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ABSTRACT 

 
Stabilization of Inverted Pendulum is defined as a very basic classical control problem in 

Control System. The Dynamics of Cart Inverted Pendulum is related to many real life 

applications like missile launching system, balancing systems like human walking, Aircraft 

landing pad in sea etc. This is a highly Unstable and non-linear system. This system is a 

under actuated system and also a non-minimum phase system so design a Controller for 

Inverted Pendulum System is very complex. 

This thesis includes system and hardware description of Inverted Pendulum System, 

Dynamics of the system, State space model, Derivation of Transfer Functions. In Past a lot of 

research work has already been done in Inverted Pendulum for development of Control 

Strategy. Here in this thesis we have done a very small work to design Control Strategy and 

also validate them with real-time experiments. 

In this thesis two-loop PID, PID+PI & LQR control have been implemented for Inverted 

Pendulum System and this control strategies gives satisfactory response.  
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INTRODUCTION 
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1.1     Introduction on Inverted Pendulum 

The problem associated with stabilization of Inverted Pendulum is a very basic and benchmark 

problem of Control System. The design of Inverted Pendulum consists of a DC motor, Cart, 

Pendulum and Cart driving mechanism. 

 

 

Figure 1.1 Simple Inverted Pendulum Setup 

 

The nature of this system is single input and multi output system where Control voltage act as 

input and the output of the system are cart position and angle. Here we have to stabilize the 

pendulum angle to Inverted position which is a challenging work to do as the Inverted position is 

a highly unstable equilibrium. The main characteristics of the system are Highly Unstable as we 

have to stabilize the pendulum angle to Inverted position, it is a highly non-linear system as 

because the dynamics of inverted pendulum consists non-linear terms, as the system have a pole 

on its right hand it is a non-minimum phase system and the system is also under actuated because 

the system have only one actuator (the DC Motor) and two degree of freedom. 
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1.2 System Description 

1.2.1 Dynamics of the system 

          In this section defines the system dynamics of Inverted Pendulum with the help of 

Newton’s law of motion. According to the system dynamics the system has two degree of 

freedom the one is for cart movement and the other one is for Pendulums rotational motion.  

 

Figure 1.2 Inverted Pendulums parametric presentation 

M- Cart mass 

m- Pendulum mass 

J- Moment of inertia 

L- Pendulum length 

b- Cart friction co-efficient 

g – Gravitational force 
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Figure 1.3 Inverted Pendulums free body diagram 

We are considering only horizontal forces for analysis as because the motion of the cart is 
linear in nature. Thus  

XMa F N B   , Where acceleration in Horizontal plane is denoted by Xa                     (1.1) 

N is the Horizontal reaction force and N is given by the equation 

2
2

2

dN m (x Lsin ) mx m L cos m( ) Lsin
dt

                                                              (1.2) 

 

Figure 1.4 Pendulums free body diagram 
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Here vertical reaction force is defined by P and this given by weight given by the pendulum 
on cart. Here Lcos  is given by the Pendulums displacement from the pivot. So 

2
2

2

dP mg m (x Lcos ) mL sin m( ) L cos
dt

                                                                      (1.3) 

Velocity of centre of mass is denoted by Vcmt now if will taking the sum of moments we get 

NLcos PLsin J                                                                                                                          (1.4) 

Now put the values of (1.2) and (1.3) in equation no (1.4) we get 

2mLx cos (mL J) mgLsin                                                                                                     (1.5) 

Now if we will substitute the equation (1.2) in equation no (1.1) we get 

2mL [(F bx) cos m( ) L cos sin (m M)g sin ]          


                                                     (1.6) 

If we solve (1.5) and (1.6) and simplify we will get 

2 2 21x [(J mL )(F bx mL sin ) mL g sin cos ]        


                                                             (1.7)   

Here   is given by    2 2mL (M mcos ) J(M m)                                                               (1.8)   

These two equations describe the dynamics of the system. 

