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ABSTRACT 

 
The present project deals with study and analysis of three phase multilevel 

inverters and their different topologies and configurations. The main purpose of our 

study is to study the modulation techniques and compare them with each other 

analyzing their advantages and disadvantages. Their applications have been analyzed 

according to their functioning such as the cascaded inverter for example could also 

serve as a rectifier/charger for the batteries of an electric vehicle while the vehicle 

was connected to an ac supply. 

In our thesis, the three main multi-level inverters studied are cascading H bridge, 

diode clamped and flying capacitor structure. The term multilevel converter is utilized 

to refer to a power electronic circuit that could operate in an inverter or rectifier 

mode.         

One first impression of a multilevel power converter is that the large number of 

switches may lead to complex pulse-width modulation (PWM) switching algorithms.  

However, early developments in this area demonstrated the relatively straightforward 

nature of multilevel PWM.  Our project presents the fundamental methods as well as 

reviews some novel research. The methods are divided into the traditional voltage-

source and current-regulated methods.  Some discrete current-regulated methods are 

presented herein, but due to their nature, the harmonic performance is not as good as 

that of voltage-source methods. Voltage-source methods also more easily lend 

themselves to digital signal processor (DSP) or programmable logic device (PLD) 

implementation.   

 Although we have discussed numerous topologies and modulation methods, 

several more can be found. An additional goal of this project is to introduce concepts 

related to reducing the number of isolated voltage sources and sensors.  This can be 

important in the high power quality cascaded multilevel inverters which require 

several voltage sources and knowledge of the dc voltage levels. 

 

 



 ii

List of figures                                                                             page no. 
Fig2.1      Single-phase structure of a multilevel cascaded                                      6 

                H-bridges inverter. 

Fig 2.2   Output phase voltage waveform of an 11-level                             7 

               cascade inverter with 5 separate dc sources. 

Fig 2.3   Three-phase wye-connection structure for electric                 8 

                vehicle motor drive and battery charging. 

Fig 2.4   Cascaded multilevel converter with transformers                9 

    using standard  three-phase bi-level converters. 

Fig 2.5    3 level Diode clamped inverter topology               12 

Fig 2.6     Three level flying capacitor topology                14 

Fig 2.7     Generalized P2 multilevel converter topology for one phase leg.        15 

Fig 2.8     Mixed-level hybrid unit configuration      16 

Fig 2.9     Zero-voltage switching capacitor-clamped inverter circuit.  17 

Fig. 2.10  Series-parallel connection to electrical system of   18 

                two back-to-back inverters. 

Fig 3.1      Nine Level Sine Triangle Modulation                23 

Fig 3.2      Four level inverter space vector modulation.    27 

Fig 3.3.     Per phase discrete modulation.      27 

Fig.3.4.     Duty cycle modulation voltage vectors.     27 

Fig 3.5.    Eleven level space vector control     28 

Fig 3.6    Ilustration of hystersis current control     31 

Fig 3.7     Fourlevel sigma delta function      31 

Fig 3.8     Four level delta control scheme      32 

Fig 4.1     Redundant State Selection Implemented in PLD   36 

Fig 4.2     Redundant State Selection Implemented in DSP   36 

Fig 5.1     Three-phase six-level structure of a diode-clamped inverter  38 

Fig 5.2     Line voltage waveform for a six-level diode-clamped inverter. 39 

Fig 5.3     Three-phase six-level structure of a flying capacitor inverter  39 

                                                         

 



 iii

List of tables                                                                               page no 

 
Table 2.1.  Three level Inverter Relationships                                                          11 

Table 2.2   Three level flying capacitors relationships                                             12 

Table 2.2   Three level flying capacitors relationships                                             38 
Table 5.2  Flying-capacitor six-level inverter redundant                                         40 
                   voltage levels and corresponding switch states. 
 



 - i - 

Chapter 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

GENERAL INTRODUCTION 

 

          Background 

          Objective 

 

 



 - 2 - 

 

 

1.1  Introduction 
Numerous industrial applications have begun to require higher power apparatus in recent 

years.  Some medium voltage motor drives and utility applications require medium voltage and 

megawatt power level.  For a medium voltage grid, it is troublesome to connect only one power 

semiconductor switch directly. As a result, a multilevel power converter structure has been 

introduced as an alternative in high power and medium voltage situations. A multilevel converter 

not only achieves high power ratings, but also enables the use of renewable energy sources. 

Renewable energy sources such as photovoltaic, wind, and fuel cells can be easily interfaced to a 

multilevel converter system for a high power application.  

   The concept of multilevel converters has been introduced since 1975. The term 

multilevel began with the three-level converter . Subsequently, several multilevel converter 

topologies have been developed . However, the elementary concept of a multilevel converter to 

achieve higher power is to use a series of power semiconductor switches with several lower 

voltage dc sources to perform the power conversion by synthesizing a staircase voltage 

waveform. Capacitors, batteries, and renewable energy voltage sources can be used as the 

multiple dc voltage sources. The commutation of the power switches aggregate these multiple dc 

sources in order to achieve high voltage at the output; however,  the rated voltage of  the power 

semiconductor switches depends only upon the rating of the dc voltage sources to which they are 

connected.   

 1.2 Advantages and Disadvantages 

 A multilevel converter has several advantages over a conventional two-level converter 

that uses high switching frequency pulse width modulation (PWM). The attractive features of a 

multilevel converter can be briefly summarized as follows.  

