoblastoma;

4. they do not represent the only characteristic feature of the

disease in ‘positive’ cases if we consider that:

(a) Other genes, such as Rb2 may be non expressed in

retinoblastoma;11

(b) Non structural alterations of the expression of genes

such as RASSF1A, caspase 8 and 10, HIC1, HIN-1,

which have a defined role in paediatric cancer, can

be found in at least 50% of retinoblastoma investi-

gated.12–15

Taken together, the above facts alone would have been

more than a convincing evidence, for the average unbiased

scientist, to cast at least some doubts about the role of the

RB1 gene in retinoblastoma; not so for the retinoblastoma

‘establishment’ and experts, who, in spite of all this, still per-

sist in attributing to the RB1, the roles of ‘predisposing’, ‘asso-

ciated’, and ‘causing’ factor,2 as if they were one and the same

thing, thus perpetuating, since more than three decades, a
great deal of confusion and uncertainty about this important

matter.

But other and more relevant aspects of the theory behind

the genesis of retinoblastoma (The ‘two hit’ theory),16 partic-

ularly those regarding the causative and predisposing role of

the RB1 gene in retinoblastoma, strongly deserve to be re-

viewed in the light of clinical and epidemiological evidences,

as it is shown herein.

2. Materials and methods

Clinical records of 387 patients referred to the Department

of Ophthalmology (Ocular Oncology Unit) of the University

of Siena, have been selected and analysed for the present

investigation, with emphasis on data such as laterality (uni-

lateral and bilateral disease), distribution of the age at diag-

nosis, family history, and distribution of the clinical

phenotype (unilateral/bilateral) within the ‘genetic’ groups

(‘familial’, ‘hereditary’, ‘sporadic’ retinoblastoma) of the

disease.

A literature search of the same data was also performed in

order to increase the statistical consistence and compare the

clinical evidences with the corresponding predictions made

by the ‘two hit’ theory.

Original data concerning the role and significance of

aneuploidy in retinoblastoma were supplied by two of the

authors and reported in detail in the ‘discussion’ section of

this paper.

3. Results

The central assumption of the ‘two hit’ hypothesis, formu-

lated by Knudson in 197116 is that, being retinoblastoma,

dependent on two sequential mutations affecting one and

the same gene (RB1), the variegated phenotypic expression

of the disease (i.e.: unilateral, bilateral, ‘trilateral’ retinoblas-

toma, retinoma, etc.) must be related to the different timing

between the first and the second ‘hit’ (i.e.: mutation). Knud-

son realised that his theory predicted differences in the pat-

terns of age-specific incidence between inherited and

sporadic retinoblastoma, and since the appearance of his first

article on this subject, agreement was reached, among clini-

cians and epidemiologists, on the fact that: ‘. . .About 60% of

affected individuals have unilateral RB with a mean age of

diagnosis of 24 months; about 40% have bilateral RB with a

mean age of diagnosis of 15 months. . .’.2 The 60% referred

to in the above sentence is represented by the unilaterally af-

fected patients in which both ‘hits’ involve the somatic cells

(retinoblasts); while the remaining 40% is represented by the

bilaterally affected patients in which the first ‘hit’ is inherited

through the germ cells from either affected (familial retino-

blastoma) or unaffected (‘new germline’ retinoblastoma)

parents.

The theory illustrating the relationship between the tim-

ing and the target of the first and second ‘hit’, on one side,

and the age distribution of retinoblastoma, as related to its

inherited or sporadic nature, on the other, has been further

detailed and explained in a number of publications by the

same author,17–34 and is presently a consolidated and ac-

cepted view among scientists worldwide.
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Fig. 1 shows the ‘theoretical’distribution of the age at diag-

nosis as predicted by the ‘two hit’ model proposed by Knud-

son. Since the model predicts that the mean age at

diagnosis for bilateral and unilateral cases is 15 and 24

months, respectively, a ‘normal’ (bell shaped) distribution will

show two different curves, whose size and width may vary,

depending on the sample size and the spreading of values,

but substantially similar to those reported in Fig. 1.