 

1.2.2 Linearization 

      Here in this section the description about the linearization of the non-linear equations 
are given. Here we use tailors series expansion for Linearize the non-linear equations. We 
have to stabilize the pendulum angle at the Inverted position so assume 

0   

sin    

                                                                                cos 1                                                                        (1.9)   

And 2 0   

After linearizing the equations we get 

mL [(F bx) (m M)g ]     


                                                                                                           (1.10) 

2 21x [(J mL )(F bx) mL g ]    


                                                                                                   (1.11) 
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Here   denoted by 2MmL J(M m)     

Now converting in to state space form we get 

 

   

 1 2 22 2 1

' ' ' '2 2

3
3

4

'' ' '4

0 1 0 0 0

0

0 0 0 1 0

0

t

t

J mL J mLmLbm

F

M m mgL M m b

Z
ZL g

Z Z
Z

Z
Z Lmlb m

Z

   

  

                                                            









                              

(1.12)

 

And the output equation is given by 

1 0 0 0
0 0 1 0

 
         
 
 





x
x

Y



                                                                                                

(1.13) 

Now if we neglect the cart friction co-efficient then the transfer functions will be as 

 
  

2 2

2 2 2( (

( )
) )(

J mL s mgL

MmL M m J

X s
F s s s mgL m M

 


   
                                                     

(1.14) 

  
2

2 2 2 ( )

( )
( ) (

mLs
MmL

X s
F s M m J s m ms gL M


   

                                                 

(1.15) 

Now substituting the values 

Parameters Values 

Mass of Cart M 2.4kg 

Mass of Pendulum m 0.23kg 

Moment if Inertia J 0.099kg-m2 

Length of Pendulum L 0.4m 

Cart friction Co-efficient b 0.05Ns/m 

Acceleration due to gravity g 9.81m/s2 
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 
   

2

22 2

0 .3 8 9 4 2 .6 5 0 6 0 .3 8 9 4

6 .8 0 7

X s s
F s ss s


 


                                                                        

(1.16) 

 
     

2

2 2 2

0 .2 6 3 8 0 .2 6 3 8

6 .8 0 7 6 .8 0 7

s s
F s s s s


 

 
                                                                        

(1.17) 

 

1.2.3 Setup for Experiment 

         Experimental setup for Inverted Pendulum consists of PC with PCI-1711 card, Digital 
Controller for Pendulum, SCSI cable adaptor, DC motor which act as an actuator device,  
Cart, Optical encoders, pendent pendulum, Adjustable feet, track with a length of 1 m, 
Connecting cables and Matlab software. 

Cart and Pendulum system is the main thing of this setup. The cart driven by four wheels 
and a pulley chain mechanism which is connected to a DC motor. The cart is driven by the 
DC motor according to the Control voltage. 

 

Figure 1.5 Experimental Setup for Inverted Pendulum 
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In the track there are two limit switches which will cut the power whenever the cart is 
going to exceed the track limit. The optical encoder consists of a light source and decoder. 

 

Figure 1.6 Mounting of Sensors 

 

Figure 1.7 Mechanical Setup for Inverted Pendulum 



 

11 
 

 

Figure 1.8 Operating Principle of Encoders 

 

 

Figure 1.9 Control Algorithms for Inverted Pendulum 
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Figure 1.10 Working scheme in real-time 

The steps for real-time built are as follows 

1. At first analyzing block diagram and after that this is compiled to intermediate 
hierarchical representation in the form of model.rtw. 

2. Now model.rtw is read by TCL and converted into C code. 
3. A make file is now constructed by TCL and that placed into built directory. 
4. For compiling the source code the make file is now read by system make utility and an 

executable file model.exe is generated. 
 
Now system can easily understand the file as because the file is in binary format. 

