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ABSTRACT 

 
In response to demand in market place, discrete manufacturing firms need 

to adopt batch type manufacturing for incorporating continuous and rapid 

changes in manufacturing to gain edge over competitors.  In addition, there is an 

increasing trend toward achieving higher level of integration between design and 

manufacturing functions in industries to make batch manufacturing more efficient 

and productive. In batch shop production environment, the cost of manufacturing 

is inversely proportional to batch size and the batch size determines the 

productivity. In real time environment, the batch size of the components is often 

small leading to frequent changeovers, larger machine idleness and so lesser 

productivity. To alleviate these problems, “Cellular Manufacturing Systems” 

(CMS) can be implemented to accommodate small batches without loosing much 

of production run time. Cellular manufacturing is an application of group 

technology (GT) in which similar parts are identified and grouped together to take 

advantage of their similarities in design and production. Similar parts are 

arranged into part families and each part family processes similar design and 

manufacturing characteristics. Cellular manufacturing is a good example of 

mixed model production and needs to resolve two tasks while implementing 

cellular manufacturing. The first task is to identify the part families and the next 

task is to cluster the production machines into machine cells known as cell 

formation (CF). GT ideas were first systematically presented by Burbidge 

following the pioneering work of Mitrofanov in U.S.S.R. Burbidge developed the 

concept of production flow analysis and successfully implemented in industries. 

After this, many countries started following GT concepts in their manufacturing 

lines. Researchers initiated to develop various methods like similarity coefficient 

method, graph theoretic approaches and array based methods in this field. In this 

trend, modeling of CMS through mathematical programming was started to 

incorporate more real life constraints on the problem. Later researchers started 

developing heuristics and meta-heuristics to explore the best optimal solutions 

for the CF problems. Since soft computing techniques nowadays expand their 

applications to various fields like telecommunications, networking, design and 
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manufacturing, current research in CMS is being carried out using soft computing 

techniques.  

As for as representation of the cell formation problem is concerned, most 

of the researchers use zero-one binary machine part incidence matrix (MPIM) 

that is obtained from the route sheet of the manufacturing flow shop. The 1’s in 

the binary matrix represent the visit of the parts to the corresponding machines 

and 0’s represent the non-visit. The final output is a block diagonal structure from 

which the part families and corresponding machine cells where the part families 

are to be manufactured can be identified. In such an input representation, the 

process of clustering machines into machine cells and parts into part families is 

done without using real life information which may lead to inferior manufacturing 

plans. Therefore, there is a need to make use of as many as real life production 

information in the input matrix for representing the CF problem.  

In this research work, the real life production factors like, operational time 

of the parts in the machines known as workload data or ratio level data, 

operational sequence of the parts known as ordinal level data and batch size are 

considered for the problem representation. The methodology uses soft 

computing techniques like genetic algorithm (GA) and neural network to tackle 

the CF problem. In recent years, soft computing techniques have fascinated 

scientists and engineers all over the world because such techniques possess the 

ability to learn and recall as similar to the main functions of the human brain. 

They find better approaches to real world problems since soft computing 

incorporates human knowledge effectively. It deals with imprecision and 

uncertainty and learn to adapt to unknown or changing environment for better 

performance. In neural network, adaptive resonance theory (ART1) gives good 

results for binary MPIM CF problem. ART1 is not suitable for non-binary input 

pattern. Hence, in this work, suitable modification is included in the basic ART1 

to incorporate the operational time of the parts, a ratio level non-binary data. For 

dealing with sequence of operations of the parts, an ordinal level non-binary 

data, a supplementary procedure is first implemented to convert the non-binary 

data into a suitable binary data and subsequently by feeding to the basic ART1 

networks to solve the CF problem. Finally both operational time and operational 
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sequence are combined and represented in a single matrix. The modified ART1 

used for solving CF problem with operational time is applied to solve the problem 

with combination of operational time and sequence. The CF problem without any 

objective function is solved effectively by ART1 approach.  

For solving the CF problem with objective functions like total cell load 

variation (CLV) and exceptional elements, GA is proposed in this research work. 

CLV is calculated as the difference between the workload on the machine and 

the average load on the cell. Exceptional elements are the number of non-zero 

elements present in off diagonal blocks of the output matrix. Both the objective 

functions are combined to get a multi objective CF problem and solved by using 

GA. In the past, several performance measures like grouping efficiency and 

grouping efficacy have been proposed to find out the goodness of the output 

clusters. But most of them are applicable only for binary data representation. In 

this research work, suitable performance measures are proposed to measure the 

goodness of the block diagonal structure of the output matrix with ratio level data, 

ordinal level data and combination of both data. The algorithms are designed to 

handle problem of any size and they are coded with C++ and run on Pentium IV 

PC. Computational experience with the proposed techniques is presented and 

the results are compared with the problems available in open literature. The 

results are encouraging and the methodologies are found more appropriate for 

large scale production industries. Computational results suggest that the 

proposed approaches are reliable and efficient both in terms of quality and in 

speed in solving CF problems. Several directions for future studies are also 

addressed in this research. 

 

Keywords: Cell Formation; Adaptive Resonance Theory; Genetic Algorithm; 

Ratio level data; Ordinal level data; Cell load variation; Exceptional 

Elements; Grouping Efficiency. 
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1.1 INTRODUCTION 

Today, the manufacturing industries of all countries play an important role 

in realising the real prosperity. With the growth of the seller’s and buyer’s 

markets towards globalization, the manufacturing industries need to deal with the 

challenges facing it. This has resulted in the materialization of automated 

industries with high performance of manufacturing systems. Traditional 

manufacturing systems are not able to satisfy these requirements 

(Saravanasankar 2005). Hence, the manufacturing industries are motivated to 

enhance the productivity and flexibility of the system towards achieving a 

competitive edge. Cellular Manufacturing Systems (CMS) evolved as a solution 

to efficient batch type production of a variety of part types with low set up time, 

low work-in-process inventory (WIP), short manufacturing lead time, high 

machine utilization and high quality. 

 

1.2 MANUFACTURING SYSTEMS 

Manufacturing systems traditionally fall into three categories of layouts. 

They are job shop production, batch production and mass production. The job 

shop production is designed to manufacture with the maximum flexibility, wide 

variety of products with small lot sizes. The job shop manufacturing which follows 

process layout is shown in Figure 1.1. In batch production, the parts move in 

batches for efficient processing. Therefore, each part in a batch must wait for the 

remaining parts in its batch to complete processing before it moves to the next 

stage. This will lead to increased production time, high level of in-process 

inventory, high production cost and low production rate. For instance, if a batch 

(medium quantity i.e. 100 units to 10000 units per year) of one product is made 

and then the facility is changed over to produce a batch of the next product and 

so on as orders for each product are frequently repeated, the changeover time or 

setup time is more in the batch production system. The loss of production time is 

a major disadvantage of batch production system. In contrast, the product layout 

is preferred for high volume and low variety of products to improve the production 

rate. A typical product layout is shown in Figure 1.2. 

1 



 

 

 

The manufacturing industries having batch production environment are 

determined to achieve reduced lead time, reduced setup time, and increased 

machine utilization. Cellular manufacturing stands as one of the efficient 

proposition of achieving the goal in this direction. Cellular manufacturing is one of 

the most important technological improvements applied to the batch processing 

industries. Cellular Manufacturing is the application of Group Technology (GT). 

GT is the management philosophy that believes similar activities should be done 

similarly. Cellular manufacturing is a hybrid system linking the advantages of 

both the job shop (process layout) and the flow shop (product layout) of the 

continuous flow line. It focuses on the creation of manufacturing cells within 

which a number of part families are manufactured. A cell consists of a set of 

functionally dissimilar machines, which are placed in close proximity to one 

another and dedicated to the manufacture of a set of part families. A part family 

is a set of parts that are similar in terms of processing requirements. A 

fundamental issue of cellular manufacturing is the determination of part families 

and machine cells. 

Research into the application of group technology for manufacturing first 

began during the late 1950’s. Around this time, researchers began to recognize 

that some parts share common manufacturing approaches. They soon concluded 

that parts with common manufacturing attributes could be grouped together and 

processed in a manner similar to mass production. Using this theory, they would 

Figure 1.1 Process Layout 
Figure 1.2 Product Layout 

   IN 

OUT 

M
1 

M 

11 
M 
9 

M 
5 

M
6 

M
7 

M 
8 

M 

10 

M 

12 

M
2 

M
3 

M
4 

2 



 

create groups of similar parts and then dedicate groups of machines and tools 

specific to the production of these parts to reduce setup times. The first 

researcher to propose this theory was S.P. Mitrofanov of the U.S.S.R.  

In subsequent years, several classifications and coding systems for 

forming part family were proposed. Companies first started to reorganize 

manufacturing facilities along GT lines in the early 1960’s and the concept of GT 

was strongly accepted round the globe. The approach of Production Flow 

Analysis (PFA) introduced by Burbidge (1963) considers wider aspects of 

production such as factory flow system, plant layout etc. Once the part families 

are identified, the machines are arranged in machine cells to produce a specific 

part family. When the machines are organized in cells, the system is known as 

cellular manufacturing system (CMS).  CMS has been considered as an 

alternative to conventional batch production system where different products are 

produced intermittently in small lot sizes. Cellular manufacturing overcomes 

major problems of batch-type manufacturing including frequent setups, excessive 

in-process inventories, long throughput times, complex planning and control 

functions etc. and provides the basis for implementation of manufacturing 

techniques such as Just-In-Time (JIT) and Flexible Manufacturing Systems 

(FMS). The advantages and limitations including field of application of CMS are 

discussed in Appendix I.  

 

1.3 CELL FORMATION PROBLEM 

In Cellular Manufacturing, the main objective is to group the machines in 

to machine cells and the parts into part families based on similarities in design 

and manufacturing attributes. The identification of machine groups and 

corresponding part families is known as “cell formation”. For that purpose the 

machine part incidence matrix (MPIM) or part machine incidence matrix (PMIM) 

is constructed which consists of ‘0’s and ‘1’s inside the each blocks of the matrix 

where ‘1’s represent the visit of parts to machines and ‘0’s represent non-visit. 

The problem of grouping involves decision making of various parameters like 

number of cells, number of machines to be accommodated in a cell etc.  A GT 

layout after identification of cells is shown in Figure 1.3. 
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1.4 CELL FORMATION APPROACHES 

The problem of cell design is a very complex exercise with wide ranging 

implications for any organizations. Normally, cell design is understood as the 

problem of identifying a set of part types that are suitable for manufacture on a 

group of machines (Wemmerlov and Hyer. 1987). 

Various approaches have been developed to solve the CF problem 

(Miltenburg and Zhang, 1991), each of them have their own advantages and 

drawbacks. Kandiller (1994) has made a comparative study on CF problems. 

The three methods of cell formation are: 

(i) Machine grouping 

(ii) Part family grouping 

(iii) Machine-part grouping 

 

1.4.1 Machine Grouping 

Some researchers have attacked the problem of group formation as a two-

stage process. In this first stage of their analysis, they group machines and form 

cells based on the information contained in the part routings. The next stage 

usually consists of allocating parts to cells and re-evaluating the cells on the 

other factors such as machine utilization. Gupta (1991) made a study on 

P1, P2 ….P8 represent parts 
Numbers inside the blocks represent machines  

Figure.1.3 A Typical GT layout 
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clustering algorithms for CF problems. The techniques existing for machine 

grouping can be broadly classified as follows: 

• Non- Algorithmic Procedures 

• Algorithmic Procedures 

 

1.4.2 Part Family Grouping  

In this grouping, the part families are first identified and then, grouping of 

machines into cells are made. This method is of restricted value nowadays, but 

it is still useful in single machining centers. Existing techniques for part family 

grouping based on routing sheet information are: 

• Classification and coding 

• Cluster analysis 

 

1.4.3 Machine – Part Grouping 

When one attempts to group parts into part families and machines into cells 

simultaneously, then such a procedure is defined as machine-part grouping. The 

three main sub classifications are 

• Manual Technique. 

• Combinatorial procedures. 

• Algorithmic methods. 

Table 1.1 shows some bench mark clustering methods. Apart from above 

techniques, soft computing is adopted these days for cell formation due to their 

generalization capability and easiness. A brief overview of cell formation using 

soft computing techniques is provided in Appendix II. 

 

1.5 CELL FORMATION CONSIDERING OPERATIONAL TIME AND 

SEQUENCE  

 

In cell formation problem, usually zero-one MPIM or PMIM, which is built 

from route sheet information, has been used as input. Later, researchers started 

to make use of other information or production factors like workload on the 

machines, operational sequence of the parts, batch size of the parts, machine 
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Table 1.1 Some clustering methods available in the literature 
Clustering Methods Approaches 

Machine cell formation Adaptive Resonance Theory (ART) Networks (Kao and 
Moon, 1991), Simulated Annealing (Boctor, 1991), 
Genetic Algorithm (Venugopal and Narendran, 1992b), 
CASE (Nair and Narendran 1998), ACCORD (Nair and 
Narendran, 1999), Dissimilarity coefficients 
(Prabhakaran et al. 2002), Tabu Search (Logendran et 
al. 1994), Ants colony Systems (Solimanpur et al. 2004) 

Part family formation Production flow analysis (Burbidge, 1977), Generalized 
part family formation (Moon and Chi, 1992), Part 
assignment (Chen and Cheng, 1995), Coding systems 
(Singh and Rajamani, 1996), Fuzzy ART (Suresh et al. 
1999), Membership index (Zolfaghari and Liang, 2003). 

Concurrent Machine cell-part family 
formation 

Bond Energy Approach (McCormick et al. 1972), Graph 
Theoretical Approach (Rajgopalan and Batra, 1975), Set 
Lattice Theoretic Approach (Purcheck, 1975), Manual 
Technique (Burbidge, 1977), Rank Order Clustering 
(ROC) (King, 1980), Direct Clustering Algorithm (Chan 
and Milner, 1982) MACE (Waghodekar and Sahu, 1984), 
Ideal Seed Methods (Chandrasekaran and Rajagopalan, 
1986a), Linear Programming (Kusiak, 1987), MODROC 
(Chandrasekaran and Rajagopalan, 1986b), ZODIAC 
(Chandrasekharan and Rajagopalan, 1987), CLOSE 
Neighbour Algorithm (Boe and Cheng, 1991), GRAFICS 
(Srinivasan and Narendran, 1991) 

 

capacity, etc. that are available in the shop floor. The process of clustering 

machines into machine cells and parts into part families without using such 

information may lead to inferior manufacturing plans. Hence, the need arises to 

use non-binary data for obtaining groups or clusters of machines and parts. In 

this research work, some of the real life production factors like operational time 

and sequence of the parts are considered to make cell formation.  

 

 

1.5.1 Ratio level data 

The workload information is commonly considered as ratio level data in 

CF problem and a modified incidence matrix is formed with this data. The total 

processing time of a part is computed by multiplying the production quantity of 

the part with its unit processing time. The workload (or ratio) value replaces '1's 

6 



 

in the incidence matrix. The resultant workload values will take any value in the 

ratio scale, and they represent the ratio level data (George et al. 2003).  

 

1.5.2 Ordinal level data 

The operational sequence of the parts is usually considered as ordinal 

level data. In general, if the resultant values in the incidence matrix take any 

value in the ordinal scale, they constitute the ordinal level data. For example, 

operation sequence of the parts and the number of parts in a batch are well 

known ordinal level data. 

The goodness of resulting cells may be tested using performance 

measures specifically designed for cell formation. The performance measures for 

resulting cells, when different kinds of data sets are used as inputs, are 

discussed in Appendix III. 

 

1.6 OBJECTIVES OF THE RESEARCH WORK 

The main objectives of this research is to 

(1)  Undertake in-depth study on cell formation for designing cellular 

manufacturing systems. 

(2) Appraise critically the existing approaches for cell formation and find out 

research trend for cell formation considering production factors. 

(3) Propose suitable methodologies for cell formation considering real time 

production factors. 

Specifically, the research work focuses on the followings: 

(i) To develop suitable methods for cell formation problem considering 

practical production factors like operational time of the parts and sequence 

of the parts.   

(ii) To propose improved algorithms based on soft computing techniques for 

cell formation using above production factors. 

(iii) To compare the results obtained from proposed algorithms with existing 

methods through exhaustive computation. 

(iv) To propose performance measures for assessment of goodness of the 

block diagonal structure (outputs). 
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1.7 NEED FOR THE RESEARCH 

As customers strive for quality products in short lead time, the batch type 

production industries must orient towards meeting increasing demand in volume 

and variety in short throughput time in order to have competitive edge. The 

research towards design of layout for machines and materials in CMS provides a 

platform for managers to arrive at some useful solutions in this direction. CMS 

necessitates clustering of parts into part families and machines are allocated in 

machine cells so that a machine cell is responsible for producing certain part 

families. Majority of the clustering techniques use binary representation for input 

data without taking into account other production factors. Such an approach 

leads to inefficient flow of materials resulting in deterioration of system 

effectiveness. This study focuses on cell formation considering real life 

production factors like operational time and sequence of the parts. The proposed 

methodologies provide fast solutions of the problem since they make use of soft 

computing techniques so that it can be used conveniently in the shop floor. 

Further, it has been attempted to propose performance measures suitable for cell 

formation considering practical production factors. 

 

1.8 ORGANIZATION OF THE THESIS 

Seven chapters are presented in this thesis including chapter 1 and the rest of 

the thesis is organized as follows: 

Chapter 2:  The literature review is presented through exhaustive study. 

Chapter 3: Machine cell formation using operational time of parts is developed 

using a neural network approach 

Chapter 4: Machine cell formation using operational time of parts is approached 

using GA 

Chapter 5: Cell formation considering operational sequence of parts using neural 

network is developed 

Chapter 6: Cell formation with combined objective function (combination of 

operational time and sequence of parts) using neural network is 

developed 

Chapter 7:  The conclusion and scope for future work are given. 
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2.1 INTRODUCTION 

In this chapter, critical appraisal of clustering techniques used in CMS is 

made through exhaustive literature review. Various existing approaches for cell 

formation are discussed subsequently. Group technology ideas were first 

systematically presented by Burbidge (1963) following the pioneering work of 

Mitrofanov (1959). The literature on cell formation can be broadly classified in 

two ways – one based on techniques used for cell formation and other one the 

way the cell formation problem is modeled. Crama and Oosten (1996) made a 

study on various models available for CF problems. 

 

2.2. CLASSIFICATION OF CELL FORMATION FROM TECHNIQUE POINT OF 

VIEW 

For the technique based classification, a Taxonomic framework of GT is 

shown in Figure 2.1 followed by discussions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.1 Taxonomic framework for group technology 
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2.2.1 Visual Inspection  

 The easiest approach in part family formation is visual inspection method. 

This method is to examine the information and perform the classification using 

human eye, also known as eyeballing method. The visual inspection method is 

the least sophisticated and least expensive method. The time consumed in this 

method is very less when compared to all other methods. Nevertheless this 

method is considered least accurate when compared to the other methods.   

 

2.2.2 Classification and Coding  

  Classification and coding is an essential and effective tool for successful 

implementation of group technology concept. A code may be numbers or letters 

or a combination of numbers and/or letters which are assigned to the parts for 

information processing (Ham et al. 1985). Parts are classified based on relevant 

characteristics such as dimensions, type of material, tolerance, operations 

required, basic shapes, surface finish etc. In this approach, each part is assigned 

a code which is a string of digits that store information about the part. The digits 

include numerical numbers and alphabetical letters. Singh and Rajamani (1996) 

described about coding systems in their work. Some of the coding systems 

include hierarchical structure (also called monocode), chain-type structure (also 

known as polycode) and mixed mode structure which is a hybrid of monocode 

and polycode. 

 

2.2.3 Production Flow Analysis (PFA) 

  The concept of production flow analysis was introduced by Burbidge 

(1963). The aim of the technique as stated by Burbidge (1971) is finding the 

families of components and associated groups of machines for group layout by a 

progressive analysis of the information in route cards. It is based on the idea that 

parts with similar routes can be made in the same group, and it finds both a 

division of machines into groups and of parts into families of parts, which they 

make. This concept is used also by other cell formation approaches. It can 

concurrently form machine groups as well as part families. The main 
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disadvantage with implementation of PFA is the manual work involved in 

grouping parts and machines. Burbidge (1971) did not give any other way for 

grouping, but trying all the possibilities and combinations manually. It is 

practically impossible to form cells in a factory, which may have thousands of 

parts and hundreds of machines. But, the basic principle of PFA builds the 

foundation for developing sophisticated approaches later. Burbidge (1971) 

suggested that a part can have more than one routing and a process can be 

done on more than one type of machines. This was a major and very important 

suggestion which helped to explore various economic and technical possibilities 

in forming cells. Burbidge (1975) introduced a holistic approach to GT called 

Production Flow Analysis.  It discussed the production situation and 

recommended a systematic solution to the problems of batch production.  

Burbidge (1977) introduced a two dimensional representation with a tick mark 

used to indicate the visit of a component to a machine.  The method uses hand 

computations, which limits its applicability. 

 

2.2.4 Similarity Coefficient Method  

  The similarity coefficient approach was first suggested by McAuley (1972). 

The basis of these methods is to measure the similarity between each pair of 

machines and then to group the machines into families based on their similarity 

measurements. Some studies have proposed to measure dissimilarity 

coefficients in stead of similarity coefficient for cell formation. Prabhakaran et al. 

(2002) have used dissimilarity coefficients for generalized cell formation taking 

into account the operation sequences and production volumes of parts. Most 

similarity based methods employ machine – component chart. Some of the 

methods, which use this approach, are Single linkage clustering algorithm 

(McAuley, 1972), Average linkage clustering algorithm (Seifoddini and Wolfe, 

1986) etc.  

 

2.2.5 Cluster Analysis 

These methods can be classified as hierarchical and non-hierarchical 

methods. Standard or specially designed clustering techniques can be used to 
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make clusters of either parts or machines. Among these, McAulay (1972), 

McCormick et al. (1972), Carrie (1973), King (1980), King and Nakornchai 

(1982), Chan and Milner (1982), Waghodekar and Sahu (1984), Kusiak (1985), 

Mosier and Taube (1985), Stanfel (1985), Chandrasekharan and Rajagopalan 

(1986a, b), Kusiak (1987), Seifoddini and Wolfe (1986), Seifoddini (1989), Chu 

and Tsai (1990), Srinivasan and Narendran (1991), Shafer and Rogers (1993a) 

found in the literature are popular methods. Machine – component group analysis 

(MCGA) is based on production flow analysis. In MCGA based methods the 

machine-component groups are formed by permuting rows and columns of the 

machine-component chart in the form of a zero-one matrix. Some of the MCGA 

methods are Rank order clustering by King (1980), Bond energy algorithm by 

McCormick et al. (1972) etc. Dimopoulos and Mort (2001) has developed a 

hierarchical algorithm for a simple cell formation. 

 

2.2.6 Array Based Method 

These methods treat the rows and columns of the zero-one matrix as 

binary words and rearrange them to obtain a block-diagonal structure. The rank 

order clustering algorithm is the most popular array-based method for GT (King 

1980). Subsequent modifications and improvements over rank order clustering 

algorithm have been described by King and Nakornchai (1982), 

Chandrasekharan and Rajagopalan (1986a). The direct clustering analysis 

(DCA) has been proposed by Chan and Milner (1982), and bond energy analysis 

by McCormick et al. (1972). 

 

2.2.7 Graph Theoretic Approaches 

  Graph Theoretic Approach represents the machines as vertices and the 

similarity between machines as the weights of the arcs. Rajagopalan and Batra 

(1975) suggested the use of graph theory to form machine groups. 

Chandrasekaran and Rajagopalan (1986a) proposed an ideal seed non-

hierarchical clustering algorithm for cellular manufacturing.  Ballakur and Steudel 

(1987) developed graph searching algorithms which select a key machine or 

component according to a pre-specified criterion. Vohra et al (1990) presented a 
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non-heuristic network approach to from manufacturing cells with minimum inter-

cellular interactions. Srinivasan (1994) presented an approach using minimum 

spanning tree for the machine cell formation problem.  A minimum spanning tree 

for machines is constructed and the seeds to cluster components are generated 

from this tree. Veeramani and Mani (1996) described a polynomial-time algorithm 

based on a graph theoretic approach for optimal cluster formation called as 

vertex-tree graphic matrices. 

 

2.2.8 Mathematical Programming 

  A number of research studies for cell formation using mathematical 

programming approach appeared in literature. They are classified under integer 

programming (Kusiak 1987, Co and Araar 1988), dynamic programming 

(Ballakur and Steudel 1987), goal programming (Shafer and Rogers, 1993a), and 

linear programming (Boctor 1991). Ramabhatta and Nagi (1998) developed a 

branch-and-bound procedure to obtain the cell configuration that tends to yield 

minimum inter-cell flows under the assumption of alternative routings for each 

part. Mathematical programming received extreme attention because its ability to 

consider practical constraints and objectives of the company when designing 

cells. The approach goes in two steps. First, a mathematical model representing 

the objectives and constraints of an organization is formulated and then the 

model is optimized.  

 

Kusiak (1987) developed clustering problem known as p-median model. 

The objective function is to maximize the total sum of similarities and the 

constraints are (i) one part belongs to exactly one family (ii) number of part 

families are specified. Once the part families are formed, corresponding 

machines are assigned to the cells. Choobineh (1988) uses a sequential 

approach forming part families in the first stage and then a cost based 

mathematical programming method to allocate machines to part families to form 

cells. Rajamani et al. (1990) developed integer programming models to form cells 

sequentially as well as simultaneously. Factors such as inventory cost, machine 

setup and material handling, and machine depreciation were considered by Askin 
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and Subramanian (1987). An assignment model was given by Srinivasan et al 

(1990) to form part families in group technology. A mathematical programming 

approach to joint cell formation and operation allocation in cellular manufacturing 

was proposed by Atmani et al. (1995). A zero-one integer programming model is 

formulated. The objective considered in this model is, to form machine groups 

and allocate operations in such a way as to minimize operation costs, re-fixture 

costs and transportation costs. Zahir Albadawi et al (2005) has developed a 

mathematical model using eigen value matrix for cell formation problems. 

 

2.2.9 Cell Formation using Heuristics 

Heuristic algorithms are used to provide quick approximate solutions to 

hard combinatorial optimization problems. A heuristic algorithm is called an 

approximate algorithm where the performance of the heuristic is assessed in 

terms of worst and average case behaviour. They do not guarantee optimal 

solutions. Waghodekar and Sahu (1984) proposed an algorithm called MACE to 

solve the GT problem. The method uses similarity among machines. 

Panneerselvam and Balasubramanian (1985) developed a method, which groups 

the components having approximately the same process sequences so that they 

can be processed on the same line. Wemmerlov and Hyer (1986) provided a 

framework for classifying descriptive and analytic procedures for the component-

family and machine-cell formation problems.  Beaulieu et al.(1997) considers the 

machine selection problem for the design of new CMS.  This method considers 

machine capacity, alternative routing and constraints on cell size. MODROC was 

developed by Chandrasekaran and Rajagopalan (1986b) which is an extension 

of basic ROC method. ZODIAC has been proposed by (Chandrasekharan and 

Rajagopalan 1987). Similarly, close neighbour algorithm by Boe and Cheng 

(1991). GRAFICS by Srinivasan and Narendran (1991), CASE by Nair and 

Narendran (1998), ACCORD by Nair and Narendran (1999) are some well known 

heuristics for solving CF problem found in the literature. 
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2.2.10 Cell Formation using Soft Computing Techniques 

 Since cell formation problems are non-polynomially complete in nature 

(Nair and Narendran 1999), it is difficult to obtain solutions that satisfy all 

constraints. Therefore, it is expected to make use of simple but efficient 

computing techniques. Soft computing technique is found more suitable for such 

type of problems and capable of producing good results (Venugopal 1999). Soft 

computing is an emerging approach to computing which parallels the remarkable 

ability of the human mind to reason and learn in an environment of uncertainty 

and imprecision (Jang et al. 2002). Soft computing is an innovative approach for 

constructing computationally intelligent systems. It is realized that complex real 

world problems require intelligent systems that combine knowledge, techniques 

and methodologies from various sources. Soft computing techniques make the 

integration of neural network, fuzzy systems and other meta-heuristics together 

with certain derivative free optimization techniques. Soft computing constitutes 

Genetic Algorithm (GA), Simulated Annealing (SA), Artificial Neural Networks 

(ANN), fuzzy set theory etc. Since 1990 the applications of soft computing 

techniques to GT problems have been encouraging (Venugopal 1999). The 

literature concerning CMS using three major soft-computing techniques like fuzzy 

set theory, meta-heuristics, and artificial neural networks are discussed in 

followings.   

 

(i) CMS using fuzzy set theory  

Few studies have appeared in the areas of artificial intelligence and fuzzy 

clustering approaches to cell formation. Kusiak and Ibrahim (1988) developed a 

knowledge based system which takes advantage of expert system and 

optimization considering machine capacity, material handling capabilities, 

technological requirements and cell dimensions to form cells. Singh (1993) 

introduced the concept of multi-dimensional similarity coefficient using syntactic 

pattern recognition and developed and algorithm to form natural part families. 

Most of the approaches to cell formation discussed earlier assume that the 

information about processing cost, processing time, part demand, etc. is precise. 

It is also assumed that each part can only belong to one part family. However 
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there exist parts whose lineages are less evident. Fuzzy clustering provides a 

solution to such problems. But only in few studies made by Xu and Wang (1989) 

and Chu and Hayya (1991), issues of vagueness in cell formation has appeared. 

Other fuzzy logic approaches are given by Ben-Arieh and Triantaphyllou (1992) 

and Burke and Kamal (1992). FACT proposed by Kamal and Burke (1996) is an 

algorithm based on fuzzy ART to solve CF problem.  

 

(ii) CMS using metaheuristics  

Harhalakis et al. (1990) developed a procedure based on SA for the 

design of manufacturing cells for minimizing the inter-cell traffic with cell size 

constraint.  They also demonstrated the application of their algorithm on an 

industrial problem. Venugopal and Narendran (1992a) considered several real-

life factors such as processing time, volume of components and capacity of 

machine and solved the problem using SA. A solution procedure based on GA 

for cell formation with multiple objectives was developed by Venugopal and 

Narendran (1992b). Logendran et al. (1994) proposed an approach based on 

Tabu Search (TS) for the design of CMS when alternative process plans are 

considered.  Vakharia and Chang (1997) developed two heuristic methods based 

on combinatorial search methods SA and Tabu search to address the cell 

formation problem. Murthy and Srinivasan (1995) developed a SA and a heuristic 

algorithm for fractional cell formation. In their algorithm the movement of 

component from GT cells to remainder cell is allowed but not among GT cells to 

minimize exceptional elements among GT cells. Goncalves and Resende (2004) 

developed evolutionalry algorithm for cell formation Vitanov et al. (2007) 

developed a heuristic algorithm known as heuristic rule based logic algorithm 

(HERBAL) as a tool for designing cellular layout. Tabu searches have been 

successfully used to generate solutions for a wide variety of combinatorial 

problems (Jeffrey Schaller 2005). Popular meta-heuristics applied in the field of 

CMS are SA by Boctor (1991), GA by Zhao and Wu (2000), TS by Wu et al 

(2004) and Ants Colony Systems by Solimanpur et al. (2004).  
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(iii) CMS using neural networks 

Neural networks are now of major interest because when it is connected 

to computer, it mimics the brain and bombard people with much more 

information. The existing ANN approaches for GT application is shown in Table 

2.1 These have shown promise for solving many combinatorial optimization 

problems.  

Kao and Moon (1990) proposed an interactive activation and competition where 

part similarities and machine similarities are considered together in the formation 

of part families and machine cells and suggested generalized part family 

formation methods (Moon and Chi 1992). Kaparthi and Suresh (1992) and Dagli 

and Huggahali (1991) used ART1 (Carpenter and Grossberg, 1987, 1988) to 

group parts or machines. Malave and Ramachandran (1991) have applied a 

competitive learning rule to the parts and machines formation problem. For the 

part family formation problem, the input to the neural network is the process plan 

of each part. This network offers a mechanism to identify the ratio of the number 

of shared (bottleneck) machines to the total number of machines used in each 

cell. A notable development with neural networks in recent years is that they 

have been found to applicable for sequence-based clustering, using networks 

such as Kohonen’s self-organizing feature maps (SOFM) by Melody (2001) and 

Fuzzy ART neural network by Suresh et al. (1999). 

 

Godfrey C Onwabolu (1999b) used self-organizing map (SOM) neural network 

for design of parts for cellular manufacturing. Lozano et al. (1993) used Harmony 

theory model neural network for CF problem. Dobado et al. (2002) used fuzzy 

neural network for part family formation. The performance of ART1 network 

based CF has been investigated by Kusiak and Chung (1991), Kaparthi and 

Suresh (1992), Liao and Chen (1993), Dagli and Huggahalli (1995), Chen and 

Cheng (1995), Chen et al. (1996), Enke et al. (2000) and Ming-Laing et al (2002). 

Chen and Cheng (1995) pointed out the weakness of the ART1 approach that 

the ability of a grouping solution is highly dependent on the initial disposition of 

the MPIM especially in the presence of bottleneck machines and parts.  

 

17 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ming-Laing et al. (2002) developed a modified ART1 network which integrated 

with an effective Tabu Search optimization technique to solve CF problem. 

Table 2.1 Neural network approaches with source applied to group technology 

Application Neural network models Source 

Moon (1990) 

Moon (1992) IAC Models 

Moon and Chi (1992) 

Kusiak and Chung (1991) 

Dagli and Huggahalli (1991) 

Kaparthi and Suresh (1992) 

Liao and Chen (1993) 

Dagli and Huggahalli (1995) 

Chen and Cheng (1995) 

ART Based Models 

Enke et al. (1998) (2000) 
Venkumar and Haq (2005) 

ART + SOFM 
Venugopal and Narendran 
(1994) 

Suresh and Kaparthi (1994) 

Burke and Kamal (1992) (1995) 
 

Fuzzy ART Models 
 Peker and Kara (2004) 

Competitive Learning Chu (1993) 

Harmony Theory Model Lozano et al. (1993) 

Self Organizing Rao and Gu (1995) 

Competitive Learning + Self 
Organizing 

Malakooti and Yang (1995) 

Ortho-Synapse Hopfield Zolfaghari and Liang (1997) 

Adaptive Hamming net Kyung-Mi Lee et al. (1997) 

Kohonen Self-Organizing 
Map  

Melody (2001) 
Venkumar and Haq (2006) 

Part family and Machine CF 

Fuzzy Min-Max Dobado et al. (2002) 

Kao and Moon (1991a) 

Moon and Roy (1992) 

Kao and Moon (1998) 

Back Propagation (BP) 
Models 

Godfrey Y Onwabolu (1999a) 

Kao and Moon (1991b) 

Liao and Lee (1994) ART Models 
Sung Youl Lee and Fischer 
(1999) 

Self Organizing Godfrey Y Onwabolu (1999b) 

Feature-based part family 
formation and new part 

assignment 
 

Feed-Forward Kusiak and Lee (1996) 

Fuzzy Associative Memory 
Bahrami, Dagli and Modarress 
(1991) 

Design retrieval 

Hopfield Models 
Venugopal and Narendran 
(1992c) 

Kaparthi and Suresh (1991) Bit image coding and part 
grouping 

BP Models 
Chung and Kusiak (1994) 
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2.3 CLASSIFICATION OF CELL FORMATION FROM MODELLING POINT OF 

VIEW  

From the literature of CMS, it is observed that cellular manufacturing aims at 

formation of machine cells for achieving the benefits of mass production to batch 

production with higher values of variety, product-mix and total quantity. 

Researchers have proposed various algorithms based on different approaches to 

obtain disjoint machine cells. Usually zero–one matrix, referred as MPIM 

obtained from the route sheet information is used to form machine cells and part 

families. Some of the studies explicitly focus on cell formation with real life 

production factors mentioned as second type of classification. In such studies 

again, few of the studies consider objective function while solving cell formation 

problem and few of them do not consider objective function. Based on the 

exhaustive collection of literature, they are integrated as given in the followings.  