As a matter of fact, the clinical evidence shows us a quite

different situation. On a sample of 387 patients referred to the

Department of Ophthalmology of the University of Siena, we

have found the distribution reported in Fig. 2. As it is shown

in the figure, while bilateral retinoblastoma disappears after

the age of 36 months, unilateral retinoblastoma spreads over

a much wider range, with twelve cases having an age at diag-

nosis of over 100 months (not reported in the diagram), the

latest of which had been diagnosed at the ages of 204, 481,

and 540 months (17, 40, and 45 years) respectively. This is a

quite typical distribution of the age at diagnosis for both uni-

lateral and bilateral retinoblastoma on a representative

sample.
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Fig. 1 – The normal (hypothetical) distribution of the age at diag

retinoblastoma, with a mean age of 15 months for bilateral and

interpretation, unilateral retinoblastoma is ‘globally’ diagnosed

not represent the clinical reality.
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Fig. 2 – The age distribution curve of unilateral and bilateral ret

encompasses 227 (59.7%) unilateral and 160 (41.3%) bilateral cas

their ages at diagnosis were over 100 months.
To further reinforce this view, we have selected from the

literature, series in which retinoblastoma patients were allo-

cated in groups according to the age at diagnosis,35–38 and

found that, on a total of 1160 retinoblastoma patients, 86%

of bilateral and 76% of unilateral retinoblastoma had been

diagnosed within the first 24 months of life (Table 1).

Moreover, since, according to the theory, the inheritance of

the first mutation through the germ cells leads to the develop-

ment of the bilateral phenotype in the vast majority of cases

(more than 90%), it follows that familial retinoblastoma with

unilateral disease should be exceedingly rare, i.e. much less

than the predicted 10% within the hereditary (familial +

new germline) group of retinoblastoma.

Table 2 shows that, on a group of 3581 retinoblastoma,

there is a total number of 343 (9.5%) familial cases. Within this

group, 84 patients developed unilateral retinoblastoma, a fig-

ure which represents the 23% of all familial cases.

Finally, the ‘two hit’ model assumes that every bilaterally

affected individual carries a germline mutation even in the

absence of a family history, thus behaving as an ‘initiator’

or ‘founder’, in terms of transmission of the disease. To verify
21 24 27 30 33

bilateral Rb
unilateral Rb

nosis is represented for both unilateral and bilateral

24 months for unilateral disease. According to the current

later than the bilateral one. This distribution, however, does

36 39 42 45 48 54 57 66 81 84 87

unilateral Rb
bilateral Rb

inoblastoma on a sample of 387 cases. The sample

es. 12 unilateral cases are not reported in the diagram since



Table 2 – On a total of 3581 retinoblastoma, 344 (9.5%) have a positive family history for the disease (within this group, the
incidence of unilateral cases is 23%, while, according to the predictions made by the ‘two hit theory’, this percentage
should be equal to or lower than that found in the general retinoblastoma population (i.e.: 6–6.5%))

Author URb BRb Tot. Fam.U Fam.B Tot. Fam

Abramson (a) 626 905 1531 36 150 186

Gunalp (b) 441 195 636 10 24 34

Sanders (c) 282 149 431 15 38 53

Matzunaga (d) 403 196 599 11 17 28

Hadjistilianou (e) 227 160 387 11 32 43

Tot. 1979 1605 3584 83 261 344

(24%) (76%)

URb = Unilateral retinoblastoma; BRb = Bilateral retinoblastoma; Fam.U = Familial unilateral (retinoblastoma); Fam.B = Familial bilateral (reti-

noblastoma). (a) J. Paediatr. Ophthamol. & Strabismus, 1985, (b) Ophthalm. Genet., 1996, (c) Br. J. Ophthalmol., 1988, (d) Hum. Genet., 1990, (e)

Eur. J. Cancer, 2007.