• Staircase waveform quality: Multilevel converters not only can generate the output 

voltages with very low distortion, but also can reduce the dv/dt stresses; therefore 

electromagnetic compatibility (EMC) problems can be reduced. 
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• Common-mode (CM) voltage: Multilevel converters produce smaller CM voltage; 

therefore, the stress in the bearings of a motor connected to a multilevel motor drive can 

be reduced. Furthermore, CM voltage can be eliminated by using advanced modulation 

strategies 

• Input current: Multilevel converters can draw input current with low distortion.   

• Switching frequency: Multilevel converters can operate at both fundamental switching 

frequency and high switching frequency PWM.  It should be noted that lower switching 

frequency usually means lower switching loss and higher efficiency. 

   Unfortunately, multilevel converters do have some disadvantages. One particular 

disadvantage is the greater number of power semiconductor switches needed. Although lower 

voltage rated switches can be utilized in a multilevel converter, each switch requires a related 

gate drive circuit. This may cause the overall system to be more expensive and complex.  

Plentiful multilevel converter topologies have been proposed during the last two decades 

Contemporary research has engaged novel converter topologies and unique modulation schemes.  

Moreover, three different major multilevel converter structures have been reported in the 

literature: cascaded H-bridges converter with separate dc sources, diode clamped (neutral-

clamped), and flying capacitors (capacitor clamped). Moreover, abundant modulation techniques 

and control paradigms have been developed for multilevel converters such as sinusoidal pulse 

width modulation (SPWM), selective harmonic elimination (SHE-PWM), space vector 

modulation (SVM), and others. In addition, many multilevel converter applications focus on 

industrial medium-voltage motor drives , utility interface for renewable energy systems, flexible 

AC transmission system (FACTS), and traction drive systems.   
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2.1 Cascaded H-Bridges  
      

A single-phase structure of an m-level cascaded inverter is illustrated in Figure.2.1.  Each 

separate dc source (SDCS) is connected to a single-phase full-bridge, or H-bridge, inverter. Each 

inverter level can generate three different voltage outputs, +Vdc , 0, and –Vdc by connecting the 

dc source to the ac output by different combinations of the four switches, S1 , S2 , S3 , and S4 .To 

obtain +Vdc, switches S1  and S4 are turned on, whereas –Vdc can be obtained by turning on  

switches S2 and S3 . By turning on S1 , S2 , S3 , and S4 , the output voltage is 0.  The ac outputs of 

each of the different full-bridge inverter levels are connected in series such that the synthesized 

voltage waveform is the sum of the inverter outputs.  The number of output phase voltage levels 

m in a cascade inverter is defined by m = 2s+1, where s is the number of separate dc sources.  An 

example phase voltage waveform for an 11-level cascaded H-bridge inverter with 5 SDCSs and 5 

full bridges is shown in Figure 2.1. The phase voltage van   = va1  + va2  + va3 + va4 + v a5. For a 

stepped waveform such as the one depicted in Figure 2.2 with s steps, the Fourier Transform for 

this waveform follows : 

 

 

 
... 2.1 
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Fig 2.1.  Single-phase structure of a multilevel cascaded H-bridges inverter. 
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Fig.2.2 Output phase voltage waveform of an 11-level cascade inverter with 5 separate dc                 

sources. 

 

The conducting angles 1.2.3..s can be chosen such that the voltage total harmonic 

distortion is a minimum.  Generally, these angles are chosen so that predominant lower 

frequency harmonics, 5th, 7th, 11th, and 13th , harmonics are eliminated. More detail on 

harmonic elimination techniques will be presented in the next section. Multilevel cascaded 

inverters have been proposed for such applications as static var generation, an interface with  

renewable energy sources, and for  battery-based applications. Three-phase cascaded inverters 

can be connected in wye, as shown in Figure 3, or in delta.  Peng has demonstrated a prototype 

multilevel cascaded static var generator connected in parallel with the electrical system that 

could supply or draw reactive current from an electrical system .  The inverter could be 

controlled to either regulate the power factor of the current drawn from the source or the bus 

voltage of the electrical system where the inverter was connected.  Peng and Joos have also 

shown that a cascade inverter can be directly connected in series with the electrical system for 

static var compensation.  Cascaded inverters are ideal for connecting renewable energy sources 
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with an ac grid, because of the need for separate dc sources, which is the case in applications 

such as photovoltaics or fuel cells. Cascaded inverters have also been proposed for use as the 

main traction drive in electric vehicles, where several batteries or ultracapacitors are well suited 

to serve as SDCSs .   

     The cascaded inverter could also serve as a rectifier/charger for the batteries of an 

electric vehicle while the vehicle was connected to an ac supply as shown in Figure 2.3.  

Additionally, the cascade inverter can act as a rectifier in a vehicle that uses regenerative 

braking.   

 

 
Fig 2.3. Three-phase wye-connection structure for electric vehicle motor drive and battery 

charging. 

 

  Manjrekar has proposed a cascade topology that uses multiple dc levels, which instead 

of being identical in value are multiples of each other. He also uses a combination of 

fundamental frequency switching for some of the levels and PWM switching for part of the 

levels to achieve the output voltage waveform. This approach enables a wider diversity of output 

voltage magnitudes; however, it also results in unequal voltage and current ratings for each of the 

levels and loses the advantage of being able to use identical, modular units for each level.   The 

main advantages and disadvantages of multilevel cascaded H-bridge converters are as follows : 
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Advantages:   

• The number of possible output voltage levels is more than twice the number of dc sources 

(m = 2s + 1).   