 

2.3.1 Cell Formation without considering Production Factors 

Iri (1968) developed the cluster identification algorithm. The algorithm 

finds mutually separable clusters in a binary matrix provided they exist. The 

algorithm is claimed to be computationally more efficient for problems not 

involving exceptional elements. The other popular algorithms in this category are 

ROC I, ROC II, MODROC, ZODIAC, and MACE. 

 

2.3.2 Cell Formation with Production Factors 

Researchers started considering production factors while processing Cell 

Formation. It can be classified into two categories in this section. i) Cell 

Formation with single production factors and ii) CF with multiple Production 

factors 

 

(i) Cell Formation with Single Production Factor 

  Vannelli and Ravikumar (1986) proposed a method to find minimum 

number of bottleneck cells for grouping part-machine families. Vakhaira and 

Wemmerlov (1990) considered a cell formation which integrates the issue of cell 

formation and within cell material flows using similarity co-efficient approach to 
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cluster parts and machines.  But, this approach failed to take into account the 

issues of number of cells and duplication. Heragu and Kakuturi (1997) proposed 

a three stage heuristic approach incorporating material flow considerations with 

alternative process plans for grouping and placement of cells.   

 

(ii) Cell Formation with Multiple Production Factors 

Askin and Subramanian (1987) used a binary clustering algorithm for 

grouping parts and machines.  They evaluate candidate configurations based on 

fixed and variable machine costs, set-up costs, cycle inventory, work-in-process 

inventory and material handling. Factors such as inventory cost, machine setup 

and material handling, and machine depreciation were considered by Askin and 

Chiu (1990). Taylor and Taha (1993) performed sensitivity analysis relative to 

several parameters in an effort to identify factors affecting cellular manufacturing 

system design in general. Sankaran and Kasilingam (1993) developed an integer 

programming model to determine simultaneously cell size, capacity selection and 

cell membership in a GT based flexible manufacturing system.  Sung-lyong and 

Wemmerlov (1993) suggested a new heuristic methodology that incorporates the 

concept of reallocating operations to alternative machines, while meeting 

capacity constraint for manufacturing cell formation. Hsu and Su (1998) also 

considered genetic algorithm based solution for CMS design.  Here the factors 

considered are inter-cell and intra-cell part transport factor, machine investment 

cost, intra-cell load unbalance and inter cell load unbalance.  Won and Lee 

(2001) considered operation sequences and production volumes.  Prabhakaran 

et al. (2002) have used dissimilarity coefficients for generalized cell formation 

taking into account the operation sequences and production volumes of parts. 

Yin and Yasuda (2002) made a study that takes alternative process routing, 

operational sequence, operational time and production volume into account. 

George et al. (2003) considered operational time and operational sequence of 

the parts and combination of these factors in a single matrix in their study, an 

analytical-iterative clustering algorithm for cell formation. 

 

 

20 



 

2.3.3 Cell Formation without considering Objective Function  

GRAFICS by Srinivasan and Narendran (1991) is a nonhierarchical 

clustering algorithm for CF problem without considering objective function. CASE 

Nair and Narendran (1998) found out the similarity coefficient without considering 

objective function. Suresh et al (1999) made a study on sequence-dependent 

clustering of parts and machines without considering any objective function. Park 

and Suresh (2003) used Fuzzy ART neural network for CF problem without any 

objective function. Venkumar and Haq (2005) have adapted ART 1 to apply for 

CF problem without any objective function and come out with improved results. 

 

2.3.4 Cell Formation with Objective Function  

Han and Ham (1986) suggested that part families can be formed more 

effectively based on the classification codes because both the manufacturing and 

design characteristics are considered. They proposed a multi objective cluster 

analysis algorithm for forming part families. Kusiak (1987) developed clustering 

problem known as p-median model with a objective to maximize the total sum of 

similarities and the constraints are (i) one part belongs to exactly one family (ii) 

number of part families are specified. Wei and Kern (1991) developed a linear 

clustering algorithm for grouping machines into manufacturing cells.  The 

algorithm is based on a class of single linkage clustering methods and it also 

presents a method for reducing the number of inter-cell moves caused by the 

existence of exceptional elements. The methods that consider multiple objectives 

have been proposed by Venugopal and Narendran (1992a, b). 

A mathematical programming approach to joint cell formation and 

operation allocation in cellular manufacturing was proposed by Atmani et al 

(1995). A zero-one integer programming model is formulated. The objective 

considered in this model is, to form machine groups and allocate operations in 

such a way as to minimize operation costs, re-fixture costs and transportation 

costs. Verma and Ding (1995) use a sequence-based procedure incorporating 

the costs of inter-cell flows and intra-cell flows.  Cheng and Maden (1996) formed 

a model to minimize intercellular moves using distance as a measure. A 

truncated tree search algorithm has been presented by them.  
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Lee and Garcia-Diaz (1996) and Wu (1998) used a machine-machine 

relation matrix to calculate the inter-machine flows.  ACCORD by Nair and 

Narendran (1999) considered intercell moves and within cell load variation as 

objective function Anita (2000) proposed a new part family identification using a 

simple genetic algorithm to determine a set of part family differentiating attributes 

and to guide the formation of part families. Adil Baykasoglu and Gindy (2000) 

made a study on multiple objective capability based approach to form part 

machine groups for cellular manufacturing application and called as MOCACEF. 

Hiroshi Ohta and Masateru Nakamura (2002) developed cell formation with the 

objective of reduction in setup times.  

 

2.4 DISCUSSIONS 

The majority of studies, particularly earlier studies, on cell formation focus 

on proposing efficient methods in terms of reducing exceptional elements and 

computational burden using zero-one MPIM. The major limitations of these 

approaches lie in the fact that real life production factors like operational time, 

sequence of operations, lot size of the parts etc. are not considered resulting in 

inefficient cells. However, some studies propose the methods considering 

production factors based on similarity coefficient (Seifoddini and Wolfe 1986, 

Vakharia and Wemmerlov 1990, Seifoddini and Hsu, 1994, Choobineh 1988, 

Nair and Narendran 1998), heuristics (Nair and Narendran, 1999, George et al. 

2003, Vitanov et al. 2007, Iraj Mahdavi and Mahadevan 2008), metaheuristics 

(Boctor 1991, Venugopal and Narendran 1992a, b, Logendran et al. 1994, 

Jayaswal and Adil 2004). However, extremely limited number of studies has 

reported on cell formation using soft computing techniques when production 

factors have been considered.  In order to consider two important production 

factors like operational time and sequence, ratio level and ordinal level data are 

used respectively as input to the cell formation algorithm. For the ratio-level data, 

workload information is commonly used and a modified incidence matrix is 

formed with this data. The total processing time of a part is computed by 

multiplying the production quantity of the part with its unit processing time. The 

workload (or ratio) value replaces '1's in the incidence matrix. The resultant 
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workload values can take any value in the ratio scale, and they constitute the 

ratio level data (George et al. 2003).  If the resultant values can take any value in 

the ordinal scale, they constitute the ordinal level data. For example, operation 

sequence of the parts and batch size of the parts are ordinal level data. As soft-

computing tools are efficient in cluster formation, investigation needs to be 

carried out for cell formation using production factors.  The effects of parameters 

of soft-computing tools need to be established to provide guidelines to the users. 

Further, the performance measures to judge the goodness of cluster formation 

need to be redefined when production factors are to be considered. The 

performance measures existing for zero-one binary matrix are not appropriate in 

this case.  

 

Therefore, it is felt that avenue exist for exhaustive research on application 

of soft-computing techniques for cell formation considering production factors. In 

chapter 3 and 4 the cell formation problem with operational time of parts is 

discussed and suitable methodology is proposed to solve the problem. Similarly, 

chapter 5 deal with cell formation with operational sequence and chapter 6 

focuses on cell formation with operational time and sequence along with batch 

size. The appropriate performance measures are proposed to check the 

goodness of cluster formation. 
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3.1 INTRODUCTION 

In light of the literature survey made in previous chapter, it is well understood 

that very few studies focus on cell formation considering production factors such 

as operational time, operational sequence, batch size etc. That too they are 

considered independently. In this work, it is attempted to consider some of the real 

time production factors individually and also by combining them. In this chapter, 

the zero-one MPIM of CF problem is converted into real valued workload data. 

The workload represents the operational time required by the parts in the 

machines. Soft computing technique is found more suitable for such type of 

problems and capable of producing good results. Soft computing is an innovative 

approach for constructing computationally intelligent systems (Sinha et al. 2000). 

Thereby, it is more appropriate to make use of soft computing techniques like 

neural network, fuzzy sets for cell formation problem with operational time. The 

ART1 algorithm with necessary modification is developed to form disjoint machine 

cells to handle the ratio level data. The methodology first allocates the machines to 

various machine cells and then the parts are assigned to respective machine cells 

with the aid of degree of belongingness through a membership index (Zolfaghari 

and Liang, 2003). The method of assignment of parts to various cells thus 

generated is discussed in section 3.4.1. The proposed algorithm uses a 

supplementary procedure to take care effectively of the problem of generating 

cells with a single machine that may be encountered at times.  

 

3.2 THE ART 1 MODEL 

The ANNs are massively parallelized computer systems that have the ability to 

learn from experience and adapt to new situations. The ANN consists of many 

units that represent neurons. Each unit is a basic unit of information process. The 

units are interconnected via links that contain weight values that help the neural 

network to express knowledge. The neural network is divided into three layers viz. 

input layer, hidden layer, and output layer as shown in Figure.3.1. The input layer 

transfers input signals into the hidden layer or the output layer. The hidden layer 

transfers signals from the input layer into the output layer and the output layer 
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gives the useful transformed signals. The units can be regarded as nodes that 

constitute the neural network. One node can receive signals from other nodes and 

transfer specific signal into other nodes. Neural networks theory adopts two types 

of training methods, viz. supervised and unsupervised learning.   

 

 

 

 

Supervised learning requires paring each input vector to a target vector and 

iteratively tunes the network. Unsupervised learning has no predetermined 

outputs. If an input vector is detected to be similar to a stored pattern, the weights 

representing the stored pattern are adjusted such that the stored pattern is more 

like the input vector (Jun wang and Yoshiyasu Takefuji 1993) The adaptive 

resonance theory (ART1), proposed by Carpenter and Grossberg (2002), is an 

example of unsupervised learning. Principles derived from an analysis of 

experimental literatures in vision, speech, cortical development, and reinforcement 

learning, including attentional blocking and cognitive-emotional interactions, led to 

the introduction of adaptive resonance as a theory of human cognitive information 

processing.  

The foundation of ART1’s stability is based on its matching criterion. The 

ART1matching criterion is determined by parameter ρ (vigilance parameter) that 
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Figure 3.1 The ART1 Model  
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specifies the minimum fraction of the input that must remain in the matched 

pattern for resonance to occur. Low vigilance allows broad generalization, coarse 

categories, and abstract memories where as high vigilance leads to narrow 

generalization, fine categories, and detailed memories (Carpenter and Grossberg 

1987). If the network has learnt previously to recognize an input vector then a 

resonant state will be achieved quickly if similar input vector is presented. During 

resonance, the adaptation process will reinforce the memory of the stored pattern. 

If the input vector is not immediately recognized, the network will rapidly search 

through its stored patterns looking for a match. If no match is found, the network 

will enter a resonant state whereupon the new pattern will be stored for the first 

time. In this way, the network tries to respond quickly to previously learnt data. 

Kao and Moon (1991a) introduced back propagation neural network model for GT 

whereas Kaparthi and Suresh (1992) made an attempt to introduce adaptive 

resonance theory (ART1). Venkumar and Haq (2005) modified the ART 1 to apply 

for CF problem and come out with improved results. However, there are certain 

disadvantages of ART1 network viz. (i) it will recognize only the binary input data, 

and (ii) the resulting solution is highly influenced by the order of presentation of 

input vectors representing operation time Tij which indicates that part j takes Tij 

units of time to complete its operation in machine i. It is assumed that the lot size 

for all the parts is equal to one to characterize the behaviour of the sample 

problems considered in this chapter although it is not restrictive to one. If different 

lot sizes are considered then the processing times are multiplied with lot size to 

obtain the input workload matrix. 

 

3.3 NEED FOR MODIFICATION IN ART1 APPROACH TO MACHINE CELL  

FORMATION 

 The basic idea in cellular manufacturing is to group the machines into machine 

cells and the parts into part families. The past research work reveals that the cell 

formation problems are addressed with zero-one binary incidence matrices in most 

cases. These approaches can hardly incorporate the real life production factors. 

The production data such as lot size of the parts, machine capacity, operational 

time and operation sequence need to be considered in order to generalize cell 
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formation problem. In the present work, an attempt is made to address the cell 

formation problem with operational time of the parts. Meta-heuristics like GA, SAA, 

TS and ACS seem to be prominent algorithms in giving good solutions to cell 

formation problems. Some models in neural networks are quite useful in clustering 

of both machines and parts with less computational time.  In this chapter ART1 

which is one among the neural network models is dealt with necessary 

modifications to consider real valued workload matrix to form machine cells and 

part families. When the input matrix is presented to the algorithm, the result is 

obtained in the form of a block diagonal structure where each block represents a 

cell. The rows and columns of the cell are machines and parts respectively 

assigned to the cell. The elements outside the block diagonal structure are termed 

as exceptional elements that represent inter-cell moves. In ART1 approach the 

formation of machine cells are natural, meaning that there is no constraint or 

objective function involved in the algorithm during clustering process. (Chapter 4 

deals with the machine cell formation considering objective function). 

The basic purpose of ART1 approach is to develop a simple and efficient 

methodology to provide quick solutions for shop floor managers with least 

computational efforts. However, there are certain disadvantages of ART1 network 

– (i) it will recognize only the binary input data. (ii) the resulting solution is highly 

influenced by the order of presentation of input vectors. 

Chen and Cheng (1995) have successfully overcome the second 

disadvantage using some supplementary procedures. ART2 and self-organizing 

maps (Carpenter and Grossberg 1987) can overcome the first drawback of ART1. 

But simple network architecture, fast computation and outstanding ability to handle 

large scale industrial problems favour the choice of ART1 over other methods. The 

present work uses a modified ART1 to address the first disadvantage of the basic 

adaptive resonance theory.  
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3.4 THE MODIFIED ART1 ALGORITHM TO MACHINE CELL FORMATION 

WITH OPERATIONAL TIME 

The algorithm given in section 3.4.1 is a modified version of ART1, adapted 

from the method proposed by Yoh-Han Pao (1989) that accommodates analogue 

patterns (matrix with ratio level data) instead of binary form of input vectors 

(conventional MPIM) for machine cell formation problem. The input to the 

algorithm is the workload matrix in which cell entries indicate the processing times. 

Let M be the total number of machines and N be the total number of parts then 

workload matrix size becomes M x N (for example 6 x 8 matrix as shown in Table 

3.1a. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Table 3.1a MPIM of size 6x8 matrix (data set 4) 

 

i/j P1 P2 P3 P4 P5 P6 P7 P8 

M1 0 1 0 1 0 0 1 0 

M2 1 1 1 0 1 1 1 1 

M3 0 0 1 0 0 1 0 1 

M4 0 0 0 1 0 0 1 0 

M5 1 0 1 0 1 1 0 1 

M6 0 0 0 1 0 0 1 0 

 

Table 3.1b MPIM matrix with real values 

i/j P1 P2 P3 P4 P5 P6 P7 P8 

M1 0 0.53 0 0.99 0 0 0.83 0 

M2 0.91 0.82 0.83 0 0.91 0.92 0.86 0.97 

M3 0 0 0.79 0 0 0.56 0 0.88 

M4 0 0 0 0.53 0 0 0.51 0 

M5 0.98 0 0.83 0 0.71 0.58 0 0.54 

M6 0 0 0 0.54 0 0 0.74 0 
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3.4.1 Modified ART 1 algorithm 

 

Step1: Initialize: Set nodes in the input layer equal to N (number of parts) and 

nodes in output layer equal to M (number of machines). Set vigilance 

threshold (ρ). 

Step 2: Initialize top-down connection weights as given in equation (3.1) 

 0  (0) 
ji

wt =               (3.1)

 for i = 1, 2,...M. and j = 1,2,...N. 

Step 3:Let q =1. The first input vector X1 (first row of the workload matrix) is 

presented to the input layer and assigned to the first cluster. Then, first 

node in the output layer is activated. 

Step 4:The top-down connection weights for the present active node are set equal 

to the input vector. 

Table 3.1c Row sorted matrix  

i/j P1 P2 P3 P4 P5 P6 P7 P8 

M1 0 0.53 0 0.99 0 0 0.83 0 

M4 0 0 0 0.53 0 0 0.51 0 

M6 0 0 0 0.54 0 0 0.74 0 

M2 0.91 0.82 0.83 0 0.91 0.92 0.86 0.97 

M3 0 0 0.79 0 0.00 0.56 0 0.88 

M5 0.98 0 0.83 0 0.71 0.58 0 0.54 

 
Table 3.1d Output matrix 

 
i/j P4 P7 P1 P2 P3 P5 P6 P8 

M1 0.99 0.83 0 0.53 0 0 0 0 

M4 0.53 0.51 0 0 0 0 0 0 

M6 0.54 0.74 0 0 0 0 0 0 

M2 0 0.86 0.91 0.82 0.83 0.91 0.92 0.97 

M3 0 0 0 0 0.79 0 0.56 0.88 

M5 0 0 0.98 0 0.83 0.71 0.58 0.54 
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Step 5: Let 1q q += . Apply new input vector qX . (input vectors are the rows of the 

workload matrix).  

Step 6: Compute Euclidean distance between qX and the exemplar stored in 

the top-down weights (
ji

wt ) for all active nodes i as given in the 

equation (3.2). This distance function is used to calculate similarity 

between the stored pattern and the present input pattern. If the 

similarity value is less than or equal to ρ (vigilance threshold), the 

present input is categorized under the same cluster as that of stored 

pattern. 

∑
=

−=
N

1j

2
jiqji )wt(xe                        (3.2)  

         

Step 7: Perform vigilance test: Find out minimum Euclidean distance.   

Step8: If min ρ  e i ≤ (threshold value), select output node for which Euclidean 

distance is minimum. If tie occurs, select the output node with 

lowest index number. Suppose output node k is selected then 

allocate the vector qX to the node k (cell) and activate node k. Make 

increment to the number of machines in the active node k by one. If 

ie s for all active nodes are greater than ρ, then go to step 9. 

Step 9: Start a new cell by activating a new output node. 

Step10:Update top-down weights of active node k using equation (3.3). 

 When a new vector is presented to the algorithm, its belongingness to 

existing  nodes is judged by matching with respective top-down 

weights. The matching  criterion is based on minimizing dissimilarity 

between existing exemplar stored as  top-down weights and new input 

vector. Therefore, top-down weight updating  principle warrants for storing 

combined information of previously stored exemplar and the present input 

pattern. Usually, higher weights are emphasised on stored exemplar than 

that of the new input vector. When a vector is selected (to be allocated to 

an output node), its top-down weights are updated using more 
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 information of the previously stored exemplar and a relatively less 

information of the input vector (pattern) as shown in equation (3.3).                     
             )x.

m

1
()tw . 

m

n
(wt

qjjkjk
+=          (3.3)  

Step 11: Go to step 5 and repeat till all the rows are assigned in the output nodes 

(cells). 

Step 12: Check for single machine cells. If a single machine is found in any 

cell, perform the following operations to merge the single machine 

cells into any other cells. 

1. Determine average workload of each cell.  

2. Calculate the Euclidean distance between the cells. 

3. Merge a cell containing single machine with another in such a 

way that Euclidean distance between them is minimum. 

Step 13: Assign parts to cells using the membership index given in equation 

(3.4). 

 

j

kj

j

kj

k

kj
kj T

T
.

f

f
.

f

f
P =              (3.4)

                         

The membership index kjP  represents the belongingness of part j to cell k. 

Membership index consists of three components as shown in equation (3.4). First 

component ( kkj /ff ) denotes the proportion of machines of cell k required by part j. 

The second component ( jkj /ff ) is a ratio between the number of machines in cell k 

required by part j and the total number of machines required by part j. The third 

component ( jkj /TT ) is the proportion of processing time of part type j that can be 

accommodated in cell k. The belongingness of the part j, kjP  is calculated for all the 

cells, k = 1, 2, 3…C. Part j is assigned to cell k based on its maximum 

belongingness to cell k. The maximum belongingness can be calculated using 

equation (3.5). 
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}{PmaxP
kjm =       k=1, 2, 3…C.                (3.5)   

The value of mP lies between 0 to 1 where mP  = 1 indicates that the part j 

perfectly belongs to cell k.  

  

3.5 MODIFIED GROUPING EFFICIENCY- A NEW PERFORMANCE MEASURE 

Literature suggests that two popular measures viz. grouping efficiency and 

grouping efficacy are used to check the performance of block diagonal structure 

generated by a cell formation technique. Grouping efficiency is given by the 

equation (3.6). Chandrasekharan and Rajagopalan. (1986a) defined grouping 

efficiency as a weighted average of two functions η 1 and η 2 as shown in equations 

(3.7 and 3.8) 

21 r)η(1)ηx(rη −+=                 (3.6)

                              

 

where, 

blocksdiagonaltheinelementsofnumberTotal

blocksdiagonaltheinonesofNumber
η

1
=                (3.7) 

blocks diagonal-off the inelements  of number Total

blocks diagonal-  off the inzeroes  of Number     
η

2
=               (3.8) 

r is a weighting factor that lies between zero to one (0 < r < 1) and its value is 

decided depending on the size of the matrix. Grouping efficiency considers two 

functions - packing density inside the cells (η1) and inter-cell moves (η2). Weighting 

factor is used to achieve a trade off between two functions depending on 

desirability of the decision maker. A higher value of η is supposed to indicate 

better clustering.  

The first drawback of grouping efficiency is its low discriminating capability i.e. 

less ability to distinguish a good quality solution from a bad quality solution. A 

solution with many 1’s (ones) in the off-diagonal blocks shows higher efficiency 

(ranges from 75% to 100%), which intuitively must show lower efficiency. 

Secondly, emphasis on number of zeros in the off-diagonal blocks rather than 

number of 1’s in equation (3.7) invariably leads to calculate a higher efficiency. 
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This phenomenon is more closely observed when number of exceptional elements 

decreases with increase in size of the matrix. Therefore, it can be ascertained that 

grouping efficiency is highly sensitive to the size of the matrix. To overcome these 

shortcomings, grouping efficacy was proposed by Kumar and Chandrasekharan 

(1990) as given in equation (3.9). The emphasis on number of ones outside the 

diagonal blocks and the number of zeros inside the blocks are given in equations 

(3.10 and 3.11) 

φ)(1

ψ)(1
τ

−

−
=                       (3.9)    

where, 

operations of number Total  

elements lexceptiona of Number
ψ =                              (3.10)   

               

operations of number Total

blocks diagonal the invoids  of Number
φ =          (3.11) 

             

Unlike grouping efficiency, grouping efficacy is not affected by the size of the 

matrix. However, both measures - grouping efficiency and grouping efficacy treat 

all operations equally and suitable only for the zero-one incidence matrix. These 

measures cannot be adopted for cell formation problem where information 

regarding operational times is of importance. Therefore, generalized grouping 

efficacy introduced by Zolfaghari and Liang (2003) can be conveniently used to 

measure the performance considering operational times of the parts. But in 

contrast to grouping efficiency and grouping efficacy measures, generalized 

grouping efficacy ignores the effect of voids inside cells, which predominantly 

affects the goodness of the block diagonal structure. Hence, a new measure for 

grouping efficiency termed as modified grouping efficiency (MGE) has been 

introduced in this chapter to find out the performance of the cell formation method 

that deal with workload matrix with due consideration of voids inside the cells. 
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For the cell formation problems using workload (operational time) information, the 

grouping efficiency has to be found out from the ratio of total workload inside the 

cells denoted as ptiT , and total workload of the matrix. When total workload is 

being calculated, the number of voids present inside the cells are taken into 

account and the proportionate value of voids with the number of elements present 

inside the cells are calculated using the weighting factor to the voids ratio as 

shown in the equation (3.12). The elements outside the cells represent exceptional 

elements, denoted as ptoT . The MGE is calculated using equation (3.13). 

ekvkv N / N  w =             (3.12)

                   

∑+∑+

=

==

c

1k

c

k v
w.T

1
TT

T
MGE

ptkptkpto

pti           (3.13)

       

 Unlike grouping efficiency, modified grouping efficiency does not treat all 

the operations equally. Moreover a weighting factor for voids is considered to 

reflect the packing density of the cells. It produces 100% efficiency when the cells 

are perfectly packed without any voids and exceptional elements.  

 

3.6 AN ILLUSTRATIVE EXAMPLE 

The binary matrix of size 6x8 , shown in Table 3.1(a), is converted into real 

valued workload matrix by replacing the ones with uniform random numbers in the 

range of 0.5 to 1 and zeros remain unchanged in the same position. The resultant 

matrix shown in Table 3.1 (b) is presented as input to the ART1 algorithm. Initially 

the algorithm assigns the machines (rows) to the cells and the row sorted matrix is 

given in Table 3.1 (c). After rows are sorted out, parts (columns) are assigned to 

the cells using the membership index given in the equation (3.4) and equation 

(3.5) to form the part families. Thus final solution matrix obtained after sorting the 

columns has two cells as shown in Table 3.1(d). The first cell does not have any 

voids and hence weighting factor for the voids (wv) is zero. The number of voids in 

second cell (Nvk) is four and total number of elements (Nek) is eighteen. Therefore, 
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weighting factor for voids (wv) for the second cell equals to 0.2222. The total 

processing time in second cell (Tptk) is 11.234 and it is multiplied by its weighting 

factor for voids to produce Tptk x wv equal to 2.496. The total processing time 

inside both the cells (Tpti) is 15.379. As total number of exceptional elements is 

two, sum of their value (Tpto) is 1.385. The summation of (Tpto), (Tpti) and (Tptk x wv) 

is calculated as 19.2604. Finally, the value of MGE can be expressed as the ratio 

of 15.379 and 19.2604 and it is found to be 79.85%. 

 

3.6.1 Eliminating cells with single machine 

A cell with a single machine is not desirable in cellular manufacturing because 

its expected advantages, in particular flexibility, will be lost. The algorithm 

sometimes generates cells with single machine. A procedure has been illustrated 

to deal with single machine cell with the help of an example problem of size 30 x 

50 (data set 24). The matrix is presented to the algorithm already described in 

section 3.4.1 to produce row sorted and column sorted matrices and the output 

matrix are given in Appendix IV. Initially the configuration has 10 cells comprising 

of 19, 1, 1, 2, 1, 2, 1, 1, 1, and 1 number of machines in respective cells (from 1 to 

10). There are seven cells with single machine in this configuration. The algorithm 

works in such a way that the machines numbered 2, 3, 10, 17, 19, 20, and 21, 

each representing a single machine cell, are combined with other cells. The 

process of combining cells is based on Euclidean distance of average workloads 

in the cells. The Euclidean distance for average workload between the cell with 

single machine and all other cells is found out. The cell that shows minimum value 

of Euclidean distance as shown in Table 3.2 with the cell containing single 

machine can be combined together to form one cell. 

Initially, there were ten cells and after eliminating single machine cells, the final 

output has only three cells. 

1. Machines numbered 2, 10, 17, 19, 20 and 21 are merged with cell-1 having 19 

machines.  

2. Machine numbered 3 is merged with machines numbered 8 and 25.  

3. There is no change in the cell with machines numbered 15 and 28. 

The new configuration has 3 cells as shown in Appendix IV. 
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3.7 RESULTS AND DISCUSSIONS 

The ART 1 is adapted in this chapter since in recent years researchers prove 

that soft computing techniques made successful contributions in the CF problems 

(Venugopal 1999). Besides that there are very few methods developed so far 

which clusters simultaneously machines and parts while considering important real 

life production factors such as operational time and operational sequence (George 

et al. 2003). Considering these issues, in this chapter the ART 1 is suitably 

modified to handle such production factors and form both clusters concurrently 

thereby identifying machine cells and parts families for constructing CMS. The 

following major contributions are made in this chapter. 

• Suitable modification is made in the ART1 to handle operation time (ratio 

level data) to form machine cells and part families concurrently. 

• Procedure for eliminating cells containing single machine and merging them 

into the cells with minimum threshold value is given. 

• Appropriate performance measures are developed to consider operational 

time of the parts. 

. The proposed algorithm is tested with a wide variety of benchmark problems 

from open literature and is found to be consistent in producing quality solutions. 

Table 3.2 Comparison vectors (the highlighted numbers show 
         minimum Euclidean distance in the cells having 

      singleton machine) (data set 24) 

Cell 

No 1 2 3 4 5 6 7 

1 0.00 2.45 4.02 4.44 2.94 5.67 4.11 

2 2.45 0.00 4.51 4.58 4.14 5.81 4.24 

3 4.02 4.51 0.00 6.50 2.36 7.74 6.17 

4 4.44 4.58 6.50 0.00 6.14 3.20 3.49 

5 2.94 4.14 2.36 6.14 0.00 5.64 5.80 

6 5.67 5.81 7.74 3.20 5.64 0.00 3.23 

7 4.11 4.24 6.17 3.49 5.80 3.23 0.00 
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Table 3.3 shows the problems of different sizes selected from open literature with 

their sources for testing the algorithm. For each sample problem, the workload  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.3 Performance of the proposed modified ART1 
K-means 

algorithm 

C-linkage 

algorithm 

Proposed 

modified 

ART1 

 

 

Data 

set 

No. 

 

 

No. 

of  

Cells 

EE MGE 

% 

EE MGE 

% 

EE MGE 

% 

1 2 2 77.25 2 77.25 2 77.25 

2 2 2 78.34 2 78.34 2 78.34 

3 2 7 81.87 7 81.87 7 81.87 

4 2 2 79.85 2 79.85 2 79.85 

5 2 3 61.77 3 61.77 3 61.77 

6 2 1 65.48 1 65.48 1 65.48 

7 2 6 57.00 6 57.00 4 69.70 

8 2 28 60.00 28 60.00 25 61.30 

9 3 9 83.40 9 83.40 9 83.40 

10 3 0 77.14 0 77.14 0 77.14 

11 3 0 93.28 0 93.28 0 93.28 

12 2 2 59.43 2 59.43 2 60.59 

13 4 7 68.13 9 65.23 2 76.13 

14 3 15 64.81 15 64.81 15 64.81 

15 2 42 49.13 42 49.13 19 60.10 

16 3 1 71.00 1 71.00 1 71.15 

17 4 31 61.50 31 61.50 28 61.71 

18 3 38  51.70 38 51.70 42 50.50 

19 4 34 46.70 30 51.39 30 51.39 

20 6 0 90.28 0 90.28 0 90.28 

21 5 7 71.60 7 71.60 9 73.89 

22 3 12 56.65 17 53.98 17 53.98 

23 6 20 61.84 20 61.84 26 55.51 

24 3 33 50.51 33 50.51 17 53.19 
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(input) matrix is generated by replacing the ones in the incidence matrix with 

uniformly distributed random numbers in the range of 0.5 to 1 and zeros to remain 

in same positions. Different sizes of the problem range from 5 x 7 to 30 x 50 have 

been considered. It is assumed that the lot size for all the parts equal to one to 

characterize the behaviour of the sample problems considered in this chapter 

although it is not restrictive to one. In order to evaluate the performance of the 

ART1 algorithm, the sample problems are tested with two more algorithms viz. K-

means clustering (Cheung 2003) algorithm and C-linkage algorithm (Defays 1977). 

The algorithm is coded in C++ and run on an IBM Pentium IV PC with 2.4 GHz 

Processor. 

K-means clustering and C-linkage clustering algorithms are used for 

comparison since literatures suggest these algorithms are comparable in 

clustering. Moreover Euclidean distance can be used in both K-means and C-

linkage clustering algorithms for finding out the nearness between clusters. They 

assign machines to different clusters using Euclidean distance. The number of 

clusters and number of iterations are varied depending on the size of the problem 

until no further improvement is possible in the solution.  

It is observed that the number of iterations lies in the range of 20-35 for the 

sample problems considered in this work. The standard software SYSTAT.11.0 is 

used to form clusters using K-means and C-linkage algorithms. The solutions 

obtained by the proposed modified ART1 algorithm are compared with the 

solutions of K-means and C-linkage clustering algorithms. 

 

The computational time required to obtain solution in modified ART1 is 

reported for few sample problems in Table 3.4.  

 

 

 

 

 

 

 

Table 3.4 CPU Time for the proposed method 
S.N Problem 

Size 

CPU Time (Sec) 

Modified ART 1 

1 5 x 7 0.060213 

2 16 x 30 0.396320 

3 30 x 50 1.854945 
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Careful observation of Table 3.3 reveals that number of exceptional elements 

reduces with modified ART1 algorithm for most of the sample problems as 

compared to solutions obtained by two other methods. As far as MGE is 

concerned, solutions obtained by the modified ART1 algorithm outperform other 

two methods in most of the tested problems. K-means and C-linkage clustering 

methods produces comparatively inferior results in respect to performance 

measures like MGE and number of exceptional elements. However, all the three 

methods are equally good when the problem size is small. Modified ART1 

provides desired solution in a single iteration whereas both K-means and C-

linkage methods require multiple numbers of iterations for any size of the problem. 

The advantage of modified ART1 lies in its ability to generate quality solution for 

large size problems.  

In modified ART1, the vigilance threshold value greatly influences the number 

of cells obtained. It is used to tune the algorithm and also to create the desired 

number of cells as required by the decision maker. For example the threshold 

value of 2 makes 5 cells whereas the threshold value of 2.5 creates only 3 cells for 

the problem of size 16 x 30.  

The threshold value for each problem is varied from 1.5 to 2.5. It is observed 

that the number of cells equals to the total number of machines if the threshold 

value is set at zero. As the threshold value increases, the number of cells can be 

reduced as shown in Table 3.5.  

The threshold value for illustrated example of size 6 x 8 is 2.00 and the 

modified grouping efficiency (MGE) obtained by the modified ART1 algorithm is 

79.85%. Both K-means algorithm and C-linkage algorithms also produce the same 

value of MGE for the illustrated example. The supplementary procedure described 

in step 12, section 3.4.1 can be used to avoid cells with single machine that is 

encountered at times. The algorithm is flexible in the sense that maximum number 

of machines to be accommodated in a cell can be limited. The modified grouping 

efficiency given in this chapter is evidently suitable to measure the performance of 

cell formation algorithm taking into account workloads on machines, weighting 

factor for voids, and exceptional elements. 
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The ART1 algorithm is tested with different size problems from open literature 

and resulting solutions are compared with the solutions obtained from K-means 

and C-linkage clustering methods. In most of the problems, it is observed that the 

solutions obtained by the ART1 algorithm either outperform existing methods or  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

remain the same as far as number of exceptional elements and MGE are 

concerned. The effect of vigilance threshold to the number of cells is shown in 

Figure 3.2. Since the algorithm uses simple network architecture, it helps to 

reduce computational burden compared to K-means and C-linkage clustering 

methods. Therefore, the modified ART1 is found to be computationally efficient for 

generating quick solutions for industrial applications.  

Table 3.5 Effect of threshold value on number of cells for the problem size 16 x 30 

 

S.N Threshold 

Value (ρ) 

Number 

of cells 

Machines 

allocated 

Parts allocated 

Cell –1 0  3  6  7 10 11 1  3  6  8 11 17 21 29 

Cell –2 1 0  9 15 

Cell –3 2  5  8 14 4 18 22 24 26 27 28 

Cell –4 4  9 13 15 5  7 10 13 14 16 20 23 25 

1 2 

Cell –5 12 2 12 19 

Cell –1 0  3  6  7 10 11 1  3  6  8 11 17 21 29 

Cell –2 1 0  9 15 19 

Cell –3 2  5  8 12 14 2  4 12 18 22 24 26 27 28 

2 2.3 

Cell –4 4  9 13 15 5  7 10 13 14 16 20 23 25 

Cell –1 0  3  6  7 10 11 1  3  6  8 11 17 21 29 

Cell –2 1  2  5  8 12 14 0  4  9 12 15 18 19 22 24 26 

27 28 

3 2.5 

Cell –3 4  9 13 15 2  5  7 10 13 14 16 20 23 25 
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It has been found from extensive experimentation that the modified ART1 

algorithm is sensitive to the order of presentation of the input vectors due to 

decaying of the stored template leading to unsystematic weight updating. 