Table 1 – Bilateral retinoblastoma diagnosed on or before the age of 2 years (24 months) (by the age of 24 months, 306/377
(81%) bilateral and 553/729 (76%) unilateral retinoblastoma have already been diagnosed)

URb BRb Tot. u 6 1y b 6 1y u 6 2y b 6 2y

Pendergrass (a) 54 14 68 23 13 38 14

Tamboli (b) 166 54 220 93 48 125 53

Sanders (c) 282 149 431 55 91 249 123

Hadjistilianou (d) 227 160 387 72 121 146 148

Tot. 729 377 1106 233 225 553 306

URb = Unilateral retinoblastoma; BRb = Bilateral retinoblastoma; u 6 1y = Unilateral retinoblastoma diagnosed on or before the age of 1 year (12

months); b 6 1y = Bilateral retinoblastoma diagnosed on or before the age of 1 year (12 months); u 6 2y = Unilateral retinoblastoma diagnosed

on or before the age of 2 years (24 months).

(a) Arch. Ophthalmol., 1980, (b) Arch. Ophthalmol., 1990, (c) Br. J. Ophthalmol, 1988, (d) Eur. J. Cancer, 2007.
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this assumption, we have selected, from our series, a group of

seven patients who, being affected by bilateral (four cases) or

early unilateral retinoblastoma (three cases), had to carry,

according to the currently accepted views, a new germline

mutation and hence to be the ‘founders’ of a new series of

hereditary retinoblastoma, with a predictable 50% of affected

offspring. These seven patients globally generated nine chil-

dren of which only one developed a unilateral retinoblastoma

(the child of a unilaterally affected patient).

4. Discussion

It has been proposed by Knudson, that retinoblastoma is

‘caused’ by two sequential mutations affecting the RB1 gene

(16). This is a rather outdated view of cancer aetiology which

does not take into account a large amount of heavy argu-

ments against it, as well as an extraordinary number of new

acquisitions.

Genomic instability,39 microsatellite instability,40 and de-

fects of the DNA mismatch repair system,41 as well as altera-

tions of DNA methylation42–46 and hystone acethylation/

deacethylation,47–52 not only have been found to be involved

in the genesis of cancer, but also and more importantly, have

largely contributed to the view of cancer as an epigenetic53,54

rather than a genetic disease.55 As more recently reported,56

cancer appears to begin with epigenetic alterations in stem

cells, thus implying that epigenetic (or non mutational) loss

of gene expression comes more commonly before any muta-

tions in cancer.57,58
Also, Duesberg and colleagues59–66 have heavily argued

against the somatic mutation theory by definitely demon-

strating that none of the predictions made by that theory is

fulfilled by the evidence,67 thus excluding any possible

involvement of somatic mutation, and finally demonstrating

and highlighting the fundamental role of aneuploidy in the

genesis and progression of cancer.68–70

Aneuploidy is a common feature in the majority of solid

human cancers, and several tumour cell lines show chromo-

some instability (CIN). This leads to a condition in which the

tumour phenotype is the result of the altered dosage of thou-

sands of structural and regulator genes. It is currently as-

sumed that aneuploidy drives carcinogenesis through

mutations in specific genes whose altered function causes

chromosome instability.71

A remarkable feature of retinoblastoma, at this regard, is

that loss or inactivation of Rb protein (pRb) has been associ-

ated to aneuploidy and centrosome amplification in human

cells, thus underlying the role of this protein in the processes

that regulate both chromosomal stability and centrosome

homeostasis. Inactivation of pRb promotes aneuploidy,72

probably by uncoupling cell cycle progression from mitotic

and centrosome control.73 Correct duplication of centro-

somes is very important for mitotic spindle organisation

and equal chromosome distribution to daughter cells. Centro-

some duplication is coordinated with DNA replication

through a pathway that requires pRb. Phosphorylation of

pRb, releases E2F and leads to CDK2 activation which, through

the association with cyclins E/A, is necessary for centrosomes



1600 E U R O P E A N J O U R N A L O F C A N C E R 4 3 ( 2 0 0 7 ) 1 5 9 6 – 1 6 0 3
duplication. An alteration of this pathway causes centrosome

amplification that in turn increases the frequency of aberrant

mitoses (multipolar spindles) and chromosome segregation

errors (aneuploidy).74–76

As it has been recently showed, the acute pRb loss induces

centrosome amplification and aneuploidy in murine primary

fibroblast, thus suggesting a direct link between pRb status,

centrosome amplification and chromosomal instability.77

Similarly, human papillomavirus type 16 (HPV-16) E7 onco-

protein rapidly induces aberrant centrosome and centriole

duplication and aneuploidy78 in human cells. Moreover, upon

release from mitotic block, normal human pRb-deficient

fibroblasts generate aneuploid cells with supernumerary cen-

trosomes by expressing the HPV16-E7 protein; these cells ac-

quire the capability to grow in an anchorage-independent

manner as tumour cells do, thus indicating that aneuploidy

is an initial mutational step in cell transformation. Interest-

ingly, HPV-DNA has been found in some cases of retinoblas-

toma, thus confirming a possible role of HPV viral proteins

E6 and E779 in the genesis of this cancer.