• The series of H-bridges makes for modularized layout and packaging.  This will enable 

the manufacturing process to be done more quickly and cheaply.  

Disadvantages:   

• Separate dc sources are required for each of the H-bridges.  This will limit its application  

            to products that already have multiple SDCSs readily available.  

Another kind of cascaded multilevel converter with transformers using standard three-

phase bi-level converters has been proposed. The circuit is shown in Figure 2.4. The converter 

uses output transformers to add different voltages. In order for the converter output voltages to 

be added up, the outputs of the three converters need to be synchronized with a separation of 

1200 between each phase. For example, obtaining a three-level voltage between outputs a and b, 

the output voltage can be synthesized by V ab = Va1-b1 +Vb1-a2 +Va2-b2 . An isolated transformer is 

used to provide voltage boost. With three converters synchronized, the voltages Va1-b1 , Vb1-a2 , 

Va2-b2, are all in phase; thus, the output level can be tripled .   

The advantage of the cascaded multilevel converters with transformers using standard  

three-phase bi-level converters is the three converters are identical and thus control is more 

simple. However, the three converters need separate DC sources, and a transformer is needed to 

add up the output voltages.  

 
Fig.2.4. Cascaded multilevel converter with transformers using standard  three-phase bi-

level converters. 
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2.2. Diode-clamped multilevel inverter  
  The diode-clamped inverter provides multiple voltage levels through connection of  the 

phases to a series bank of capacitors.  According to the original invention, the concept can be 

extended to any number of levels by increasing the number of capacitors.  Early descriptions of 

this topology were limited to three-levels where two capacitors are connected across the dc bus 

resulting in one additional level.  The additional level was the neutral point of the dc bus, so the 

terminology neutral point clamped (NPC) inverter was introduced. However, with an even 

number of voltage levels, the neutral point is not accessible, and the term multiple point clamped 

(MPC) is sometimes applied. Due to capacitor voltage balancing issues, the diode-clamped 

inverter implementation has been mostly limited to the three-level. Because of industrial 

developments over the past several years, the three-level inverter is now used extensively in 

industry applications.  Although most applications are medium-voltage, a three-level inverter for 

480V is on the market.  

  Figure 2.5. shows the topology of the three-level diode-clamped inverter.  Although the 

structure is more complicated than the two-level inverter, the operation is straightforward and 

well known. In summary, each phase node (a, b, or c) can  be connected to any node in the 

capacitor bank (d0 ,d1 ,d2).Connection of the a-phase to junctions  d0  and  d2  can be 

accomplished by switching transistors Ta1 andTa2  both off or both on respectively.  These states 

are the same as the two-level   inverter yielding a line-to-ground voltage of zero or the dc 

voltage.  Connection to the junction d1  is accomplished by gating  Ta1  off and  Ta2  on.  In this 

representation,  the labels Ta1 and Ta2   are used to identify the transistors as well as the transistor 

logic (1=on and 0=off).  Since the transistors are always switched in pairs, the complement 

transistors are labeled  Ta1 and Ta2 accordingly.  In a practical implementation, some dead time 

is inserted between the transistor signals and their complements meaning that both transistors in 

a complementary pair may be switched off for a small amount of time during a transition .  

However, for the discussion herein, the dead time will be ignored.  From Figure2.5, it can be 

seen that, with this switching state, the a-phase current ias  will flow into the junction through 

diode as Da1  if it is negative or out of the junction through diode  Da2  if the current is are 

positive.  According to this description, the inverter relationships for the presented in Table 2.1.  

 

 



 - 11 - 

 Table 2.1. Three level Inverter Relationships 

 
If each capacitor is charged to one-half of the dc voltage, then the line-to-ground and 

voltage can be calculated. The dc currents iadc1 and iadc2 are the a-phase components to the 

junction currents in Figure2.5 respectively.   

The general n-level modulator, described in the next section, determines the switching 

state for each phase.  For practical implementation, the switching state needs to be converted into 

transistor signals.  Considering Table .2-1, this can be accomplished in general by 

   

       ... 2.2 
 
 
An inverse relationship may also be useful and is given by  

 

 
…2.3 

Once the transistor signals are established, general expressions for the a-phase line- 

to-ground voltage and the a-phase component of the dc currents can be written as  

 
…2.4 

 
                                                                                                                     …2.5 
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Figure 2.5.   3 level Diode clamped inverter topology 

 

 

 

2.3 Flying capacitor structure  
  

Another fundamental multilevel topology, the flying capacitor, involves series connection 

of capacitor clamped switching cells.  This topology has several unique and attractive features 

when compared to the diode-clamped inverter.  One feature is that added clamping diodes are not 

needed.  Furthermore, the flying capacitor inverter has switching redundancy within the phase 

which can be used to balance the flying capacitors so that only one dc source is needed.  