Therefore, it may lead to produce different solution if the order of presentation of 

the input vectors is changed. Few methods have been suggested by Suresh and 

Kaparthi (1994) are available to address this limitation when zero-one incidence 

matrix is used as input. However, no effective method exists to address this 

limitation if workload matrix is dealt (Chen and Cheng, 1995).  
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Figure 3.2 Vigilance parameter vs Number of cells (operational time) 

41 



 

 

Chapter – 4  

 

 

 

 

 

 

 

 

 

 

 

Genetic Cell Formation with 

Operational Time 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

4.1 INTRODUCTION 

In the previous chapter, it has been discussed about natural clustering using 

ART1 approach that the formation of machine cells is done without considering 

any objective function or constraints for grouping. In this chapter, the following 

objectives are considered for the formation of machine cells: (i) Total cell load 

variation, (ii) exceptional elements and (iii) combination of total cell load variation 

and exceptional elements. Uniform workload distribution among the cells is an 

important aspect of CMS because non-uniform workload distribution among the 

cells may give rise to increase in work-in-process inventories and lead time. 

However, this vital aspect is not adequately addressed in the literature. Venugopal 

and Narendran (1992a) have proposed a minimization multi-objective function, 

which is a combination of cell load variation and number of inter-cell moves, where 

the rationalization of two objectives is highly desirable to bring both the objectives 

into same scale.  

 

Cell load variation and number of exceptional elements are heavily dependent 

on number of cells. Increasing number of cells leads to increase in number of 

exceptional elements and reduce cell load variation whereas decreasing number 

of cells causes to lower the number of exceptional elements and increase cell load 

variation. Because of the conflicting nature of two objectives, in this research a 

combined objective function is considered with different weights assigned to each 

of the normalized objectives. The efficiency of the layout is also affected unless a 

systematic procedure for part allocation is adopted. Therefore, structured method 

of part allocation into cells is followed in this study.  

In this chapter, an attempt has been made to address the following issues:  

(i) Minimization of total cell load variation so that smooth flow of parts, 

reduction of work-in-process inventories and lead time can be achieved.  

(ii) Minimization of exceptional elements.  

(iii) Minimization of the combined objective (i.e.) total cell load variation and 

exceptional elements bringing them to a normalized scale with weighted 

sum approach.  
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(iv) Uniform allocation of parts following a patterned procedure, which also aids 

in achieving distribution of loads uniformly to machine cells and reduce the 

exceptional elements.  

Modified grouping efficiency (equation (3.13)), is used to find out the grouping 

performance with operational time.  

 

Genetic Algorithm (GA), a popular evolutionary technique, is suggested for 

machine cell formation with the objective of minimizing both the total cell load 

variation and the exceptional elements. The cell load variation is calculated as the 

difference between workload on the machine and average load on the cell. The 

exceptional elements are found out by counting the number of non-zero values in 

off diagonal blocks. It has been demonstrated that GA provides an efficient search 

to find quality solutions. 

 

Since cell formation problems are known as NP complete optimization 

problems, it is difficult to obtain generalized solutions. Modern meta-heuristics like 

GA and SA seem to be prominent algorithms to be tested for solution quality when 

applied to cell formation problems. Nowadays multi-objective models are 

considered taking all benefits of CMS into account, for example, ACCORD by Nair 

and Narendran (1999) GGA by Yasuda et al. (2005) As GA has been tested 

successfully in cell formation problems, the methodology uses GA in a wide range 

of problem sizes.  

 

4.2 SOFT COMPUTING TECHNIQUES FOR MULTI OBJECTIVE CELL 

FORMATION 

Soft computing techniques seem particularly suitable to solve multi-

objective optimization problems, because they are less susceptible to the shape or 

continuity of the Pareto front (e.g., they can easily deal with discontinuous or 

concave Pareto fronts), whereas this is a real concern for mathematical 

programming techniques. Additionally, many current soft computing techniques 

(e.g., GA, SA, particle swarm optimization, fuzzy set theory etc.) are population-

based, that several elements of the Pareto optimal set in a single run can be 
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generated. Goncalves and Resende (2002) provided hybrid GA for CF problem. 

Dimopoulos (2006) has developed a multi-objective genetic programming, an 

evolutionary computation methodology for the solution of the multi-objective CF 

problem. 

 

4.3 PROBLEM FORMULATION 

Several objectives like inter-cell and intra-cell moves, grouping efficiency 

and exceptional elements are associated with machine grouping problem as found 

in literature. But all these objectives hardly reflect smooth flow of material leading 

to high work-in-process inventories. In order to achieve smooth flow of materials 

leading, less work-in-process inventories and increased productivity, cell load 

variation must be considered. In section 4.4.1 and 4.4.2 total cell load variation 

and exceptional elements are considered respectively. In section 4.4.3 the two 

objectives both total cell load variation and exceptional elements are combined 

and formulated as a multi objective minimization problem. In reality both the 

objectives are conflicting to each other in giving good solutions. The number of 

cells greatly influences the combined objective function since increase in the 

number of cells increases exceptional elements, where cell load variation 

decreases and vice versa. Because of this conflicting nature of both the objectives, 

a combined objective function is considered giving different weightings q1 and q2. 

 

4.3.1 Total cell load variation  

The visit of the parts to the machines has been denoted in terms of their 

workload on the machines for the computation of cell load variation. The cell load 

variation is calculated as the difference between the workload on the machine and 

the average load on the cell (Venugopal and Narendran, 1992a). It is expressed in 

equation (4.1) 
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4.3.2 Exceptional elements 

The exceptional elements are found out by counting the number of non-

zero values in off diagonal blocks as given in equation (4.2). 
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4.3.3 Combination of total cell load variation and exceptional elements 

In the objective of our work, two functions are combined giving equal 

weightage. The first function is total cell load variation and the second is 

exceptional elements. The total cell load variation is expressed in real numbers 

whereas exceptional elements in integers. Normally, the numerical value of cell 

load variation is higher compared to number of exceptional elements. Therefore, 

extend of impact of the exceptional elements is not reflected adequately in the 

result. Therefore, it is essential to normalize both functions in a uniform way and 

both functions must be measured in the same scale. In our work, both cell load 

variation and exceptional elements are normalized to give values between zero 

and one so that the combined function can be easily interpreted reflecting effect of 

both the objectives. Thus the objective function of the cell formation problem is 

formulated as shown in equation (4.3). The first component expanded represents 

the ratio between square root of the total cell load variation and the total workload 

of the matrix. The second component indicates the ratio of number of exceptional 

elements and the total elements of the matrix. In view of equal importance for both 

the objectives, the values of the weights are assigned to 0.5 to both q1 and q2.  

Minimize   
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To characterize the behaviour of the algorithm, it is mandatory to fix the 

weightages. However, equal weightage is normally preferred to demonstrate the 

effectiveness of the algorithm. But it can be varied depending on choice of 
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decision makers. However, limiting condition is that the sum of the weightages 

must be equal to one 12q1q =+ .  

 

4.4. THE PROPOSED METHODOLOGY 

Genetic Algorithm (GA) is adopted to find out the machine clusters to form 

cells. In GA a candidate solution represented by sequence of genes called 

chromosome. A chromosome potential is called its fitness function, which is 

evaluated by the objective function. A set of selected chromosomes is called 

population and the population is subjected to generations (number of iterations). In 

each generation crossover and mutation operators are performed to get new 

population. A brief introduction about GA is given in Appendix V. 

 

4.4.1 Representation 

Representation is made in the form of solution string (t). In this problem 

considered, each gene represents cell number and its position gives machine 

number. As shown in Figure 4.1, the machine number 1, 3 and 5 are in cell 

number 2, the machine number 2 and 4 are in cell number 1.  

 

4.4.2 Reproduction 

A fitness function value is computed for each string in the population and 

the objective is to find a string with the maximum fitness function value. Since 

objective is minimization it is required to map it inversely and then maximize the 

resultant. Goldberg (1989) suggested a mapping function given as 

F (t) - fitness function of tth string [F (t) = Zmax – Z (t)] 

Zmax - max [Z (t)] of all strings 

The advantage is that the worst string gets a fitness function value of zero and 

there is no chance of the worst string getting reproduced into the next generation. 

 

4.4.3 Crossover and Mutation 

The crossover operator is carried out with a probability known as crossover 

probability. Crossover is exchange of a portion of strings at a point called 

crossover site (S). The two strings, which take part in the crossover operation, are 
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also selected at random. Here partial mapped crossover given by Michalewicz 

(1996) is performed i.e., crossover site is selected and the genes of one string  

 

 

 

between the sites are swapped with genes of another string as shown in Figure 

4.1. Mutation is also done randomly for each gene and it depends upon another 

parameter called mutation probability. In this method inversion mutation is adopted 

where one gene is selected at random, comes out from one cell and goes to 

another cell, while a machine from latter cell comes to the former cell as shown in 

Figure 4.1. 

 

4.4.4 Part Assignment  

The following procedure given by Chen and Cheng (1995) is used to assign 

parts into the machine cells. A machine cell, which processes the part for a larger 

number of operations than any other machine cell, is found out and the 

corresponding part is assigned into that cell. Ties are broken by choosing the 

machine cell that has the largest percentage of machines visited by the part. In the 

case of tie again the machine cell with the smallest identification number is 

selected. Thus all the parts are assigned to all the cells, which form part families.  

 

  

Representation  

  

1 2 3 4 5   �     Position  of the machine number  

2 1 2 1 2   �     Cell number (gene)   

  

Crossover   

    
Parent1      1  2    2  1  2  �     Off spring 1      1  2    1  1  2  

  Parent 2       1  2    1  1  2  �     Off spring 2       1  2    2  1  2  

           S                   

    S -  Crossover site      

Mutation   
  
 2    1    1    2       2      �     2    1     2    1     2  

  

Figure 4.1 Genetic operators 
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4.5 PROPOSED GA BASED ALGORITHM 

I. Initialization  

Step 1: Set the values of Ps, gen, Pc, Pm. 

Step 2: Read the workload given in terms of processing time Wij of part j on  

machine i. 

Step 3: Create an initial population of size Ps and call it old population (Pold). 

Step 4: Calculate the objective function using equation (4.3). 

Step 5: Sort string in the increasing order of objective function value. 

Step 6: Set gen = 0.  

 

II. Reproduction  

Step 1: Compute F(t) for Pold. 

Step 2: Compute Pt of each string. 

Step 3: Find the cumulative of Pt. 

Step 4:  Generate ‘ra’ and select the string from Pold according to r and  

reproduce it in Pnew. 

Step 5: Repeat step 4 for Ps time. 

Step 6: End. 

 

III. Crossover  

Step 1: Generate ‘r’ if (r<Pc) go to step 2 else go to step 4. 

Step 2:  Select two strings t1 and t2 and swap genes between them by  

selecting crossover site S randomly.  

Step 3: Repeat step 2 for Ps/2 times. 

Step 4: End. 

 

IV. Mutation  

Step 1: Generate ‘ra’. 

Step 2: If (ra < Pm) go to step 3 else go to step 1. 

Step 3: Select two machines randomly in t and interchange its positions. 

Step 4: Repeat step 1 for all genes in Pnew. 

Step 5: End. 
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V. Part Assignment 

Step 1:  Find a machine cell that processes the part for a larger number of  

operations than any other machine cell and assign the part in that  

machine cell. 

Step 2:  If tie occurs, choose the machine cell that has the largest percentage  

of machines visited by the part and assign in that cell. 

Step 3:  If again tie occurs, select the machine cell with the smallest  

identification number and assign the part in that machine cell.  

Step 4: End. 

 

VI. Main Algorithm  

 Step 0: Define the number of cells c = k. (k = 2,3,…,m) 

Step 1:  Initialize the values and evaluate the objective function as given in  

section I. 

Step 2: Do Reproduction as given in section II. 

Step 3: Do Crossover as given in section III. 

Step 4: Do Mutation as given in section IV. 

Step 5: Do Part Assignment as given in section V. 

Step 6: Increment counter. 

Step 7: If (counter < gen) go to step 2 else step 11. 

Step 8:    Store the objective value in Z. Go to step 0. k=k+1. 

Step 9:   Print the best value of Z. 

Step 12: Stop.  

 

4.6 CONVERGENCE 

The data set no.25 of size 5 x 8 is taken as an example to illustrate the 

convergence curve during iterations. For the first iteration the objective value (Z × 

100) is to be 51.77. It gets reduced when the number of generation increases. At 

10th generation it reached to the value of 30.35, a reduction of 41.37%. During 25th 

generation the Z value (× 100) is 5.6, a reduction of 81.67%. The value remains 

same for further increase in the iterations. So it is terminated at this point of time. 

The convergence curve is shown in Figure 4.2.  
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4.7 RESULTS AND DISCUSSIONS 

  The algorithm is coded in C++ and run on Pentium IV PC, 2.4GHz 

processor. The real valued matrix is produced by assigning random numbers in 

the range of 0.5 to 1 as uniformly distributed values by replacing the ones in the 

incidence matrix and zeros to remain in its same positions. The model developed 

using GA has been tested with 25 benchmark problems of varied sizes ranging 

from 5 x 8 to 24 x 40 from open literature and the results are compared with K-

means clustering and C-link clustering algorithms, given in Table 4.1, confirm that 

GA is an appropriate solution methodology to such type of optimization problems. 

Based on exhaustive experiments, the crossover and mutation probabilities are 

fixed to be 0.5 and 0.1 respectively. This probability can be varied depending upon 

the decision maker to tune the algorithm. The chromosome representation used in 

this study may result in the formation of an empty cell or violates some constraints. 

Particularly, crossover may result in the formation of a chromosome like 113331 

when predefined number of cells is three. The above chromosome contains an 

empty cell where cell number 2 is missing. In such cases, the respective 

chromosomes are rejected. Crossover and mutation steps are repeated with other 

pairs of chromosomes till a useful chromosome is obtained.  

Figure 4.2 Convergence curve 

50 



 

 

 

 

 
K-means 

 
C-link 

 
GA 

 
Data 
Set 
No. 

 
Problem  
Size 
 
 

 
Number 
of Cells  

Z 

(×100) 

 
MGE 

% 

 
Z  

(×100) 

 
MGE 

% 

 
Z  

(×100) 

 
MGE 

% 

25   5 x 8 2 5.60 100.00 5.60 100.00 5.60 100.00 

26   7 x 11 2 15.52 63.42 15.52 63.42 15.52 63.42 

27   8 x 20 2 18.38 59.74 18.38 59.74 18.38 59.74 

28   8 x 20 2 7.86 72.11 7.86 72.11 7.86 72.11 

29   9 x 9 2 11.82 73.25 11.82 73.25 11.82 73.25 

30 10 x 15 2 4.42 72.19 4.42 72.19 4.42 72.19 

31   8 x 14 3 1.65 100.00 1.65 100.00 1.65 100.00 

32   9 x 10 3 1.72 100.00 1.72 100.00 1.72 100.00 

33 12 x 31 3 17.94 53.61 17.12 55.06 17.12 55.06 

34 16 x 30 3 14.25 57.75 12.16 59.84 12.16 59.84 

35 16 x 30 3 6.33 68.55 6.33 68.55 6.33 68.55 

36 16 x 30 3 7.60 67.89 7.60 67.89 7.60 67.89 

37 16 x 30 3 16.50 53.38 16.03 52.71 15.98 54.69 

38 16 x 30 3 7.15 70.05 7.63 68.99 7.15 70.05 

39 16 x 30 3 5.51 69.73 5.51 69.73 5.86 70.91 

40 16 x 30 3 6.31 71.50 6.31 71.50 6.31 71.50 

41 16 x 30 3 9.91 65.18 14.25 59.71 9.91 65.18 

42 16 x 30 3 7.76 71.78 7.76 69.49 7.76 71.78 

43 16 x 30 3 6.71 68.87 9.75 65.70 7.82 67.26 

44 16 x 43 3 17.09 53.47 18.99 44.62 17.09 53.47 

45 10 x 20 4 3.74 96.40 3.74 96.40 3.74 96.40 

46 11 x 16 4 3.81 98.11 3.81 98.11 3.81 98.11 

47 16 x 43 4 19.45 53.41 19.45 53.41 19.45 53.41 

48 24 x 40 4 21.11 46.37 16.82 48.67 17.93 49.15 

49 24 x 40 5 9.20 67.29 6.97 67.55 9.54 67.62 

Table 4.1 Comparison of results of proposed GA with K-means and C-link methods. 
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 The number of cells greatly influences the objective function Z since 

increase in the number of cells decreases cell load variation and increases 

exceptional elements. Hence it rests with the decision maker to trade off between 

the objectives and choose the value of the weighting factors accordingly. In this 

work the weighting factor is assumed to be 0.5 to provide equal importance to both 

the objectives. The number of generations is varied from problem to problem in the 

range of 50 to 1000. Similarly, the population size is varied in the range of 10 to 40 

depending on the size of problem. For instance, the optimal solution has been 

arrived with the population size of 20 in 103 iterations for the problem of size 

10x15 where as the problem of size 30x41 is solved with the population size of 15 

with 593 iterations to reach optimal solution. The convergence property of GA is 

given in Figure 4.2.  

 

The proposed algorithm gives same results as that of K-means and C-

linkage algorithms when the problem size is small, if the problem size increases 

the GA outperforms other methods. The time taken for the problems varies with 

the size of the problem, population size and number of generations, which is given 

in Table 4.2. MGE (equation (3.13)) is used to assess the performance of the 

grouping with real values. This measure is capable of judging the goodness of 

block diagonal structure as it takes care of both voids and exceptional elements 

into consideration. The results of proposed algorithm are compared with the 

results obtained from K-means clustering algorithm and C-link algorithm based on 

MGE. Problems have been tested by varying the number of cells from 2 to 5 

depending on the total number of machines. Since the objective function is a 

combination of exceptional elements and cell load variation, it depends upon the 

decision maker to make a trade off between two conflicting objectives by preferring 

weight for each objective. In some cases, particularly in data set numbers 39 and 

49, the value of objective function is more in case of GA compared to other two 

algorithms but block diagonal structure is always better in case of GA. Finally the 

proposed GA is compared with modified ART1 as given in chapter 3. In Genetic 

cell formation, GA attempts to allocate the machines based on minimizing total cell 

load variation. In the process of cell load distribution, sometimes number of 
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exceptional elements may be more as compared with the solutions obtained from 

other methodologies.  

 

This is the reason that in few problems GA produces comparatively inferior results. 

For instance the solutions obtained in data set 13 (Table 4.3) the modified ART1 

gives better results. The reason is that the modified ART1 attempts to form cells 

based on the attributes. If similar attributes are found within machines, they are 

grouped in one cluster. Besides that the methodology of clustering exclusively 

differs from GA. As far as MGE is concerned GA performs better than modified 

ART 1, but for faster computational effort modified ART 1 seems better than that of 

GA which is inferred from Table 4.4 

 
 
 

Table 4.2. CPU Time for the proposed GA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S.N Problem 

Size 

Population 

Size 

(nos) 

No. of 

Generations 

CPU 

Time 

(sec) 

1 10 x 15 20 103 0.21978 

2 12 x 31 25 248 0.54945 

3 16 x 43 20 494 1.26373 

4 24 x 40 25 853 3.62637 

5 30 x 41 15 593 2.19780 
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Table 4.3 Comparison of results of GA with modified ART 1 
Modified ART1 GA . 

Data 
Set 
No 

 
No 
of 

cells 

No 
of 
EE 

MGE 
% 

No 
of 
EE 

MGE 
% 

1 2 2 77.25 2 77.25 

2 2 2 78.34 2 78.34 

3 2 7 81.87 7 81.87 

4 2 2 79.85 2 79.85 

5 2 3 61.77 3 61.77 

6 2 1 65.48 1 65.48 

7 2 4 69.70 6 69.70 

8 2 25 61.30 28 61.30 

9 3 9 83.40 9 83.40 

10 3 0 77.14 0 77.14 

11 3 0 93.28 0 93.28 

12 2 2 60.59 0 62.42 

13 4 2 76.13 3 73.19 

14 3 15 64.81 20 64.81 

15 2 19 60.10 19 60.10 

16 3 1 71.15 1 71.15 

17 4 28 61.70 32 61.70 

18 3 42 50.50 42 51.92 

19 4 30 51.39 29 52.02 

20 6 0 90.28 0 94.58 

21 5 9 73.89 9 73.89 

22 3 17 53.98 15 56.14 

23 6 26 55.51 22 62.23 
24 3 17 53.19 25 55.35 

 

Table 4.4 CPU Time of modified ART1 and GA 
CPU Time (Sec) 

S.N Problem 

Size 
Modified ART 1 GA 

1 5 x 7 0.060213 0.109890 

2 16 x 30 0.396320 1.043956 

3 30 x 50 1.854945 6.043956 
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5.1 INTRODUCTION 

Chapter 3 and chapter 4 deal with cell formation problem using operational 

time where workload on the machines by parts is considered. In this chapter, cell 

formation with operational sequence is considered where the machine cells and 

part families are identified such that movement of parts from one cell to another 

cell is minimised. The routing information is converted in the form of PMIM with 

sequence data. This PMIM is taken as the input for the formation of part families. 

The part families and machine cells are identified from the diagonal blocks of the 

output matrix. If any value exists in the off diagonal blocks, it indicates the inter-cell 

movements of the respective parts. Several methods to solve cell formation 

problem, as described in chapter 2, are based on iterative procedure.  

 

The neural network applications proposed by Malave and Ramachandran 

(1991), Dagli and Huggahalli (1991) and Kaparthi and Suresh (1992) have 

demonstrated the ability of a neural network in solving cell formation problem. In 

all these methods, the input is the Part-Machine Incidence Matrix. The demerits of 

CF problem with such methods have already been discussed in chapter 2. 

However, some of the popular algorithms viz. the Clustering Algorithm (CASE) 

(Nair and Narendran 1998) and Fuzzy ART algorithm (Suresh et al. 1999) found in 

the literature have been proved to produce satisfactory results for the CF problem 

with sequence data otherwise known as ordinal level data.  

  

5.2 CELL FORMATION WITH OPERATIONAL SEQUENCE 

The ordinal level data or operational sequence of the parts is the commonly 

used information in real time manufacturing environment where MPIM is formed by 

replacing the '1's in the incidence matrix. The resultant values can take any value 

in the ordinal scale, and they constitute the ordinal level data (George et al. 2003). 

In this chapter, an algorithm is proposed to make use of the operational sequence 

of the parts, obtained through their route sheets to group the parts and machines, 

with an idea to minimise the number of inter cell movements of the parts. The 
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proposed algorithm employs the principle of ART1 network found in the literature 

(Venkumar and Haq 2005).   

 

Basically the ART1 network classifies a set of binary vectors into groups 

based on their similarity. The ART1 recognizes patterns and clusters of the binary 

vectors with the recognized pattern based on the devised comparison mechanism. 

The proposed algorithm first converts the given non-binary sequence data into a 

zero-one binary matrix known as PMPM and feed the ART1 network with PMPM 

as the input matrix. The performance of the proposed ART1 based algorithm is 

compared with that of the existing Clustering Algorithm (CASE) and Fuzzy ART 

algorithm found in the literature.   

 

5.3 APPLICATION OF ART1 IN THE PROPOSED ALGORITHM 

In the proposed algorithm the second phase rests on the application of 

ART1 which consists of three processes. The first one is cluster search process, in 

which the network computes a matching score to reflect the degree of similarity of 

the present row-wise input vector ( )iX to the existing stored neurons. The initial tji 

and bij weights are initialized by using the following equations (5.1, 5.2 and 5.3). 

N)(1

1
ij

b
+

=                                      (5.1) 

1
ji

t =                     (5.2) 

The matching score for neuron j, is defined by  

( ) i

i

ijj xtbµ ∑=

                                     (5.3) 

N is the number of input neurons. 

The largest ( )jµ implies that the most like group and the associated group J is the 

candidate of the group. 

The next process in the first phase is cluster verification process. Even 

though J is the most like group, it does not guarantee that the iX will pass the 

vigilance test. The vigilance threshold ( )ρ , 10 ≤≤ ρ , determines the degree of the 

required similarity between the current input and a neuron already stored. The 
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similarity check is done to verify whether the neuron belongs to the same 

previously stored pattern. Otherwise, the process returns to the cluster search 

process and tries the next largest ( )jµ . 

The last process of the first phase is the cluster learning process.  If the 

similarity between the iX and the group J is good enough, then the vector iX  is 

accepted as a member of group J.  The learning process updates ijb  and jit .  For 

the new group the jit is identical to the iX . But for the already stored neuron the 

“logical AND” is applied between iX  and the jit .  

In the proposed algorithm, PMIM with sequence data is converted into a 

PMPM with zeros and ones.  Then PMIM is fed into the ART1 algorithm to get the 

part families. In the next stage of the proposed algorithm, a subsequent 

mechanism to group the machines is incorporated. 

 

5.4 THE PROPOSED ALGORITHM FOR CELL FORMATION WITH 

OPERATIONAL SEQUENCE 

The input to the algorithm is the sequence based part -machine incidence 

matrix (PMIM) of size MN ×  for the M machines and N jobs cell formation 

problem. 

 

Phase 1. Formulation of part-machine precedence matrix 

Step 1. Using the given PMIM with the sequence data, for every part, a 

Machine–Machine Precedence Matrix (MMPM) of size MM × is 

constructed.  Each row of a MMPM represents a machine and the ‘1’s 

in the row indicate the machines which are required for the part j 

subsequently.  The row corresponding to the first machine to be 

visited by the part, the ‘1’s are given to all the machines required by 

the part, thus it holds the maximum number of ones in the MMPM of 

the particular part. The number of ‘1’s is decreased by ‘1’ to the 

subsequent machines required by the part. For the rows 

corresponding to the machine which are not required by the part, all 

the elements are assigned with zero.  
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Step 2. Using the ‘N’ number of MMPMs single part-machine precedence 

matrix (PMPM) of size ‘
2MN × ’ is constructed. Each row of the 

PMPM corresponds to a part and the element of the row is obtained 

by placing all the rows of the MMPM in a linear sequence. 

 

Phase 2. Grouping of parts into part families using ART1 

The PMPM obtained from the phase1 is given as input to the ART1 

network. 

Step 1. Before starting the network training process, the top-down weights  jit  and 

the bottom-up weights ijb  are set to initial values by using the Equations 

(5.2) and (5.4) respectively. 

)M(1

1
b

2ij
+

=

for all i and j            (5.4)   

The vigilance threshold ρ  is suitably selected such that 0< ρ <1 

Step 2. Apply new input vector Xi 

Step 3. Compute matching scores using equation (5.5) 

The output µj of every output node j equals  

( ) i
i

ijj xtbµ ∑=

 for j = 0,1,…, (M2 -1)           (5.5)  

Step 4. Select best matching exemplar i.e. node (θ) with maximum output  

( )jθ µmaxµ =
. Outputs of other neurons are suppressed. In case of tie 

choose the neuron with lower j.  

Step 5. Vigilance test i.e. test of similarity with best matching exemplars 

Compute number of 1’s in the input vector using equation. (5.6) 

∑=
i

ixX
            (5.6)   

Compute number of perfectly matching 1’s between input vector and best 

matching exemplar using equation (5.7) 

∑ ⋅=⋅
i

iiθ xtXT
          (5.7) 
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Step 6. Similarity check is done using equation (5.8). 

ρ
X

XT
>

⋅

            (5.8)   

If the similarity is greater than ρ go to Step 7. 

Step 7. Disable the best exemplar temporarily output of the best matching node 

selected in the step 4 is temporarily set to zero; other outputs have 

already been suppressed. Then go to step 3. In step 3, a new neuron in 

the output layer gets selected to represent the new class. 

Step 8. Update best matching exemplar using equations. (5.9 and 5.10). 

iiθiθ (t).xt1)(tt =+
                (5.9)

 
∑+

=+

i
iiθ

iiθ
iθ

x(t)t0.5

(t).xt
1)(tb

              (5.10)   

Step 9. Repeat the step 2 after enabling any nodes disabled in step 6 

The output of this phase will be the optimal number of part families and 

the list of parts within each part family. 

Phase 3. Grouping of machines into machine cells 

Step 1. Each machine is allocated to a cell corresponding to a particular part 

family where the total number of operations required by all the parts 

in the family put together is maximum. 

 Step 2. The columns of the output are rearranged into block diagonal form 

such that the number of inter cell movements are kept minimum. 

 

5.5 MEASURE OF PERFORMANCE 

Since the data considered in this chapter is operational sequence of parts, 

the MGE as used in chapter 3 to calculate the measure of performance, can not 

be used for this purpose. Hence the Group Technology Efficiency (GTE) given by 

Harhalakis et al. (1990) can be conveniently used to measure the performance 

considering operational sequence of parts. GTE is defined as the ratio of the 

difference between the maximum numbers of inter-cell travels possible and the 

numbers of inter-cell travels actually required by the system to the maximum 

numbers of inter-cell travels possible as given in equations. (5.11 and 5.12). 
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The maximum numbers of inter-cell travels possible in the system is  

∑
=

−=
N

1j
1)

o
(npI           (5.11)  

The number of inter-cell travels required by the system is 

∑
=

∑

−

=

=
N

1j

1
o

n

1w
njw

t
r

I         (5.12)

 The GTE is calculated using equation (5.13) 

p
I

r
I

p
I

GTE
−

=          (5.13)   

Ip  Maximum number of inter-cell travel possible in the system. 

Ir  Number of inter-cell travel actually required by the system. 

no    Number of operations (w=1,2,3,…,no) 

njwt   = 0 if the operations w, w+1 are performed in the same cell 

= 1 otherwise. 

 

5.6 NUMERICAL ILLUSTRATION 

Table 5.1 shows the sequence based PMIM of an example problem 

wherein seven parts are to be processed using five machines.  For every part, an 

MMPM is constructed.  Table 5.2 shows the MMPM for the part 1and and Part 2. 

Table 5.3 shows the PMPM constructed as per step 2 of phase 1 of the algorithm. 

The output of phase 2 is shown in Table 5.4. There are two part families. The parts 

2,3,4 and 6 are in one family and the parts 1,5 and 7 are in another family. Table 

5.5 shows the output of the phase 3 of the algorithm, the optimal solution to the 

sample CF problem. It is observed from the output matrix that the parts p2, p4, p6 

and p7 have one exceptional element each and one inter-cell move. The part p3 

has two exceptional elements and one inter-cell move. Hence there are six 

exceptional elements and five inter-cell moves. The group technology efficiency 

(Nair and Narendran 1998) is calculated using equation (5.13). The value of GTE 

is 64.3 %. 
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Table 5.4 Output of phase 2  
   – Part families 

Cell No. Parts 
 

1 p2 
1 p3 
1 p4 
1 p6 
2 p1 
2 p5 
2 p7 

 

Table 5.5 Final output matrix 

(7 × 5) 
 m3 m5 m1 m2 m4 

p2 2 3 0 1 0 
p3 0 3 2 0 1 
p4 2 3 0 1 0 
p6 1 2 3 0 0 

p1 0 0 1 2 3 
p5 0 0 1 2 3 
p7 0 1 0 3 2 

 

Table 5.2 Machine – machine precedence matrix for parts 
   (for part-1)              (for part-2) 

 m1 m2 m3 m4 m5  m1 m2 m3 m4 m5 

m1 1 1 0 1 0 m1 0 0 0 0 0 

m2 0 1 0 1 0 m2 0 1 1 0 1 

m3 0 0 0 0 0 m3 0 0 1 0 1 

m4 0 0 0 1 0 m4 0 0 0 0 0 

m5 0 0 0 0 0 m5 0 0 0 0 1 

 

Table5.3 Part machine precedence matrix for the problem size 7 × 5 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

p1 1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

p2 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 

p3 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 

p4 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 

p5 1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

p6 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 

p7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 
 

Table 5.1 Part machine incidence matrix with  

sequence data (7 × 5) 

 m1 m2 m3 m4 m5 

p1 1 2 0 3 0 
p2 0 1 2 0 3 
p3 2 0 0 1 3 
p4 0 1 2 0 3 
p5 1 2 0 3 0 
p6 3 0 1 0 2 
p7 0 3 0 2 1 
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5.7 RESULTS AND DISCUSSION 

In previous chapters, operational time is taken into account to solve CF 

problem. In this chapter, operational sequence of the parts is considered to form 

machine cells and part families in CF. In light of the literature (Nair and Narendran 

1998) it hardly finds methods that consider the issue of operational sequence 

while constructing CF. Since the basic ART1 consider only zero-one binary data 

as input, it is required to change the input pattern which reflects operational 

sequence information. Therefore a suitable transformation method to convert the 

sequence data into binary data is developed in this chapter and hence ART 1 is 

successfully used to handle this problem and form clusters to identify machine 

cells and parts families. The following major contributions are made in this chapter. 

• A transformation method is developed to convert the operational sequence 

(ordinal level data) into binary data so that it can be fed into the basic ART1 

algorithm. 

• Appropriate performance measure is considered to incorporate operational 

sequence of the parts. 

 

The ART1 based algorithm for the cell formation problem with operational 

sequence (operation sequence data) has been coded in C++ and executed in a 

Pentium IV, 2.4 GHz system. The performance of the proposed algorithm is tested 

with example problems and the results are compared with the existing methods 

found in the literature. Table 5.6 shows the problems of different sizes selected 

from open literature (Nair and Narendran 1998) for testing the proposed algorithm. 

It is found that the proposed algorithm for machine cell formation with sequence 

data gives satisfactory results which are either superior or same as the existing 

methods found in literature. The results are compared with the results produced by 

CASE algorithm (Nair and Narendran 1998) as shown in Table 5.6.  
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The output of the example problem of size 8 × 20 obtained by the proposed 

algorithm is compared with the other two methods namely CASE (Nair and 

Narendran 1998) and Analytical Iterative Approach (George et al. 2003) as shown 

in Table 5.7. In addition to the group technology efficiency and the number of 

exceptional elements,  performance measures used in the literature, the number of 

inter cell movements is also used for evaluating and comparing the performance of 

the algorithms.  

 

 

 

 

 

 

 

 

 

 

 

As for as sequence matrix is concerned the inter-cell moves are calculated 

using the equations (5.10 and 5.11). If the operation of a part is allotted in the 

Table 5.6 Comparison of results of the proposed algorithm with CASE 

Clustering Algorithm 
(CASE) 

Proposed ART1 based 
Algorithm 

Data 
set 
No. 

Problem 
Size 

No. 
of 

Cells EE IM GTE EE IM GTE 
          

50   7 x 7 2 2 4 69.25 2 4 69.25 

50   7 x 7  3 3 6 53.85 3 6 53.85 

51    20 x 8 3 10 17 58.54 10 17 58.54 

52    20 x 20 4 - - - 12 15 74.58 

52   20 x 20  5 15 19 67.80 16 18 69.49 

53  40 x 25 5 - - - 26 22 72.04 

53  40 x 25 8 35 31 66.67 35 31 66.67 

 

Table5.7 Comparison of results of the proposed method over existing methods  

    for the problem of size 20 × 8 (data set 51) 
                  

CASE 
(Nair & Narendran 1998) 

Analytical-iterative 
clustering algorithm 
(George et al. 2003) 

Proposed Algorithm 

Cell 
No. 

Parts allocated 

in the cells 

Parts allocated 

in the cells 

Parts allocated 

in the cells 

1 1 5 10 12 15 1 5 10 12 15 1 5 10 12 

2 2 8 9 11 13 14 16 17 19 2 8 9 11 13 14 16 17 19 2 8 9 11 13 14 16 17 19 

3 3 4 6 7 18 20 3 4 6 7 18 20 3 4 6 7 15 18 20 
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same cell where the pervious operation of the part has taken place, then the inter-

cell move is considered as zero. The total possible inter-cell moves are calculated 

just by taking summation of the difference between one and maximum operation of 

each part as given in equation (5.10). The output of problem of sizes 19 ×12, 

20 ×20 and 40×25 are compared with existing approaches as shown in Tables 

5.8, 5.9 and 5.10 respectively. In ART1, the vigilance threshold (ρ) value greatly 

influences the number of cells obtained. The vigilance threshold value for each 

problem is varied from 1 to 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.8 Comparison of results for the example problem of size 19 × 12 (data set 59) 

             Kiang et al. (1995) Fuzzy ART 
(Suresh et al. 1999) 

Flexible beta 
(Park and Suresh 

2003) 

Proposed 
Algorithm 

Cell 
No. 

