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Abstract

Deterministic optimization algorithms are very attractive when the objective

function is computationally expensive and therefore the statistical analysis of the

optimization outcomes becomes too expensive. Among deterministic methods,

Deterministic Particle Swarm Optimization (DPSO) has several attractive char-

acteristics such as the simplicity of the heuristics, the ease of implementation,

and its often fairly remarkable effectiveness. The performances of DPSO depend

on four main setting parameters: the number of swarm particles, their initializa-

tion, the set of coefficients defining the swarm behavior, and (for box-constrained

optimization) the method to handle the box constraints. Here, a parametric

study of DPSO is presented, with application to simulation-based design in ship

hydrodynamics. The objective is the identification of the most promising setup

for both synchronous and asynchronous implementations of DPSO. The analy-

sis is performed under the assumption of limited computational resources and

large computational burden of the objective function evaluation. The analy-

sis is conducted using 100 analytical test functions (with dimensionality from

two to fifty) and three different performance criteria, varying the swarm size,

initialization, coefficients, and the method for the box constraints, resulting in
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more than 40,000 optimizations. The most promising setup is applied to the

hull-form optimization of a high speed catamaran, for resistance reduction in

calm water and at fixed speed, using a potential-flow solver.

Keywords: Simulation-based design; derivative-free optimization; global

optimization; particle swarm optimization; ship hydrodynamics optimization

1. Introduction

Particle Swarm Optimization (PSO) was originally introduced in [1], based

on the social-behaviour metaphor of a flock of birds or a swarm of bees searching

for food. PSO belongs to the class of heuristic algorithms for single-objective

evolutionary derivative-free global optimization. Derivative-free global opti-5

mization approaches are often preferred to local approaches when objectives

are nonconvex and/or noisy, and when multiple local optima cannot be ex-

cluded, as often encountered in Simulation-Based Design (SBD) optimization.

The computational burden of global optimization techniques is usually much

larger compared to local methods, so that the accuracy of the solution sought10

often depends on the available computational resources.

Zhang et al. [2] presents a comprehensive survey on the PSO variants and

their application in several engineering fields, stemming from mechanical to

chemical. Recent applications of PSO to ship SBD include medium- to high-

fidelity hull-form and waterjet design optimization of fast catamarans, by mor-15

phing techniques [3, 4] and geometry modifications based on Karhunen-Loève

expansion (KLE) [5, 6, 7], and low- to medium-fidelity optimization of uncon-

ventional multi-hull configurations [8]. When global techniques are used in de-

sign optimization, with CPU-time expensive solvers, the optimization process

is computationally expensive and its effectiveness and efficiency remain an al-20

gorithmic and technological challenge. Although complex SBD applications are

often solved by metamodels [9, 10], their development and assessment require

benchmark solutions, with simulations directly connected to the optimization
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algorithm. These solutions are achieved only if affordable and effective opti-

mization procedures are available.25

The original PSO makes use of random coefficients, aiming at sustaining

the variety of the swarm dynamics. This property implies that statistically sig-

nificant results can be obtained only through extensive numerical campaigns.

Such an approach can be too expensive in SBD optimization for industrial ap-

plications, when CPU-time expensive computer simulations are used directly as30

analysis tools. Furthermore, if the design problem in hand is scheduled within

an accurate project planning, time resources might be a tight bound for the

optimization process. For these reasons efficient deterministic approaches (such

as deterministic PSO, DPSO) have been developed, and their effectiveness and

efficiency in industrial applications in ship hydrodynamics problems have been35

shown, including comparisons with local methods [11] and random PSO [5].

Moreover, the availability of parallel architectures and high performance com-

puting (HPC) systems has offered the opportunity to extend the original syn-

chronous implementation of PSO (SPSO) to CPU-time efficient asynchronous

methods (APSO), assessed on test functions in [12], and applied in several engi-40

neering problems such as multidisciplinary optimization of commercial aircraft

[13], biomechanics [14], and swarm robotics [15]. Using distributed computing,

synchronous implementation of PSO are implemented when at iteration k + 1

the position and velocity of any particle is updated after evaluating the function

at all the particles positions at iteration k. In an asynchronous implementation45

of PSO the position and velocity of a particle is possibly based on the fitness

value at a subset of all particles positions.