From the above evidences it seems reasonable to conclude

that pRb dysfunctions could drive aneuploidy and then can-

cer following several alternative pathways not necessarily

encompassing gene mutation. Unfortunately, in spite of such

an amount of evidence against the somatic mutation theory

and in favour of epigenetic/CIN causation in cancer, retino-

blastoma has remained, since 1971, probably the only tumour,

in the entire constellation of human cancer, to be blamed

upon only two mutations affecting one and a single gene.

But even if one would ignore the above advances in the

understanding of cancer aetiology and pathogenesis, the clin-

ical and epidemiological evidences supplied herein, clearly

illustrate the flaws of the ‘two hit’ theory and its related

predictions.

As it has been shown, the prediction according to which

there must be a difference in the age of incidence of unilateral

and bilateral retinoblastoma is essentially based on the inap-

propriate, incorrect, and artful use of a statistical measure-

ment, such as the ‘mean’, applied to the distribution of the

age at diagnosis for retinoblastoma.

Albert Einstein once said: ‘If the facts don’t fit the theory,

change the facts!’ and the impression here is that, on this

specific aspect, facts have been changed to a large extent, to

fit the theory.

It is clear, looking at the age distribution of retinoblastoma

in Fig. 2, that, while the calculation of the ‘mean’ can be ap-

plied to the bilateral cases, its application to the unilateral

ones, would lead to biased results. In fact, it is a well known

and consolidated opinion, among statisticians, that the mean

is a measure exceedingly sensitive to the extreme values, and

as such much less reliable than the median in representing

highly skewed distributions,80 such as the one reported in

the diagram for unilateral retinoblastoma. It is not by chance

that, when applying the calculation of the median age at diag-

nosis to our unilateral cases, we found the value of 16 months

which is very close and not significantly different from the re-

ported 15 months for the mean age at diagnosis of bilateral

retinoblastoma.

It can be concluded that there are no differences in the dis-

tributions of the age at diagnosis between unilateral and
bilateral retinoblastoma, and that, as a consequence, the dif-

ferences in the timing of cellular/genetic events, as predicted

by the theory, in fact do not exist. This evidence is confirmed

by the cumulative analysis of different series reported in Ta-

ble 1 concerning the percentage of both unilateral and bilat-

eral retinoblastoma diagnosed within the first 2 years of life.

The other prediction made by the ‘two hit’ theory is that

the great majority (more than 90%) of all hereditary (familial

+ new germline) retinoblastoma, must have both eyes in-

volved (bilateral phenotype). As a consequence and comple-

ment of this prediction, it should be argued that within the

familial retinoblastoma, i.e. the hereditary group ‘par excel-

lence’, the bilateral phenotype should predominate while

the unilateral one must be exceedingly rare, accounting for

much less than the predicted 10% within the larger popula-

tion of inheritable (familial + new germline) retinoblastoma.

This is clearly not the case when considering the analysis of

different series reported in Table 2, showing that, on a group

of 343 familial retinoblastoma, belonging to a series of 3581

cases, 84, i.e.: 24%, were unilaterally affected; a figure more

than twofold higher than the predicted 10% within the hered-

itary (familial + new germline) cases and almost fourfold

higher than the predicted 6% within the general retinoblas-

toma population.

The ‘founder’ effect of the ‘new germline’ retinoblastoma,

is another prediction of the ‘two hit’ theory that deserves fur-

ther consideration. Although limited to a restricted number of

patients, our series of seven ‘new germline’ retinoblastoma,

with only one child affected by unilateral disease, on an off-

spring of nine children, represents a strong argument against

the prediction that 50% of the offspring of ‘new germline’ ret-

inoblastoma must be affected as a result of the transmission

of the disease from one of the parents.