Parts allocated 
in the cells 

Parts allocated 
in the cells 

Parts allocated 
in the cells 

Parts allocated 
in the cells 

1 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

2 5 6 11 18 5 6 18 5 6 18 19 5 6 18 19 

3 7 8 9 10 7 8 9 10 11 7 8 9 10 11 7 8 9 10 11 

4 12 13 14 15 16 17 19 12 13 14 15 16 17 19 12 13 14 15 16 17 12 13 14 15 16 17 

 

Table 5.9 Comparison of results for the example problem of size 20 × 20 (data set 61) 

      Harhalakis et al.  
(1990) 

CASE 
(Nair and 

Narendran 
1998) 

Fuzzy ART 
(Suresh et al. 

1999) 

Flexible beta 
(Park and 

Suresh 2003) 

Proposed 
Algorithm 

Cell 
No. 

Parts 
allocated 

in the cells 

Parts allocated 
in the cells 

Parts allocated 
in the cells 

Parts allocated 
in the cells 

Parts allocated 
in the cells 

1 1 9 12 17 20 1 9 12 14 17 20 1 9 12 17 20 1 9 12 17 20 1 9 12 17 20 

2 2 4 11 19 2 4 11 19 2 4 11 19 2 4 11 19 2 4 11 19 

3 3 10 14 18 3 10 18 3 10 14 18 3 10 14 18 3 10 14 18 

4 5 8 13 16 5 8 13 16 5 8 13 16 5 8 13 16 5 8 13 16 

5 6 7 15 6 7 15 6 7 15 6 7 15 6 7 15 
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It is found that the number of cells equals to the total number of parts if the 

vigilance threshold value is set at zero. Figure 5.1 shows the effect of vigilance 

threshold with the number of cells and it is inferred from the Figure 5.1 that the 

number of cells is inversely proportional to the value of vigilance threshold. As the 

vigilance threshold value increases, the number of cells is reduced. If the vigilance 

threshold value is further relaxed, the algorithm produces only one cell. 
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 Figure 5.1 Effect of vigilance threshold (Sequence data) 

Table 5.10 Comparison of results for the example problem of size 40 × 25 (data set 53) 

CASE 
(Nair and Narendran 

1998) 

Fuzzy ART 
(Suresh et al. 1999) 

Flexible Beta  
(Park and Suresh 

2003) 

Proposed Algorithm 

Cell  
No. 

Parts allocated Cell 

No. 
Parts allocated Parts allocated Parts allocated 

1 18, 32 1a 
1b 

18 
32 

11, 18, 27, 29, 32 18, 32 

2 1, 5, 7, 16, 17, 30 2 1, 5, 7, 15, 16, 17, 30 1, 5, 7, 16, 17, 30 1, 5, 7, 16, 17, 30 
3 8, 15, 23, 24, 31 3 8, 23, 24, 21 8, 15, 23, 24 8, 15, 23, 24, 31 
4 3, 9, 13, 14, 33 4 3, 9, 13, 14, 33 3, 9, 13, 14, 33 3, 9, 13, 14, 33 
5 11, 25, 27, 29,5,40 5a 

5b 
5c 
5d 

25, 35, 40 
11 
27 
29 

25, 35,40 11, 25, 27, 29, 35,40 

6 4, 6, 20, 26, 34, 37, 39 6a 
6b 

6, 20, 26, 34, 37, 39 
4 

4, 6, 20, 26, 34, 37, 39 4, 6, 20, 26, 34, 37, 39 

7 2, 12, 36 7 2, 12, 36 2, 12, 31, 36 2, 12, 36 
8 10, 19, 21, 22, 28,38 8a 

8b 
10, 22 
19, 21, 28, 38 

10, 19, 21, 22, 28,38 10, 19, 21, 22, 28,38 
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Therefore, vigilance threshold value plays a vital role for obtaining quality 

solution. For each sample problem, the vigilance threshold has been varied to tune 

the algorithm and it is incremented in the step of 0.5 starting from zero till desired 

solution is obtained. Fifteen trial data sets are tested using the proposed algorithm 

and the results are given in Table 5.11. The output matrix of the problem of size 

40 ×25 is given in Table 5.12. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.11 Performance of the proposed algorithm on test data sets 
        (Sequnce data) 

 
Data 

set 

No. 

Problem 

Size 
Exceptional 

Elements 

Inter-cell  

Moves 

Group 

Technology 

Efficiency 

55 5 x 4 0 0 100.00 

56 5 x 5 1 1 85.71 

57 7 x 5 6 5 64.30 

58 8 x 6 2 2 84.61 

59 19 x 12 8 9 83.93 

60 20 x 12 11 10 78.00 

61 20 x 20 3 3 94.00 

62 30 x 15 21 17 76.71 

63 37 x 20 25 25 71.59 

64 50 x 25 49 46 69.13 

65 55 x 20 15 19 81.20 

66 60 x 28 39 38 70.50 

67 65 x 30 58 52 76.68 

68 80 x 32 53 59 74.57 

69 90 x 35 54 56 77.69 
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Table 5.12 Output matrix by the proposed algorithm for example problem 

    of size 40 × 25 (data set 53) 
 

j\i 4 5 7 12 16 18 19 23 1 2 17 24 3 11 20 25 8 9 10 6 13 14 15 21 22 

1 5  3  4 2              1      6 
4     1    2                  
5 3   2  1                     
6     3 2   1                  
7 3  2  4 1              5       
8   1   3  2                    

15   3   1  2    4         5       
16 1  3  2 4                     
17    1   2              3       
20         1                  
23   2   3  1                    
24   1   2                      
26 2   3    1               4   
29   3                   2    1  
30 4  2  3 1                     
34     2    1    3              
37    3 2    1                  
39     1                       
40         1       2          3       

2         2 3 4      1          
12         1  3 2 4   5          
31  2     3     1                
36         2 3 1    4            

3             2 3 1            
9             3 4 1 2          

13             3 2 1            
14  1           4 2 3            
22           1  3     4 2        
33               1 3 2          

10                3 2 1         
11                 2     3   1  
19                 1 3 2       
21                 1 3 2       
28                 2 1 3       
38                 2 3        1 

18                        3 2   1 
25                    1   3 2   
27    1                     3 2 
32                      2 1 3  4 
35                                       2     4 1 3 
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The proposed algorithm provides solution in a single iteration only. The 

advantage of the proposed algorithm lies in its ability to generate quality solution 

for large size problems. The algorithm is flexible in such a way that the maximum 

number of parts to be accommodated in a family can be limited. Most of the 

existing methods use similarity measures to solve CF problem with sequence 

input. The disadvantage is that those measures forget about the important 

measure called exceptional elements which is the core factor in building CMS 

model. The draw back is avoided in this work. Considering the example problem of 

size 40 x 25, the results shows 35 exceptional elements and 31 inter-cell moves in 

the existing CASE algorithm, for which the proposed algorithm produces the 

solution with 26 exceptional elements and 22 inter-cell moves. It shows that the 

proposed algorithm is superior over existing methods as for as CF problem with 

operational sequence or parts is concerned. 
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Cell Formation with Operational 

Time and Sequence 

 

 

 

 

 

 

 

 

 

 



 

 

 

6.1 INTRODUCTION 

In previous chapters the cell formation problems are solved using the 

information of workload data and operation sequence data individually which are 

taken from the route sheet. But in practice, for constructing the cells, individual 

solutions are least preferred. Taking this into consideration in this chapter, an 

attempt has been made to make use of the operation sequence of the parts 

(known as ordinal level data) and the operation time of the parts (known as 

operational time or workload data) which are obtained through the route sheets to 

group the parts into part families and machines into machine cells. The proposed 

algorithm employs the principle of modified ART1 network which has been used in 

the chapter 3. The proposed algorithm first converts the given non-binary data into 

a zero-one binary matrix known as part machine precedence matrix (PMPM). The 

workload data is then multiplied with this PMPM to get Matrix of Combine Data 

(MCD) which reflects the combined information of operation sequence and time. 

This information is fed in to the modified ART1 network with MCD as the input 

matrix.  

 

6.2 THE ART BASED ALGORITHM FOR CELL FORMATION WITH COMBINED 

OPERATION TIME AND SEQUENCE 

The input to the algorithm is the operational time and sequence based part -

Machine incidence matrix (PMIM) of size MN × .  

Step 1: Using the given PMIM with the sequence data, for every part, a 

machine-machine precedence matrix (MMPM) of size MM ×  is 

constructed.  Each row of a MMPM represents a machine and the 

ones in the row indicate all other machines which are required 

subsequently for the part considered.  However for the row 

corresponding to the first machine to be visited by the part, the ‘1’s 

will appear in all the machines required by the part, thus it has the 

maximum number of ‘1’s in the MMPM of the particular part. For the 

rows corresponding to the machine which are not required by the 

part, all the elements are assigned with zero.  
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Step 2: using the n number of MMPMs, a single Part-Machine precedence 

matrix of size 2MN × is constructed.  Each row of the PMIM 

corresponds to a part and the element of the row is obtained by 

placing all the rows of the MMPM in a linear sequence. 

Step 3: Multiply all the ones present in the PMPM by the respective workload 

data from the work load matrix which represents operational time of 

the parts. The new matrix is a combination of operational time and 

operational sequence of the parts which is named as matrix of 

combined data (MCD) 

Step 4: The MCD will be the input to the modified ART1 which is given in the 

steps (5-15). 

Step 5: Set nodes in the input layer equal to N (number of parts) and nodes in 

output layer equal to (M2). Set vigilance threshold (ρ). 

 Step 6: Initialize top-down connection weights. 

 Top-down weights are initialized using equation (6.1). 

0   (0)wt  ji =               (6.1)   

               

for i = 1, 2,...N. and j = 1,2,... (M2). 

Step 7: Let q =1. The first input vector X1 (first row of the workload matrix) is 

presented to the input layer and assigned to the first cluster. Then, first 

node in the output layer is activated. 

Step 8: The top-down connection weights for the present active node are set 

equal to the input vector. 

Step 9: Let q = q+1. Apply new input vector Xq. (input vectors are the rows of the 

PMPM).  

  Step10: Compute Euclidean distance between Xq and the exemplar stored in the 

top-down weights (wtji) for all active nodes i as given in the equation (6.2). 

This distance function is used to calculate similarity between the stored 

pattern and the present input pattern. If the similarity value is less than or 

equal to ρ (vigilance threshold), the present input is categorized under the 

same cluster as that of stored pattern. 
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Step11: Perform vigilance test: Find out minimum Euclidean distance.   

Step12: If min ei < ρ (threshold value), select output node for which Euclidean 

distance is minimum. If tie occurs, select the output node with lowest 

index number. Suppose output node k is selected then allocate the 

vector Xq to the node k (cell) and activate node k. Make increment to the 

number of parts in the active node k by one. If ei’s for all active nodes 

are greater than ρ, then go to step 13. 

Step13:   Start a new cell by activating a new output node. 

Step14:   Update top-down weights of active node k.    

The decision for belongingness of an input vector to a node (cluster) is 

determined using similarity between previously stored exemplar with 

present input pattern. In other words, top-down weights play the role of 

storing exemplars (for active nodes) for comparison purpose. Therefore, 

top-down weights must contain relevant information of all the input 

vectors already classified under an active node (cluster) in aggregate 

nature. The top down weights are updated each time when a new input 

vector is presented and clustered to an active node. When a vector is 

selected (to be allocated to an output node), its top-down weights are 

updated using more information of the previously stored exemplar and a 

relatively less information of the input vector (pattern)  

as shown in equation (6.3).    

)x.
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1
()tw . 

m

n
(wt

qjjkjk
+=         (6.3)    

        

Step15:  Go to step 5 and repeat till all the rows are assigned in the output nodes 

(cells). 

Step16:  Check for single ton part family. If a single ton is found in any part 

family, perform the following operations to merge the part family 

with one part into any other part families. 
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• Determine average of processing time in each part family.  

• Calculate the Euclidean distance between the part families. 

• Merge the part family containing single part with another part 

family in such a way that Euclidean distance between them is 

minimum than other part families. 

Step17:  Allocate machines to the part families using following 

supplementary procedure 

• The number of operations of a part in a particular machine is 

computed. If the part has maximum number of operations in 

machine i then the machine i is allocated to that part family 

where the part exists. 

• In case tie occurs the machine is allocated with the part family 

where minimum inter-cell moves are possible.  

• In case tie occurs again the machine is allocated with the small 

identification number of part family. 

 

6.3 MEASURE OF PERFORMANCE 

 

Group technology efficiency (GTE) given by Harhalakis et al. (1990) and 

grouping efficiency for ratio level data (as proposed in this chapter) can be 

combined to measure the performance considering sequence of parts and 

operational times of the parts combinedly. Group technology efficiency is defined 

in chapter 5. 

In this work the grouping efficiency for ratio level data (GER) is defined as 

the ratio between the total processing time inside the cells to the summation of 

exceptional elements, total processing time of the cells and total value of the voids 

present in the cells. Voids factor for cell k is calculated by multiplying the number 

of voids in cell k to the average time of machine i in cell k. The void factor of cell k 

is multiplied by the total processing time of cell k to give the value of voids present 

in cell k.  GER is calculated using equation (6.4).      
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Hence, a new measure of grouping efficiency termed as Ratio Ordinal 

Combined Efficiency (ROCE) has been proposed in this work to find out the 

goodness of the grouping in the cell formation problem that deals with both 

operation sequence and time in the input matrix with due consideration of equal 

weightages to both the data. Ratio-Ordinal Combined Efficiency is calculated using 

the equation (6.5). 

Ratio Ordinal Combined Efficiency (ROCE) is defined as the weighted average of 

GER and GTE.  

 

 (GTE) q)-(1  (GER)q   ROCE +=           (6.5) 

 

The problem of size 12 × 10 from (George et al. 2003) is considered for 

illustrating the proposed performance measure ROCE. Initially the input matrix 

(12 × 10) is fed into the algorithm. The output generated is given in Table 6.1 and 

6.2. Table 6.1 is the output matrix with operation sequence data. Table 6.2 

represents the output matrix in terms of operation time. The total number of 

exceptional elements of the matrix (Ne = 4). The total processing time inside each 

cell has been calculated and found to be (Tptk) => (Tpt1=11.4), (Tpt2=10.05), 

(Tpt3=4.01). The number of voids in each column is a count of zeros present in the 

respective columns inside the cells (Nvi) => (Nv1=1, Nv4=1, Nv5=1, Nv8=2, Nv9=1, 

Nv10=1). The average of the operational time of parts in each column is calculated 

which is multiplied by the respective Nvi values to get the void factor. The 

maximum number of inter-cell travel possible in the system (Ip) is found to be 25 

and the number of inter-cell travel actually required (Ir) by the system is 4. The 

maximum number of operations (no) is given as 5. The values of GTE, GER and  

 

 

73 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ROCE are calculated using equations (5.13, 6.4 and 6.5) by substituting these 

values. Hence the value of GTE = 0.84 GER = 0.7645, and ROCE = 0.8023. 

These values are calculated for the output of the existing methods also and 

presented in Table 6.3 

It is observed that the results of the proposed performance measure 

outperforms the existing methods ACCORD (Nair and Narendran, 1999), 

Analytical iterative approach (George et al, 2003) 

 

 

Table 6.1 Output matrix with operation sequence for the problem 

                    of size 12 x 10 (data set 54) 

  1 3 6 2 5 8 10 4 7 9 

1   1 3      2   
5 3 5 1   2  4   
9 4 1 2   3     

10 3 1 2          
2    1 3 4 2    
3    2 4 1 3    
8    1   2    

12    3 2 1      
7    1 3  2    
4        1 3 2 
6        1 3 2 

11                 1   

Table 6.2 Output matrix with operation time for the problem 

 of size 12 x 10  

  m1 m3 m6 m2 m5 m8 m10 m4 m7 m9 

p1 0 0.96 0.63     0.95   
p5 0.63 0.97 0.61   0.94  0.89   
p9 0.54 0.92 0.72   0.92     
p10 0.39 0.61 0.72        
p2    0.86 0.54 0.04 0.67    
p3    0.88 0.49 0.08 0.73    
p7    1.2 0.81 0 0.83    
p8    1 0 0 0.62    
p12    0.7 0.72 0.02 0    
p4        0.07 0.83 0.72 
p6        0.11 0.99 0.76 
p11        0 0.71 0 
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6.4 RESULTS AND DISCUSSIONS 

In chapters 3, 4 and 5, important real life production factors such as 

operational time and operational sequence of the parts are considered separately 

to solve CF problem. In this chapter, both operational sequence and operational 

time of the parts are considered combinedly to form machine cells and part 

families while dealing with CF. From the literature it is understood that methods 

that consider combination of production factors are very small in number (Nair and 

Narendran 1999). The proposed algorithm make use of modified ART 1 presented 

in chapter 3 after the combined matrix is formed which reflects the ratio level data. 

The matrix with operational sequence of parts is converted into binary matrix 

initially and the operational time is combined with this matrix by multiplying the 

respective values. The resultant matrix (MCD) reflects the combination data which 

is a new contribution adapted in this chapter. Besides that the following major 

contributions are made in this study. 

• The proposed methodology is open for considering any real time production 

factors which is in the form of either ratio level data or ordinal level data and 

combination of these data in CF problems. 

• Appropriate performance measures are developed to consider the production 

factors such as operational time and operational sequence of the parts 

combinedly. 

Table 6.3 Comparison of the results of the proposed method over existing methods 

for the problem of size 12 × 10 (data set 54) 

                 Factors considered ACCORD 

Analytical 

Iterative 

Approach 

Proposed  

method 

Exceptional elements 5 5 4 

Grouping efficiency 0.881 0.881 0.897 

Grouping efficacy 1.026 1.026 1.026 

Grouping efficiency for ratio level data (GER) % 69.24 69.24 76.45 

Group technology efficiency (GTE) % 80.00 80.00 84.00 

Ratio ordinal combined efficiency (ROCE) (%) 74.62 74.62 80.23 
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  The algorithm is coded in C++ and run on an IBM Pentium IV PC with 2.4 

GHz Processor. Table 6.4 shows the problems of different sizes selected from 

open literature (Nair and Narendran 1998; George et al. 2003) for testing the 

proposed algorithm. For all trial data sets shown in Table 6.4, the input matrix is 

generated with uniformly distributed random numbers in the range of 0.5 to 5 for 

operational time and 1 to 9 for operational sequence. The problem sizes 

considered in this work range from 5 × 4 to 90 × 35.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.4 Performance of the proposed algorithm on test data sets   

      (combined data) 

Data 

set. No 

Problem 

Size 

Exceptional 

Elements 

Inter-cell  

Moves 
GTE GER ROCE 

55 5 x 4 0 0 100.00 83.48 91.74 

56 5 x 5 1 1 85.71 81.15 83.43 

57 7 x 5 6 5 64.30 72.01 68.16 

58 8 x 6 2 2 84.61 70.15 77.38 

59 19 x 12 8 9 83.93 65.08 74.51 

60 20 x 12 11 10 78.00 59.56 68.78 

61 20 x 20 3 3 94.00 84.25 89.13 

62 30 x 15 21 17 76.71 60.02 68.37 

63 37 x 20 25 25 71.59 60.99 66.29 

64 50 x 25 49 46 69.13 58.39 63.76 

65 55 x 20 15 19 81.20 66.03 73.62 

66 60 x 28 39 38 70.50 57.20 63.85 

67 65 x 30 58 52 76.68 59.59 68.14 

68 80 x 32 53 59 74.57 62.28 68.43 

69 90 x 35 54 56 77.69 62.26 69.98 
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The results are compared with the results produced by ACCORD and 

Analytical Iterative Approach as shown in Table 6.3. In addition a new weighted 

average performance measure ROCE is proposed that measures the performance 

of the algorithm proposed and tested with fifteen trial data sets. The results are 

found to be consistent for all the data sets tested which are shown in Table 6.4. 

The result of the example problem of size 12 × 10 obtained by the proposed 

algorithm outperforms other two methods as shown in Table 6.3. The weights for 

the exceptional elements are given as one. Since in reality, the voids are not 

influencing the system as much as that of the exceptional elements, the weights 

for the voids are proportionally taken to the average values of the respective 

columns where the voids exist. If the operation of a part is allotted in the same cell 

where the pervious operation of the part has taken place, then the inter-cell move 

is considered as zero. The total possible inter-cell moves are calculated just by 

taking summation of the difference between one and maximum operation of each 

part. It is the decision maker’s choice to fix the value of the weighting factor q while 

calculating the proposed performance measure ROCE. Here, the value of q is 

considered as 0.5 for illustrating the performance measure by giving equal 

weightage to both GER and GTE. Since both operational time and operational 

sequence of parts are given equal priority in production flow analysis, the 

weightage factor is assumed to be 0.5 each but it is not restrictive to 0.5. It 

depends on the problem where either operational time or operational sequence is 

more prioritized, can be given more weightage. The proposed algorithm provides 

solution in a single iteration only. The advantage of the proposed algorithm lies in 

its ability to generate quality solution for large size problems.  

 

The vigilance threshold value for each problem is varied from 1 to 9. It is 

found that the number of cells equals to the total number of machines if the 

vigilance threshold value is set at zero. As the vigilance threshold value increases, 

the number of cells is reduced as shown in Figure 6.1. If the vigilance threshold 

value is further relaxed, the algorithm produces only one cell. Therefore, vigilance 

threshold value plays a vital role for obtaining quality solution. The threshold value 

of 6.5 makes 5 cells and the threshold value of 7.0 produces 3 cells for the 
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problem of size 12 x 19. It is observed that the influence of the threshold value on 

clustering cells varies depending on the type of problems. 

   For each sample problem, it is incremented in steps of 0.5 starting from 

zero until desired solution is obtained. The algorithm also takes care of avoiding 

cells with singleton part family that is encountered at times. The algorithm is 

flexible in such a way that the maximum number of parts to be accommodated in a 

family can be limited. From the Table 6.3, it is observed that the grouping 

efficiency and grouping efficacy measures found in the literature produce the 

values are almost same in case of all the three methods compared. But as for as 

number of exceptional elements and the proposed measures like GER, GTE and 

ROCE the modified ART1 methodology shows better performance. Hence the 

proposed grouping efficiency measures are evidently suitable to measure the 

performance of cell formation algorithm taking into account operational time and 

operational sequence of the parts. The proposed algorithm is not limited to 

considering only the above mentioned production factors. For instance, for the 

data set 4, the batch size is assumed to all the parts (P1–10, P2–20, P3–10,     

P4– 5, P5–20, P6–25, P7–15, P8–10). Now the operational time in input matrix will 

be multiplied by the respective batch size and can be fed into the modified ART1 

algorithm. The output is as shown in Table 6.5. This is an entirely different output 

when it is compared with the output of original problem as shown in Table 3.1d. 

Hence, it is inferred that based on the input pattern the proposed algorithm acts 

upon accordingly to get the desired output. This shows that the modified ART1 is 

flexible enough to consider any type of production factors in the form of either ratio 

level data or ordinal level data. 
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Figure 6.1 Vigilance threshold Vs number of cells (combined data) 

Table 6.5 Illustration of problem of size 6 × 8 considering  

     batch size with workload for parts (data set 4) 

  P1 P2 P3 P4 P5 P6 P7 P8 

M1 0 10.60 0 4.95 0 0 12.50 0 

M2 9.10 16.40 8.30 0 18.20 23.00 12.90 9.70 

M3 0 0 7.90 0 0 12.90 0 8.80 

M4 0 0 0 2.65 0 0 7.65 0 
M5 9.80 0 8.30 0 14.20 14.20 0 5.40 

M6 0 0 0 2.70 0 0 11.10 0 
 

Input matrix 
 

  P3 P4 P7 P8 P1 P2 P5 P6 

M1 0 4.95 12.5 0 0 10.60 0 0 
M3 7.90 0 0 8.80 0 0 0 12.90 
M4 0 2.65 7.65 0 0 0 0 0 
M6 0 2.70 11.10 0 0 0 0 0 

M2 8.30 0 12.90 9.70 9.10 16.40 18.20 23.00 
M5 8.30 0 0 5.40 9.80 0 14.20 14.50 

 
Output matrix 
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7.1 INTRODUCTION 

In this study, an attempt is made to solve the cell formation problem 

considering production factors such as operational time and operational sequence 

of the parts using soft computing techniques and metaheuristics. For this purpose, 

operational time of the parts is first considered in chapter 3 and 4. It denotes that 

how long a part takes for its particular operation in a particular machine. Secondly, 

in chapter 5, the operational sequence of the parts is considered to construct 

machine cells and part families. This represents in which order the operations 

involved in a part are carried out on various machines. Thirdly, the combination of 

these data (i.e.) operational time and operational sequence of the parts is 

considered in chapter 6 and represented in a single matrix to form cells. There are 

very few studies which reflect these issues in the chosen field of study as referred 

in the literature. This research work will definitely provide a limelight to the future 

researcher and industrialists in this field. The soft computing techniques like ART1 

and metaheuristics like GA with suitable modifications have been successfully 

implemented for CF problems with operational time and operational sequence 

respectively. The modified ART1 also deals with combined form of these data. 

These approaches are applied to fifty nine benchmark data sets which are found in 

the literature and ten randomly generated data sets and the results are compared 

to other algorithms in terms of various performance measures proposed in this 

research work. Real life large size data sets also tested in the modified ART1 for 

CF problems. 

 

7.2 CONTRIBUTION OF THE RESEARCH WORK  

Modification in ART1 and GA to consider real life production factors such as 

operational time and operational sequence has been done to solve the cell 

formation problems. Since the modified ART1 makes use of Euclidean distance, it 

is computationally simple to arrive at clusters that have machines and parts with 

similar attributes. Here, the vigilance threshold plays a major role for getting 

required number of cells. The proposed GA based algorithm is used to find out 

better solution for combined objective function (i.e. combination of total cell load 
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variation and exceptional elements). The methodology of converting the non- 

binary data into a suitable binary data and subsequently by feeding to the ART1 

networks to solve the CF problem is an additional contribution which may lead 

further development in this area. While forming clusters in some cases, cells with 

single machines are present that is definitely not a desirable output. To avoid such 

cases, a supplementary procedure is developed that will take care for eliminating 

single machine cells while producing output which is claimed as an epsilon 

contribution in this study. In chapter 6, it is notable that initially the sequence 

matrix is converted into binary matrix (PMPM). Then, combining operational time 

with operational sequence, all the ‘1’s in PMPM are multiplied with the respective 

operational time to get the matrix of combined data which is fed as an input to the 

modified ART1 algorithm. This transformation procedure is a further contribution 

that can be claimed from chapter 6. The new performance measures proposed in 

chapter 3 and chapter 6 are able to measure the goodness of the output block 

diagonal structure with operational time and operational sequence and also 

combination of these data that is an additional claim towards the contribution out 

of this research work. The proposed algorithms are tested with wide variety of 

benchmark problems from open literature (Appendix VI) and resulting solutions are 

compared with the solutions obtained by K-means and C-linkage algorithms.  

 

7.3 SUMMARY OF FINDINGS 

In the study undertaken in chapter 3, the modified ART1 uses Euclidean distance 

to find out the nearness among the machines. Hence, machine cells are formed 

based on this distance. The threshold value known as vigilance parameter is used 

to tune the algorithm and also to create the desired number of cells as required by 

the decision maker. Similarly in chapter 4, the proposed GA is tuned by the 

crossover and mutation operators. The population size can be varied from 10 to 40 

depending upon the problem size. The iteration number is also varied depending 

on the problem size as well as the population size chosen for the particular 

problem. The crossover and mutation probability are maintained at 0.5 and 0.1 

respectively which is not restrictive. The combined objective function used in 

chapter 4 is normalized to bring both the objectives to the same scale since they 
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are measured in different scales originally and both are contradictory in nature too. 

In most of the problems, it is observed that the solutions obtained by proposed 

algorithms either outperform the other two methods or remain the same. In genetic 

cell formation as discussed in chapter 4, the proposed GA considers to uniformly 

distributing the cell load. Hence the number of exceptional elements may be more 

some times as compared with the solutions obtained from other methodologies. 

For instance the solutions obtained in data set 13 (Table 4.3) the modified ART1 

gives better results. The modified ART1 attempts to form cells based on the 

attributes. The machines with similar attributes are grouped in one cluster. This is 

the reason for GA to produce inferior solutions in few cases as compared with 

other methodologies considered in this study. 

For each sample problem, the input matrix is generated by replacing the 

ones in the incidence matrix with uniformly distributed random numbers in the 

range of 0.5 to 1 for operational time and 1 to 9 for operational sequence. The 

zeros remained in the same positions. The problem sizes considered in this work 

ranges from 5 x 4 to 90 x 35. It is assumed that the lot size for all the parts equal 

to one to characterize the behaviour of the sample problems considered in this 

work although it is not restrictive to one. Since the algorithms proposed in this 

study uses simple network architecture, it helps to reduce computational burden 

for generating quick solutions for industrial applications. 

 

7.4 LIMITATIONS OF THE STUDY  

In spite of advantages obtained through proposed algorithms, the followings 

may be treated as limitations of the study since they have not been addressed in 

this study. 

• Since ART1 recognizes the entire input pattern keeping the first input 

pattern as reference, it may not be appropriate in cases where the input 

matrix (pattern) is sparse. 

• Revisit of the parts to a particular machine is not addressed in this work. 

• Demand from customers has not been considered in this study. 
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7.5 SCOPE FOR FUTURE WORK  

The revisit of parts to the machines and the demand for parts from 

customer are not considered in this work which is one of the real time production 

factors. The work can be further extended in future incorporating production data 

like revisit of parts to machines, demand for parts from customer, machine 

capacity, total moves of the parts, production volume, layout and tools 

considerations, and material handling systems enhancing it to a more generalized 

CMS. Different types of reproduction, crossover and mutation greatly influence the 

performance of GA. Therefore, various types of GA operators may be tested in cell 

formation problem. In multi-objective GA formulation, Pareto optimality may be 

tested instead of using additive objective function. The ART1 can be modified in 

an adaptive way so that important parameter like vigilance threshold can be fixed 

depending on type and size of the problem.  
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APPENDIX I 

ADVANTAGES OF CELLULAR MANUFACTURING SYSTEMS 

 

The traditional type of organization for manufacturing is process organization in 

which each of the organizational units specializes in a particular process. This is 

gradually being replaced by CMS in which the organizational units (groups) complete all 

the parts they make at their particular processing stage and are equipped with all the 

machines and other facilities that they need to do so. CMS addresses many benefits 

like, 

(i) Setting time reduction  

(ii) Reduced throughput time due to reduced lead time.  

(iii) Improved ability to follow market changes 

(iv) Reduced stocks and WIP 

(v) Centralization of responsibilities 

(vi) Reduced handling and setting costs 

(vii) Simplification of paper work 

(viii) Reduced indirect labour-better cost analysis 

(ix) Improved human relation and better communication 

(x) Reduced investment per unit output. 

(xi) Improved Quality of work 

(xii) Reduced material obsolescence 

(xiii) Reduced material costs 

(xiv) Reduced indirect labour 

(xv) Elimination of inter-departmental stores. 

 

LIMITATIONS OF CELLULAR MANUFACTURING SYSTEMS 

 

CMS has the following limitations: 

(i) Difficult load balancing 

(ii) Difficulty in batch size selection 

(iii) Bottleneck machines are allotted to the remainder shop 
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(iv) Hardly any factory product range can be divided into clear cut component 

families. 

(v) Job satisfaction may fail due to reduced variety of job processed in cells. 

(vi) Stocks and WIP are high, as machines require their own cell rather than the 

common shop as in functional layout. 

(vii) Production control coordinating the various cells is difficult. 

 

Implementing cellular manufacturing is not as easy as it looks. It involves a series 

of vital steps so that it can be ensured whether the parts are actually produced by the 

system. The scale of the cellular manufacturing implementation varies from 

manufacture to manufacture depending on the scale of the business and on the 

objectives of the firm.  

 

The following points have to be considered by the manufacturer to implement 

cellular manufacturing successfully.  

 

A manufacturer has to organize parts that have similar characteristics into part 

families. Each family should produce higher volumes because the higher the 

production volume, the more efficient the production process within a cell. After parts 

are assigned to certain cells, a firm has to know what types of machines are required 

for each cell to produce parts. Some machines may need to be purchased where parts 

from different cells require the same machine. 

 

In this step, workers must be trained and educated. This is the most important 

step in cellular manufacturing implementation. In cells, workers are required to operate 

multiple machines and take more responsibilities. Therefore, continuous training and 

education programs are necessary for improving manufacturing productivity. 

Moreover, trained workers and supervisors have to be given more responsibility. 

Rules, management policies, management techniques, or compensation system may 

have to be changed before cellular manufacturing actually starts working. These 

changes are critical for cellular manufacturing to be fully beneficial. The final step is to 

relocate the machine to begin production in the cells. Although the amount of time and 
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cost depend on the rearrangement, the rearrangement should avoid conflicts with any 

other production lines.  

 

 

APPLICATIONS OF CELLULAR MANUFACTURING SYSTEMS 

 

A cellular manufacturing system is slowly gaining hold in the industries all over 

the world. Gallagher and Knight (1973) observes that GT principles have been applied 

in many fields including machining, welded fabrications, foundry work, presswork, 

forging, plastic injection moulding etc. The reasons for GT’s popularity lie in various 

achievements about its implementation by the industries. Applications include many 

types of industries like metal processing industries, equipment industries, electrical 

and electronic products oriented companies and automobile part manufactures. 

 

Japan makes extensive use of cellular manufacturing in order to achieve Just-In-

Time (JIT) Manufacturing (Schonberger 1996). In the last few decades the US and 

European companies have also learnt and implemented successfully the Japanese 

strategy. 

 

This grouping philosophy has been widely used in Flexible Manufacturing 

System (FMS) (Kusiak, 1985) and in JIT production. Schonberger (1996) has identified 

five sub problems to be solved before production begins in the FMS. They are part 

type selection problem, machine grouping problem, part mix ratio problem, resource 

allocation problem and machine loading problem.  

 

Another important conclusion was that consultants should be part of the process 

to introduce new concepts, establish goals, and prepare and execute plans. At a 

certain point however, they should be phased out so the internal employee team can 

finish developing and implementing the plans, fostering ownership, reliance on 

textbook solutions should be avoided. A blend of textbook concepts and real-life 

experience will produce a plan that is realistic, achievable, and sustainable.  
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The implementation of the factory of the future was a major undertaking for the 

industry (Sridhar and Rajendran 1994). New manufacturing strategies were introduced 

— cells, JIT receipt of materials, production per customer order, DNC—and involved a 

division wide team effort with full corporate support  

 

Cellular manufacturing is gaining increasingly popularity as a way to improve 

productivity and competitiveness quickly. It becomes necessary to address the issues 

related to CMS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d 



 

 

 

 

 

APPENDIX II 

 

SOFT COMPUTING TECHNIQUES FOR CELL FORMATION 

Since cell formation problems are non-polynomially complete in nature, it is 

difficult to obtain solutions that satisfy all constraints. Therefore, it is expected to make 

use of simple but efficient computing techniques. Soft computing technique is found 

more suitable for such type of problems and capable of producing good results. Soft 

computing is an emerging approach to computing which parallels the remarkable ability 

of the human mind to reason and learn in an environment of uncertainty and imprecision 

(Jang et al. 2002). Soft computing is an innovative approach for constructing 

computationally intelligent systems. It is realized that complex real world problems 

require intelligent systems that combine knowledge, techniques and methodologies 

from various sources. Thereby it is more appropriate to make use of soft computing 

techniques like neural network, fuzzy sets for cell formation problem 

 

ADAPTIVE RESONANCE THEORY (ART) NETWORKS 

 

ART is an unsupervised Artificial Neural Network (ANN) similar to a real brain. 

The applications of ART mainly are for classification and pattern recognition. ART is 

better regarding its speed and accuracy compared with other ANN. Another advantage 

is its plasticity. ART is able to remember new input patterns without forgetting the 

previous/old input patterns. Nevertheless, ART is not so popular due to its high 

complexity and unpredictability to tune the learning parameter. ART consists of two 

layers: recognition layer and comparison layer. The input patterns will be saved at 

recognition layer (short-term memory) then the patterns at this recognition layer will be 

compared with the patterns at comparison layer (long-term memory). If a matching 

pattern was not found, this input pattern will be classified as a new pattern. The 

development of ART model leads to ART-2, ART-3, Fuzzy ART, ARTMAP (supervised) 

and Multi channel Fuzzy ART. 