The effectiveness and efficiency of PSO for box constrained optimization

are significantly influenced by four main setting parameters: (a) the number of

swarm particles interacting during the optimization, (b) the initialization of the50

particles in terms of initial location and velocity, (c) the set of coefficients defin-

ing the personal or social behaviour of the swarm dynamics, and (d) the method

to handle the box constraints. These parameters and their effects on PSO have

been studied by a number of authors [16, 17, 18]. More recently the effects of
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the particles initialization have been studied in [19, 20], the effects of the coef-55

ficients have been shown in [21], whereas the bounds handling techniques have

been presented in [22]. A comprehensive study on the PSO parameter selection

has been presented in [23] and a preliminary assessment of the performances of

DPSO, varying (a), (b) and (c), is presented in [24]. A survey of approaches

for general constrained optimization problems in industrial design and multi-60

disciplinary design optimization may be found in [25], including also general

nonlinear constraints. However, the discussion on the application of DPSO in

SBD problems is still limited, lacking a systematic and a comparative analysis.

The objective of the present work is the identification of the most effective

and efficient parameters for both synchronous and asynchronous deterministic65

particle swarm optimization (SDPSO and ADPSO), for their use in SBD proce-

dures. The focus is on industrial problems, directly using CPU-time expensive

analyses. These make the statistical analysis of the results too expensive and

therefore demand for deterministic algorithms. Due to the attractive features

of DPSO (such as the simplicity of the heuristics, the ease of implementation,70

and its often fairly remarkable effectiveness in industrial problems), the current

study is limited to DPSO and its implementations. A systematic comparison of

DPSO with other deterministic and stochastic methods is beyond the scopes of

the present work.

The approach includes a preliminary parametric analysis on 100 analytical75

test functions [26, 27, 28, 29] characterized by different degrees of non-linearities

and number of local minima, with full-factorial combination of: (a) number of

particles (using a power of two times the number of design variables); (b) initial-

ization of the particles position and velocity (using Hammersley sequence sam-

pling (HSS) [30]); (c) set of coefficients, chosen from literature [12, 16, 17, 31, 32];80

(d) inelastic and semi-elastic wall-type approach for box constraints [22]. In or-

der to handle the box constraints, wall-type approaches are preferred instead of

penalty approaches or Lagrangian functions, which might introduce additional

bias in the analysis. The number of design variables ranges from two to fifty

and the simulation budget (maximum number of objective function evaluations)85
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is up to 4096 times the number of design variables. The preliminary paramet-

ric analysis is separately conducted on two subsets of problems, respectively

with less and more than ten design variables, using an Intel Xeon E5-1620 v2

3.70GHz. Three absolute metrics are defined and applied for the evaluation

of the algorithm performances, based on the distance between PSO-found so-90

lutions and analytical optima. According with the numerical tests, the most

effective parameter choice among (a), (b), (c) and (d) is identified, based on the

associated relative variability of the results. Then, the most promising setups

for SDPSO and ADPSO are determined and applied to an industrial prob-

lem, namely a fast catamaran hull-form optimization, for calm water and fixed95

speed. The objective function is the ratio RT /W between the total resistance

(RT ) and the ship weight force (W ). The hull-form modification is performed

using a KLE-based morphing approach [5, 6, 7], using respectively four- and

six-dimensional design spaces. Computer simulations are performed using the

potential flow (PF) solver CNR-INSEAN WARP [33], on a cluster of Intel Xeon100

E5462 2.80GHz. Each function evaluation takes about 10 minutes per node. Ad-

ditionally, the optimization results are compared with those obtained in earlier

research, based on a high-fidelity URANS solver [5].

2. PSO formulations

Consider the following objective function:

f(x) : RNdv −→ R (1)

and the global optimization problem

min
x∈L

f(x), L ⊂RNdv (2)

where L is a closed and bounded subset of RNdv and Ndv is the number of design

variables. The global minimization of the objective function f(x) requires to

find a vector a ∈ L such that:

∀b ∈ L : f(a) ≤ f(b) (3)
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Then, a is a global minimum for the function f(x) over L. Since the solu-105

tion of Eq. 2 is in general an NP-hard problem, the exact identification of a

global minimum might be very difficult. Therefore, solutions with sufficient

good fitness, provided by heuristic procedures, are often considered acceptable

for several practical purposes. Among different heuristic procedures, PSO is

often the method of choice for its capability to outreach a suitable approximate110

solution within a few iterations. In PSO, the positions of the particles represent

the candidate solutions and will be denoted by x ∈ L, with associated fitness

f(x). Moreover, in this paper the compact set L represents the box constraints.