  Figure .2.6 shows the three-level flying capacitor inverter.  The general concept of 

operation is that each flying capacitor is charged to one-half of the dc voltage and can be 

connected in series with the phase to add or subtract this voltage.  Table 2.2 shows the 

relationships for the a-phase: 
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Table 2.2  Three level flying capacitors relationships 

 
 

In comparison to the three-level diode-clamped inverter, an extra switching state is 

possible.  In particular, there are two transistor states which make up the level  sa.= 1  

Considering the direction of the a-phase flying capacitor current iac1   for the redundant states, a 

decision can be made to charge or discharge the capacitor and therefore, the capacitor voltage 

can be regulated to its desired value by switching within the phase.  In Table 2.2, the current iadc  

is the a-phase component of the dc current.  The total dc current can be calculated by summing 

the components for all phases.   

As with the three-level flying capacitor inverter, the highest and lowest switching states 

do not change the charge of the capacitors.  The two intermediate voltage levels contain enough 

redundant states that both capacitors can be regulated to their ideal voltages. 

 

For the general n-level flying capacitor inverter, the transistor voltages can be determined from 

the transistor signals by 

 

 
…2.7 

 

When employing eqn 2.7, the lowest and highest capacitor voltages will be vac0 =0 .   
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Figure 2.6  Three level flying capacitor topology 

 

 

 

2.4 Other Multilevel Inverter Structures   
Besides  the three basic multilevel inverter  topologies previously discussed, other 

multilevel converter topologies have been proposed; however, most of these are “hybrid” circuits 

that are combinations of two of the basic multilevel topologies or slight variations to them. 

Additionally, the combination of multilevel power converters can be designed to match with a 

specific application based on the basic topologies.   In the interest of completeness, some of these 

will be identified and briefly described. 
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A. Generalized Multilevel Topology 

Existing multilevel converters such as diode-clamped and capacitor-clamped multilevel 

converters can be derived from the generalized converter topology called P2 topology proposed 

by Peng as illustrated in Figure 2.7. The generalized multilevel converter topology can balance 

each voltage level by itself regardless of load characteristics, active or reactive power conversion 

and without any assistance from other circuits at any number of levels automatically. Thus, the 

topology provides a complete multilevel topology that embraces the existing multilevel 

converters in principle.  

               Figure 2.7 shows the P2 multilevel converter structure per phase leg. Each switching 

device, diode, or capacitor’s voltage is 1 V , for instance, 1/ (m-1) of the DC-link voltage. Any 

dc converter with any number of levels, including the conventional bi-level converter can be 

obtained using this generalized topology. 

 

 
Fig 2.7 Generalized P2 multilevel converter topology for one phase leg. 
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B. Mixed-Level Hybrid Multilevel Converter 

To reduce the number of separate DC sources for high-voltage, high-power applications 

with multilevel converters, diode-clamped or capacitor-clamped converters could be used to 

replace the full-bridge cell in a cascaded converter. An example is shown in Figure 2.8. The 

nine-level cascade converter incorporates a three-level diode-clamped converter as the cell. The 

original cascaded H-bridge multilevel converter requires four separate DC sources for one phase 

leg and twelve for a three-phase converter. If a five-level converter replaces the full-bridge cell, 

the voltage level is effectively doubled for each cell. Thus, to achieve the same nine voltage 

levels for each phase, only two separate DC sources are needed for one phase leg and six for a 

three-phase converter. The configuration has mixed-level hybrid multilevel units because it 

embeds multilevel cells as the building block of the cascade converter. The advantage of the 

topology is it needs less separate DC sources. The disadvantage for the topology is its control 

will be complicated due to its hybrid structure. 

 
Fig 2.8  Mixed-level hybrid unit configuration using the three-level diode-clamped  

             converter as the cascaded converter cell to increase the voltage levels. 
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C. Soft-Switched Multilevel Converter 

Some soft-switching methods can be implemented for different multilevel converters to 

reduce the switching loss and to increase efficiency. For the cascaded converter, because each 

converter cell is a bi-level circuit, the implementation of soft switching is not at all different from 

that of conventional bi-level converters. For capacitor-clamped or diode-clamped converters, 

soft-switching circuits have been proposed with different circuit combinations. One of soft-

switching circuits is a zero-voltage-switching type which includes auxiliary resonant 

commutated pole (ARCP), coupled inductor with zero-voltage transition (ZVT), and their 

combinations  as shown in Figure 2.9. 

 

 
Fig 2.9  Zero-voltage switching capacitor-clamped inverter circuit. 

 

 

D. Back-to-Back Diode-Clamped Converter  

Two multilevel converters can be connected in a back-to-back arrangement and then the 

combination can be connected to the electrical system in a series-parallel arrangement as shown 

in Figure 2.10.  Both the current demanded from the utility and the voltage delivered to the load 

can be controlled at the same time.  This series-parallel active power filter has been referred to as 
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a universal power conditioner when used on electrical distribution systems and as a universal 

power flow controller when applied at the transmission level. The diode-clamped inverter has 

been chosen over the other two basic multilevel circuit topologies for use in a universal power 

conditioner for the following reasons: 

• All six phases (three on each inverter) can share a common dc link.  Conversely, the 

cascade inverter requires that each dc level be separate, and this is not conducive to a  

            back-to-back arrangement.  

• The multilevel flying-capacitor converter also shares a common dc link; however, each 

phase leg requires several additional auxiliary capacitors.  These extra capacitors would 

add substantially to the cost and the size of the conditioner. 

Because a diode-clamped converter acting as a universal power conditioner will be 

expected to compensate for harmonics and/or operate in low amplitude modulation index 

regions, a more sophisticated, higher-frequency switch control than the fundamental frequency 

switching method will be needed.  