 

e 



 

 

 

 

APPENDIX III 

 
PERFORMANCE MEASURES 

There are several performance measures proposed by the researchers in last 

two decades. The following are some of the grouping measures found in the benchmark 

literatures. Each of them has its own advantages and drawbacks depending on the data 

considered for CF problem. However, no grouping efficiency can be considered for the 

generalized cell formation with maximum available information. In this work, a new 

grouping measure is proposed for measuring the goodness of the block diagonal output 

matrix with ratio level data, ordinal level data and both combined data. 

a) Grouping Efficiency ( )η  

Chandrasekharan and Rajagopalan (1986a) have developed grouping efficiency 

- a very first performance measure in CF. The higher grouping efficiency will result in 

better grouping. The efficiency was proposed as a weighted average of two efficiencies 

. 

b) Grouping Efficacy )(τ  

Kumar and Chandrasekharan (1990) have introduced grouping efficacy as a new 

performance measure, which has been proposed to overcome the drawbacks of 

grouping efficiency. High grouping efficacy will result as good CF. 

c) Grouping Capability Index (GCI) 

Seifoddini and Hsu (1994) introduced a new performance measure: grouping 

capability index (GCI), which is defined based on exceptional operations (Seifoddini and 

Djassemi 1996)). They considered the GCI as follows: 

o

E
1GCI −=                                           

Unlike group efficiency and group efficacy, GCI exclude zero entries from the 

calculation of grouping efficacy 
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d) Machine utilization  

Machine utilization (MU) indicates the percentage of times the machines within 

the clusters are used in production. MU is defined as 

k

k

1k

k

o

NXM

N
MU

∑
=

=                          

               

Where 

No – total number of ones in the kth cell 

Mk – number of machines in the kth cell 

Nk – number of jobs in the kth cell. 

e) Total Bond energy  

Measures of effectiveness (ME) is defined by 

( ) ( ) ( ) ( )[ ]∑∑
=

−+−+

=

+++=
M

1i

j1ij1ii1ji1ji

N

1j

ij AAAAA
2

1
ME             

where M – number of rows in binary matrix 

N–number of columns in binary matrix 

Aij –1 if ith machine is required by jth part, 0 otherwise 

f) Global efficiency  

It is the ratio of the total number of operations that are performed within the 

suggested cells to total number of operations in the systems. 

g) Group efficiency  

It is the ratio of difference between total number of maximum external cells that 

could be visited and total number of external cells actually visited by all parts to total 

number of maximum external cells that could be visited. 

h) Group technology efficiency 

It is the ratio of difference between maximum number of inter-cell travels possible 

and number of inter-cell travels actually required by the system to the maximum number 

of inter-cell travels possible. 

i) Grouping index 

Nair and Narendran (1996) incorporated, in addition to diagonal space and a 

weighing factor (A) and derived a new measure called Grouping index. 
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kα1

α1
γ
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−
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Where 

 
B

A)q)(e(1qe
α ov −−+

=                     

e0– number of ones in the off-diagonal block 

ev– number of voids in the diagonal block 

q – weighing factor, ( )1q0 ≤≤  

B – block diagonal space (total number of elements in the diagonal block) 

A = 0 for e0 < B 

A = e0–B for eo>B 

j) Weighted Grouping efficiency  

A weighting factor may be considered for each machine within the cell to get a 

better distribution of workload and by varying the weights on machines  

o1

ov

q)e(1qd

q)e(1qe
1γ

−+

−+
−=                

where  

e0= number of ones in the off-diagonal block 

ev= number of voids in the diagonal block 

d1=total number of elements in the diagonal block 

q= weighing factor, ( )1q0 ≤≤  

 

k) Quality Index  

Quality Index (QI) is defined as the ratio of the intercellular workload (ICW) to the 

total Plant’s Workload. (PW) 

∑ ∑∑
= == 





















××−=

k

1i

ijjij

N

1j

jl

M

1i

il TVZ)Y(1XICW                           

Xil -1 if machine i is assigned to machine cell l, 0 otherwise 

Yjl -1 if part j is assigned to machine cell l, 0 otherwise 

h 



 

 

Zij -1 if part j has operations on machine i, 0 otherwise 

Vj- production volume for part j 

Tij- Processing time of part j on machine i 

 ∑ ∑
= =

××=
M

1i

N

1j

ijjij TVZPW                             

The Quality Index (QI) for a block diagonal machine component matrix is calculated 

as 

 
PW

ICW
1QI −=                          

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Performance measures and their source 
Performance measure Citation 

Grouping Efficiency (η) Chandrasekharan and Rajagopalan (1986a) 

Number of Bottleneck Parts Seifoddini and Wolfe (1986) 

Machine utilization Chandrasekharan and Rajagopalan (1986a) 

Number of Bottleneck Machines Kumar and Vannelli, (1987) 

Grouping Efficacy (τ) Kumar et al, (1990) 

Global efficiency, Group efficiency, 

Group technology efficiency (GTE) 
Harhalakis et al, (1990) 

Number of Exceptional Elements (EE) Boctor (1991) 

Total Cell Load Variation (CLV) Venugopal and Narendran (1992) 

Grouping Capability Index  Seifoddini and Hsu (1994) 

Total Moves (TM) Gupta, et. al. (1996) 

Bond efficiency Nair and Narendran, (1998) 

Grouping index Nair and Narendran (1996) 
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Output matrix of size (30 x 50) with ten cells. (7 cells with single machine) Data set 24 
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0

0

0

0

0

0

0

0

0

0

0

0
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0
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0
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0
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0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
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0
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0
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0

0

0

0

0

0

13

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

.89

0

.78

.62

.98

0

0

0

0

0

0

0

11

0

0

0

.53

0

0

0

0

0

0

.54

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

9

.99

0

0

0

0

0

0

0
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0

.97

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
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0

0

0

0
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.93
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0

.63
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0

0

0

0

0

0

0

0

0

0

0

0

0

0
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0

0

0

7

0

0

0

0

0

0

0

0

0

0

0

0
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.79

0

0
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0

0

0

0

0

0

0

0

0

0

0

6

0

0

0

0

0

0

0

0

0

0

0

0

0

0

.86

0

.81

0

0
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0

0

0

0

0

0

0

0

0

5

0

0

0

0

0

0

0

0

0

0

0

0

0
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0
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0

0

0

0

0

0

0

0

0

0

0

0
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0

0

0

0

0

0

0

0

0
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0

0

0
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0
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0
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APPENDIX V 

 

GENETIC ALGORITHM - AN OVERVIEW 

  This is an introduction to genetic algorithm methods for optimization. Genetic 

algorithms were formally introduced in the United States in the 1970s by Holland (1975) 

at University of Michigan. The continuing performance improvement of computational 

systems has made them attractive for some types of optimization. In particular, genetic 

algorithms work very well on mixed (continuous and discrete), combinatorial problems 

(Mitsuo Gen and Runwei Cheng 2000). They are less susceptible to getting stuck at 

local optima than gradient search methods. But they tend to be computationally 

expensive.  

 

In GA, it is must to represent a solution of the problem as a genome (or 

chromosome). The genetic algorithm then creates a population of solutions and applies 

genetic operators such as mutation and crossover to evolve the solutions in order to find 

the best one(s). This presentation outlines some of the basics of genetic algorithms.  

The three most important aspects of using genetic algorithms are:  

(i) Definition of the objective function. 

(ii) Definition and implementation of the genetic representation.  

(iii) Definition and implementation of the genetic operators.  

Once these three have been defined, the generic genetic algorithm should work 

fairly well. Beyond that you can try many different variations to improve performance, 

find multiple optima (species - if they exist), or parallelize the algorithms.  

The basic steps of a canonical GA are as follows. 

Step  1. Initialize the population and enter step 2. 

Step  2. Select individuals for recombination and enter step 3. 

Step  3. Recombine individuals generating new ones and enter step 4. 

Step  4.   Mutate the new individuals and enter step 5. 

Step 5. If the stopping criterion is satisfied, STOP; otherwise, replace old individuals 

with the new ones, restructure the population tree and return to step 2. 

Genetic algorithm pseudo code: 

{ 

Generate initial population Pt 

Evaluate population Pt 

m 



 

 

while stopping criteria not satisfied repeat 

{ 

Select elements from Pt to put into Pt+l 

Crossover elements of Pt and put into Pt+l 

Mutate elements of Pt and put into Pt+l 

Evaluate new population Pt+l 

Pt = Pt+l 

} 

} 

 

Genetic Algorithm is a computerized search and optimization algorithm based on 

the mechanics of natural genetics and natural selection.  GA is a search technique for 

global optimization in a search space.  As the name suggests, they employ the 

concepts of natural selection and genetics using past information for directing the 

search with expected improved performance to achieve fairly consistent and reliable 

results.  The traditional methods of optimization and search do not work well over a 

broad spectrum of problem domain. GA attempts to mimic the biological evolution 

process for discovering good solutions. They are based on a direct analogy to 

Darwinian natural selection and mutations in biological reproduction and belong to a 

category of heuristics known as randomized heuristics that employ randomized choice 

operators in their search strategy and do not depend on complete a priori knowledge of 

the features of domain.  These operators have been conceived through abstractions of 

natural genetic mechanisms such as crossover and mutation and have been cast into 

algorithmic forms.  Holland (1975) envisaged the concept of these algorithms in the mid-

sixties and it has been applied in diverse areas such as music generation, genetic 

synthesis, strategy planning and also to address business problems such as traveling 

salesman problem, production planning and scheduling problem, facility location 

problem and cell design problems. GA is different from traditional optimization and 

search techniques in the following ways. It works with a coding of parameters; not with 

parameter themselves. GA searches from population of points; not from a single point. It 

uses probabilistic rules rather than deterministic rules. 
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APPENDIX VI 
 

Source and size of the data sets 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.freewebs.com/sudhakarpandian/169.htm (Data sets can be downloaded from web) 
 

Data 
set 
No. 

Source Problem 
size 

1 King and Nakornchai (1982) 5 x 7 

2 Waghodekar and sahu (1984) 5 x 7 

3 Seiffodini (1989)   5 x 18 

4 Kusiak (1992) 6 x 8 

5 Kusiak (1987)   7 x 11 

6 Boctor (1991)   7 x 11 

7 Seiffodini and wolfe (1986)   8 x 12 

8 Chandrasekaran  et al. (1986)a   8 x 20 

9 Chandrasekaran  et al. (1986)b   8 x 20 

10 Mosier  et al. (1985) 10 x 10 

11 Chan  et al. (1982) 10 x 15 

12 Askin  et al. (1987) 14 x 23 

13 Stanfel (1985) 14 x 24 

14 Srinivasan et al. (1990) 16 x 30 

15 Mosier  et al. (1985) 20 x 20 

16 Carrie (1973) 20 x 35 

17  Boe  et al. (1991) 20 x 35 

18 Kumar et al. (1986) 23 x 20 

19 Mccornick et al. (1972) 24 x 16 

20 Chandrasekaran  et al. (1989)a 24 x 40 

21 Chandrasekaran  et al. (1989)b 24 x 40 

22 Kumar et al.  (1987) 30 x 41 

23 Stanfel (1985)a 30 x 50 

24 Stanfel (1985)b 30 x 50 

25 Venugopal & Narendran (1992) 5 x 8 

26 Venugopal & Narendran (1992)   7 x 11 

27 Venugopal & Narendran (1992)   8 x 20 

28 Srinivasan & Narendran (1991)   8 x 20 

29 Venugopal & Narendran (1992) 9 x 9 

30 Kusiak & Lee (1987) 10 x 15 

31 Venugopal & Narendran (1992)   8 x 14 

32 Venugopal & Narendran (1992)   9 x 10 

33 Burbidge (1971) 12 x 31 

 

Data 
set  
No. 

Source Problem 
size 

34 Boctor (1991)-1 16 x 30 

35 Boctor (1991)-2 16 x 30 

36 Boctor (1991)-3 16 x 30 

37 Boctor (1991)-4 16 x 30 

38 Boctor (1991)-5 16 x 30 

39 Boctor (1991)-6 16 x 30 

40 Boctor (1991)-7 16 x 30 

41 Boctor (1991)-8 16 x 30 

42 Boctor (1991)-9 16 x 30 

43 Boctor (1991)-10 16 x 30 

44 Venugopal & Narendran (1992) 16 x 43 

45 Venugopal & Narendran (1992) 10 x 20 

46 Venugopal & Narendran (1992) 11 x 16 

47 Venugopal & Narendran (1992) 16 x 43 

48 Venugopal & Narendran (1992) 24 x 40 

49 Venugopal & Narendran (1992) 24 x 40 

50 Nair & Narendran (1998) 7 x 7 

51 Nair & Narendran (1998)    20 x 8 

52 Nair & Narendran (1998) 20 x 20 

53 Nair & Narendran (1998) 40 x 25 

54 Nair & Narendran (1999) 12 x 10 

55 Sofianopoulou (1999) 5 x 4 

56 Won and Lee (2001) 5 x 5 

57 Generated-1 7 x 5 

58 Generated-2 8 x 6 

59 Park and Suresh (2003) 19 x 12 

60 Sofianopoulou (1999) 20 x 12 

61 Nagi et al. (1990) 20 x 20 

62 Generated-3 30 x 15 

63 Generated-4 37 x 20 

64 Generated-5 50 x 25 

65 Generated-6 55 x 20 

66 Generated-7 60 x 28 

67 Generated-8 65 x 30 

68 Generated-9 80 x 32 

69 Generated-10 90 x 35 

 

o 



 

 

 

 
 
Data set - 1 

  P1 P2 P3 P4 P5 P6 P7 

M1 0 0.53 0 0.99 0.83 0.91 0 

M2 0.82 0 0.83 0 0 0 0 

M3 0.91 0 0.92 0 0 0.86 0.97 

M4 0 0.79 0 0.56 0 0.88 0 

M5 0.53 0 0 0 0.51 0 0.98 

 
Data set - 2 

  P1 P2 P3 P4 P5 P6 P7 

M1 0.53 0 0 0 0.99 0.83 0.91 

M2 0 0.82 0.83 0.91 0.92 0 0 

M3 0 0 0.86 0.97 0.79 0.56 0 

M4 0.88 0.53 0.51 0.98 0 0 0 

M5 0 0.83 0 0.71 0.58 0.54 0 

 
Data set - 3 

  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 

M1 0.53 0.99 0.83 0 0.91 0.82 0 0.83 0 0 0.91 0.92 0.86 0.97 0 0.79 0.56 0 

M2 0.88 0 0.53 0.51 0 0.98 0.83 0.71 0 0.58 0.54 0.54 0.74 0 0.63 0 0 0.63 

M3 0 0 0 0.53 0 0 0.69 0 0 0.63 0 0 0 0 0.68 0 0 0.51 

M4 0.61 0.94 0.68 0 0.67 0.7 0 0.84 0 0 0.79 0.99 0.94 0.84 0 0.78 0.93 0 

M5 0 0 0 0.73 0 0 0 0 0.98 0.92 0 0 0 0 0.92 0 0 0.7 

 
Data set - 4 

  P1 P2 P3 P4 P5 P6 P7 P8 

M1 0 0.53 0 0.99 0 0 0.83 0 

M2 0.91 0.82 0.83 0 0.91 0.92 0.86 0.97 

M3 0 0 0.79 0 0 0.56 0 0.88 

M4 0 0 0 0.53 0 0 0.51 0 

M5 0.98 0 0.83 0 0.71 0.58 0 0.54 

M6 0 0 0 0.54 0 0 0.74 0 

 
Data set - 5 

  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 

M1 0 0.53 0.99 0 0 0 0.83 0 0 0 0 

M2 0.91 0 0 0 0.82 0 0 0 0 0 0.83 

M3 0 0 0 0 0 0 0 0 0 0.91 0.92 

M4 0.86 0 0.97 0 0 0.79 0 0 0 0 0 

M5 0 0 0 0 0.56 0 0 0.88 0 0 0 

M6 0.53 0 0 0.51 0 0 0 0.98 0.83 0.71 0 

M7 0 0 0.58 0.54 0 0.54 0.74 0 0.63 0 0 

 

 

 

 

 
 

 
 



 

 

Data set - 6 

  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 

M1 0.53 0.99 0 0 0 0.83 0 0 0 0 0 

M2 0 0.91 0 0 0 0.82 0 0 0.83 0 0 

M3 0.91 0 0.92 0 0 0 0.86 0 0 0 0.97 

M4 0 0 0.79 0 0 0 0.56 0 0 0 0 

M5 0 0 0.88 0.53 0 0 0 0 0 0 0.51 

M6 0 0 0 0.98 0.83 0 0 0 0 0.71 0 

M7 0 0 0 0 0.58 0 0 0.54 0 0.54 0 

 

 
Data set - 7 

  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 

M1 0.53 0.99 0.83 0.91 0 0 0 0 0 0 0 0 

M2 0.82 0 0.83 0.91 0.92 0.86 0.97 0 0 0.79 0 0 

M3 0 0 0.56 0.88 0.53 0.51 0.98 0.83 0.71 0 0 0 

M4 0 0 0 0 0 0.58 0.54 0.54 0.74 0.63 0 0 

M5 0 0 0 0 0 0 0.63 0.53 0.69 0.63 0 0 

M6 0 0 0 0 0 0 0.68 0.51 0.61 0 0.94 0 

M7 0 0 0 0 0 0 0 0 0 0 0.68 0.67 

M8 0 0 0 0 0 0 0 0 0 0 0.7 0.84 

 

 
Data set - 8 

  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 

M1 0.53 0 0.99 0.83 0 0 0 0 0.91 0.82 0 0 0 0.83 0.91 0.92 0 0.86 0.97 0 

M2 0 0.79 0.56 0.88 0 0.53 0.51 0 0.98 0 0.83 0 0 0 0 0 0 0.71 0 0.58 

M3 0 0 0 0 0.54 0.54 0.74 0.63 0 0 0.63 0.53 0.69 0 0 0.63 0.68 0 0.51 0.61 

M4 0 0 0.94 0.68 0 0 0.67 0.7 0.84 0.79 0 0 0.99 0.94 0.84 0 0.78 0.93 0.73 0.98 

M5 0.92 0.92 0.7 0 0 0.89 0 0 0 0.52 0 0.52 0.54 0 0.77 0.76 0.96 0 0.6 0.61 

M6 0.54 0.67 0 0 0.7 0 0.85 0.99 0 0.87 0.67 0.63 0 0.74 0.85 0.78 0 0.55 0.81 0 

M7 0 0 0 0 0.63 0.97 0.54 0.52 0 0 0.85 0.55 0.99 0 0 0.93 0.94 0 0.8 0.68 

M8 0.6 0.63 0.7 0.9 0.71 0 0 0.98 0.53 0.68 0 0 0.91 0.53 0 0.76 0.88 0 0 0 

 

 
Data set - 9 

  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 

M1 0 0.53 0.99 0 0 0 0 0.83 0.91 0 0.82 0 0.83 0.91 0 0.92 0.86 0 0.97 0 

M2 0 0 0.79 0.56 0 0.88 0.53 0 0 0 0 0 0 0.51 0 0 0 0.98 0 0.83 

M3 0 0.71 0 0 0 0 0 0.58 0.54 0 0.54 0 0.74 0.63 0 0.63 0.53 0 0.69 0 

M4 0 0 0.63 0.68 0 0.51 0.61 0 0 0.94 0 0 0 0 0 0 0 0.68 0 0.67 

M5 0.7 0 0 0 0.84 0.79 0 0 0 0.99 0 0.94 0 0 0.84 0 0.78 0 0 0 

M6 0.93 0 0 0 0.73 0 0 0 0.98 0.92 0 0.92 0 0 0.7 0 0 0 0 0.89 

M7 0 0 0.52 0.52 0 0.54 0.77 0 0 0 0.76 0.96 0 0 0 0 0 0.6 0 0.61 

M8 0 0 0.54 0.67 0 0.7 0.85 0 0 0 0 0 0 0 0 0 0 0.99 0 0.87 

 

 
 
 
 
 
 
 
 



 

 

 
Data set - 10 

  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

M1 0.53 0 0 0 0 0 0 0 0 0.99 

M2 0 0 0.83 0.91 0 0 0 0.82 0 0 

M3 0 0 0 0 0.83 0.91 0 0 0 0 

M4 0.92 0 0 0 0 0 0 0 0 0 

M5 0 0 0 0 0 0 0.86 0 0 0.97 

M6 0.79 0 0 0 0 0 0.56 0 0 0.88 

M7 0 0 0.53 0 0 0 0 0.51 0 0 

M8 0 0 0 0 0 0.98 0 0 0.83 0 

M9 0 0.71 0.58 0.54 0 0 0 0 0 0 

M10 0 0.54 0.74 0.63 0 0 0 0.63 0 0 

 

 
Data set - 11 

  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 

M1 0 0.53 0 0 0 0 0 0 0 0.99 0.83 0.91 0 0 0 

M2 0 0 0.82 0 0.83 0 0 0.91 0 0 0 0 0.92 0 0.86 

M3 0.97 0 0 0 0 0.79 0 0 0.56 0 0 0 0 0.88 0 

M4 0.53 0 0 0.51 0 0 0 0 0.98 0 0 0 0 0.83 0 

M5 0 0 0.71 0 0.58 0 0 0.54 0 0 0 0 0.54 0 0.74 

M6 0.63 0 0 0.63 0 0.53 0 0 0.69 0 0 0 0 0.63 0 

M7 0 0.68 0 0 0 0 0.51 0 0 0.61 0.94 0.68 0 0 0 

M8 0 0 0.67 0 0.7 0 0 0.84 0 0 0 0 0.79 0 0.99 

M9 0 0 0 0.94 0 0.84 0 0 0.78 0 0 0 0 0.93 0 

M10 0 0.73 0 0 0 0 0.98 0 0 0.92 0.92 0.7 0 0 0 

 

 
Data set - 12 

  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 

M1 0 0 0 0 0 0 0.53 0.99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

M2 0 0 0 0.83 0.91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

M3 0 0 0 0.82 0.83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.91 0 0 

M4 0 0.92 0.86 0 0 0 0 0 0 0 0 0 0 0 0 0 0.97 0 0.79 0.56 0 0.88 0 

M5 0 0.53 0.51 0 0 0 0 0 0 0 0 0 0 0 0 0 0.98 0 0 0.83 0 0.71 0 

M6 0.58 0 0 0 0 0 0 0 0 0.54 0.54 0.74 0 0.63 0.63 0.53 0 0 0 0 0 0 0 

M7 0 0.69 0.63 0 0 0 0 0.68 0 0 0 0 0 0 0 0 0.51 0 0 0.61 0 0 0 

M8 0.94 0 0 0 0 0.68 0 0 0 0.67 0 0.7 0 0.84 0.79 0.99 0 0 0 0 0 0 0 

M9 0 0 0 0 0 0.94 0 0 0 0.84 0 0.78 0.93 0 0.73 0 0 0 0 0 0 0 0 

M10 0 0 0 0.98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.92 

M11 0 0 0 0.92 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.89 0 0 

M12 0 0 0 0 0 0 0 0.52 0.52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

M13 0 0 0 0 0 0 0.54 0.77 0.76 0 0 0 0 0 0 0 0 0.96 0 0 0 0.6 0 

M14 0 0 0 0 0 0 0 0 0 0.61 0.54 0 0.67 0 0.7 0 0 0 0 0 0 0 0 

 

 

 

 
 
 
 
 

 



 

 

 
Data set - 13 

  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 

M1 0 0 0 0 0 0.53 0.99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

M2 0 0 0.83 0.91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

M3 0 0 0.82 0.83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.91 0 0 0 

M4 0.92 0.86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.97 0 0.79 0.56 0 0 0.88 0 

M5 0.53 0.51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.98 0 0 0.83 0 0 0.71 0 

M6 0 0 0 0 0 0 0 0 0.58 0.54 0.54 0.74 0 0.63 0.63 0.53 0 0 0 0 0 0 0 0 

M7 0.69 0.63 0 0 0 0 0.68 0 0 0 0 0 0 0 0 0 0.51 0 0 0.61 0 0.94 0 0 

M8 0 0 0 0 0.68 0 0 0 0.67 0.7 0 0.84 0 0.79 0.99 0.94 0 0 0 0 0 0 0 0 

M9 0 0 0 0 0.84 0 0 0 0.78 0 0 0.93 0.73 0 0.98 0 0 0 0 0 0 0.92 0 0 

M10 0 0 0.92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 

M11 0 0 0.89 0.52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.52 0 0 0.54 

M12 0 0 0 0 0 0 0.77 0.76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

M13 0 0 0 0 0 0.96 0.6 0.61 0 0 0 0 0 0 0 0 0 0.54 0 0 0 0 0.67 0 

M14 0 0 0 0 0 0 0 0 0.7 0 0.85 0 0.99 0 0.87 0 0 0 0 0 0 0 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 
Data set - 14 

  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 

M1 0 0 0 0.53 0.99 0 0.83 0 0.91 0 0 0.82 0 0 0 0 0 0.83 0 0 0 0.91 0 0 0 0 0 0 0 0.92 

M2 0.86 0 0 0.97 0 0 0 0 0 0.79 0 0 0 0 0 0.56 0 0.88 0 0.53 0 0 0 0 0 0 0 0 0 0 

M3 0.51 0 0 0 0 0 0 0 0 0 0 0 0.98 0 0 0 0 0 0 0 0 0 0.83 0 0.71 0 0.58 0.54 0.54 0 

M4 0 0.74 0 0.63 0 0 0.63 0 0.53 0 0 0 0 0 0 0 0 0.69 0 0 0 0.63 0 0 0.68 0 0 0 0 0.51 

M5 0 0 0.61 0 0 0.94 0 0.68 0 0 0.67 0 0 0.7 0.84 0 0 0 0 0 0.79 0 0 0.99 0 0.94 0 0 0 0 

M6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.84 0 0.78 0 0.93 0 0.73 0 

M7 0 0.98 0 0.92 0 0 0.92 0 0 0 0 0.7 0 0 0 0 0 0.89 0 0 0 0.52 0 0 0.52 0 0 0 0 0.54 

M8 0 0.77 0 0.76 0 0 0.96 0 0.6 0 0 0.61 0 0 0 0 0 0.54 0 0 0 0.67 0 0 0 0 0 0.7 0 0 

M9 0 0 0 0 0.85 0 0 0 0 0 0 0 0 0 0 0 0 0 0.99 0 0 0 0.87 0 0.67 0 0.63 0.74 0 0 

M10 0 0 0 0 0 0.85 0 0.78 0 0 0.55 0 0 0.81 0.63 0 0 0.97 0 0 0.54 0 0 0 0 0.52 0 0 0 0 

M11 0 0.85 0 0 0 0 0.55 0 0.99 0 0.93 0.94 0 0 0 0 0 0.8 0 0 0 0 0 0 0 0 0 0 0 0.68 

M12 0 0.6 0 0.63 0 0 0.7 0 0 0 0 0.9 0 0 0 0 0 0.71 0.98 0.53 0 0.68 0 0 0 0 0 0 0 0 

M13 0 0 0.91 0 0 0 0 0 0 0.53 0 0 0.76 0 0 0 0 0 0 0.88 0 0 0 0 0 0 0 0 0.79 0.52 

M14 0 0 0 0 0 0.94 0 0.78 0 0 0.52 0 0 0.72 0.92 0 0.92 0 0 0 0.86 0 0 0 0 0 0.8 0 0 0 

M15 0 0 0 0 0.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.53 0 0.69 0.59 0.54 0 0.66 0.87 

M16 0 0 0 0 0 0.74 0.7 0.77 0 0 0 0 0 0.85 0 0 0 0 0 0 0 0 0 0.81 0 0.63 0.6 0 0 0 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 
Data set - 15 
  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 

M1 0.53 0 0 0 0 0 0.99 0 0 0 0 0 0 0 0 0 0 0.83 0 0.91 

M2 0 0.82 0 0 0 0 0 0 0 0 0 0 0.83 0 0 0 0 0 0 0 

M3 0 0.91 0.92 0 0.86 0 0 0 0 0 0 0 0 0 0.97 0 0 0 0 0.79 

M4 0 0 0.56 0 0 0 0 0.88 0 0 0.53 0.51 0 0 0 0 0.98 0 0 0.83 

M5 0 0.71 0 0 0 0.58 0 0 0 0 0.54 0 0 0 0.54 0.74 0.63 0 0 0 

M6 0.63 0 0 0.53 0 0.69 0.63 0.68 0.51 0 0 0 0 0 0 0 0 0 0 0 

M7 0 0 0 0 0 0 0.61 0 0 0 0 0 0 0 0.94 0 0.68 0.67 0 0 

M8 0 0.7 0.84 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.79 0 0.99 

M9 0.94 0 0 0.84 0 0 0.78 0.93 0.73 0 0 0 0 0 0.98 0 0 0 0 0 

M10 0 0 0 0.92 0 0 0 0.92 0 0.7 0 0 0.89 0 0 0 0 0 0.52 0 

M11 0.52 0 0.54 0 0 0 0 0 0 0.77 0 0.76 0.96 0 0 0.6 0 0 0 0 

M12 0 0 0 0 0 0 0 0 0 0 0 0.61 0 0 0 0 0 0 0 0 

M13 0.54 0 0.67 0 0.7 0 0 0 0 0.85 0.99 0 0.87 0.67 0 0 0 0 0 0 

M14 0 0 0.63 0 0 0.74 0.85 0.78 0.55 0 0.81 0.63 0 0.97 0 0.54 0.52 0 0.85 0 

M15 0 0 0 0 0.55 0 0 0.99 0 0.93 0.94 0 0 0 0 0 0.8 0 0 0 

M16 0.68 0 0.6 0 0 0 0.63 0 0.7 0 0 0 0.9 0 0.71 0.98 0.53 0.68 0 0 

M17 0 0.91 0 0 0 0 0 0 0 0 0 0.53 0.76 0.88 0 0 0 0 0 0 

M18 0 0 0.79 0 0 0 0.52 0.94 0 0 0.78 0.52 0.72 0.92 0 0 0 0 0 0 

M19 0 0 0 0 0 0 0.92 0 0.86 0.8 0.67 0 0 0.53 0 0 0 0 0 0.69 

M20 0 0 0 0 0 0 0.59 0.54 0 0 0 0 0 0 0 0 0 0 0 0 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 
Data set - 16 

  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31 P32 P33 P34 P35 

M1 0.53 0 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.83 0 0 0.91 0 0.82 0 0 0 0.83 0 0 0 0 0 0 

M2 0 0.9 0 0 0 0 0.9 0 0 0.86 0 0.97 0.79 0 0 0 0 0.56 0 0 0 0 0 0.88 0 0 0.53 0 0 0 0.51 0 0 0 0 

M3 0.98 0 0.8 0 0.7 0 0 0 0 0 0 0 0 0 0.58 0 0.54 0 0 0 0 0 0 0 0 0 0 0 0.54 0 0.74 0 0 0 0 

M4 0 0.6 0 0 0 0 0.6 0 0 0 0 0.53 0.69 0 0 0 0 0 0 0 0 0 0 0.63 0 0 0.68 0 0 0 0 0 0 0 0 

M5 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0.61 0 0.94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.68 0 

M6 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0.7 0 0.84 0 0 0.79 0 0 0.99 0 0 0 0.94 0 0 0 0 0 0 0 0.84 0 

M7 0.78 0 0.9 0 0.7 0 0 0 0 0 0 0 0 0 0.98 0 0.92 0 0 0.92 0 0 0.7 0 0 0 0 0 0 0 0 0 0 0 0 

M8 0.89 0 0.5 0 0.5 0 0 0 0 0 0 0 0 0 0.54 0 0.77 0 0 0.76 0 0 0.96 0 0.6 0 0 0 0.61 0 0 0 0 0 0 

M9 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0.67 0 0 0 0 0.7 0 0 0.85 0 0 0 0.99 0 0 0 0 0 0 0 0 0 

M10 0 0 0 0 0 0 0 0.8 0 0 0 0 0 0.67 0 0.63 0 0 0.74 0 0 0.85 0 0 0 0.78 0 0 0 0 0 0 0 0 0 

M11 0 0 0 0.5 0 0.81 0 0 0.6 0 0.97 0 0 0 0 0 0 0 0 0 0.54 0 0 0 0 0 0 0.52 0 0.85 0 0.55 0 0 0.99 

M12 0 0 0 0.9 0 0.94 0 0 0.8 0 0.68 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0 0 0 0.63 0 0 

M13 0 0.7 0 0 0 0 0 0 0 0 0 0.9 0.71 0 0 0 0 0 0 0 0 0 0 0.98 0 0 0 0 0 0 0 0 0 0 0 

M14 0 0.5 0 0 0 0 0.68 0 0 0.91 0 0.53 0.76 0 0 0 0 0.88 0 0 0 0 0 0.79 0 0 0.52 0 0 0 0.94 0 0 0 0 

M15 0 0 0 0.7 0 0.5 0 0 0.7 0 0.92 0 0 0 0 0 0 0 0 0 0.92 0 0 0 0 0 0 0.86 0 0.8 0 0.67 0 0 0 

M16 0 0 0 0.5 0 0.6 0 0 0.5 0 0.54 0 0 0 0 0 0 0 0 0 0.66 0 0 0 0 0 0 0.87 0 0.74 0 0.7 0 0 0 

M17 0.77 0 0.8 0 0.8 0 0 0 0 0 0 0 0 0 0.63 0 0.6 0 0 0 0 0 0.96 0 0.53 0 0 0 0.9 0 0 0 0 0 0 

M18 0 0.9 0 0 0 0 0 0 0 0.83 0 0.78 0.99 0 0 0 0 0.51 0 0 0 0 0 0.82 0 0 0 0 0 0 0.89 0 0 0 0 

M19 0 0 0 0.6 0 0 0 0 0.5 0 0.97 0 0 0 0 0 0 0 0 0 0.88 0 0 0 0 0 0 0.8 0 0.72 0 0.7 0 0 0 

M20 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0.53 0 0 0 0 0.95 0 0 0 0 0 0 0.95 0 0 0 0 0 0 0 0 0 

 

 

 

 

 

 

 

 

 



 

 

 

 

 
Data set - 17 

  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31 P32 P33 P34 P35 

M1 0.5 0 0 0 0 0.9 0 0 0 0 0.83 0 0 0.91 0.82 0 0 0.83 0 0.91 0 0 0.92 0.86 0.97 0 0 0 0 0.79 0 0.56 0 0.88 0.53 

M2 0 0.5 0 0 0 0 0 0 0 0.98 0 0.83 0.71 0 0 0 0 0.58 0.54 0 0 0 0 0.54 0 0 0 0 0 0 0.74 0 0 0 0 

M3 0.6 0 0.6 0 0.5 0 0 0 0 0 0 0 0 0 0.69 0 0 0 0 0 0 0 0 0 0 0 0 0 0.63 0 0.68 0 0 0 0 

M4 0 0.5 0 0 0 0 0.6 0 0 0 0 0.94 0.68 0 0 0 0 0 0 0 0 0 0 0.67 0 0 0.7 0 0 0 0 0 0 0 0 

M5 0 0 0 0 0.84 0 0 0 0 0 0 0 0 0.79 0 0 0.99 0 0 0 0 0 0.94 0 0 0.84 0 0 0 0 0 0 0 0 0 

M6 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0.93 0 0 0 0 0.73 0 0 0.98 0 0 0.92 0 0 0 0 0.92 0 0 0 0 0 

M7 0.7 0 0.8 0 0.5 0 0.5 0 0 0 0 0.54 0 0 0.77 0 0.76 0 0.96 0.6 0 0.61 0.54 0.67 0 0.7 0 0 0.85 0.99 0.87 0.67 0 0 0 

M8 0.6 0 0 0 0.7 0 0 0 0.85 0 0 0 0 0 0.78 0 0.55 0 0 0.81 0 0 0.63 0 0 0 0 0 0 0 0 0 0 0 0.97 

M9 0 0 0 0 0 0 0 0.54 0 0 0 0 0 0.52 0 0 0 0 0.85 0 0 0 0.55 0 0 0 0 0 0 0 0 0.99 0 0 0.93 

M10 0 0 0 0 0 0 0 0.94 0 0 0 0 0 0.8 0 0.68 0 0 0.6 0 0 0.63 0 0 0 0.7 0 0 0 0 0 0 0 0 0 

M11 0 0 0 0.9 0 0.71 0 0 0.98 0 0.53 0 0 0 0 0 0 0 0 0 0.68 0 0 0 0 0 0 0 0 0 0 0 0.91 0 0 

M12 0 0 0 0.5 0 0.76 0 0 0.88 0 0.79 0 0 0 0 0 0 0 0 0 0.52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