2.1. Original formulation

The original formulation of the PSO algorithm, as presented in [16], readsvk+1
i = wvk

i + c1r
k
1,i(xi,pb − xk

i ) + c2r
k
2,i(xgb − xk

i )

xk+1
i = xk

i + vk+1
i

(4)

The above equations update velocity and position of the i-th particle at the k-th115

iteration, where w is the inertia weight ; c1 and c2 are respectively the social and

cognitive learning rate; rk1,i and rk2,i are uniformly distributed random numbers

in [0, 1]; xi,pb is the personal best position ever found by the i-th particle in the

previous iterations and xgb is the global best position ever found in the previous

iterations, considering all particles.120

An overall constriction factor χ is used in [34, 35, 36, 37, 38], in place of

the inertia weight w. Accordingly, the system in Eq. 4 is recast in the following

equivalent formvk+1
i = χ

[
vk
i + c1r

k
1,i(xi,pb − xk

i ) + c2r
k
2,i(xgb − xk

i )
]

xk+1
i = xk

i + vk+1
i

(5)

In order to provide necessary (but possibly not sufficient) conditions which avoid

divergence of particles trajectories, the following condition:

χ = 2∣∣∣∣√2−ϕ−
√

ϕ2−4ϕ

∣∣∣∣ , where ϕ = c1 + c2, ϕ > 4

(6)
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is indicated in [35], where setting the value of ϕ to 4.1, with χ = 0.729, c1 = c2 =

2.050 is suggested [36]. Note that PSO schemes including both the parameters

w and χ have been also proposed in the literature. Furthermore, recent surveys

on PSO coefficients, in the light of possible divergence of particles trajectories,

can be found in [39] and [40].125

2.2. Deterministic formulation

Two essential requisites in SBD problems are surely represented by the ef-

ficiency of the optimization procedure adopted, along with the possibility to

replicate the same procedure on different settings of the problem. In order to

comply with both the latter facts, a deterministic version of the PSO algorithm130

(namely DPSO) was formulated in [11] by setting rk1,i = rk2,i = 1 in Eq. 5.

Of course, skipping random parameters does not allow to assess a statistical

analysis of the results on several practical problems. Nevertheless, since SBD

problems are usually computationally very expensive, and represent just one

step within a complex and formal project plan, the use of DPSO revealed to135

be mandatory with respect to adopting PSO. On the overall, the final DPSO

scheme becomes

vk+1
i = χ

[
vk
i + c1(xi,pb − xk

i ) + c2(xgb − xk
i )
]

xk+1
i = xk

i + vk+1
i

(7)

In the context of SBD for ship design optimization, as mentioned in Section

1, the formulation of Eq. 7 was compared to the original in [5]. DPSO is

therefore used for all the subsequent analyses.140

Using the above formulation, it is possible to prove that the necessary (but

possibly not sufficient) conditions which ensure that the trajectory of each par-

ticle does not diverge [41], are0 < |χ| < 1

0 < ω < 2 (χ+ 1)

(8)

7



where ω = χ(c1 + c2). Introducing

β =
ω

2(χ+ 1)
(9)

and assuming χ > 0 as usually in the literature, the conditions of Eq. 8 reduce

to 0 < χ < 1

0 < β < 1

(10)

2.3. Synchronous and asynchronous implementations

As reported in Section 1, two different implementations of DPSO are com-

paratively applied in this paper. In particular, the synchronous implementation

of DPSO (SDPSO) updates the personal bests {xi,pb} and the global best xgb,

along with particles velocity and position, at the end of each iteration. SDPSO145

is presented as a pseudo-code in Alg. 1, and as a block diagram in Fig. 1a. The

synchronous update ensures any particle of a perfect and complete information

of its neighborhood. However, synchronous update is a costly choice [12], as a

particle needs to wait for the whole swarm to be updated, before it can move

to a new position and continue its search. Hence, the first particle evaluated150

might be idle for a long time, waiting for the whole swarm to be updated.

Algorithm 1 SDPSO pseudo-code

1: Initialize a swarm of Np particles

2: while (k < Max number of iterations) do

3: for i = 1, Np do

4: Evaluate f(xk
i )

5: end for

6: Update {xi,pb}, xgb

7: Update particle positions and velocities {xk+1
i }, {vk+1

i }

8: end while

9: Output the best solution found

Furthermore, in parallel architectures, if the amount of time required to

evaluate the objective function at each iteration is not uniform (e.g., due to
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iterative process/convergence of analysis tools), the wall-clock time and CPU-

time reservation of SDPSO may significantly increase. In contrast to SDPSO,155

the asynchronous implementation of PSO (namely ADPSO [12]) updates per-

sonal and global bests, along with particles velocity and position, as soon as the

information required for their update is available, and a particle is ready for a

new analysis. Therefore in this version a particle’s position/velocity is updated

using partial or “imperfect” information of its neighborhood. I.e., some informa-160

tion come from particles with position/velocity updated in the current iteration,

while partial information is provided by particles whose position/velocity was

updated in the previous iterations. This last aspect contributes to diversity in

the swarm, which is a desirable trait. ADPSO is presented as a pseudo-code in

Alg. 2, and as a block diagram in Fig. 1b.165

The differences between ADPSO and SDPSO are summarized in Tab. 1.