The operating voltage of the setup is +2.5V to -2.5V so for the safety purpose we should use 
a saturation block in it. 
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1.3 Literature Review on Inverted Pendulum 

       Inverted Pendulum is a very important control problem in the application areas of 
Control System. The use of Inverted Pendulum take place first time in Great Britain in the 
year of 1844 for design purpose of a Seismometer. 

Among the all Teqniques the LQR design is the simplest Teqnique to stabilize the Inverted 
Pendulum System. This is similar to two-loop PD controller Design for stabilizes the system. 
Stabilization of the system is followed by linearization, finding state feedback gain for LQR 
and Swing by an energy based Controller. Position states are more penalized in compare to 
Velocity states. 

There are two set of pole in Inverted Pendulum system Fast & Slow. Angle Dynamics is 
determined by fast set of poles and position Dynamics is determined by other set of poles. 
Performances of different controllers like Sliding Mode, PD, Fuzzy; Neural Network is 
shown in [6]. Comparison for different Energy based Controllers to stabilization of Inverted 
Pendulum is mentioned in [7]. An Energy based gradient method is described in [8]. A 
feedback control law is derived in [9]. A method for Controlled Lagrangians described in 
[10]. A combined Controller is described in [11].  For global stabilization of Inverted 
pendulum a hybrid Controller is designed in [12]. A non-linear controller is designed in [13] 
considering non-linearity for stabilization of Inverted Pendulum. A simple design to stabilize 
the system is described in [14]. 

1.4 Thesis Objective 

1. Stabilize the Inverted Pendulum System which is highly unstable. 

2. Identification of Cart friction which is non-linear. 

3. Develop controllers to stabilize the system. 

1.5 Thesis Organization 

Chapter 1 this chapter includes brief introduction on Inverted Pendulum and Experimental 
setup. A literature review has done in this chapter. 

Chapter 2 this chapter includes LQR control design for stabilization of Inverted Pendulum 
along with Simulation and Experimental results. 

Chapter 3 this chapter includes two-loop PID controller design for Inverted Pendulum along 
with Simulation and Experimental results. 

Chapter 4 this chapter includes PID+PI controller design for Inverted Pendulum along with 
Simulation and Experimental results. 

Chapter 5 this chapter includes comparison between all designed controllers, conclusion and 
suggested future work. 
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CHAPTER 
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LQR CONTROL DESIGN 
FOR INVERTED 

PENDULUM 
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2.1 Introduction 

In this chapter a brief description and LQR control design for Inverted Pendulum is given. 
LQR is a most commonly used state feedback controller in Control System. This is based on 
pole-placement method. Inverted Pendulum system consists of many physical constraints 
thus LQR is chosen to stabilize the system. A LTI system is given by 

x Ax Bu                                                                                                                                                     (2.1) 

y Cx  

If for feedback all the n states available and they are completely controllable then we will get 
a gain matrix K and the input is given by 

du K(x x )                                                                                                                                                (2.2) 

Here vector of desired states is denoted by dx . Now if we go for close loop dynamics of the 
system then we get 

dx (A BK)x BKx                                                                                                                                  (2.3) 

Choice of K always depends upon the desired pole locations. For LQR Control always there 
is a cost function and the cost function is given by 

f

0

Tt
T T

f f f f f
t

1 1J [Z(t ) Y(t )] F(t )[Z(t ) Y(t )] {[Z Y] Q[Z Y] u Ru}dt
2 2

                            (2.4) 

M dimensional ref vector is denoted by Z, control input is defined by u, error weighted matrix 
is denoted by Q and control weighted matrix is denoted by R. 

The main things which we have to consider for LQR designing purpose is as follows   

1. All of the weighted matrices should have to be symmetric in nature. 
2. Q should have to be positive semi definite in nature. 
3. R should have to be positive definite in nature. 

After simplification the cost function becomes 

    ' '

0

( ) ( )x uJ t Qx t Rut t dt


 
                                                                                                

(2.5) 

Now if we apply PMP to the function we obtain 

TRu 0B                                                                                                                                                    (2.6) 

Px                                                                                                                                                                (2.7) 

T 1 TPAx A Px Qx PBR B Px P 0                                                                                                  (2.8) 
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T 1 TPA A P Q PBR B P P 0                                                                                                            (2.9) 

This equation is named as matrix Riccati equation. 