M13 0 0.9 0 0 0 0 0 0 0 0 0 0.78 0.52 0 0 0 0 0 0 0 0 0 0 0.72 0 0 0 0 0 0 0 0 0 0 0 

M14 0 0.9 0 0 0 0 0.92 0 0 0.86 0 0.8 0.67 0 0 0 0 0.53 0 0 0 0 0 0.69 0 0 0.59 0 0 0 0.54 0 0 0 0 

M15 0 0 0 0.66 0 0.87 0 0 0.74 0 0.7 0 0 0 0 0 0 0 0 0 0.77 0 0 0 0 0 0 0.85 0 0.81 0 0 0 0 0 

M16 0 0 0 0.63 0 0.6 0 0 0.96 0 0 0.53 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0.92 0 0 0 0.83 0 0.78 0 0 0 

M17 0.9 0 0.5 0 0.82 0 0 0 0 0 0 0 0 0 0.89 0 0.65 0 0 0.57 0 0 0 0 0.97 0 0 0 0 0 0 0 0 0 0.88 

M18 0 0.8 0 0 0 0 0.72 0 0 0 0 0.7 0.78 0 0 0 0 0 0 0.53 0 0 0 0.95 0 0 0 0 0 0 0.95 0 0 0 0 

M19 0 0 0 0.55 0 0 0 0 0.84 0 0.67 0 0 0 0 0 0 0 0 0 0.92 0 0 0 0 0 0 0.85 0 0.52 0 0.61 0 0 0 

M20 0 0 0 0 0 0 0 0.55 0 0 0 0 0 0.62 0 0 0 0 0.8 0 0 0 0.81 0 0 0.98 0 0 0 0 0 0 0 0 0 

 

 

 

 

 



 

 

 

 

 

 
 
 
 

 

 

 
Data set - 18 

  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 

M1 0.53 0 0.99 0 0.83 0.91 0 0.82 0 0 0 0.83 0.91 0.92 0.86 0 0 0.97 0.79 0 

M2 0 0 0.56 0 0 0.88 0 0 0.53 0.51 0 0.98 0 0 0 0 0 0 0 0 

M3 0.83 0 0 0.71 0 0 0 0.58 0 0 0 0 0 0 0 0 0 0.54 0.54 0.74 

M4 0 0 0 0 0.63 0 0 0 0 0 0 0 0.63 0 0 0 0 0 0 0 

M5 0 0.53 0 0 0 0 0 0 0.69 0 0.63 0 0 0 0 0.68 0 0 0.51 0 

M6 0 0 0 0 0 0 0 0 0 0.61 0 0 0 0 0 0 0.94 0 0 0 

M7 0 0 0.68 0 0 0 0.67 0 0.7 0.84 0.79 0 0 0 0 0.99 0.94 0 0 0 

M8 0 0 0 0 0 0 0.84 0 0 0.78 0 0 0 0 0 0 0 0 0 0 

M9 0 0 0 0 0 0 0.93 0 0 0.73 0 0 0 0 0 0 0 0 0 0 

M10 0.98 0 0 0 0.92 0.92 0 0 0.7 0 0 0.89 0.52 0 0 0 0 0.52 0 0 

M11 0.54 0 0.77 0 0.76 0 0 0 0 0 0 0.96 0 0 0 0 0 0 0 0 

M12 0 0 0 0.6 0 0 0 0.61 0 0 0 0 0 0.54 0.67 0 0 0 0.7 0.85 

M13 0 0.99 0 0 0 0 0 0.87 0 0 0 0 0 0 0 0 0.67 0 0 0 

M14 0 0.63 0 0 0 0 0 0 0 0 0 0 0 0 0 0.74 0 0 0 0 

M15 0.85 0.78 0.55 0 0.81 0.63 0 0.97 0 0 0 0.54 0.52 0.85 0 0 0.55 0.99 0 0.93 

M16 0 0 0 0 0 0 0 0.94 0 0.8 0 0 0 0.68 0 0 0 0 0 0.6 

M17 0 0 0 0.63 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0 0 0 

M18 0 0 0.9 0 0 0 0 0 0.71 0 0 0.98 0.53 0 0.68 0.91 0.53 0 0 0 

M19 0 0 0 0 0 0 0 0 0.76 0 0 0 0 0 0.88 0 0.79 0 0 0 

M20 0 0 0 0 0 0 0 0 0 0 0 0.52 0.94 0 0 0.78 0 0 0 0 

M21 0.52 0 0 0.72 0 0 0 0 0.92 0 0 0 0 0 0.92 0 0 0 0 0 

M22 0.86 0 0.8 0.67 0 0.53 0 0.69 0.59 0.54 0 0 0 0.66 0.87 0 0 0 0 0.74 

M23 0.7 0 0 0.77 0 0 0 0 0.85 0 0 0 0 0 0.81 0 0 0 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 
 
 

 
 
 
 
 
 

Data set - 19 
  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 

M1 0.53 0 0.99 0 0 0 0.83 0.91 0 0 0 0 0 0.82 0 0 

M2 0 0 0 0 0 0.83 0 0 0 0.91 0 0.92 0.86 0 0 0 

M3 0.97 0 0 0 0 0.79 0 0.56 0 0 0 0.88 0 0 0 0 

M4 0.53 0 0.51 0 0 0 0 0 0 0 0 0 0 0.98 0 0 

M5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.83 0 

M6 0.71 0 0.58 0 0 0 0 0 0 0 0 0 0 0.54 0.54 0 

M7 0.74 0 0 0 0 0 0 0.63 0.63 0 0.53 0 0.69 0 0 0 

M8 0.63 0 0 0 0 0 0 0 0 0 0 0 0.68 0 0 0 

M9 0 0 0 0 0 0 0 0 0 0.51 0.61 0.94 0 0 0.68 0.67 

M10 0.7 0.84 0 0 0 0 0 0.79 0 0.99 0 0 0 0 0 0 

M11 0.94 0 0 0 0 0 0 0 0 0 0 0.84 0.78 0 0 0.93 

M12 0 0 0 0 0 0 0 0 0 0 0 0 0 0.73 0 0 

M13 0 0 0 0 0 0.98 0 0.92 0 0 0 0 0 0 0 0 

M14 0 0 0 0 0 0 0 0 0 0.92 0.7 0.89 0 0.52 0 0.52 

M15 0.54 0 0 0 0 0.77 0 0 0 0 0 0 0 0 0 0 

M16 0 0 0.76 0.96 0 0 0 0 0 0 0 0 0 0 0 0 

M17 0 0.6 0.61 0 0 0.54 0 0 0 0.67 0 0 0 0 0 0.7 

M18 0.85 0 0 0 0 0.99 0 0 0 0 0 0 0 0 0 0 

M19 0.87 0 0.67 0.63 0 0 0.74 0 0 0 0 0 0 0 0 0 

M20 0 0 0 0 0 0 0 0 0 0.85 0.78 0.55 0 0 0.81 0.63 

M21 0 0 0 0 0.97 0.54 0 0 0 0 0 0 0 0 0 0 

M22 0.52 0.85 0 0 0 0 0 0.55 0 0.99 0 0 0 0 0 0 

M23 0.93 0.94 0 0 0 0 0 0.8 0 0.68 0 0 0 0 0 0 

M24 0 0 0 0 0 0 0.6 0 0.63 0.7 0.9 0.71 0 0.98 0 0.53 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 
Data set - 20 
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

M1 0.5 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0.8 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.8 0 0 0 0 0 0 0 

M2 0 0 0 0 0 0 0 0 0 0.8 0 0 0.9 0.9 0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0 0 0 0 0 1 0.8 0 0 0 0 

M3 0 0.6 0 0 0 0 0 0 0 0 0.9 0.5 0 0 0.5 0 0 0 0 0 0 0 1 0.8 0 0 0 0 0 0 0.7 0 0 0.6 0 0 0 0 0 0 

M4 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0.5 0 0.7 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0.6 0.5 0.7 0 

M5 0 0 0 0 0 0 0 0 0 0.6 0 0 0.7 0.5 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0.7 0 0 0 0 

M6 0 0 0 0.7 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0.8 0 0 0 0 0 0 0 0.8 1 0 0 0.9 0 0 0 0 0 0 0 0 0 0 

M7 0 0 0.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.8 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0 

M8 0 0 0 0.7 1 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0.9 0.7 0 0 0.9 0 0 0 0 0 0 0 0 0 0 

M9 0 0 0 0 0 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0.8 0 0 0 0 0 0 0 0 0 0 0.8 

M10 0 0 0 0 0 1 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0.7 

M11 0 0 0 0 0 0 0 0 0 0.7 0 0 0.9 1 0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0.6 0 0 0 0 

M12 0 0 0 0.7 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0.8 0 0 0 0 0 0 0 0.6 0.8 0 0 0.6 0 0 0 0 0 0 0 0 0 0 

M13 1 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0.5 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 

M14 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0 

M15 0 0 0 0.8 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0.6 0.7 0 0 0.9 0 0 0 0 0 0 0 0 0 0 

M16 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0 0 0 1 0 0.5 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0 0.9 0.5 0.8 0 

M17 0 0 0 0 0 0.9 0.8 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0 0 0 0.8 

M18 0 0 0 0.5 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0.9 0.9 0 0 0.8 0 0 0 0 0 0 0 0 0 0 

M19 0 0 0 0 0 0 0 0 0 0.7 0 0 0.5 0.7 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.7 0 0 0 0 

M20 0 0.9 0 0 0 0 0 0 0 0 0.7 0.7 0 0 0.8 0 0 0 0 0 0 0 0.9 0.8 0 0 0 0 0 0 0.6 0 0 0.6 0 0 0 0 0 0 

M21 1 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0.9 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.8 0 0 0 0 0 0 0 

M22 0.8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0.5 0.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 

M23 0 0 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

M24 0 0 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.8 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0 

 
 
 
 
 
 
 
 
 



 

 

 
 
 
 

Data set - 21 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

M1 0.5 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0.8 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.8 0 0 0 0 0 0 0 

M2 0 0 0 0 0 0 0 0 0 0.8 0 0 0.9 0.9 0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

M3 0 0.8 0 0 0 0 0 0 0 0 0.6 0.9 0 0 0.5 0 0 0 0 0 0 0 0.5 1 0 0 0 0 0 0 0.8 0 0 0.7 0 0 0 0 0 0 

M4 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0 0 0.5 0 0.5 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0 0 0.6 0.6 0 

M5 0 0 0 0 0.5 0 0 0 0 0.7 0 0 0 0.6 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.6 0 0 0 0 

M6 0 0 0 0.9 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0.7 0.8 0 0 0.8 0 0 0 0 0 0 0 0 0 0 

M7 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0.8 0 0 0 0 0 0 0 0 

M8 0 0 0 0.8 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0 1 0.9 0 0 0.9 0 0 0 0 0 0 0 0 0 0 

M9 0 0 0 0 0 0.7 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0.5 

M10 0 0 0 0 0 0.5 0.8 0 0 0 0 0 0 0 0 0 0 0 0 0.8 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6 

M11 0 0 0 0 0 0 0 0 0 0.6 0 0 0.5 0.7 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0.9 1 0 0 0 0 

M12 0 0 0 0.9 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0.6 0 0.7 0 0 0 0.9 0 0 0.8 0 0 0.6 0 0 0 0 0 0 0 0 0 0 

M13 0.8 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 1 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 

M14 0 0 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

M15 0 0 0 0.9 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0.8 0 0 0 0 0 0 0 0.7 0.6 0 0 0 0 0 0 0 0 0 0.6 0 0 0 

M16 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0 0 0 0.9 0 0.7 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0.5 0.7 0.9 0 

M17 0 0 0 0 0 0.5 0.8 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0 0.8 0 0.5 0 0 0 0 0 0 0 0 0.9 

M18 0 0 0 0.8 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0.9 0.9 0 0 0.9 0 0 0 0 0 0 0 0 0 0 

M19 0 0 0 0 0 0 0 0 0 0.8 0 0 0.7 0.5 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0.6 0.5 0 0 0 0 

M20 0 0.7 0 0 0 0 0 0 0 0 0.9 0.7 0 0 0.7 0 0 0 0 0 0 0 0.8 0.9 0 0 0 0 0 0 0.8 0 0 0.6 0 0 0 0 0 0 

M21 0.6 0 0 0 0 0 0 0 1 0.5 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 

M22 0.8 0 0 0 0 0 0 0 0.8 0 0 0 0 0 0 1 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.8 0 0 0 0 0 0 0 

M23 0 0 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 

M24 0 1 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.8 0 0 0 0 0 0 0 0 

 

 
 
 
 
 
 
 



 

 

 
 

 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 P40 P41

M1 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.8 0.9 0 0 0 0 0 0.8 0 0.8

M2 0 0 0 0 0 0 0 0 0 0 0.9 0.9 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.8 0 0 0 0 0 0.6 0 0.9

M3 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 1 0.8 0 0 0 0 0 0 0 0.7 0

M4 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0.5 0.7 0 0 0.6 0 0 0 0 0 0 0.6 0 0 0 0 0 0

M5 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6 0 0.7 0 0 0 0 0

M6 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0.7 0 0.7 0 0 0 0 0

M8 0.8 0 0 0 0 0 0 0.8 1 0 0 0 0 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.8 0 0 0 0 0 0 0 0 0 0 0 0

M9 0 0 0.8 0 0 0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M10 0 1 0 0 0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0.9 0 0 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0 0

M11 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0.5 0 0.8

M12 0 0 0 0 0 0 0 0 0 0 0.8 1 0 0 0 0 0 0.6 0.6 0 0 0 0.5 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0.9 0

M13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0

M14 0 0 0 0.6 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0.8 0 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0

M15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0

M16 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0

M17 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 1 0 0 0 0 0

M18 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0 0.9 0 0 0 0 0 0 0 0 0 0 0.8 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0

M19 0.6 0 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0.9 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0 0 0 0

M20 1 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M21 0 0 0 0 0 0 0 0 0 0.5 0 0.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0.8 0.5 0 0 0 0 0 0.9 0.8 0

M22 0 0 0 0 0 0 0 0 0 0.5 0 0.7 0 0 0 0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0.9 0.9 0 0 0 0 0 0 0.8 0.7 0

M23 0 0.5 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0.7 0 0

M24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0 0 0

M25 0 0 0 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0 0 0 0.8 0 0 0 0 0 0 0.9 0 0.8 0 0 0 0 0

M27 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M28 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0.9 0 0 0 0 0 0

M29 0.9 0 0.8 0 0 0 0 0 0.8 0 0 0 1 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0.8 0 0 0 0 0 0 0 0 0 0 0

M30 0.9 0 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Data set 22

 
 

 



 

 

 

 

 

 

 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 P40 P41 P42 P43 P44 P45 P46 P47 P48 P49 P50

M1 0.5 0 1 0.8 0 0.9 0 0 0 0 0 0 0 0 0.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M2 0 0.8 0 0.6 0 0.9 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M3 0.5 0 0 0 1 0 0 0 0 0 0 0 0 0 0.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M4 0.7 0 0 0 0.5 0 0 0.7 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M5 0 0 0.6 0 0 0 0.5 0 0 0 0.7 0.6 0.7 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M6 0 0.6 0 0 0 0 0.9 0 0 0.7 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M7 0 0 0.7 0 0.8 0 0 0 0 0.8 1 0.9 0.8 0.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M8 0 0.7 0 0.9 0.5 0 0.5 0.5 0.8 0 0 0 0 0 0.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M9 1 0.6 0 0 0.6 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M10 0 0 0 0 0.7 0.8 0 0 0 0 0 1 0.9 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M11 0.6 0 0.7 0.9 0 0 0.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0.5 0 0.8 0 0 0 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0.6 0 0 1 0 0 0 0.9 0.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0.7 0 0 0.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 1 0 0 1 0 0 0.5 0 0.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0.9 0 0.9 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6 0.6 0.6 0 0 0 0.8 0 0 0.8 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0.8 0 1 0 0.6 0 0.6 0 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.8 0.9 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 1 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.8 1 0.5 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0.6 0.7 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 1 0.9 0.9 0.8 0 0 0 0 0 0 0 0 0 0 0

M26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0.7 0.9 0 0 0 0 0 0 0 0 0 0 0 0

M27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0.8 0.5 0.7 0.9 0.9 0.9 0 0 0 0

M28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0.9 0.8 0 0 0.8 0 0 0 0

M29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0.7 0.77 0

M30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.8 0.6 0.96 0.53

Data set 23

 



 

 

 

 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 P40 P41 P42 P43 P44 P45 P46 P47 P48 P49 P50

M1 0 0 0 0 0 0 0 0.5 1 0 0 0 0 0 0 0 0 0 0 0 0.8 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0 0.8 0 0 0 0 0 0 0

M2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.8 0 0.9 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 1 0 0 0 0

M3 0.8 0 0 0.6 0 0 0 0 0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0.83 0

M4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0 0.5 0 0.5 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0

M5 0 0.6 0.6 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M6 0 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0.6 0 0

M7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0 0.7 0.7 0.7 0 0 0 0 0 0 0 0 0 0 0.8 0 0 0 0 0 0 0 0 0

M8 0.8 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0 0.8 0 0 0.8 0 0 0 0 0

M9 0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0.7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0 0 0 0 0.9 0 0 0 0 0 0 0 0.7 0

M10 0 0.9 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0.8 0 0.8 0 0 0 0 0 0 1 0.6 0 0 0

M11 0 0 0 0 0 0 0 0.6 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0.7 0 0 0 0 0 0 0 0 0 0 0.9 0 0 0 0 1 0 0 0 0 0 0 0 0 0

M12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0.7 0 0 0.6 0.7 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.8 0 0 0 0 0 0

M13 0 0.6 0.8 0 0 0 0 0.6 1 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0.9 0 0 0 0 0 0

M14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6 1 0 0 0 0 0 0 0 0 0 0 0.9 0.9 0 0 0 0 0 0 0 0 0 0 0 0.8 0 0 0 0.7 0 0

M15 0 0 0 0 0 0 0 0 0 0.6 0 0.6 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0 0 0 0 0 0.7 0 0 0 0.98

M16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0.7 0.9 0 0 0.5 0 0 0 0.8 0 0 0 0 0 0 0 0 0 0 0

M17 0 0 0 0 0.9 0 0.8 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0 0.8 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0.7 0 0 0 0 0 0.92

M18 0 0 0 0 0.9 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.8 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M19 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0.6 0 0.5 0 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0 0 0.7 0.7 0 0 0.77

M20 0 0 0 0 0.9 0.8 0.6 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.5 0 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M21 0 0 0 0 0.9 0 0.8 0 0 0 0 0 0 0.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0.5 0 0 0 0 0 0.8 0 0 0 0 0

M22 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M23 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0.9 0 0 0.8 0 0 0 0 0.7 0 0 0 0 0 0 0.7 0 0 0 0

M24 0 0 0 0 0 0 0 0 0 0 0 0 0.8 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

M25 0.6 0 0 0.8 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0 0 0.9 0 0 0 0.5 0 0 0 0 0.6 0 0 0 0 0

M26 0 0 0 0 0 0 0 0 0 0.6 0 0 0.6 0 0 0 0.8 0 0 0.8 0 0 0 0 0 0 0 0 0 0 1 0 0 0.7 0.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M27 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0

M28 0 0 0 0 0 0 0 0 0 0.8 0 0 0 0.7 0 0 0 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.8 0 0 0 0 0.8 0 0 0 0 0

M29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0.9 0.6 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0.8 0 0 0 0 0 0 0 0 0 0 0

Data set 24

 
 



 

 

 
 
 
 
 
 
 

Data set – 25 

  P1 P2 P3 P4 P5 P6 P7 P8 

M1 0.3 0 0 0.4 0 0 0.5 0 

M2 0 0.3 0.1 0 0.5 0.2 0 0.6 

M3 0 0.3 0.3 0 0.1 0.2 0 0.2 

M4 0.6 0 0 0.7 0 0 0.8 0 

M5 0.1 0 0 0.2 0 0 0.3 0 

 

 
Data set – 26   

  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 

M1 0 0.3 0.25 0 0 0 0.3 0 0 0 0 

M2 0.2 0 0 0 0.28 0 0 0 0 0 0.35 

M3 0 0 0 0 0 0 0 0 0 0.14 0.7 

M4 0.15 0 0.1 0 0 0.7 0 0 0 0 0 

M5 0 0 0 0 0.68 0 0 0.2 0 0 0 

M6 0.13 0 0 0.28 0 0 0 0.15 0.3 0.1 0 

M7 0 0 0.3 0.12 0 0.1 0.4 0 0.08 0 0 

 

 
Data set – 27 

  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 

M1 0.16 0 0.18 0.14 0 0 0 0 0.23 0.08 0 0 0 0.07 0.19 0.04 0 0.26 0.07 0 

M2 0 0.3 0.09 0.1 0 0.05 0.02 0 0.12 0 0.07 0 0 0 0 0 0 0.16 0 0.03 

M3 0 0 0 0 0.14 0.21 0.18 0.11 0 0 0.22 0.08 0.07 0 0 0.05 0.25 0 0.17 0.24 

M4 0 0 0.03 0.05 0 0 0.06 0.01 0.09 0.12 0 0 0.03 0.16 0.24 0 0.09 0.28 0.06 0.04 

M5 0.12 0.1 0.18 0 0 0.28 0 0 0 0.15 0 0.17 0.14 0 0.16 0.3 0.24 0 0.15 0.26 

M6 0.11 0.07 0 0 0.32 0 0.26 0.22 0 0.1 0.21 0.19 0 0.08 0.14 0.17 0 0.13 0.13 0 

M7 0 0 0 0 0.22 0.19 0.21 0.09 0 0 0.1 0.11 0.19 0 0 0.11 0.15 0 0.18 0.2 

M8 0.06 0.1 0.11 0.21 0.02 0 0 0.04 0.1 0.05 0 0 0.07 0.29 0 0.03 0.08 0 0 0 

 
 

 
Data set – 28 

  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 

M1 0 0.53 0.99 0 0 0 0 0.83 0.91 0 0.82 0 0.83 0.91 0 0.92 0.86 0 0.97 0 

M2 0 0 0.79 0.56 0 0.88 0.53 0 0 0 0 0 0 0.51 0 0 0 0.98 0 0.83 

M3 0 0.71 0 0 0 0 0 0.58 0.54 0 0.54 0 0.74 0.63 0 0.63 0.53 0 0.69 0 

M4 0 0 0.63 0.68 0 0.51 0.61 0 0 0.94 0 0 0 0 0 0 0 0.68 0 0.67 

M5 0.7 0 0 0 0.84 0.79 0 0 0 0.99 0 0.94 0 0 0.84 0 0.78 0 0 0 

M6 0.93 0 0 0 0.73 0 0 0 0.98 0.92 0 0.92 0 0 0.7 0 0 0 0 0.89 

M7 0 0 0.52 0.52 0 0.54 0.77 0 0 0 0.76 0.96 0 0 0 0 0 0.6 0 0.61 

M8 0 0 0.54 0.67 0 0.7 0.85 0 0 0 0 0 0 0 0 0 0 0.99 0 0.87 

 
 



 

 

 
 
 
 
 
 
 
 

        Data set – 29   

  P1 P2 P3 P4 P5 P6 P7 P8 P9 

M1 0.3 0.1 0 0 0.3 0 0 0 0 

M2 0.1 0.3 0 0 0 0.1 0 0 0.3 

M3 0 0 0.3 0 0 0 0.3 0.3 0 

M4 0 0.1 0.3 0.1 0 0 0 0.1 0 

M5 0.3 0 0 0.1 0.3 0 0 0.1 0 

M6 0 0.1 0 0 0 0.1 0 0 0.2 

M7 0 0 0.3 0 0 0 0.3 0.1 0 

M8 0 0 0.3 0.1 0.1 0 0.1 0.3 0 

M9 0 0 0 0 0 0.2 0 0 0.3 

 

 

 

 

 
Data set – 30 

  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 

M1 0 0.53 0 0 0 0 0.99 0 0 0 0.83 0.91 0 0 0 

M2 0 0 0 0 0.82 0 0 0 0.83 0.91 0 0 0.92 0 0.86 

M3 0.97 0 0.79 0 0 0.56 0 0 0 0 0 0 0 0.88 0 

M4 0.53 0 0.51 0.98 0 0.83 0 0 0 0 0 0 0 0.71 0 

M5 0 0 0 0 0 0 0 0.58 0.54 0.54 0 0 0.74 0 0.63 

M6 0 0.63 0 0 0 0.53 0.69 0 0 0 0.63 0.68 0 0 0 

M7 0 0.51 0 0 0 0.61 0 0 0 0 0.94 0.68 0 0 0 

M8 0.67 0 0.7 0.84 0 0.79 0 0 0 0 0.99 0 0 0.94 0 

M9 0 0 0.84 0.78 0 0.93 0 0 0 0 0 0 0 0.73 0 

M10 0 0 0 0 0 0 0 0.98 0.92 0.92 0 0 0.7 0 0.89 

 
 
 
 
 

Data set – 31 

  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 

M1 0.7 0 0 0.8 0 0.7 0 0 0.5 0.4 0.5 0 0 0 

M2 0 0 0 0 0.8 0 0 0 0 0 0 0.9 0.7 0.6 

M3 0 0 0 0 0.6 0 0 0 0 0 0 0.7 0.8 0.7 

M4 0 0.7 0.8 0 0 0 0.4 0.5 0 0 0 0 0 0 

M5 0.6 0 0 0.7 0 0.4 0 0 0.7 0.8 0.9 0 0 0 

M6 0 0 0 0 0.7 0 0 0 0 0 0 0.8 0.9 0.6 

M7 0 0.8 0.5 0 0 0 0.8 0.9 0 0 0 0 0 0 

M8 0 0.4 0.6 0 0 0 0.7 0.5 0 0 0 0 0 0 

 



 

 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Data set – 32 

 
 
 
 

   
 
 
 
 
 
 

 

  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

M1 0 0.8 0 0 0 0.6 0 0 0.5 0 

M2 0 0 0.4 0 0 0 0.5 0 0 0.6 

M3 0 0.5 0 0 0 0.6 0 0 0.7 0 

M4 0 0 0.9 0 0 0 0.6 0 0 0.4 

M5 0.5 0 0 0.6 0.7 0 0 0.8 0 0 

M6 0.9 0 0 0.7 0.6 0 0 0.8 0 0 

M7 0 0 0.5 0 0 0 0.6 0 0 0.7 

M8 0 0.7 0 0 0 0.9 0 0 0.7 0 

M9 0.8 0 0 0.6 0.9 0 0 0.8 0 0 



 

 

 
 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31

M1 0 0.53 0 0 0 0 0 0 0 0 0.99 0 0 0.83 0.91 0.82 0 0 0 0 0 0 0 0.83 0 0.91 0 0.92 0.86 0 0.97

M2 0 0 0.79 0.56 0 0 0 0.88 0 0 0 0.53 0 0.51 0 0 0.98 0.83 0.71 0 0 0 0 0.58 0 0 0.54 0.54 0.74 0.63 0

M3 0 0 0.63 0 0 0.53 0 0 0 0 0 0 0 0 0 0 0.69 0.63 0.68 0.51 0 0 0 0 0 0 0 0 0 0 0

M4 0.61 0.94 0.68 0 0 0 0 0 0 0 0 0 0 0 0 0 0.67 0 0 0 0 0 0 0.7 0 0 0 0.84 0.79 0.99 0

M5 0 0 0 0 0.94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M6 0 0 0 0 0 0 0 0 0 0 0 0 0.84 0 0 0 0 0 0 0 0 0 0 0 0 0.78 0 0 0 0 0

M7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.93 0.73 0 0 0 0 0.98 0 0 0 0

M8 0 0 0 0 0 0 0.92 0.92 0.7 0.89 0.52 0.52 0 0 0 0 0 0 0 0 0 0 0.54 0.77 0 0 0.76 0.96 0.6 0.61 0.54

M9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.67 0 0 0 0 0 0

M10 0 0 0 0.7 0 0 0 0 0 0 0 0 0 0.85 0.99 0 0 0 0 0 0.87 0.67 0 0 0 0 0.63 0 0 0 0

M11 0.74 0 0 0 0 0 0.85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.78 0 0 0 0.55 0.81 0 0

M12 0 0 0 0 0 0 0 0 0 0 0 0.63 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Data set 33

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 
 

 

 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30

M1 0 0 0 0 0.53 0 0 0.99 0 0.83 0 0.91 0 0 0 0 0 0 0 0.82 0 0.83 0.91 0 0 0.92 0 0 0.86 0

M2 0 0.97 0 0 0.79 0 0 0 0.56 0 0 0 0 0 0 0 0.88 0 0 0.53 0.51 0.98 0 0 0.83 0.71 0.58 0 0 0

M3 0 0 0 0 0 0 0 0 0 0 0.54 0.54 0.74 0 0.63 0 0 0.63 0 0 0 0.53 0 0 0 0 0 0 0 0

M4 0 0 0.69 0 0 0 0.63 0 0 0 0 0 0.68 0.51 0 0 0 0 0 0 0 0.61 0.94 0 0 0 0 0 0 0.68

M5 0 0 0.67 0.7 0 0 0 0 0 0 0.84 0.79 0.99 0 0.94 0.84 0 0 0 0 0 0.78 0 0 0 0 0 0 0 0

M6 0 0 0 0 0 0 0 0 0 0.93 0 0 0 0 0 0 0 0 0 0 0.73 0 0.98 0 0 0.92 0.92 0.7 0.89 0.52

M7 0 0 0 0 0 0 0.52 0 0 0 0.54 0 0 0.77 0.76 0.96 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M8 0.6 0 0 0 0 0.61 0 0 0 0 0.54 0 0 0 0 0.67 0 0.7 0 0 0 0 0 0 0 0 0 0 0 0

M9 0 0.85 0 0 0 0 0 0 0.99 0.87 0 0.67 0 0 0 0 0 0 0 0 0 0.63 0 0.74 0.85 0 0 0.78 0 0.55

M10 0.81 0 0 0 0 0 0 0 0 0 0 0.63 0 0 0.97 0.54 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M11 0 0 0 0 0 0 0 0.52 0.85 0 0 0.55 0 0 0 0.99 0 0 0 0 0 0 0 0.93 0 0 0 0.94 0 0.8

M12 0.68 0 0.6 0.63 0 0 0.7 0 0 0 0.9 0 0.71 0 0.98 0.53 0 0.68 0 0 0.91 0 0 0 0 0 0 0 0 0

M13 0 0 0 0 0 0 0 0 0.53 0.76 0 0 0 0 0.88 0 0.79 0 0 0 0 0 0.52 0 0.94 0.78 0.52 0 0.72 0

M14 0 0 0 0 0 0 0 0.92 0 0 0 0 0 0 0 0 0 0 0 0.92 0 0 0.86 0 0.8 0 0 0 0 0

M15 0.67 0 0.53 0.69 0 0 0.59 0 0 0 0.54 0 0.66 0.87 0 0.74 0 0 0.7 0 0 0 0 0 0 0 0 0 0 0

M16 0 0 0 0 0 0 0 0.77 0 0 0 0 0 0 0 0 0.85 0 0 0.81 0 0 0.63 0.6 0.96 0.53 0.9 0.92 0.83 0.78

Data set - 34

 
 

 
 
 
 
 
 
 
 
 



 

 

 
 
 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30

M1 0 0 0 0 0.53 0.99 0 0.83 0 0.91 0.82 0.83 0.91 0 0 0 0 0 0 0 0 0 0 0 0 0.92 0 0 0 0

M2 0 0 0 0.86 0.97 0 0 0 0.79 0.56 0.88 0.53 0.51 0 0.98 0.83 0 0.71 0 0 0 0 0 0 0 0.58 0 0 0 0

M3 0.54 0.54 0 0.74 0 0 0 0 0 0 0 0 0 0 0 0 0.63 0 0 0 0 0 0 0 0 0 0 0 0 0

M4 0 0 0.63 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.53 0 0 0.69 0 0.63 0.68 0.51 0 0.61 0.94 0 0

M5 0 0.68 0 0 0.67 0.7 0 0.84 0.79 0.99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.94 0 0.84 0 0

M6 0 0 0.78 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.93 0.73 0 0.98 0.92 0 0 0.92 0 0.7 0.89

M7 0 0 0 0 0 0 0.52 0 0 0 0 0 0 0 0 0 0 0 0 0.52 0 0 0.54 0.77 0.76 0 0.96 0.6 0.61 0

M8 0 0 0 0.54 0.67 0 0 0 0.7 0.85 0 0.99 0.87 0 0 0 0 0 0.67 0 0 0 0 0 0 0.63 0 0 0 0

M9 0 0 0 0 0 0 0 0 0 0 0.74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M10 0.85 0.78 0 0 0 0 0 0 0 0 0 0 0 0.55 0 0 0.81 0 0 0 0 0 0 0 0 0 0 0 0 0

M11 0 0 0 0 0.63 0.97 0 0.54 0.52 0.85 0.55 0 0.99 0 0 0 0 0 0.93 0 0 0 0 0 0 0.94 0 0 0 0

M12 0 0 0.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.68 0 0.6 0.63 0 0.7 0 0 0 0 0.9 0.71 0.98

M13 0 0 0.53 0 0 0 0.68 0 0 0 0 0 0 0 0 0 0 0.91 0 0 0.53 0.76 0 0.88 0 0 0.79 0 0 0.52

M14 0 0 0 0 0.94 0 0.78 0 0 0.52 0.72 0.92 0 0 0 0.92 0 0 0.86 0 0 0 0 0 0 0 0 0 0 0

M15 0.8 0 0 0 0 0 0 0 0 0 0 0 0 0.67 0.53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M16 0.69 0.59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.54 0 0 0 0 0 0 0 0 0 0 0 0 0

Data set - 35

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 



 

 

 
 

Data set – 36 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30

M1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.53 0 0 0 0 0 0 0 0 0.99 0 0.83 0 0

M2 0 0 0 0.91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.82 0 0 0 0.83 0 0 0 0 0 0.91

M3 0.92 0 0 0 0 0.86 0 0 0 0 0 0 0.97 0 0.79 0 0.56 0 0.88 0 0.53 0.51 0 0 0 0 0 0 0 0

M4 0.98 0 0.83 0 0 0.71 0.58 0 0.54 0.54 0 0 0.74 0.63 0.63 0 0.53 0 0 0 0.69 0.63 0 0 0 0 0 0 0 0

M5 0 0.68 0 0 0.51 0 0 0 0.61 0 0 0 0 0 0 0.94 0 0.68 0 0 0 0 0 0.67 0 0 0.7 0 0 0

M6 0 0.84 0 0 0 0 0 0 0 0 0.79 0 0 0 0 0.99 0 0 0 0 0 0 0 0.94 0 0 0.84 0 0 0

M7 0.78 0 0.93 0 0 0 0.73 0 0.98 0.92 0 0 0.92 0 0.7 0.89 0.52 0 0 0 0.52 0.54 0 0 0 0 0.77 0 0 0

M8 0 0 0 0 0 0 0.76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.96 0 0.6 0 0 0.61 0.54 0

M9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.67 0 0.7 0.85 0 0 0.99 0

M10 0 0 0 0 0 0 0 0.87 0 0 0 0.67 0 0 0 0 0 0 0 0.63 0 0 0 0 0 0 0 0 0 0.74

M11 0 0 0 0.85 0 0 0 0 0 0 0 0.78 0 0 0 0 0 0 0 0.55 0 0 0 0 0 0 0 0 0 0.81

M12 0 0 0 0.63 0 0 0 0.97 0 0 0 0 0 0 0 0 0 0 0 0.54 0 0 0 0 0 0 0 0 0 0

M13 0.52 0.85 0 0 0.55 0 0 0 0 0 0 0 0 0 0 0.99 0 0.93 0 0 0 0 0 0.94 0 0 0.8 0 0 0

M14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.68 0 0 0 0.6 0 0 0.63 0 0.7 0.9 0