 
Fig. 2.10   Series-parallel connection to electrical system of two back-to-back inverters. 
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3.  Multilevel Modulation 

This chapter presents the fundamental methods pulse-width modulation (PWM) .The 

methods are divided into the traditional voltage-source and current-regulated methods. An 

advantage of the current-regulated methods is that there is a need to control the current directly 

since the higher-level control (vector control, reactive power control, active rectifier, etc.) nearly 

always outputs commanded currents. However, current controls typically depend on event 

scheduling and are therefore analog implementations which can only be reliably operated up to a 

certain power level. Some discrete current-regulated methods are presented herein, but due to 

their nature, the harmonic performance is not as good as that of voltage-source methods. 

Voltage-source methods also more easily lend themselves to digital signal processor (DSP) or 

programmable logic device (PLD) implementation. 

 

3.1 Voltage-source methods 
 Voltage-source modulation has taken two major paths; sine triangle modulation in the 

time domain and space vector modulation in the q-d stationary reference frame. Sine-triangle and 

space vector modulation are exactly equivalent in every way. Adjusting some parameters in the 

sine-triangle scheme (such as the triangle shape and sine wave harmonics) is equivalent to 

adjusting other parameters in the space vector scheme (such as the switching sequence and dwell 

time). A general tradeoff between harmonics and switching losses has been identified for 

multilevel inverters.       
                The inverter line-to-ground voltage can be directly controlled through the switching 

state. For a specific inverter, the switching state is broken out into transistor signals. However, as 

a control objective, it is more desirable to regulate the line-to-neutral voltages of the load. 

Infinite set of line-to-ground voltages for a desired set of line-to-neutral voltages since the matrix 

has a zero determinate. This provides some flexibility in the line-to ground voltages since any 

common-mode terms included will not appear on the load. In a three-phase system, the common 

terms include dc offset and any triplen harmonics. To narrow the possibilities, the commanded 

line-to-ground voltages will be defined herein as: 
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…3.1 

 

where m is the modulation index which has a range of             

                                              …3.2 

and  is the converter electrical angle. In eqn 3.1, first set of terms on the right hand side define 

a sinusoidal set of commanded voltages with controllable amplitude and frequency through m 

and   respectively. The second set of terms on the right hand side is the common-mode terms. 

In this case, a dc offset is applied so that the commanded line-to-ground voltages will be within 

the allowable range of zero to the dc voltage. The other common-mode term is a third harmonic 

component which is added to fully utilize the dc source voltage. The common-mode terms of are 

just the minimum set and it is possible to command other types of line-to-ground voltages, 

including discontinuous waveforms, in order to optimize switching frequency or harmonics. 

              Some fundamental definitions will now be presented for reference when describing the 

modulation methods. First, duty cycles are defined by scaling the commanded voltages with 

modifications to account for multiple voltage levels. The modified duty cycles are  

 

        
                                                                                                                               … 3.3  

Next, a commanded voltage vector is defined by 

                                            …3.4 
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where the commanded q- and d-axis voltages are related to the a-b-c variables of 3.1 

                                                                    …3.5 

                                                                              …3.6 

 

It should be pointed out that the commanded q- and d-axis voltages can also be defined in terms 

of desired line-to-neutral voltages since the zero sequence is being ignored. 

 

A. Sine-triangle modulation 
  One of the most straightforward methods of describing voltage-source modulation is to 

illustrate the intersection of a modulating signal (duty cycle) with triangle waveforms. Figure 3.1 

demonstrates the sine-triangle method for a nine-level inverter. 

Therein, the a-phase duty cycle is compared with eight (n-1 in general) triangle waveforms. The 

switching rules are simply 

                                                     

                                                                                                     …3.7 
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Fig 3.1 Nine Level Sine Triangle Modulation 

 

B. Space vector modulation 

Space vector modulation (SVM) is based on vector selection in the q-d stationary 

reference frame. As an example, consider the commanded voltage vector defined by 3.4. For a 

four-level system, the commanded vector is plotted along with the vectors obtainable by the 

inverter in Figure 3.2. The desired vector  is shown at some point in time, but will follow the 

circular path if a three-phase set of voltages are required on the load. Although the circular path 

shown in the figure, the path may be arbitrary. The first step in the SVM scheme is to identify 

the three nearest vectors. In this example, they are v52 , v56 , and the redundant vectors v36 and 

v57. The next step is to determine the amount of time that must be spent at each vector in order 

for the average voltage to be equal to the commanded voltage. This can be done using some 

simple mathematical relationships. In particular, the vectors and their corresponding times are 

related by: 

                                                   …3.8 
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where Tsw is the switching time of the PWM control which is the total of the time spent at each 

vector or  

                                                                        …3.9 

Based on 3.8 and 3.9 the amount of time for each voltage vector can be computed by solving the 

inverse problem  

                   

 
                                                                                                                       …3.10 

The final step in the SVM scheme is to determine a sequence of switching for the voltage 

vectors. For this example, the switching sequence could be from v57 to v56 to v52 to v36 .At the end 

of the sequence, the controller switching time Tsw has elapsed and the process is repeated with 

updating the commanded voltage, identifying the three nearest vectors, calculating the switching 

times, and scheduling the switching sequence. 