1 Tu R B Px Kx                                                                                                                                   (2.10) 

 

2.2 Design LQR to stabilize the System 

LQR state feedback solution is totally depends upon how to choose the value of Q and R. 
here we choose the Q matrix according to the system dynamics and as the system is a single 
input system we choose the value of R as one. 

 

 

 

Figure 2.1 Control scheme for LQR 
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Algorithm for choose the value for Q as follows 

1. Q matrix is a diagonal matrix and the elements of this matrix are q1, q2, q3, and q4. Here 
the weight act on cart position is denoted by q1. The cart has its linear velocity and for 
this there act some weight and this weight is denoted by q2. For pendulum angle there 
will be some weight and this weight is denoted by q3. Pendulum has its angular 
velocity and for that a weight act and that we denote by q4. 

2. Here weight on cart position is very large than the other weights so the value of q1 

should be very large among these four. 
3. Here q2>>q4 
4. So at last the obtained sequence is found as q1>>q2, q3>>q4 

Here we choose R as one. 

After several cycle we choose Q matrix as follows 

3 0 0 0 0 0 0
0 1 0 0 0 0 0

Q = , R = 1
0 0 5 0 0 0
0 0 0 1 0

 
 
 
 
 
 

 

And gains calculated as -2.2361, -2.7209, 17.5208 and 6.7791 

Closed loop poles are  2.8862 2.1606i   , 2.58 0.1461i   

 

2.3 Simulation and Experimental Result 

 
Figure 2.2 Simulation results for displacement (LQR) 
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Figure 2.3 Simulation results for Angle (LQR) 

 

Figure 2.4 tracking ability check for displacement (LQR) 

 

Figure 2.5 tracking ability check for angle (LQR) 
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Figure 2.6 Experimental results for LQR 

 

Figure 2.7 Experimental results for Decrease in gain 

This is observable that at 0.45 gain the cart seems to exceed the track limit. 
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Figure 2.8 Experimental results for increase in gain 

It is observable that after a gain of 2.2 the system becomes unstable. 

 

Figure 2.9 experimental results for increase in delay 

This is observable that after a gain of 0.02s the system becomes unstable. 
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2.4 Discussion and Summary 

       This chapter includes from the very basic of LQR problem, mathematical derivations all 
fundamental equations. Here we have design a LQR control for Inverted Pendulum System 
and the design is validated both in Simulation and in Experimental study. 
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CHAPTER 
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TWO-LOOP PID 
CONTROLLER 

DESIGN 
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3.1 Introduction 

The PID controllers are hugely popular owing to their simplicity in working. These 
controllers are also easy to implement with the help of electronic components. There are 
several PID tuning Methods available in literature like Ziegler-Nichols method, relay method 
for non-linear systems, here a pole placement method is presented. The concept of feedback 
has revolutionized the process control industry. The concept of feedback is really simple. It 
involves the case when two or more dynamic systems are connected together such that, each 
system affects the other and the dynamics is strongly coupled. The most important advantage 
of feedback is that it makes the control insensitive to external disturbances and variation of 
parameters of system. 
 
 

 
 

Figure 3.1 PID Controller structure 
 

The control signal u is entirely based on the error generated e . The command input r is also 
called the set-point weighting in process control literature. The mathematical representation 
of The control action is  
 
e r y   

p i d
deu K e K e dt K
dt

                                                                                                                           (3.1) 