M15 0 0 0 0 0 0 0 0 0 0 0.71 0 0 0 0 0.98 0 0.53 0 0 0 0 0 0.68 0 0 0.91 0 0 0

M16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.53 0 0 0.76 0 0.88 0.79 0  
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 



 

 

 
 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30

M1 0 0 0 0 0 0.53 0.99 0 0 0 0 0 0 0 0 0.83 0 0 0.91 0 0 0 0 0.82 0 0 0.83 0.91 0.92 0

M2 0 0.86 0 0 0 0 0 0 0.97 0 0 0 0.79 0.56 0 0 0 0.88 0 0 0.53 0.51 0 0 0 0.98 0.83 0 0 0

M3 0.71 0 0 0.58 0 0.54 0 0 0 0 0.54 0 0 0 0 0.74 0.63 0 0 0 0 0 0 0 0.63 0 0 0.53 0.69 0

M4 0 0.63 0 0 0 0 0 0 0.68 0 0 0 0 0 0 0 0 0.51 0 0 0 0 0 0 0 0 0 0 0 0

M5 0.61 0 0 0.94 0 0.68 0 0 0 0 0.67 0 0 0 0 0.7 0 0 0.84 0 0 0 0.79 0.99 0 0 0 0 0.94 0

M6 0.84 0 0 0.78 0 0 0 0 0 0.93 0.73 0.98 0 0 0 0 0 0 0.92 0 0 0 0.92 0 0 0 0 0.7 0.89 0

M7 0 0.52 0.52 0 0 0.54 0 0 0 0.77 0 0 0 0.76 0 0.96 0.6 0 0 0 0 0 0 0 0 0 0.61 0 0.54 0.67

M8 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0.85 0 0 0 0 0 0 0 0 0 0 0 0

M9 0.99 0 0 0 0 0.87 0 0 0 0.67 0 0 0 0 0 0 0 0 0 0 0 0 0.63 0 0 0 0 0.74 0 0.85

M10 0 0 0 0 0 0 0.78 0 0.55 0 0 0 0 0 0 0 0 0 0 0 0.81 0.63 0 0 0 0.97 0 0 0.54 0

M11 0.52 0.85 0 0 0.55 0 0 0.99 0 0 0 0 0.93 0 0 0 0 0.94 0.8 0 0 0 0 0 0.68 0 0 0 0 0

M12 0 0 0.6 0.63 0 0 0 0 0 0 0 0.7 0 0 0 0.9 0.71 0 0 0 0 0 0.98 0.53 0 0 0 0.68 0 0.91

M13 0 0 0 0 0 0 0 0.53 0 0 0 0 0 0.76 0 0 0 0 0 0 0 0 0 0 0 0.88 0 0 0 0

M14 0 0 0 0 0 0 0 0 0 0 0 0.79 0 0 0.52 0 0 0.94 0 0 0.78 0 0 0 0.52 0 0 0 0 0.72

M15 0 0 0 0 0.92 0 0 0.92 0 0 0 0.86 0 0 0 0.8 0 0.67 0 0.53 0 0.69 0 0 0.59 0.54 0 0 0 0

M16 0 0 0 0 0.66 0.87 0 0 0 0 0 0 0 0.74 0 0 0 0.7 0 0 0 0 0 0 0 0.77 0 0 0 0

Data set - 37

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



 

 

 
 
 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30

M1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.53 0.99 0 0 0 0 0 0.83 0.91 0 0 0.82 0 0

M2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.83 0 0.91 0 0 0 0 0 0 0.92 0.86 0 0.97 0 0

M3 0 0 0.79 0 0.56 0 0.88 0 0.53 0 0.51 0 0 0.98 0 0 0 0 0.83 0 0 0 0 0 0 0 0 0 0 0

M4 0 0 0 0 0.71 0 0.58 0 0 0 0.54 0 0 0.54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M5 0.74 0 0 0.63 0 0 0 0.63 0 0.53 0 0 0 0 0.69 0 0.63 0 0 0 0 0 0 0 0.68 0 0 0 0 0.51

M6 0 0.61 0 0 0 0 0 0 0 0.94 0 0.68 0.67 0 0 0 0 0.7 0.84 0 0.79 0.99 0.94 0 0 0 0 0 0 0

M7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.84 0.78 0 0 0 0 0 0.93 0.73 0.98 0 0.92 0 0

M8 0 0 0.92 0 0.7 0 0 0 0 0 0.89 0 0 0.52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.52 0

M9 0 0 0.54 0 0.77 0 0.76 0 0.96 0 0.6 0 0 0.61 0 0 0 0 0 0 0 0 0 0 0.54 0 0 0 0 0

M10 0.67 0 0 0.7 0 0 0 0.85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.99

M11 0 0 0 0.87 0 0 0 0.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.63

M12 0.74 0 0.85 0 0.78 0 0.55 0 0.81 0 0.63 0 0 0.97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M13 0 0.54 0 0 0 0.52 0 0 0 0.85 0 0.55 0.99 0 0 0 0 0 0.93 0.94 0.8 0 0.68 0 0 0 0.6 0 0 0.63

M14 0 0.7 0 0 0 0 0.9 0 0 0.71 0 0.98 0 0 0.53 0 0 0 0.68 0.91 0.53 0.76 0 0 0 0 0 0 0.88 0

M15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.79 0.52 0 0 0 0 0 0 0.94 0.78 0.52 0 0.72 0 0

M16 0 0 0 0 0 0.92 0 0 0 0.92 0 0.86 0.8 0 0 0 0 0 0 0.67 0.53 0.69 0.59 0 0 0 0.54 0 0.66 0

Data set - 38

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 



 

 

 
 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30

M1 0 0 0 0.53 0.99 0 0 0 0 0 0.83 0 0.91 0 0 0 0.82 0.83 0 0 0 0.91 0 0 0 0 0 0 0 0.92

M2 0 0 0 0 0.86 0.97 0 0.79 0.56 0 0 0 0 0 0.88 0 0 0 0 0.53 0.51 0 0 0 0 0 0 0 0 0

M3 0 0 0 0 0 0 0 0 0 0.98 0 0 0 0 0 0 0 0 0 0 0 0 0.83 0 0 0 0.71 0.58 0 0

M4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.54 0.54 0 0.74 0.63 0 0 0

M5 0.63 0 0.53 0 0.69 0.63 0 0.68 0.51 0.61 0 0 0 0 0.94 0 0 0 0.68 0 0.67 0 0 0 0 0 0 0 0 0

M6 0 0.7 0 0 0 0 0 0 0 0 0 0 0 0.84 0 0.79 0 0 0 0 0 0 0 0 0.99 0 0 0.94 0.84 0

M7 0 0 0 0 0.78 0.93 0 0.73 0.98 0 0 0 0 0 0.92 0 0 0 0.92 0 0.7 0 0 0 0 0 0 0 0 0

M8 0.89 0 0.52 0 0.52 0.54 0 0.77 0.76 0 0 0 0 0 0 0 0 0 0.96 0.6 0.61 0 0 0 0 0 0 0 0 0

M9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.54 0.67 0 0.7 0.85 0 0 0

M10 0.99 0 0.87 0 0.67 0 0 0.63 0 0 0 0 0 0 0.74 0 0 0 0 0 0.85 0 0 0 0 0 0 0 0 0

M11 0 0 0 0.78 0 0 0.55 0 0 0 0.81 0.63 0.97 0 0 0 0.54 0.52 0 0 0 0.85 0 0 0 0 0 0 0 0.55

M12 0 0 0 0 0 0 0.99 0 0 0 0 0 0 0.93 0 0.94 0 0 0 0 0 0 0 0 0.8 0 0 0.68 0.6 0

M13 0 0.63 0 0 0 0 0 0 0 0 0.7 0 0 0.9 0 0.71 0 0 0 0 0 0 0 0 0.98 0 0 0.53 0.68 0

M14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.91 0.53 0 0 0 0 0 0

M15 0 0.76 0 0 0.88 0 0 0 0 0 0 0 0 0 0 0.79 0 0 0 0 0 0 0 0 0.52 0 0 0.94 0.78 0

M16 0 0.52 0 0 0 0 0 0 0 0 0 0 0 0.72 0 0.92 0 0 0 0 0 0 0 0 0.92 0 0 0.86 0.8 0

Data set - 39

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 



 

 

 
 
 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30

M1 0.53 0 0 0 0 0.99 0.83 0.91 0 0 0 0 0.82 0.83 0.91 0.92 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M2 0 0 0.86 0 0.97 0 0 0 0 0.79 0 0 0 0 0 0.56 0 0 0 0 0 0 0.88 0.53 0 0 0.51 0 0.98 0.83

M3 0.71 0 0 0 0 0 0 0.58 0.54 0 0 0 0.54 0 0.74 0 0.63 0 0 0 0 0 0 0 0 0 0 0 0 0

M4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.63 0.53 0 0 0 0 0.69 0 0.63 0 0

M5 0.68 0.51 0 0 0 0.61 0.94 0.68 0.67 0 0 0 0 0.7 0 0.84 0.79 0 0 0 0 0 0 0 0 0 0 0 0 0

M6 0.99 0.94 0 0 0 0 0.84 0 0.78 0 0 0 0.93 0.73 0 0.98 0.92 0.92 0 0.7 0 0 0 0 0 0 0 0 0 0

M7 0 0 0 0.89 0 0 0 0 0 0 0 0.52 0 0 0 0 0 0.52 0.54 0 0 0.77 0 0 0 0 0 0 0 0

M8 0.76 0.96 0 0 0 0.6 0.61 0.54 0.67 0 0 0 0 0.7 0.85 0.99 0.87 0 0 0 0 0 0 0 0 0 0 0 0 0

M9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.67 0.63 0 0 0 0.74 0 0 0.85 0 0

M10 0.78 0 0 0 0 0.55 0.81 0 0.63 0 0 0 0.97 0.54 0.52 0.85 0.55 0 0 0 0 0 0 0 0 0 0 0 0 0

M11 0 0 0 0.99 0.93 0 0 0 0 0 0 0.94 0 0 0 0 0 0.8 0.68 0 0 0.6 0 0 0 0 0 0 0 0

M12 0 0 0 0 0 0 0 0 0 0 0 0.63 0 0 0 0 0 0.7 0.9 0 0 0 0 0 0 0 0 0 0 0

M13 0.71 0 0 0 0 0.98 0.53 0.68 0.91 0 0 0 0.53 0.76 0 0.88 0.79 0 0 0 0 0 0 0 0 0 0 0 0 0

M14 0 0 0.52 0 0 0 0 0 0 0 0 0 0 0.94 0 0 0 0 0 0 0 0 0.78 0.52 0.72 0 0.92 0 0.92 0.86

M15 0 0 0.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.67 0.53 0 0 0.69 0.59 0 0 0 0

M16 0 0 0 0 0.54 0 0 0 0 0.66 0 0 0 0 0 0 0 0 0 0 0 0 0.87 0.74 0 0.7 0 0 0.77 0.85

Data set - 40

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 



 

 

 
 
 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30

M1 0 0.53 0 0 0 0 0 0.99 0 0 0 0 0.83 0.91 0.82 0.83 0.91 0 0.92 0.86 0 0 0 0 0 0 0 0.97 0.79 0.56

M2 0 0 0 0 0 0.88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.53 0 0 0.51 0.98 0.83 0.71 0 0 0

M3 0 0.58 0 0 0 0 0 0.54 0 0 0 0 0 0 0.54 0 0.74 0.63 0.63 0 0 0 0 0 0 0 0 0.53 0.69 0.63

M4 0.68 0 0 0 0 0 0 0 0.51 0 0.61 0 0.94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M5 0 0 0 0 0 0.68 0 0 0 0 0 0.67 0 0 0 0 0 0 0 0 0.7 0.84 0.79 0 0.99 0 0.94 0 0.84 0

M6 0.78 0 0 0 0.93 0 0.73 0.98 0 0 0.92 0 0.92 0 0 0 0 0 0.7 0 0 0 0 0 0.89 0 0 0 0 0

M7 0 0 0 0 0 0 0 0 0 0.52 0 0.52 0 0 0 0 0 0 0 0 0.54 0.77 0 0.76 0 0.96 0.6 0 0 0

M8 0.61 0 0 0.54 0 0 0.67 0 0 0 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M9 0.85 0 0 0 0 0 0 0.99 0 0 0.87 0 0 0.67 0 0 0 0 0 0.63 0 0 0.74 0 0 0 0 0 0.85 0.78

M10 0 0 0 0.55 0.81 0 0 0 0.63 0 0.97 0 0.54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M11 0 0 0 0 0 0 0 0 0 0 0 0 0 0.52 0.85 0.55 0 0.99 0.93 0.94 0 0 0 0 0 0 0 0.8 0 0

M12 0 0 0.68 0 0 0.6 0 0 0 0.63 0 0.7 0 0 0 0 0.9 0 0 0 0 0.71 0 0.98 0.53 0.68 0 0 0 0

M13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.91 0 0.53 0.76 0 0 0 0 0 0 0 0 0 0.88 0

M14 0 0 0.79 0 0 0.52 0 0 0 0.94 0 0.78 0 0 0 0 0 0 0 0 0 0.52 0.72 0 0.92 0 0.92 0 0 0

M15 0 0 0 0 0 0 0 0 0 0.86 0 0 0 0.8 0 0 0.67 0 0.53 0 0 0 0 0 0 0 0 0 0.69 0

M16 0 0 0 0 0.59 0 0 0.54 0 0 0 0 0 0.66 0.87 0.74 0.7 0.77 0 0.85 0 0 0 0 0 0 0 0.81 0 0.63

Data set - 41

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 



 

 

 
 
 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30

M1 0 0 0 0 0 0 0 0 0.53 0 0 0 0 0 0 0 0 0 0.99 0 0 0 0 0 0 0.83 0 0.91 0.82 0

M2 0 0.83 0.91 0.92 0.86 0 0.97 0.79 0 0 0 0.56 0.88 0 0.53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M3 0 0 0.51 0.98 0 0 0 0 0 0.83 0.71 0 0 0 0.58 0.54 0.54 0 0 0 0 0 0 0.74 0 0 0 0 0 0.63

M4 0 0 0 0 0.63 0.53 0.69 0.63 0 0 0 0.68 0.51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M5 0 0 0 0 0 0 0 0 0 0 0 0 0 0.61 0 0 0 0.94 0 0 0.68 0.67 0.7 0 0.84 0 0 0 0 0

M6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.79 0 0 0.99 0.94 0 0 0.84 0 0 0 0 0

M7 0.78 0 0.93 0.73 0 0 0 0 0.98 0.92 0.92 0 0 0 0.7 0.89 0.52 0 0 0 0 0 0 0.52 0 0 0 0 0 0.54

M8 0 0 0 0.77 0 0 0 0 0 0 0 0 0 0.76 0 0 0 0.96 0 0 0.6 0 0 0 0.61 0 0 0 0.54 0

M9 0 0 0 0 0 0 0 0 0.67 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0.85 0.99 0.87 0.67 0

M10 0.63 0 0 0 0 0 0 0 0 0.74 0.85 0 0 0.78 0 0 0 0.55 0 0 0.81 0.63 0.97 0 0.54 0 0 0 0 0

M11 0.52 0 0.85 0.55 0 0 0 0 0 0.99 0.93 0 0 0 0 0.94 0.8 0 0 0 0 0 0 0.68 0 0 0 0 0.6 0.63

M12 0 0 0.7 0.9 0 0 0 0 0 0.71 0 0 0 0 0 0.98 0.53 0 0 0 0 0 0 0.68 0 0 0 0 0.91 0

M13 0 0 0 0 0 0 0 0 0 0 0 0 0 0.53 0 0 0 0.76 0 0 0.88 0 0.79 0 0.52 0 0 0 0 0

M14 0.94 0 0.78 0 0 0 0 0 0 0 0.52 0 0 0 0.72 0.92 0.92 0 0.86 0 0 0 0 0.8 0 0 0 0 0 0.67

M15 0.53 0 0.69 0.59 0 0 0 0 0 0.54 0 0 0 0 0.66 0.87 0.74 0 0 0 0 0 0 0.7 0 0 0 0 0 0.77

M16 0 0 0 0 0 0 0 0 0.85 0 0 0 0 0 0 0 0 0 0.81 0.63 0 0 0 0 0 0.6 0.96 0.53 0.9 0

Data set - 42

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 



 

 

 
 
 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30

M1 0.53 0 0.99 0.83 0 0 0.91 0 0.82 0 0.83 0 0 0 0.91 0.92 0 0 0 0 0 0 0 0 0 0 0.86 0 0 0

M2 0 0 0 0 0 0 0 0 0 0.97 0 0 0 0.79 0 0 0 0 0 0 0 0 0.56 0.88 0 0 0 0.53 0.51 0

M3 0 0 0.98 0 0 0 0 0 0 0 0 0 0 0.83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.71

M4 0 0 0 0 0 0 0 0 0 0 0.58 0 0.54 0 0 0 0 0.54 0.74 0 0 0.63 0 0 0.63 0 0.53 0 0 0

M5 0 0 0 0 0 0 0 0.69 0 0.63 0 0 0 0 0 0 0 0 0 0 0 0 0.68 0.51 0 0 0 0 0.61 0.94

M6 0 0 0 0.68 0.67 0.7 0 0 0.84 0 0.79 0 0 0 0.99 0.94 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M7 0 0 0 0 0 0.84 0 0.78 0 0.93 0 0 0 0.73 0 0 0 0 0 0 0 0 0 0 0 0 0 0.98 0 0.92

M8 0.92 0.7 0.89 0.52 0.52 0.54 0.77 0 0.76 0 0.96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0

M9 0.61 0.54 0.67 0.7 0 0.85 0.99 0 0 0 0.87 0 0 0 0.67 0.63 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M10 0.74 0.85 0.78 0 0.55 0.81 0 0 0.63 0 0.97 0 0 0 0.54 0.52 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M11 0 0 0 0 0 0 0 0.85 0 0.55 0 0 0 0 0 0 0 0 0 0 0 0 0.99 0 0 0 0 0.93 0.94 0.8

M12 0.68 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0.63 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M13 0 0 0.9 0 0 0 0 0 0 0.71 0 0 0 0 0 0 0 0 0.98 0 0 0 0.53 0.68 0 0 0 0 0.91 0.53

M14 0 0 0 0 0 0 0 0 0 0 0 0.76 0.88 0 0 0 0.79 0.52 0.94 0.78 0 0.52 0 0 0.72 0 0.92 0 0 0

M15 0 0 0 0 0 0 0 0.92 0.86 0 0 0 0 0.8 0 0 0 0 0 0 0 0 0.67 0 0 0 0 0.53 0 0

M16 0 0 0 0 0 0 0 0 0 0 0 0.69 0 0 0 0 0 0 0 0.59 0 0 0 0 0 0.54 0 0 0 0

Data set - 43

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 
 

 

 

 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 P40 P41 P42 P43

M1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.53 0 0 0 0 0.99 0

M2 0 0.83 0 0 0 0 0 0 0 0.91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.82 0 0 0 0.83 0 0 0 0 0.91 0.92 0 0.86 0 0.97 0

M3 0 0 0 0 0 0 0.79 0 0 0 0 0 0 0 0 0 0.56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.88 0.53 0.51 0 0 0 0 0 0 0

M4 0 0 0 0 0.98 0 0 0 0.83 0 0 0 0 0.71 0 0 0 0 0.58 0 0.54 0 0.54 0 0 0 0 0 0.74 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M5 0 0 0 0 0.63 0 0 0.63 0.53 0 0 0 0 0.69 0.63 0.68 0 0 0.51 0 0.61 0 0.94 0 0 0 0 0 0.68 0 0 0 0.67 0 0 0 0 0 0 0 0.7 0 0.84

M6 0.79 0.99 0 0 0 0.94 0.84 0.78 0 0 0 0.93 0.73 0.98 0 0 0.92 0 0.92 0 0 0 0.7 0 0 0 0 0 0 0 0 0.89 0.52 0.52 0 0 0.54 0 0.77 0.76 0 0.96 0.6

M7 0.61 0 0 0 0 0 0 0 0 0 0 0 0.54 0 0 0 0 0 0 0 0 0 0 0 0.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M8 0.7 0.85 0.99 0 0 0 0 0.87 0.67 0 0.63 0.74 0 0 0.85 0 0 0 0.78 0.55 0.81 0 0.63 0.97 0 0 0.54 0.52 0 0 0.85 0 0 0 0 0 0.55 0.99 0 0 0.93 0 0.94

M9 0 0.8 0 0.68 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0.63 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0.9 0 0 0 0 0.71 0.98 0 0.53 0 0.68 0

M10 0.91 0 0 0 0 0 0 0 0 0 0 0.53 0.76 0 0 0 0 0 0 0 0 0 0 0 0.88 0.79 0 0 0 0 0.52 0 0 0 0 0 0 0 0.94 0 0 0 0

M11 0 0 0.78 0 0 0 0 0 0.52 0 0 0 0 0 0 0 0 0 0 0.72 0 0 0 0.92 0 0 0.92 0 0 0.86 0 0 0 0 0 0 0 0 0 0 0 0 0

M12 0 0 0 0 0 0 0 0 0 0 0.8 0 0 0 0 0 0 0 0 0 0 0.67 0 0.53 0 0 0.69 0 0 0.59 0 0 0 0 0 0 0 0 0 0 0 0 0

M13 0 0 0.54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M14 0 0.87 0 0 0 0.74 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.77 0 0 0 0 0 0 0 0

M15 0 0 0 0 0.85 0 0 0 0 0 0 0 0 0.81 0 0 0 0 0.63 0 0.6 0 0 0 0 0 0 0 0 0 0 0 0.96 0 0 0 0 0 0 0 0.53 0 0.9

M16 0 0.92 0 0 0 0 0.83 0 0 0.78 0 0 0 0 0 0 0 0.99 0 0 0 0 0 0 0 0 0 0 0 0 0 0.51 0 0 0 0 0.82 0.89 0 0 0 0.65 0

  Data set 44

 
 

 

 

 

 

 

 

 

 

 



 

 

 

 
 

Data set – 45 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

Data set – 46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 

M1 0.4 0 0 0.5 0 0 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 

M2 0 0.4 0.2 0 0.6 0 0 0.7 0 0.3 0 0 0 0 0 0 0 0 0 0 

M3 0 0.4 0.4 0 0.2 0 0 0.3 0 0.3 0 0 0 0 0 0 0 0 0 0 

M4 0.7 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 

M5 0 0 0 0 0 0 0 0 0 0 0 0 0.8 0.9 0.5 0 0.6 0.7 0 0.8 

M6 0.2 0 0 0.3 0 0 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0 

M7 0 0 0 0 0 0.3 0 0 0.4 0 0.5 0.6 0 0 0 0.7 0 0 0.8 0 

M8 0 0 0 0 0 0.3 0 0 0.4 0 0.2 0.3 0 0 0 0.4 0 0 0.3 0 

M9 0 0 0 0 0 0 0.9 0 0 0 0 0 0.4 0.5 0.6 0 0.7 0.8 0 0.2 

M10 0 0 0 0   0.4 0 0 0.7 0 0.8 0.2 0 0 0 0.4 0 0 0.3 0 

  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 

M1 0.7 0 0 0.8 0.4 0 0 0.2 0.1 0.2 0 0 0 0 0 0 

M2 0 0 0.4 0 0 0 0 0 0 0 0 0.2 0 0 0.1 0 

M3 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0.2 

M4 0.3 0 0 0.4 0.1 0 0 0.4 0.5 0.6 0 0 0 0 0 0 

M5 0 0 0.1 0 0 0 0 0 0 0 0 0.2 0 0 0.3 0 

M6 0 0 0 0 0 0.5 0 0 0 0 0 0 0.6 0 0 0.7 

M7 0 0.1 0 0 0 0 0.2 0 0 0 0.3 0 0 0.4 0 0 

M8 0 0.5 0 0 0 0 0.6 0 0 0 0.7 0 0 0.8 0 0 

M9 0 0 0 0 0 0.1 0 0 0 0 0 0 0.2 0 0 0.3 

M10 0 0 0.4 0 0 0 0 0 0 0 0 0.5 0 0 0.6 0 

M11 0 0.4 0 0 0 0 0.2 0 0 0 0.5 0 0 0.7 0 0 



 

 

 
 

 
 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 P40 P41 P42 P43

M1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.53 0 0 0 0 0.99 0

M2 0 0.83 0 0 0 0 0 0 0 0.91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.82 0 0 0 0.83 0 0 0 0 0.91 0.92 0 0.86 0 0.97 0

M3 0 0 0 0 0 0 0.79 0 0 0 0 0 0 0 0 0 0.56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.88 0.53 0.51 0 0 0 0 0 0 0

M4 0 0 0 0 0.98 0 0 0 0.83 0 0 0 0 0.71 0 0 0 0 0.58 0 0.54 0 0.54 0 0 0 0 0 0 0.74 0 0 0 0 0 0 0 0 0 0 0 0 0

M5 0 0 0 0 0.63 0 0 0.63 0.53 0 0 0 0 0.69 0.63 0.68 0 0 0.51 0 0.61 0 0.94 0 0 0 0 0 0.68 0 0 0 0.67 0 0 0 0 0 0 0 0.7 0 0.84

M6 0.79 0.99 0 0 0 0.94 0.84 0.78 0 0 0 0.93 0.73 0.98 0 0 0.92 0 0.92 0 0 0 0.7 0 0 0 0 0 0 0 0 0.89 0.52 0.52 0 0 0.54 0 0.77 0.76 0 0.96 0.6

M7 0.61 0 0 0 0 0 0 0 0 0 0 0 0.54 0 0 0 0 0 0 0 0 0 0 0 0.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M8 0.7 0.85 0.99 0 0 0 0 0.87 0.67 0 0.63 0.74 0 0 0.85 0 0 0 0.78 0.55 0.81 0 0.63 0.97 0 0 0.54 0.52 0 0 0.85 0 0 0 0 0 0.55 0.99 0 0 0.93 0 0.94

M9 0 0 0 0.8 0 0 0 0 0 0.68 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0 0.63 0 0 0 0.7 0 0 0 0 0.9 0.71 0 0.98 0 0.53 0

M10 0.68 0 0 0 0 0 0 0 0 0 0 0.91 0.53 0 0 0 0 0 0 0 0 0 0 0 0.76 0.88 0 0 0 0 0.79 0 0 0 0 0 0 0 0.52 0 0 0 0

M11 0 0 0.94 0 0 0 0 0 0.78 0 0 0 0 0 0 0 0 0 0 0.52 0 0 0 0.72 0 0 0.92 0 0 0.92 0 0 0 0 0 0 0 0 0 0 0 0 0

M12 0 0 0 0 0 0 0 0 0 0 0.86 0 0 0 0 0 0 0 0 0 0 0.8 0 0.67 0 0 0.53 0 0 0.69 0 0 0 0 0 0 0 0 0 0 0 0 0

M13 0 0 0.59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M14 0 0.66 0 0 0 0.87 0 0 0 0 0 0 0 0 0 0 0.74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0

M15 0 0 0 0 0 0.77 0 0 0 0 0 0 0 0.85 0 0 0 0 0.81 0 0.63 0 0 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0.96 0 0.53

M16 0 0.9 0 0 0 0 0.92 0 0 0.83 0 0 0 0 0 0 0 0.78 0 0 0 0 0 0 0 0 0 0 0 0 0 0.99 0 0 0 0 0.51 0.82 0 0 0 0.89 0

  Data set 47

 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
 

 

 

 

 

 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 P40

M1 0 0 0 0 0 0 0 0 0.53 0 0 0 0 0 0 0.99 0.83 0 0.91 0 0 0 0 0 0 0 0 0 0 0 0 0 0.82 0 0 0 0 0 0 0

M2 0 0 0 0 0 0 0 0 0 0.83 0 0 0.91 0.92 0 0 0 0 0 0 0 0.86 0 0 0 0 0 0 0 0 0 0 0.97 0 0 0.79 0 0 0 0

M3 0 0.56 0 0 0 0 0 0 0 0 0.88 0.53 0 0 0.51 0 0 0 0 0 0 0 0.98 0.83 0 0 0 0 0 0 0 0 0 0.71 0 0 0 0 0 0

M4 0 0 0 0 0 0 0 0.58 0 0 0 0 0 0 0 0 0 0 0.54 0 0.54 0 0 0 0 0 0 0.74 0 0 0 0 0 0 0 0 0 0.63 0.63 0

M5 0 0 0 0 0.53 0 0 0 0 0.69 0 0 0 0.63 0 0 0 0 0 0 0 0.68 0 0 0 0 0 0 0 0 0 0 0 0 0.51 0.61 0 0 0 0

M6 0 0 0 0 0.94 0 0 0 0 0 0 0 0 0 0 0 0 0.68 0 0 0 0 0 0 0 0.67 0.7 0 0 0.84 0 0 0 0 0 0 0 0.79 0 0

M7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.99 0 0 0 0 0 0 0.94 0 0 0 0 0 0 0 0.84

M8 0 0 0 0.78 0.93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.73 0.98 0 0 0.92 0 0 0 0 0 0 0 0 0 0

M9 0 0 0 0 0 0.92 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.89 0 0 0 0.52 0 0 0 0 0 0 0.52

M10 0 0 0 0 0 0.54 0.77 0 0 0 0 0 0 0 0 0 0 0 0 0.76 0 0 0 0 0 0.96 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M11 0 0 0 0 0 0 0 0 0 0.6 0 0 0.61 0 0 0 0 0 0 0 0 0.54 0 0 0 0 0 0 0 0 0 0 0 0 0.67 0.7 0 0 0 0

M12 0 0 0 0.85 0.99 0 0 0 0 0 0 0 0 0 0 0 0 0.87 0 0.67 0 0 0 0.63 0 0 0.74 0 0 0.85 0 0 0 0 0 0 0 0 0 0

M13 0.78 0 0 0 0 0 0 0 0.55 0 0 0 0 0 0 0.81 0.63 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.97 0 0 0 0 0 0 0

M14 0 0 0.54 0 0 0 0 0 0 0 0 0 0 0.52 0 0.85 0 0 0 0 0 0 0 0 0.55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M15 0.99 0 0 0.93 0.94 0 0 0 0 0 0 0 0 0 0 0 0 0.8 0 0 0 0 0 0 0 0.68 0.6 0 0 0.63 0 0 0 0 0 0 0.7 0 0 0

M16 0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0 0 0 0.71 0 0.98 0 0 0 0 0 0 0 0 0 0 0.53 0 0 0 0 0.68 0.91 0.53 0

M17 0 0 0 0 0 0 0.76 0 0 0 0 0 0 0 0 0 0 0 0 0.88 0 0 0 0 0 0 0 0 0.79 0 0.52 0 0 0 0 0 0 0 0 0.94

M18 0 0 0 0.78 0.52 0 0 0 0 0 0 0 0 0 0 0 0 0.72 0 0 0 0 0 0 0 0.92 0.92 0 0 0.86 0 0 0 0 0 0 0 0 0 0

M19 0 0 0 0 0 0 0 0 0 0.8 0 0 0.67 0.53 0 0 0 0 0 0 0 0.69 0 0 0 0 0 0 0 0 0 0 0 0 0.59 0.54 0 0 0 0.66

M20 0 0.87 0 0 0 0 0 0 0 0 0.74 0.7 0 0 0.77 0 0 0 0.85 0 0 0 0.81 0.63 0 0 0 0 0 0 0.6 0 0 0.96 0 0 0 0 0 0

M21 0.53 0 0 0 0 0 0 0 0.9 0.92 0 0 0 0 0 0.83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.78 0 0 0 0 0 0 0

M22 0.99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.51 0.82 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.89 0 0 0 0 0 0 0

M23 0 0 0.65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.57 0 0 0 0 0 0 0.97 0 0 0 0 0 0 0 0

M24 0 0.88 0.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.72 0 0 0 0 0 0 0 0

Data set 48

 
 
 
 
 



 

 

 
 

 
 
 
 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 P40

M1 0 0 0 0 0 0 0 0 0.53 0 0 0 0 0 0 0 0.99 0 0.83 0 0 0 0 0 0 0 0 0 0 0 0.91 0 0.82 0 0 0 0 0 0 0

M2 0 0 0 0 0 0 0 0 0 0 0 0 0.83 0.91 0 0 0 0 0 0 0 0.92 0 0 0 0 0 0 0 0 0 0 0.86 0 0 0 0 0 0 0.97

M3 0 0 0 0 0 0 0 0 0 0 0 0.79 0 0 0.56 0 0 0 0 0 0 0 0.88 0.53 0 0 0 0 0 0 0 0 0 0.51 0 0 0 0 0 0

M4 0 0 0 0 0 0 0 0.98 0 0 0.83 0 0 0 0 0 0 0 0 0 0.71 0 0 0 0 0 0 0.58 0 0 0 0 0 0.54 0 0 0 0 0 0

M5 0 0 0 0 0.54 0.74 0 0 0 0.63 0 0.63 0 0 0 0 0 0 0 0 0 0.53 0 0 0 0 0 0 0 0 0 0 0 0 0.69 0 0 0 0 0

M6 0 0 0 0 0 0 0 0 0 0.63 0 0 0 0 0 0 0 0 0.68 0 0 0 0 0 0 0.51 0 0 0 0.61 0 0 0 0 0 0 0 0.94 0 0

M7 0 0.68 0 0 0 0 0 0 0 0 0 0 0.67 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0.84 0 0 0 0.79 0 0 0 0 0 0 0 0

M8 0 0 0 0.99 0.94 0 0 0 0 0 0 0 0.84 0 0 0 0 0 0 0 0 0 0 0 0.78 0 0 0.93 0 0 0 0.73 0 0 0 0 0 0 0 0

M9 0 0 0 0 0 0.98 0 0 0 0 0 0.92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.92 0 0 0 0 0 0.7 0.89

M10 0 0 0 0 0 0.52 0 0 0.52 0 0 0 0 0 0 0 0 0 0.54 0 0 0 0 0.77 0 0.76 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M11 0 0 0.96 0 0 0 0 0 0 0.6 0 0 0 0 0.61 0 0 0 0 0 0 0.54 0.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M12 0 0 0 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0.85 0 0.99 0 0.87 0 0.67 0 0 0.63 0 0 0 0 0 0 0 0 0 0 0 0 0

M13 0 0 0.74 0 0 0 0 0 0 0 0 0.85 0 0 0 0.78 0.55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.81 0 0 0 0 0

M14 0 0 0 0 0 0 0 0.63 0 0 0.97 0 0 0.54 0 0.52 0 0 0 0 0 0 0 0 0.85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M15 0.55 0 0 0 0.99 0 0 0 0 0 0 0 0 0.93 0 0 0 0 0 0 0 0 0 0 0 0.94 0.8 0 0 0 0 0 0 0 0 0.68 0 0 0 0

M16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0.63 0 0 0 0 0 0.7 0 0 0 0.9 0.71 0 0.98 0

M17 0 0 0 0 0 0 0.53 0 0 0 0 0 0 0 0 0 0.68 0 0 0.91 0 0 0 0 0 0 0 0 0.53 0 0.76 0 0 0 0 0 0 0 0 0

M18 0 0 0 0.88 0.79 0 0 0 0 0 0.52 0 0 0 0 0 0 0.94 0 0 0 0 0 0 0 0 0.78 0 0 0.52 0 0 0 0 0 0 0 0 0 0

M19 0 0 0 0 0 0 0 0 0.72 0 0 0 0 0.92 0.92 0 0 0 0 0 0 0 0 0 0 0 0.86 0 0 0 0 0 0 0 0.8 0.67 0 0 0 0.53

M20 0 0.69 0 0 0 0 0 0 0 0 0.59 0.54 0 0 0.66 0 0 0 0.87 0 0 0 0 0 0.74 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0 0

M21 0.77 0 0.85 0 0 0 0 0 0.81 0.63 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0

M22 0.96 0 0 0 0 0 0.53 0 0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0.92 0 0 0 0 0 0 0 0 0 0