  As can be seen, there are a lot of free parameters in this process. The time spent at vectors 

v56 and v52 (sometimes called dwell time) is directly determined by 3.10, but the time spent at 

vectors v57 and v36 is an arbitrary split of T36,57 . Whether this time is split evenly or as a function 

of the commanded voltage angle can have an effect on the inverter harmonics and switching 

losses. Instead of splitting the time, the sequence could be changed to switch from v57 to v56 to v52 

which would reduce commutation. the sequence can also be reversed by switching from v52 to v56 

to v57 which will affect the harmonics. 

 

C. Discrete implementation   

One attractive feature of voltage-source PWM methods is that they can be readily 

implemented on a DSP/PLD control. Figure 3.3 demonstrates a per-phase time domain method 

of implementing PWM in a discrete time system for a four-level inverter. Therein, the modified 
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a-phase duty cycle is shown along with the switching state output of the modulator. At each 

point in time, the a-phase duty cycle is updated based on the magnitude and phase of the 

commanded voltages in accordance with 3.3. The continuous calculation is shown in Figure 3.2 

and is a small portion of the duty cycle shown in Figure 3.1. In a DSP system, discrete values of 

the duty cycle are computed which are represented by points in Figure 3.3. This creates a zero-

order-hold effect which is negligible if the switching frequency is large compared to the changes 

in the duty cycle. In order to schedule the switching state transitions during the switching period, 

the nearest lower and upper voltage levels are determined. This is a simple matter of 

intergerizing the duty cycle using  

                                                                                                  …3.11 

                                                                                                           …3.12 

 

where INT is the intergerization function that returns the nearest integer less than or equal to its 

argument. Next, a switching time for each a-phase is determined based on the proximity to the 

lower level by direct calculations. For the a-phase, this is calculated by 

                                                                                            …3.13 

As can be seen, the switching time ta will range from zero to 100% of the switching period and is 

the time that should be spent at the upper level. The final step is scheduling the switching 

transitions. In Figure 3.3, the pulse is left-justified in the switching period starting at the upper 

level and transitioning to the lower level. The scheduling rules for this type of justification are  

                                                                                    …3.14 

where t ' is time that is zero at the beginning of the switching period. The same procedure is 

applied to the b- and c-phases. 

Usually, the nearest levels and switching times for each phase are calculated in a DSP. 

This information is then transferred to a PLD which operates at a higher a higher clock frequency 

and can make the transitions of the switching state on a nanosecond time scale. In a practical 
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implementation, the DSP and PLD clocks are tied together by a PLD circuit which divides its 

clock and sends a clock signal to the DSP on the microsecond time scale.  Besides the zero-order 

hold effect, there is a one-sample delay effect which is caused by the fact that the DSP will take 

some time to determine the levels and switching times. This effect is not shown in Figure 3.3, but 

the computed duty cycle (indicated by the discrete points) is used in the following switching 

period causing a lag between the duty cycle and the switching state. This effect is negligible for 

high switching frequencies. 

Some comments are appropriate to show the equivalence between the discrete 

implementation and the sine-triangle and SVM methods. The example shown in Figure 3.3 

assumed that the switching state would start in the upper level and transition to the lower level at 

the appropriate time. An identical switching pattern is obtained in the sine-triangle method by 

using a saw-tooth waveform instead of a triangle waveform as shown in Figure 3.1. Likewise, 

moving the pulses to the right side of the switching period (a transition from the lower level to 

the upper level) would be equivalent to using a reverse saw-tooth waveform. If the pulses are 

centered within the switching period, then the result is the same as that using a triangle 

waveform. Since the sine-triangle and discrete methods are both performed on a per-phase basis 

and in the time domain, their equivalence is easily understood. The equivalence to SVM can be 

seen by creating a plot of the switching states for all three phases as shown in Figure 3.4. Therein 

the switching for a four level inverter is shown over one switching period. In this example, the c-

phase switches from level 1 to 0 with the shortest switching time (lowest duty cycle). The b-

phase switches from 2 to 1 with an intermediate time representing a duty cycle greater than the c-

phase. The a-phase switches from level 3 to 2 with the highest duty cycle. The result of 

switching the three phases is that four windows are created by the switching boundaries. The first 

window (where sa =3, sb =2, and sc =1) creates vector v57 according to 3.1 to 3.7. The next three 

windows create vectors v56 , v52 , and v36 . These are the same three nearest vectors in the 

example used in the section on SVM. The sequence is also the same. However, the sequence can 

be reversed in the discrete implementation by switching to right justification. In a similar way, 

the sequence can be reversed in the SVM method. There is much more to the equivalence of 

these methods including adding harmonics to the duty cycles in the sine-triangle method or 

changing the dwell times in the SVM method.    

                           It can be seen that the discrete method presented herein relies on computation 

directly from the duty cycles and therefore it is not necessary to define triangle waveforms or 
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voltage vectors. However, sine-triangle modulation is useful in that it can provide a 

straightforward method of describing multilevel modulation. Also, the SVM method leads to an 

insightful (and sometimes simpler) way to view the operation of multilevel inverters.  

 
Fig 3.2  Four level inverter space vector modulation. 

 
Fig 3.3.  Per phase discrete modulation. 