 
It is seen that with the increase in the value of proportional gain Kp the value of error 
becomes Greatly reduced but the response becomes highly oscillatory. But, with a constant 
steady state error. Integral term Ki ensures that the steady state error is zero, i.e. the process 
output will agree with the reference in its steady state. But, large values of the integral gain 
would make the control input sluggish leading to unsatisfactory performance. The role of the 
derivative gain Kd is to damp the oscillatory behaviour of the process output. Use of high 
value of Kd may lead to instability. So, in order to achieve satisfactory performance we need 
to choose these values wisely. There exist many tuning rules out of which Ziegler-Nichols 
tuning is the most popular one. 
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Initially, the on-off type of feedback control was widely used. But, due to high oscillatory 
nature of output response the on-off type feedback controller and due to overreaction of 
control action, gave way to the P type controller. The control action in the case of P type 
feedback will be directly proportional to the error generated. A large Kp will reduce 
sensitivity to load disturbance, but increases measurement noise too. Choice of Kp be is a 
trade off between these two conflicting requirements. It may be noted that the problem of 
high gain feedback causes instability in closed loop. The upper limit of high gain is 
determined by the process dynamics. 
 
The Integral action has been a necessary evil in control loops. It has the advantage of 
guaranteed zero steady state error, but at the cost of sluggish control signal. The derivative 
action on the other hand improves transient response as it acts on the rate of change of error. 
It improves the closed loop stability. The choice of Kd is also very crucial, initially increase in 
its value will increase damping but a high value will eventually decrease the damping. 
 
 
3.2 Controller Design 
 

 
 

Figure 3.2 Control strategy of two-loop PID Controller for Inverted Pendulum 
 

 
Here C1 and C2 are the PID Controllers. One is displacement controller and another one is 
angle controller. P1 and P2 are the Plant transfer functions. We give angle reference as zero 
as we have to stabilize the Pendulum angle to Zero. 
 
Now if we simplify the block diagram then we get characteristic equation as 
 

1 1 2 21 P C P C 0                                                                                                                                          (3.2) 
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 
 

 2 2
1 1 1 2 2 21 2

2 2 2

Kd s Kp s Ki Kd s Kp s Kib b
1 0

s ss s a

   
   


                                       (3.3) 

 
Now from the desired pole location we get the characteristic equation as 
 

5 4 3 2s 26.4s 218.6s 871.3s 1721.8s 1343.7 0                                                                          (3.4) 

 

Now comparing (3.3) and (3.4) we get 

1
11 2

1 2
21 2

12
31 1 2

22
41

22
51

2

Kd
pb 0 0 b 0 0

Kp
p a0 b 0 0 b 0

Ki
pa b 0 b 0 0 b

Kd
p0 a b 0 0 0 0

Kp
p0 0 a b 0 0 0

Ki

 
      

           
      
    
    
         

                                                            (3.5) 

Substituting values we get 

1

1

1

2

2

2

Kd
5.841 0 0 3.957 0 0 26.4

Kp
0 5.841 0 0 3.957 0 225.07

Ki
39.759 0 5.841 0 0 3.957 871.3

Kd
0 39.759 0 0 0 0 1721.8

Kp
0 0 39.759 0 0 0 1343.7

Ki

 
     
         
      
    
    
         

                            (3.6)      

Here we have six unknown and five equations. Thus we assume Kd2 as 10. 

After Comparing we get the PID gain values as follows. 

 

1

1

1

:  
Kp 43.3
Ki 33.796
Kd 2.254







1C

 

 

2

2

2

:
Kp 120.9
Ki 247.43
Kd 10







2C
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3.3 Simulation and Experimental Results 

 

Figure 3.3 Simulation result for Displacement (two-loop PID Controller) 

 

Figure 3.4 Simulation result for angle (two-loop PID Controller) 

 

Figure 3.5 Simulation result for tracking ability (displacement) 
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Figure 3.6 Simulation result for tracking ability (angle) 

 

 

 

Figure 3.7 Experimental results for two-loop PID Controller 
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Figure 3.8 Experimental results for decrease in Gain 

It is observable that exceed track limit after a gain of 0.2 

 

Figure 3.9 experimental results for decrease in gain 

It is observable that exceed track limit after a gain 5. 
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Figure 3.10 Experimental results for increase in delay 