M23 0 0 0.83 0 0 0 0 0 0 0 0 0.78 0.99 0 0 0 0 0 0 0 0.51 0 0 0 0 0 0 0 0 0 0 0.82 0 0 0 0.89 0 0 0 0

M24 0 0.65 0 0 0 0 0 0.57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.97 0 0.88 0 0 0 0 0 0
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Data set - 50 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Data set - 51 

  M1 M2 M3 M4 M5 M6 M7 M8 

P1 0 0 0 0 2 1 0 0 

P2 1 0 2 0 0 0 0 0 

P3 2 1 0 5 0 0 3 4 

P4 0 1 0 2 0 0 3 4 

P5 0 0 0 0 2 1 0 0 

P6 0 1 0 2 5 0 3 4 

P7 0 4 0 2 0 0 3 1 

P8 1 0 2 0 0 0 0 0 

P9 1 0 3 0 0 2 0 0 

P10 0 0 0 2 3 1 0 0 

P11 3 0 2 0 0 0 1 0 

P12 0 0 0 0 1 3 2 0 

P13 1 0 2 0 0 0 0 0 

P14 1 2 3 0 0 0 0 0 

P15 0 0 0 1 2 0 0 0 

P16 1 0 2 0 0 0 0 0 

P17 3 0 1 0 2 0 0 0 

P18 0 2 0 1 0 0 4 3 

P19 1 0 2 0 0 0 0 0 

P20 0 2 0 1 0 3 4 5 

 

 

 

 

 

 

 

 

 

 

  M1 M2 M3 M4 M5 M6 M7 

P1 1 3 2 0 0 0 0 

P2 1 2 0 0 0 0 0 

P3 0 0 1 2 0 0 0 

P4 0 0 1 2 0 0 0 

P5 0 0 0 0 1 2 3 

P6 0 0 2 0 4 3 1 

P7 0 0 0 3 1 2 4 



 

 

 
 

 
 
 
 

 
 
 
 
 
Data set - 52 

  M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 

P1 2 0 0 0 0 0 0 0 3 0 0 1 0 0 0 0 0 4 0 5 

P2 0 2 3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

P3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3 2 

P4 0 3 1 0 0 0 0 0 0 4 2 0 0 0 0 0 0 0 0 0 

P5 0 0 0 1 0 3 4 0 0 0 0 0 0 0 2 0 0 0 0 0 

P6 0 0 0 0 5 0 0 0 0 0 1 0 0 2 0 3 4 0 0 0 

P7 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 3 0 0 0 

P8 0 0 0 5 0 0 3 0 4 0 0 0 2 0 1 0 0 0 0 0 

P9 4 0 0 0 0 0 0 0 2 0 3 5 0 0 0 0 0 1 0 0 

P10 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 1 2 

P11 0 0 3 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 0 

P12 5 0 0 0 3 0 0 0 1 0 0 4 0 0 0 0 0 2 0 0 

P13 0 0 0 0 0 1 2 0 0 0 0 0 0 0 3 0 4 0 0 0 

P14 3 4 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 

P15 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 3 4 0 0 0 

P16 0 0 0 0 0 3 2 0 0 0 0 0 0 0 1 0 0 0 4 0 

P17 2 0 0 0 0 0 0 0 1 0 0 3 0 0 0 0 0 0 0 0 

P18 0 0 0 0 0 0 0 1 0 4 0 0 0 0 0 0 0 0 2 3 

P19 0 2 1 0 4 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 

P20 3 0 0 0 0 0 0 0 0 2 0 4 0 0 0 0 0 1 0 0 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 M25

P1 5 3 1 4 2 6

P2 2 3 4 1

P3 2 3 3 1

P4 1 2

P5 3 2 1

P6 3 2 1

P7 2 5 4 1

P8 1 1 3 2

P9 3 4 1 2

P10 2 1 3

P11 2 3 1

P12 1 4 3 2 5

P13 3 2 2 1

P14 4 1 2 3

P15 4 4 3 5 1 2

P16 3 2 4

P17 1 3 2

P18 3 2 1

P19 1 3 2

P20 1

P21 1 3 2

P22 3 4 2 1

P23 2 3 1

P24 1 2

P25 1 3 2

P26 3 4 1

P27 1 3 2

P28 2 1 3

P29 3 2 1

P30 2 3 1

P31 2 1 3

P32 2 1 3 4

P33 1 3 2

P34 2 1 3

P35 2 4 1 3

P36 2 3 4 1

P37 3 2 1

P38 2 3 1

P39 1

P40 2 3 1
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Data set – 54  
 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 
Data set - 55 

 

 

 

 

 

 

 

 

 
Data set - 56 

 

 

 

 

 

 

 

 

 

 

 

  

 

 
 
 
 
 

 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

P1 0 0 1 2 0 3 0 0 0 0 

P2 0 1 0 0 3 0 0 4 0 2 

P3 0 2 0 0 4 0 0 1 0 3 

P4 0 0 0 1 0 0 3 0 2 0 

P5 3 0 5 4 0 1 0 2 0 0 

P6 0 0 0 1 0 0 3 0 2 0 

P7 0 1 0 0 3 0 0 0 0 2 

P8 0 1 0 0 0 0 0 0 0 2 

P9 4 0 1 0 0 2 0 3 0 0 

P10 3 0 1 0 0 2 0 0 0 0 

P11 0 0 0 0 0 0 1 0 0 0 

P12 0 3 0 0 2 0 0 1 0 0 

 M1 M2 M3 M4 

P1 0 1 0 0 

P2 1 0 2 0 

P3 0 1 0 2 

P4 1 0 2 0 

P5 1 0 0 0 

 M1 M2 M3 M4 M5 

P1 0 1 0 2 0 

P2 1 0 2 0 0 

P3 1 0 2 0 3 

P4 0 2 0 1 0 

P5 2 1 0 0 3 



 

 

 
 
Data set - 57 

 

 

 

 

 

 

 

 

 

 

 
Data set - 58 

  M1 M2 M3 M4 M5 M6 

P1 0 1 2 0 3 4 

P2 0 0 1 0 3 2 

P3 0 0 1 0 2 3 

P4 1 0 0 2 0 0 

P5 0 0 1 0 0 2 

P6 1 2 3 0 0 0 

P7 0 1 0 0 0 2 

P8 0 2 0 1 0 0 

 

 
 

Data set - 59 
  M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 

P1 1 0 0 2 0 0 0 3 4 0 0 0 

P2 1 2 0 4 0 3 6 5 0 0 0 0 

P3 1 2 0 3 0 0 4 5 6 0 0 0 

P4 1 0 0 2 0 0 3 0 4 0 0 0 

P5 1 0 0 0 0 2 4 0 5 3 0 0 

P6 0 0 0 0 0 1 3 4 5 2 0 0 

P7 0 0 0 2 0 1 0 3 4 0 0 0 

P8 0 3 1 5 2 4 0 6 7 0 0 0 

P9 0 0 1 4 2 3 0 5 6 0 0 0 

P10 0 0 1 3 0 2 0 4 0 0 0 0 

P11 0 0 0 0 0 1 0 0 0 0 0 2 

P12 0 0 0 0 0 1 2 0 0 3 0 0 

P13 0 0 0 0 0 0 2 0 0 1 0 0 

P14 0 0 0 0 0 0 2 0 0 0 1 3 

P15 0 0 0 0 0 0 3 0 0 2 1 4 

P16 0 0 0 0 0 0 2 0 0 3 1 0 

P17 0 0 0 0 0 0 0 0 0 2 1 0 

P18 0 0 0 0 0 0 0 0 0 0 1 2 

P19 0 0 0 0 0 0 2 0 0 0 1 3 

 

 

 

 

 

  M1 M2 M3 M4 M5 

P1 1 2 0 3 0 

P2 0 1 2 0 3 

P3 2 0 0 1 3 

P4 0 1 2 0 3 

P5 1 2 0 3 0 

P6 3 0 1 0 2 

P7 0 3 0 2 1 



 

 

 

 

 
 
 
 

 
 

Data set – 60 

 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 

P1 0 0 3 0 2 1 0 5 0 0 6 4 

P2 0 3 0 0 5 1 0 0 2 4 0 0 

P3 4 2 0 3 5 0 0 0 0 1 6 0 

P4 2 0 4 1 0 0 0 0 0 3 0 0 

P5 0 0 2 0 0 0 3 0 1 0 0 0 

P6 0 3 0 0 2 4 0 1 0 0 0 0 

P7 0 0 0 0 0 0 0 2 3 0 0 1 

P8 0 2 0 3 0 0 0 0 1 0 0 0 

P9 0 1 3 0 0 0 2 0 0 0 4 5 

P10 1 4 0 3 0 0 2 0 5 0 0 0 

P11 0 3 2 0 6 0 0 5 0 0 4 1 

P12 0 0 3 0 0 0 4 0 2 1 0 0 

P13 0 0 0 0 4 0 2 0 0 1 3 0 

P14 0 0 1 2 0 0 4 0 0 3 0 0 

P15 0 2 0 3 1 0 0 0 0 0 0 0 

P16 0 5 4 0 0 1 2 0 0 0 3 0 

P17 0 0 0 0 1 0 0 2 3 4 0 0 

P18 0 0 0 1 3 0 0 2 0 0 0 0 

P19 0 2 1 0 0 0 0 0 4 3 0 5 

P20 0 3 0 0 0 1 2 0 0 0 0 0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 

 

 

 

 

 
 

Data set – 61 

  M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 

P1 0 0 0 0 0 0 3 0 2 0 0 1 0 0 0 0 0 0 0 0 

P2 3 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 

P3 1 0 0 0 0 0 4 0 2 0 0 3 0 0 0 0 0 0 0 0 

P4 1 0 0 0 0 0 3 0 0 0 0 2 0 0 0 0 0 0 0 0 

P5 2 0 0 0 0 0 0 0 1 0 0 3 0 0 0 0 0 5 6 4 

P6 0 3 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P7 0 0 0 0 1 4 0 0 0 0 0 0 0 0 0 2 0 0 3 0 

P8 0 3 0 0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

P9 0 2 0 0 0 4 0 0 0 0 0 0 0 0 0 1 0 0 3 0 

P10 0 1 0 0 3 4 0 0 0 0 0 0 0 0 0 2 0 0 0 0 

P11 0 0 2 0 0 0 0 1 0 0 3 0 0 0 0 0 0 4 0 0 

P12 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 3 0 0 

P13 0 0 3 0 0 0 0 2 0 0 1 0 0 0 0 0 0 4 0 0 

P14 0 0 0 0 0 0 0 0 0 1 0 0 0 3 0 0 4 0 0 2 

P15 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 2 0 0 1 

P16 0 0 0 0 0 0 0 0 0 2 0 0 0 3 0 0 0 0 0 1 

P17 0 0 0 0 0 0 0 0 0 3 0 0 0 2 0 0 1 0 0 0 

P18 0 0 0 2 0 0 0 0 0 0 0 0 1 0 3 0 0 0 0 0 

P19 0 0 0 1 0 0 0 0 0 0 0 0 2 0 3 0 0 0 0 0 

P20 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 

 

 

 
 
 

 Data set - 62 

 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 

P1 0 0 0 3 0 0 1 0 0 2 0 0 0 0 4 

P2 0 0 0 4 0 0 0 2 0 3 1 0 0 0 0 

P3 0 0 1 0 0 0 4 0 0 2 0 3 0 0 0 

P4 0 0 0 0 2 0 1 0 0 0 0 3 0 4 0 

P5 3 0 4 0 0 0 0 0 0 0 2 0 0 0 1 

P6 0 0 0 2 3 0 0 0 0 1 0 0 0 0 4 

P7 0 0 0 0 0 0 2 0 4 0 0 1 0 3 0 

P8 0 0 0 0 3 0 0 0 0 2 0 4 0 1 0 

P9 0 3 0 0 0 0 1 0 0 0 0 0 0 4 2 

P10 0 0 2 4 1 0 0 0 0 0 0 0 0 3 0 

P11 1 0 2 0 0 0 3 0 0 4 0 0 0 0 0 

P12 0 0 0 3 2 0 1 0 0 0 0 4 0 0 0 

P13 0 0 0 0 0 3 0 4 2 0 0 0 1 0 0 

P14 0 0 0 1 0 2 0 0 0 3 4 0 0 0 0 

P15 0 0 0 0 0 0 1 3 0 0 4 0 2 0 0 

P16 0 0 0 0 0 0 3 4 0 0 2 1 0 0 0 

P17 0 0 0 0 3 0 0 0 0 0 0 4 0 1 2 

P18 0 0 0 0 1 0 0 0 4 0 0 3 0 2 0 

P19 0 3 0 0 0 2 0 0 0 4 0 0 0 0 1 

P20 0 2 0 0 0 0 0 0 0 0 1 3 4 0 0 

P21 4 0 0 0 0 1 0 0 3 0 0 0 2 0 0 

P22 0 0 2 3 0 0 0 0 0 4 0 0 1 0 0 

P23 0 1 0 0 0 0 0 0 0 0 0 4 3 2 0 

P24 2 0 0 3 0 0 1 0 0 0 4 0 0 0 0 

P25 0 0 0 0 0 0 2 3 0 0 0 1 0 4 0 

P26 0 0 0 0 0 2 3 1 0 4 0 0 0 0 0 

P27 4 0 2 0 0 0 0 0 3 1 0 0 0 0 0 

P28 0 0 0 0 0 4 0 2 0 0 1 3 0 0 0 

P29 3 0 0 0 0 1 0 0 0 0 0 4 0 2 0 

P30 4 0 0 0 2 0 0 0 3 0 0 1 0 0 0 

 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 

 
Data set – 63 

  M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 

P1 0 0 2 3 0 0 0 0 0 1 0 4 0 0 0 0 0 0 0 0 

P2 0 0 0 0 0 0 0 4 0 0 0 0 0 1 0 0 2 3 0 0 

P3 0 0 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 

P4 0 0 1 0 0 0 0 0 0 0 4 0 0 2 3 0 0 0 0 0 

P5 0 0 0 0 3 0 0 0 0 0 0 0 0 1 0 0 0 4 2 0 

P6 0 0 0 0 0 0 0 0 3 0 1 4 0 0 0 0 0 2 0 0 

P7 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 4 0 3 0 0 

P8 0 0 0 0 0 0 0 0 0 0 1 0 0 4 2 0 0 3 0 0 

P9 0 0 0 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 4 1 

P10 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 4 0 0 3 

P11 0 0 0 0 2 0 0 0 3 0 0 1 0 0 0 0 0 0 4 0 

P12 0 0 0 0 0 0 3 0 1 0 0 0 0 4 2 0 0 0 0 0 

P13 0 0 0 2 0 0 0 0 0 4 0 0 0 0 3 1 0 0 0 0 

P14 0 0 0 0 0 0 1 0 0 0 3 0 0 0 0 0 0 4 0 2 

P15 0 0 0 2 0 0 4 0 0 0 0 0 0 0 0 0 0 3 0 1 

P16 0 0 0 0 0 3 0 0 0 0 0 1 0 0 2 0 0 0 4 0 

P17 0 0 0 0 2 0 4 0 0 0 0 3 0 0 0 0 0 0 0 1 

P18 0 2 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 3 

P19 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 3 4 0 

P20 0 2 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 4 0 1 

P21 0 0 3 4 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 

P22 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 3 0 0 4 0 

P23 0 0 0 0 1 3 0 0 0 0 0 0 0 0 2 0 0 4 0 0 

P24 0 0 1 0 4 0 0 0 0 3 0 0 0 0 2 0 0 0 0 0 

P25 0 2 1 0 0 4 0 0 0 3 0 0 0 0 0 0 0 0 0 0 

P26 0 0 2 0 4 0 3 0 0 0 0 0 0 1 0 0 0 0 0 0 

P27 2 0 0 0 0 0 0 0 4 1 0 0 0 0 3 0 0 0 0 0 

P28 0 0 0 4 0 2 0 0 0 0 3 0 0 0 1 0 0 0 0 0 

P29 4 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 3 0 0 

P30 0 1 0 0 0 0 0 0 2 0 3 0 0 0 0 0 4 0 0 0 

P31 0 0 0 0 0 0 0 0 0 4 2 0 0 0 0 0 0 1 3 0 

P32 0 0 0 3 0 0 0 2 0 0 0 0 0 4 0 0 0 0 0 1 

P33 0 0 0 0 0 0 0 0 0 4 1 0 0 0 0 2 0 0 0 3 

P34 0 0 0 0 0 0 0 0 0 0 0 0 0 3 4 2 0 0 1 0 

P35 0 0 0 1 0 0 4 0 0 0 0 2 0 0 0 0 3 0 0 0 

P36 4 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 

P37 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4 0 1 3 0 0 

 
 
 
 
 
 
 
 
 
 



 

 

 
 
 

 
 
 
 
 
 
 
 
Data set – 64 

  M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 M25 

P1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 4 
P2 0 0 3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 4 0 0 0 0 

P3 2 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 4 0 0 0 0 0 0 
P4 0 0 4 1 3 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
P5 0 1 0 0 3 0 0 0 2 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 
P6 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 1 0 4 0 0 0 0 0 2 

P7 0 0 0 0 1 0 0 0 0 4 0 3 0 0 0 0 0 0 0 0 0 0 0 0 2 
P8 0 1 0 0 0 0 0 4 0 3 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 
P9 0 0 3 0 0 0 1 0 4 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 
P10 3 0 0 1 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 

P11 0 0 3 0 0 0 0 4 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 
P12 0 0 1 0 0 4 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
P13 0 0 0 0 0 0 0 2 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
P14 4 0 0 0 0 0 2 0 0 1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 

P15 0 0 0 0 0 1 0 4 0 0 0 0 0 0 2 0 0 0 3 0 0 0 0 0 0 
P16 0 0 0 2 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 4 0 1 0 0 0 
P17 0 0 0 0 0 0 1 0 3 0 0 0 0 0 0 0 0 0 4 0 0 2 0 0 0 
P18 0 0 0 0 0 1 3 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 4 

P19 0 1 0 3 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 2 0 0 
P20 0 0 2 0 0 0 3 0 0 0 4 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
P21 4 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 
P22 0 0 0 0 4 0 0 0 2 0 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
P23 0 0 2 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 4 0 0 0 0 

P24 0 0 0 0 0 0 3 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 4 
P25 4 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 2 0 0 1 
P26 0 0 0 0 0 0 2 3 0 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 
P27 0 0 0 0 0 0 0 0 0 0 0 0 4 1 0 0 0 0 0 0 0 0 0 3 2 

P28 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0 0 4 3 0 0 0 
P29 0 0 4 0 0 0 0 0 0 0 3 0 0 2 0 0 0 0 0 0 0 0 0 1 0 
P30 0 0 0 0 0 0 0 0 0 4 2 1 0 0 0 0 0 0 0 0 0 0 0 3 0 
P31 0 2 0 0 0 0 3 0 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 

P32 0 0 0 0 2 0 3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 4 0 
P33 4 0 0 0 0 0 0 0 0 0 0 0 0 3 2 0 0 0 0 0 0 0 0 1 0 
P34 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 3 0 0 0 4 0 
P35 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 2 1 0 0 4 0 0 0 0 0 

P36 0 0 0 0 0 0 0 1 0 2 4 0 3 0 0 0 0 0 0 0 0 0 0 0 0 
P37 0 0 0 0 0 0 1 0 0 0 0 2 4 0 3 0 0 0 0 0 0 0 0 0 0 
P38 0 0 0 0 0 0 0 4 3 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 
P39 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 4 0 0 0 3 0 0 

P40 0 0 0 0 0 0 0 0 0 0 0 3 0 1 0 0 4 0 0 2 0 0 0 0 0 
P41 0 2 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 3 0 0 0 0 1 0 0 
P42 0 0 1 3 0 0 0 0 4 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 
P43 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 3 

P44 0 0 0 0 0 0 0 0 0 0 0 3 0 1 0 0 0 0 2 0 4 0 0 0 0 
P45 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 2 0 3 
P46 0 0 0 0 0 0 0 0 4 0 0 1 0 2 3 0 0 0 0 0 0 0 0 0 0 
P47 3 4 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

P48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 3 0 0 1 4 0 
P49 0 0 0 0 0 0 0 0 0 1 0 3 0 0 0 0 0 0 0 0 2 4 0 0 0 
P50 0 0 0 0 0 0 4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 3 0 0 

 
 



 

 

 
 
 
Data set - 65 

  M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 

P1 1 0 0 0 0 0 0 2 0 7 5 0 0 3 6 0 0 0 0 4 

P2 0 0 1 0 2 0 0 0 0 3 7 6 0 0 4 5 0 0 0 0 

P3 0 0 0 0 4 2 0 0 0 0 1 0 6 0 5 0 0 7 3 0 

P4 0 0 7 0 0 0 0 0 0 0 2 3 6 0 0 5 0 4 0 1 

P5 0 0 2 1 5 0 0 0 0 7 0 3 0 4 0 0 0 0 6 0 

P6 0 0 0 3 0 5 0 0 6 7 0 0 0 0 0 0 2 4 1 0 

P7 0 0 0 0 0 0 6 2 0 0 3 0 7 0 1 0 4 0 5 0 

P8 0 0 0 0 7 1 0 0 3 5 0 0 2 0 4 0 0 0 6 0 

P9 2 0 0 0 0 0 0 5 0 0 0 6 0 0 7 3 4 0 0 1 

P10 6 0 0 0 0 5 0 4 2 0 0 1 0 0 0 0 0 0 7 3 

P11 6 0 7 0 0 5 4 3 0 1 0 0 0 0 0 2 0 0 0 0 

P12 6 0 0 5 0 3 7 0 2 0 0 0 0 0 0 0 1 0 4 0 

P13 5 0 0 0 0 7 0 1 3 2 0 0 0 0 0 0 0 6 4 0 

P14 0 2 6 0 5 0 0 0 0 0 0 3 7 0 1 0 0 4 0 0 

P15 0 0 2 6 0 0 0 3 0 1 4 0 7 5 0 0 0 0 0 0 

P16 0 4 2 3 0 0 7 0 0 0 0 0 6 0 0 0 1 0 5 0 

P17 7 0 1 0 0 0 0 0 0 0 5 0 4 0 2 0 0 6 3 0 

P18 0 3 0 1 0 5 0 0 4 0 2 0 0 0 6 0 0 7 0 0 

P19 6 0 0 0 0 0 4 0 5 0 1 7 0 0 2 0 0 0 0 3 

P20 0 4 7 5 0 0 6 0 0 0 0 0 3 0 0 2 0 0 1 0 

P21 7 0 2 0 1 0 0 0 0 5 0 0 6 0 0 0 4 0 3 0 

P22 0 0 4 1 0 0 0 2 0 0 5 6 0 0 7 0 0 0 3 0 

P23 1 7 0 0 0 0 0 0 0 6 5 0 4 0 3 0 0 2 0 0 

P24 4 0 0 5 7 2 0 0 0 0 0 0 0 0 1 6 0 0 0 3 

P25 7 3 0 0 0 0 6 2 0 0 0 0 0 0 0 0 5 1 0 4 

P26 7 0 0 5 1 0 0 0 0 3 0 0 6 0 0 0 2 0 4 0 

P27 0 1 2 0 0 6 0 7 5 3 0 4 0 0 0 0 0 0 0 0 

P28 7 6 0 0 2 0 0 0 0 0 0 1 0 0 0 0 5 4 3 0 

P29 0 3 0 0 6 0 1 0 0 4 5 0 2 0 0 0 7 0 0 0 

P30 0 5 0 0 0 0 0 7 3 0 0 0 1 4 6 0 0 0 2 0 

P31 0 3 4 0 0 0 0 1 0 0 7 5 0 0 0 2 0 0 6 0 

P32 0 0 0 2 4 0 7 0 0 0 1 0 3 0 6 0 5 0 0 0 

P33 0 0 0 5 0 1 0 0 0 0 7 0 0 3 4 0 6 0 2 0 

P34 0 0 2 0 0 4 6 7 0 1 0 0 0 0 0 0 5 3 0 0 

P35 0 6 0 0 7 0 0 0 2 1 4 5 0 0 0 0 0 0 0 3 

P36 0 0 0 0 6 0 0 0 1 0 5 0 0 0 0 0 7 2 4 3 

P37 2 0 0 3 4 0 1 0 0 0 0 0 6 0 0 0 7 0 5 0 

P38 0 0 1 3 0 6 0 0 0 0 0 0 0 4 0 5 0 0 7 2 

P39 0 0 2 0 0 6 0 0 0 4 7 5 0 0 3 0 1 0 0 0 

P40 0 6 0 0 0 5 2 1 3 0 0 0 4 0 0 0 0 0 7 0 

P41 0 0 0 0 0 0 2 0 4 7 0 0 3 0 6 5 0 0 1 0 

P42 0 0 3 0 0 0 0 0 0 4 0 0 7 6 1 2 0 0 5 0 

P43 0 0 0 1 0 0 0 0 7 0 6 0 4 0 0 3 5 2 0 0 

P44 0 0 0 7 5 3 0 1 0 0 4 0 0 0 0 0 2 6 0 0 

P45 0 0 0 0 3 0 0 5 2 0 6 4 0 0 0 0 1 0 0 7 

P46 0 0 0 7 0 2 0 6 4 0 1 0 0 0 3 0 0 5 0 0 

P47 0 0 2 0 0 6 0 0 0 0 7 0 0 1 3 5 0 4 0 0 

P48 0 2 0 0 7 0 5 0 4 0 6 0 3 0 1 0 0 0 0 0 

P49 0 2 0 0 7 1 3 0 0 0 6 0 0 0 0 4 5 0 0 0 

P50 3 5 0 0 6 0 7 1 0 0 0 0 2 0 0 0 0 4 0 0 

P51 0 0 0 2 0 0 0 0 6 0 5 0 0 4 0 0 0 1 7 3 

P52 0 0 0 4 2 0 0 6 0 1 0 0 0 0 7 3 0 5 0 0 

P53 0 0 0 1 2 0 4 5 0 0 0 3 0 0 0 0 6 0 0 7 

P54 0 4 0 3 0 0 2 0 1 0 0 0 7 0 0 5 6 0 0 0 

P55 0 0 4 0 0 0 3 0 0 2 0 1 0 7 0 0 0 0 5 6 

 
 
 
 

 
 



 

 

 

 
Data set - 66 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

P1 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 4 0 0 0 0 0 0 0 0 3 0 

P2 2 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 0 0 0 0 

P3 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 3 0 0 0 0 1 0 2 0 0 0 0 

P4 0 0 0 0 2 0 0 0 0 0 0 0 0 3 0 0 4 0 0 0 0 0 0 0 0 0 0 1 

P5 0 0 0 0 0 0 3 0 0 0 2 4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

P6 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 3 0 0 0 

P7 0 0 0 0 0 0 1 0 0 2 4 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 

P8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 4 0 0 0 2 0 0 0 1 0 0 

P9 0 0 0 0 0 3 0 0 0 0 0 2 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 1 

P10 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 3 2 

P11 0 0 0 0 0 4 0 0 0 2 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 

P12 0 0 0 0 2 0 1 0 0 0 0 0 4 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 

P13 0 2 0 0 0 0 3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 

P14 0 0 0 0 0 0 0 0 3 4 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P15 0 0 0 0 0 0 0 0 0 0 2 0 0 4 0 0 0 0 0 0 0 1 0 0 0 0 3 0 

P16 0 0 0 0 0 0 0 3 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 

P17 0 0 0 0 0 2 0 0 0 0 0 4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 3 

P18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 2 3 0 0 

P19 0 2 0 4 0 0 0 0 3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P20 0 0 3 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 

P21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 4 3 2 

P22 0 3 0 0 0 0 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 2 0 0 0 0 

P23 0 0 2 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 4 

P24 0 0 0 0 0 0 3 0 2 0 0 0 0 0 4 0 0 0 0 0 1 0 0 0 0 0 0 0 

P25 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 3 0 0 0 0 0 0 0 

P26 0 0 0 0 0 3 0 0 0 0 0 0 0 4 0 0 2 0 1 0 0 0 0 0 0 0 0 0 

P27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 4 3 0 

P28 0 0 0 0 0 0 0 0 0 1 0 0 0 3 0 0 0 0 0 0 4 0 0 0 0 2 0 0 

P29 0 0 0 0 0 0 2 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 1 0 0 

P30 0 3 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 

P31 0 0 1 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 4 2 0 0 0 0 0 0 0 0 

P32 1 0 0 0 0 0 2 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 3 

P33 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 1 4 2 0 0 0 0 0 0 0 0 0 0 

P34 0 0 0 0 4 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 3 0 0 

P35 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 3 0 0 0 0 0 1 0 2 

P36 0 0 0 1 0 4 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 2 0 0 0 0 0 0 

P37 0 0 3 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1 4 0 0 0 

P38 0 0 0 2 0 0 0 0 0 0 4 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

P39 0 0 0 0 0 0 0 0 0 0 0 4 0 2 0 0 0 0 0 0 1 0 0 0 3 0 0 0 

P40 0 0 3 0 0 4 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

P41 0 2 0 0 0 0 0 4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 

P42 0 0 0 0 0 0 0 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 3 0 0 2 0 

P43 0 0 0 0 4 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 

P44 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 2 0 0 0 4 0 0 0 0 0 0 

P45 0 0 2 3 0 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P46 0 0 0 2 0 0 0 0 0 0 0 0 0 3 0 0 0 4 0 0 0 0 1 0 0 0 0 0 

P47 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 3 0 0 0 0 0 4 0 0 0 0 0 0 

P48 0 0 0 4 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 3 0 0 0 2 0 0 

P49 4 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 2 0 

P50 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 3 2 0 0 0 

P51 0 0 0 0 0 0 0 0 0 0 1 0 4 0 0 0 0 0 0 0 0 2 0 0 0 3 0 0 

P52 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 3 0 0 0 0 0 2 0 0 

P53 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 3 0 0 0 2 

P54 1 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 2 

P55 0 0 0 0 0 0 2 1 0 0 0 3 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 

P56 0 0 0 0 0 0 2 0 1 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 4 0 0 0 

P57 0 2 0 0 0 3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 

P58 0 0 0 0 2 4 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

P59 0 0 0 1 0 0 0 0 0 4 0 0 0 0 2 0 0 0 0 0 0 0 3 0 0 0 0 0 

P60 0 0 0 0 0 0 2 0 0 0 0 4 0 0 0 0 0 0 0 0 0 3 0 1 0 0 0 0 



 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

M1 3 1 5 5 4 3 1

M2 3 3 2 2 4 1

M3 4 5 3 5 4 2 5 4 5 5 3

M4 4 4 2 5 1 5 3 3 1 1

M5 5 1 5 2 3 3 3 2 2 1 3

M6 4 3 2 1 4 4 3 1 2

M7 1 5 5 4 3 1 2 5 3 2 1 4 5 2 5 4

M8 2 1 2 1 5 5 1 4 1 2 3 4 1

M9 3 2 5 5 2 3 2 3 5 5 1 3 3 3

M10 5 2 2 5 5 1 4 1 3 1 3 2 2

M11 3 4 1 4 1 4 2 3 4 1 2 5 3 2 2 5 4 1

M12 2 4 3 1 2 2 2 3 2 1 1 5 3 4

M13 1 3 1 3 5 2 2 4 1 4 5

M14 2 1 5 4 3 4 1 4 2 5

M15 3 5 1 3 4 5 3 5 2 5 5

M16 3 3 4 5 1

M17 2 2 4 1 1 5 1 5 4

M18 2 5 5 5 4 5 1 3 2 5 4 3

M19 1 1 4 2 4 2 4 4 1 5 2 4 1 2 4 2

M20 3 2 1 2 2

M21 3 1 1 3 3 5 4 3 1

M22 1 4 4 4 5 2 3 5 2 1 2 1 4 3 5 2

M23 4 4 5 4 4 4 3

M24 3 4 2 2 1 1 1 1 3 3 1 1

M25 4 2 4 5 1 5 4 5 4 3 3

M26 5 4 4 4 2 5 3 4 5 4

M27 5 2 2 5 2 5 2

M28 1 4 3 3 3 1 2 2 2 5 4

M29 1 3 5 3 3 3 1 4 5 5 3 4 5

M30 1 2 3 1 3 1 4 2

Data set 67

 



 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

M1 1 3 2 1 3 1 3 3 4 4 1 1 4 2

M2 1 2 3 4 2 1 4 1 2 4

M3 3 2 1 1 2 1 2

M4 2 4 1 4 4 3 1 4 1 4 4 1 3

M5 3 1 4 3 1 3 3 1

M6 2 4 1 2 2 1 1 3 3 2 2

M7 1 3 3 3 2 3 2 2 1

M8 2 2 1 1 4 1 4 3

M9 1 1 4 3 3 2 3 1 1 2

M10 2 3 3 4 3 2 2 2 1 4

M11 2 4 3 2 1 2

M12 4 3 3 1 3 3 3 1 4 2 2 3 2

M13 1 3 3 4 2 3 3 3 4

M14 4 4 4 1 3 4 1 2 2

M15 4 2 1 2 4 2 2 1 4 3 2 1 2 3 2

M16 1 2 4 4 4 2 2 2 4 2 2 1 2 1 2

M17 2 4 1 2 2 4 4 3 2 3 4 1

M18 1 1 4 1 1 1 4 3 1 3 3

M19 3 1 4 3 4 1

M20 3 4 1 1 4 1 3 4 1 4

M21 2 4 1 3 4 3 1 4

M22 4 3 1 1 3 3 4 2 1 1 1 1 2 3 3 4

M23 1 2 3 1 3 2

M24 4 2 2 4 2 4 3 2 3 1 3

M25 2 2 1 4 3 2

M26 3 2 4 4 3

M27 3 4 2 3 1 3 4 4 3

M28 4 4 3 3 1 3 2 4 1 4 1

M29 3 4 3 2 4 4 1 2 4 2 4

M30 1 3 3 2 2 4 1 4 2 3 3

M31 4 4 4 4 2 4 3 2 4 1 3

M32 2 3 2 4 1 1 2 2 1

Data set 68

 



 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

M1 1 1 5 1 3 3 3 3 2 5 1 4 5 3 1 5 1

M2 3 4 5 3 3 3 1 4 1 4 5 4 4 3 4 3 3 1 3 4

M3 1 4 3 1 5 4 5 2 2 4 1 2 5 1 5 2 1 4

M4 5 2 2 5 4 1 4 5 1 5 2 2 2 5 5

M5 5 2 2 4 2 2 4 5 2

M6 1 5 3 5 4 1 4 4 5 5

M7 5 1 2 5 2 2 5 2 3 4 4 1 5 3 3 4 1 5 3

M8 2 4 4 1 5 5 4 5 4 4

M9 1 4 3 4 3 3 5 1 3 2 5 3

M10 5 2 1 5 3 2 5 3 5 1 5 2 3 4 1 1 2 1 1 5 1

M11 2 3 3 2 3 5 4 5 5 5 5 1 5 5 4 5 3

M12 1 3 3 5 4 2 2 1 3 5 3 1 4 1 3 3

M13 3 3 1 2 1 5 3 2 1 3 3 1 1 2 2 2 1

M14 1 2 4 3 5 3 2 4 3 1 5 5 4

M15 5 1 4 1 4 5 3 1 2 3

M16 5 5 4 1 1 4 1 1 3

M17 5 4 2 4 3 3 2 3 4 5 1 5 4 3

M18 4 4 4 3 2 4 2 4 5 5 1 3 5 2 1

M19 4 5 1 3 5 2 1 3 2 3 5 4 5

M20 1 5 4 1 4 5 2 3 4 1

M21 4 5 3 3 1 2 1 4 2 4 4 3 3 2

M22 2 4 2 2 3 3 2 2 5 1 2 2 4

M23 4 5 5 2 3 3 4 4 5 3 5 4

M24 2 3 4 5 1 1 2

M25 3 5 1 1 2 1

M26 5 5 1 2 1 2 1 3 2

M27 4 4 3 2 3 2 3 2 3 2 2 2 4

M28 3 4 4 2 4 2 1 5 4

M29 2 2 1 1 3 1 4 2 2 4 5

M30 4 5 3 5 4 4 1 4 4 3

M31 2 1 4 1 1 4 3 2 3 1 4

M32 3 2 4 5 2 4 3 5 3 2 2

M33 4 5 1 1 3 3 5 2 2 3 4 4 2 2

M34 2 1 5 2 1 5 3 2 5

M35 1 1 1 1 3 1 5 1 2 2 4 2 3 4 3 1

Data set 69
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