Further consideration deserves, to conclude, the definition

of ‘sporadic’ as related to retinoblastoma and the conse-

quences of the ‘two hit theory’. A ‘sporadic’ disease is, by def-

inition, a disease occurring upon occasion or in a scattered,

isolated or seemingly random way.81 According to this defini-

tion, if one excludes the familial cases, about 90% of retino-

blastoma is ‘sporadic’ at diagnosis. However, with the

creation of the ‘perspective’ new germline group of patients,

the majority of which carry the bilateral disease phenotype,

the ‘true’ sporadic retinoblastoma group has been reduced

to about 60% essentially, but not exclusively, made of unilat-

erally affected individuals, and the adjective ‘sporadic’ has fi-

nally been used to unequivocally designate the non heritable

form of the disease. Given all of the above, one could reason-

ably distinguish between two different ‘pathogenetic’ groups;

the heritable (about 40%) and the non heritable (about 60%)

retinoblastoma, and assume that the underlying causes and

biological processes operating within the two groups are dif-

ferent and distinct. Unfortunately, the ‘unifying’ two hit the-

ory has been the source of major confusion on this topic,

since it established (and no evidence against it has been ‘offi-

cially’ admitted so far within the scientific literature) that

both the sporadic (non heritable) and the heritable disease de-

pend on one and the same process, i.e.: the loss or inactiva-

tion of the RB1 gene. How could this be possible? And also:

does this ‘unitary’ theory explain and fit the clinical and epi-

demiological reality?
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In a recent paper appeared on the Journal of Human

Genetics, Sampieri and Coll.,82 having found a mutation rate

of 37% in a series of Italian patients with ‘hereditary retino-

blastoma’, conclude that: ‘The mutation rate reported in the

study is quite similar to that found by other groups using

the same methodological approach’ and that, given the disap-

pointing results of this investigation, ‘. . .Other phenomena,

such as epigenetic alterations or a possible inactivation of

RB1 through mutation of non-coding sequences, may also

be invoked to explain the cause of disease in the remainder

of the patients. . .’.

We have already exposed and documented the reasons

why the whole story of the role of the RB1 gene in retinoblas-

toma is scarcely credible; but, assuming that, according to the

theory, both hereditary and non hereditary retinoblastoma

depend on mutations affecting one and the same gene, is

nothing less than absurd and in striking contrast with the

clinical and epidemiological evidences; among others, the

fact that the incidence of sporadic (unilateral) retinoblastoma

is not equally distributed throughout the world and is higher

in less industrialized countries and in less affluent popula-

tions relative to other malignancies of early childhood. In par-

ticular, non-heritable (sporadic) retinoblastoma has a higher

incidence among less affluent populations, suggesting an

association with poor living conditions and maybe an infec-

tious aetiology. This variation in incidence may be due to dif-

ferential exposure to infections or other environmental

factors in utero.83

5. Conclusion
The last 35 years of research in the field of retinoblastoma

have been dominated by the ‘two hit’ theory16 and during

this period, researchers worldwide have not only chosen

to avoid to look at any alternative explanation about its

genesis, but have also overlooked a few but substantial dis-

crepancies between the most widely accepted genetic the-

ory and the clinical/epidemiological evidence related to

retinoblastoma. It is not by chance, given this situation,

that the most important advances in retinoblastoma, have

been realised in the field of the clinical diagnosis and treat-

ment,84 with no substantial contribution of the genetic

investigations and speculations.85,86 There might be several

explanations for this curious phenomenon, including the

interests of scientific/academic lobbies, and those of the

major drug companies who presently are the main funding

resource of genetic research, worldwide, with the conse-

quent hunt for grants in search of the genetic causes of

cancer. Whatever the explanation one would adopt, we be-

lieve we should ‘go back’ to the patients and their suffer-

ings, to recover our dignity of physicians and remember

that searching for the causes of diseases in general and

cancer in particular, is not a business but the main road

leading to the sole and higher scope of our profession,

which is the cure of the sick.
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