As a result more oscillation occurs in Pendulum angle 

 

3.3 Discussion and Summary 

This chapter describes very basic of PID controller to solve a practical problem associated 

with Inverted Pendulum. Here pole-placement Teqnique is used for PID controller design 

and designed controller gives satisfactory response both in Simulation and Real-time. 
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Fig 4.1 Control scheme for PID+PI for Inverted Pendulum 

Where 2
1 2b 5.841, b 3.957,a 6.807    

 
Here C1 and C2 are the PID Controllers. One is displacement controller and another one is 
angle controller. P1 and P2 are the Plant transfer functions. We give angle reference as zero 
as we have to stabilize the Pendulum angle to Zero. 
 
Now if we simplify the block diagram then we get characteristic equation as 
 

1 1 2 21 P C P C 0                                                                                                                                          (4.1) 
 

 
 

 2 2
1 1 1 2 2 21 2

2 2 2

Kd s Kp s Ki Kd s Kp s Kib b
1 0

s ss s a

   
   


                                      (4.2) 

 
Now from the desired pole location we get the characteristic equation as 
 

5 4 3 2s 26.4s 218.6s 871.3s 1721.8s 1343.7 0                                                                         (4.3) 

 

Now comparing (4.2) and (4.3) we get 

1
11

1 2
21 2

12
31 1 2

22
41

22
51

Kd
pb 0 0 0 0

Kp
p a0 b 0 b 0

Ki
pb a 0 b 0 b

Kp
p0 b a 0 0 0

Ki
p0 0 a b 0 0

 
     

          
      
    
    
       

 

                                                                    (4.4) 

 

After substituting values and compare we get PID Gains as follows 
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1

1

1

:  
Kp 43.35
Ki 33.83
Kd 4.52





 

1C

 

 

2

2

2

:  
Kp 121.15
Ki 316.02






C
 

 

4.3 Simulation and Experimental Results 

 
Figure 4.2 Simulation result for Displacement (PID+PI) 

 
Figure 4.3 Simulation result for Angle (PID+PI) 
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Figure 4.4 Tracking ability of the controller for Displacement 

 
Figure 4.5 Tracking ability of the controller for Angle 

 
Figure 4.6 Experimental results for PID+PI 
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Figure 4.7 Experimental results for decrease in Gain (PID+PI) 

This is observable almost exceed track limit at gain 0.2  

 
Figure 4.8 Experimental results for increase Gain 

This is observable almost exceed track limit at gain 5  
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Figure 4.9 Experimental results for increase in Delay 

As a result more oscillation occurs in Pendulum angle 

 

4.4 Discussion and Summary 

This chapter describes very basic of PID controller to solve a practical problem associated 

with Inverted Pendulum. Here pole-placement Teqnique is used for PID+PI controller 

design and designed controller gives satisfactory response both in Simulation and Real-

time. 
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5.1 Conclusion  

 

 

Figure 5.1 Comparison between Two-loop PID and PID+PI with addition of band limited 

white noise 

In presence of disturbance PID+PI (blue line Design 2) Controllers response is better than 

Two-loop PID Controller (red line Design 1). 
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Figure 5.2 Comparison results for Displacement 

 Overshoot  Undershoot  Sett time  

PID+PID  1.8  -0.9  2.4  

PID+PI  1.9  -0.8  2.4  

LQR  1.0  -0.18  3.0  

 

Table for comparison of Displacement 

 

Figure 5.3 Comparison results for Angle 
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 Overshoot  Undershoot  Sett time  

PID+PID  1.8  -0.9  2.4  

PID+PI  1.9  -0.8  2.4  

LQR  1.0  -0.18  3.0  

 

Table for Comparison of Angle 

Here we can see that the Overshoot & Undershoot is less for LQR compare to other two 

Controllers but the settling time is higher. In simulation study without any disturbance 

performance of Two-loop PID and PID+PI almost same. In real-time experiment oscillations 

small occurs in case of LQR in displacement and a little effect goes to angle also. Control 

voltage requirement for the LQR is much more than the other two controllers. In case of 

Two-loop PID controller overshoot is minimum as compare to other controllers but control 

voltage requirement is high than PID+PI controller. In case of PID+PI controller overshoot is 

slight high than Two-loop PID controller but settling time, control voltage is less than other 

two controller. 