 
Figure.3.4.  Duty cycle modulation voltage vectors. 
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Figure  3.5. Eleven level space vector control 

 

 

D. Space vector control  

A rather unique voltage-source modulation method called space vector control (SVC) has 

been recently introduced. Since it is fundamentally different than sine-triangle or SVM, it is 

presented in this separate section. The premise of this scheme is that the inverter can be switched 

to the vector nearest the commanded voltage vector and held there until the next cycle of the 

DSP. Figure 3.5 illustrates the concept in the vector domain for an eleven-level inverter. Therein, 

only one quadrant of the vector plot is shown. The nearest vector to the commanded voltages is 

determined according to the hexagonal regions around each vector (some of which are shown in 

Figure 3.5). This operation is performed at each sample period of the DSP resulting in a simple 

modulation method. Since the vector is held for the DSP cycle, there is no need to compute 

switching times and schedule timing in the PLD. 

Although this method is simple to implement, it is most useful on inverters with a 

relatively high number of voltage vectors. An example is the eleven-level series H bridge 

inverter with five cells. Another aspect of this control is that the DSP switching period should be 

small since the voltage is held constant for the entire switching time. Implementation of this 

scheme on an eleven-level inverter has shown that it can produce a lower THD than the SVM 

method.  
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3.2 Current-regulated methods                                                                        

    This section presents an overview of the current-regulated PWM schemes. An extension 

of the two-level hysteresis control is presented. Although this method directly regulates the 

currents, it relies on an analog implementation which is not practical for higher power levels. As 

a compromise, two new methods, referred to as clocked sigma-delta and multilevel delta 

modulation, are introduced. These schemes provide a digital implementation, but have lower 

harmonic performance than the voltage source methods.                                                                        

 The tradeoff between discrete implementation and harmonic performance has been an issue for 

current-regulated controls. For two-level power conversion, some researchers have proposed 

predictive control which relies on knowledge of the load parameters. Others have developed 

controls dependant on high-frequency timing of the current waveforms. These methods and 

others have been applied to multilevel power conversion.  

 

A.  Hysteresis control  

The hysteresis current-control concept typically employed in two-level drive systems can 

be extended to multi-level systems by defining a number of hysteresis bands. This concept is 

illustrated in Figure 3.6 for the four-level inverter. The basic operation of the control involves 

defining n-1 evenly spaced hysteresis bands on each side of the commanded current. The voltage 

level is then increased by one each time the measured current departs from the commanded value 

and crosses a hysteresis band. One important detail of this control is that the voltage level will be 

at its highest or lowest value when the measured current crosses the lowermost or uppermost 

hysteresis band respectively. This ensures that the current will regulate about the commanded 

value. This straightforward extension of two-level current control results in good regulation of 

the currents and acceptable voltage level switching. Furthermore, the multi-level hysteresis 

control handles steps changes in commanded current with a response similar to two-level 

hysteresis control. 

                   There are many other methods of implementing hysteresis band based current 

controls for multilevel inverters. The amount of analog circuitry can be reduced by using a single 

hysteresis band and increasing or decreasing the voltage levels each time the current touches the 

band. This method is then coupled with timing and a voltage controlled oscillator to drive the 

current error to zero. An extension to this method uses two hysteresis bands to provide better 
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dynamic performance, but still utilize a small amount of analog circuitry for a large number of 

voltage levels. 

There are many other methods of implementing hysteresis band based current controls for 

multilevel inverters. The amount of analog circuitry can be reduced by using a single hysteresis 

band and increasing or decreasing the voltage levels each time the current touches the band. This 

method is then coupled with timing and a voltage controlled oscillator to drive the current error 

to zero. An extension to this method uses two hysteresis bands to provide better dynamic 

performance, but still utilize a small amount of analog circuitry for a large number of voltage 

levels .The dual hysteresis band approach has also been used in the four-level diode clamped 

rectifier where the inner band is used to achieve capacitor voltage balancing and the outer band is 

used for current regulation                    

 
B. Clocked sigma-delta modulation 

  Some current-regulated schemes are based on the sigma-delta function. As an example, 

the four-level sigma delta function is shown in Figure 3.7 for a phase. Based on the hysteresis 

level h, the per-phase switching state is determined from the current error. The function can be 

implemented directly with analog components or it can be implemented on a DSP based on a 

fixed clock frequency. In a two-level system, the hysteresis level is zero and the control reduces 

to that of standard delta modulation. As with two-level systems, the switching frequency of the 

inverter may be less than the clock frequency since the voltage level may not change every time 

the control is clocked. The current tracking improves with increasing clock frequency, and a 

relatively high frequency is needed for good performance. This makes the control somewhat 

undesirable, although digital implementation is an advantage.                                                                                                   

The concept behind multilevel delta modulation is illustrated for the four-level system 

Figure 3.8. As with clocked sigma delta modulation, the control operates on a per-phase basis 

and can be implemented on a DSP. The general scheme functions by increasing or decreasing the 

voltage level by one at each clock cycle of the DSP depending on whether the current error is 

positive or negative respectively. In this control, the hysteresis band does not need to be defined. 

In the two-level implementation, the control reduces to that of standard delta modulation. As 

with clocked sigma-delta modulation, the clock frequency must be set relatively high in order to 

obtain good current tracking.  
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Figure 3.6  Ilustration of hystersis current control 

 

 

 

 

 
Figure 3.7 Fourlevel sigma delta function 
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Figure 3.8 Four level delta control scheme 
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Chapter 4 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

REDUNDANT STATE SELECTION 
 

General Concept 
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4.1 General Concept 
In previous chapters, it was noted that some inverter switching states are redundant in 

that there are several combinations that produce the same output voltages. Therefore, the exact 

inverter switching is not unique and this redundancy may be utilized to achieve certain goals. 