                                Over all response of PID+PI is satisfactory than the other two controllers. 

5.2 Contribution for thesis 

1. LQR Control has designed & successfully implemented both in Simulation and real-time. 

2. Two-loop PID controller  successfully implemented both in real-time & simulation. 

3. PID+PI Controller implemented  & validate in Simulation and real-time. 

4. Robustness analysis made for all Controllers. 

5.3 Suggested future work 

1. Design a Fuzzy logic & Integral Sliding mode Controller for Inverted Pendulum system. 

 

 



 

40 
 

References 

[1] K. J. Astrom, R. M. Murray, “Feedback systems: An introduction for scientists and 

engineers”, N J: Princeton University Press, 2008. 

[2] “Digital Pendulum: Installation and Commissioning Manual”, East Sussex, U K: Feedback 

Instruments Ltd., 2007. 

[3] “Digital Pendulum: Control Experiments Manual”, East Sussex, U K: Feedback Instruments 

Ltd., 2007. 

[4] S. H. Zak, “Systems and Control”, N Y: Oxford University Press, 2003. 

[5] “Getting Started with Real-Time Workshop ver. 5”, M A: The Math Works Inc., July 2002. 

[6] C. C. Hung, B. Fernandez, "Comparative Analysis of Control Design Techniques for a Cart-

Inverted-Pendulum in Real-Time Implementation," American Control Conference, pp.1870-1874, 

2-4 June 1993. 

[7] K.J. Astrom, K. Furuta, “Swinging up a pendulum by energy control” , Automatica, vol. 36, 

no. 2, pp. 287-295, February 2000 

[8] A.S. Shiriaev, O. Egeland, H. Ludvigsen, A.L. Fradkov, “VSS-version of energy-based 

control for swinging up a pendulum”, Systems and Control Letters, vol. 44, no. 1, pp. 45- 56, 

September 2001. 

[9] D. Angeli, “Almost global stabilization of the inverted pendulum via continuous state 

feedback,” Automatica, vol. 37, no. 7, Pages 1103-1108, July 2001. 

[10] A.M. Bloch, N.E. Leonard, J.E. Marsden, , "Controlled Lagrangians and the stabilization of 

mechanical systems. I: The first matching theorem," IEEE Transactions on Automatic Control, 

vol.45, no.12, pp.2253-2270, Dec 2000 

[11] B. Srinivasan, P. Huguenin, D. Bonvin, “Global stabilization of an inverted pendulum– 

Control strategy and experimental verification”, Automatica, vol. 45, no. 1, January 2009, pp. 

265-269. 

[12] J. Zhao, M.W. Spong, “Hybrid control for global stabilization of the cart–pendulum system,” 

Automatica, vol.37, no.12, pp.1941-1951, December 2001 

[13] Q. Wei, W.P. Dayawansa, W.S. Levine, “Nonlinear controller for an inverted pendulum 

having restricted travel,” Automatica, vol. 31, no. 6, pp. 841-850, June 1995 

[14] R. Lozano, I. Fantoni, D. J. Block, ”Stabilization of the inverted pendulum around its 

homoclinic orbit,” Systems & Control Letters, vol. 40, no. 3, pp. 197-204, July 2000. 

[15] A.Ghosh, R.Krishnan and B. Subudhi, Robust PID Compensation of an Inverted Cart-

Pendulum System: An Experimental Study, IET Control Theory & Applications, Vol. 6, Iss. 8, 

pp. 1145–1152, 2012. 