Among the possible redundant state selection (RSS) goals are 

• Capacitor voltage balancing 

• Reactor current sharing 

• DC source current control 

• Switching frequency reduction 

It is also important to point out that two types of redundancy are possible. Joint phase 

RSS involves changing the common-mode voltage (that is increasing or decreasing the voltage 

level of all three phases). This was demonstrated in the first section during the discussion of 

voltage vectors. In the voltage vector plot, the joint phase RSS can clearly be seen by the voltage 

vectors achievable by more than one combination of switching states. For a particular set of 

switching states, the number of redundant states using joint-phase redundancy is given by (3.10). 

Per-phase redundancy refers to certain inverter topologies which have redundant switching states 

within each phase. An example of this is the flying capacitor topology where several transistor 

switching combinations lead to the same line-to-ground voltage. 

The fundamental theory of RSS is to use inverter equations and operating conditions to 

determine the best redundant state to meet particular goals. In order to implement this concept, 

digital flags are created which represent inverter operation (capacitor voltage balance, current 

direction, etc.). The digital flags along with the modulator desired switching state form the input 

to an RSS table which can be filled off-line based on the inverter equations. Using this method, 

the best redundant state can be instantaneously selected during inverter operation. 

      Figure 4.1 shows a schematic of how the table can be included in a PLD. Based on the 

modified duty cycles, the DSP calculates the lower levels and switching times as described 

above. Many commercial DSPs have on-board PWM channels for two level operation. These 

may be loaded with the switching times and their two-level outputs ( PWMa , PWMb , and 

PWMc ) can be added to the lower levels in the PLD section to produce the switching states. 

Using this method, it is not necessary to have a modulation channel for each transistor pair. The 

switching states at this stage are commanded by the modulator and are denoted  sa *, sb*  , and 
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sc* .. In Figure 4.1, the digital flags include  Ia , Ib, and Ic which indicate the direction of the a- b- 

and c-phase currents as well as flags indicating over- or under-charge for the inverter capacitors. 

Some analog circuitry will be required in order to generate the digital flags. More specifics on 

the digital flags will be given later. For now, it should be considered that the digital flags 

represent the state of the system relative to the RSS goals. This information is latched by the 

PWM modulator so that the information is only updated at the beginning of a PWM cycle. This 

prevents the table inputs from changing in the middle of a PWM cycle. The RSS table output is 

the final set of switching states that are sent to the inverter. At the top of Figure 4.1, an example 

of the possible output is shown. This example is identical to the previous example shown in 

Figure 3.4. Therein, the last PWM window has been changed by the RSS table from ( sa* = 2 , 

sb* = 1 , sc* =0) to (sa =3,sb =2,sc =1). As can be seen, the RSS switching can have an impact on 

the switching frequency. Typically, an increase in switching frequency is necessary in order to 

satisfy the RSS goals. The outputs of the RSS table are input to a breakout table which produces 

the transistor signals for a particular topology from the switching state as described above. In 

systems involving per-phase RSS, it is necessary to absorb this table into the RSS table making 

the table output the transistor signals. 

 Figure 4.2  shows the implementation of an RSS table in the DSP. In this case, the level 

and timing information for all phases is used to determine commanded switching states for the 

four windows labeled I, II, III, and IV. The DSP then performs four table look-ups based on the 

commanded switching states. For the digital flags, the analog signals (currents and capacitor 

voltages for example) are read into the DSP. After digital filtering, the flags are calculated. The 

result is a switching state for each window which includes the RSS. This information and the 

switching times are transmitted to the PLD through digital outputs where the PWM is 

implemented. 
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Figure 4.1 Redundant State Selection Implemented in PLD 

 
 

Figure 4.2 Redundant State Selection Implemented in DSP 
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5.1 Diode Clamped Inverter         

 

 

 
Figure  5.1  Three-phase six-level structure of a diode-clamped inverter 

 
 
 

Table 5.1  diode clamped six level inverter voltage levels and  corresponding switch states 
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Figure  5.2   Line voltage waveform for a six-level diode-clamped inverter. 
 
 
 
5.2 Flying Capacitor Inverter 
 

 
 

Figure 5.3   Three-phase six-level structure of a flying capacitor inverter 
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Table  5.2  Flying-capacitor six-level inverter redundant voltage levels and corresponding 
switch states. 
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CONCLUSION 
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Concluding Remarks 
 

This thesis has demonstrated the state of the art of multilevel power converter 

technology. Fundamental multilevel converter structures and modulation paradigms including 

the pros and cons of each technique have been discussed. Most of the thesis focus has addressed 

modern and more practical industrial applications of multilevel converters. It should be noted 

that this thesis could not cover all multilevel power converter related applications; however the 

basic principles of different multilevel converters have been discussed methodically. The main 

objective of this thesis is to provide a general notion about the multilevel power converters and 

various modulation strategies mainly PWM techniques and their applications. We deduced 

possible switching states in six level diode clamped and flying capacitor Inverters  

The general concept of multilevel power conversion was introduced more than twenty years 

ago.  However, most of the development in this area has occurred over the past five years.  

Furthermore, each year seems to bring even more publications than the previous.  Besides the 

mainstream power electronics conferences and journals, multilevel power conversion is also showing 

up in power systems and electronics societies.  Despite the rapid growth of this area in recent years 

and the increasing number of innovations introduced each year, there is still much more that can be 

done.   
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