Algorithm 2 ADPSO pseudo-code

1: Initialize a swarm of Np particles

2: while (k < Max number of iterations) do

3: for i = 1, Np do

4: evaluate f(xk
i )

5: Update {xi,pb}, xgb

6: Update particle positions and velocities {xk+1
i }, {vk+1

i }

7: end for

8: end while

9: Output the best solution found

3. PSO settings and evaluation metrics

The choice of PSO parameters used in the current analysis is defined in the

following subsection. Their full-factorial combination is considered, resulting in

a total of 420 PSO setups.170
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3.1. Number of particles

The number of particles used (Np) is defined as

Np = 2mNdv , with m ∈ N [1, 7] (11)

therefore ranging from Np = 2Ndv to Np = 128Ndv.

3.2. Particles initialization

In order to avoid possible undesired bias due to the choice of the swarm

initialization, parameters from the literature are investigated in the current

study. In particular, the initialization of particles’ location and velocity follows

a deterministic and homogeneous distribution, according with the Hammersley

sequence sampling (HSS) [30]. Specifically, let q = {q1, . . . , qNdv−1} be a vector

of prime numbers with qi 6= qj , ∀i 6= j. Any positive integer i can be expressed

using the sequence {qj} by

i =

r∑
k=0

akq
k
j (12)

where r is a suitable integer and ak is an integer in [0, qj − 1]. Finally, the i−th

particle location is defined as

xi =

{
i

Np
, φq1

(i), . . . , φqNdv−1
(i)

}
for i = 0, 1, 2, . . . , Np − 1 (13)

where φqj (i) =
∑r

k=0 ak/q
k+1
j .

The Eq. 13 is applied to three different sub-domains, defined as:175

1. entire domain L (red dots in Fig. 2a)

2. domain bounds (blu triangles in Fig. 2b)

3. domain and bounds (red dots and blue triangles in Fig. 2c)

On the other hand, the initial velocity is defined by either the following:

• null velocity:

vi = 0, ∀ i ∈ [1, Np] (14)
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• non-null velocity, based on initial particle position:

vi =
2√
Ndv

(
xi −

l + u

2

)
(15)

where l and u represent the lower and upper bound for x, respectively [5].180

Combining initial position and velocity settings results in six different ini-

tializations, summarized in Tab. 2.

3.3. Coefficients set

With a similar approach used in Subsection 3.2, in this paper the authors

are first considering a comparison among different setups of DPSO, in order to185

find a promising configuration, to be applied for the solution of an engineering

design problem. On this guideline, on one hand in this paper the authors are

not proposing their own set of preferable PSO coefficients. On the other hand, a

fair comparison within a panel of different DPSO coefficients set choices requires

to test original settings from the literature, without introducing any hybrid190

combination/integration among them.

To the latter purpose, five coefficients sets are taken from literature, as proposed

by several authors. The first set is the original by Shi and Eberhart [16], the

second was suggested by Carlisle and Dozier [12], the third was proposed by

Trelea [17], the fourth is a further suggestion by Clerc [31], whereas the fifth195

was suggested by Peri and Tinti [32]. The associated numerical values are

included in Tab. 3, and they all satisfy Eq. 10. For possible pros and cons of

each coefficients set choice, the reader can refer to the above references.

3.4. Box constraints

The original PSO provides an update of position and velocity of particles200

for unconstrained problems. Thus, in case possible constraints are present, the

original formulation might be inadequate, even in case simple box constraints

on the unknowns are considered. This implies that, during the evolution of the

swarm, simply using Eq. 7 the particles can travel outside the domain bounds.

This can be a critical issue in SBD problems, when the domain bounds cannot205
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be violated due to physical/geometrical/grids constraints. A barrier (wall) or a

penalty approach can be used on the bounds of the research space, in order to

confine the particles [25, 42, 43, 44]. In particular, the use of exact or sequential

penalty functions may be inadequate in the current work, for at least a couple

of reasons:210

• only box constraints are used (i.e. simple) or inequality constraints, which

have been handled in the literature of PSO and other heuristics in a specific

way (see Alg. 3 and 4 in this section);

• the use of general penalty approaches described in [25] is expected to

be appealing when highly nonlinear constraints are involved. Moreover,215

a correct implementation of the latter methods definitely requires a fine

tuning of the penalty parameters involved, including their iterative update.

Thus, according with the above motivations, and in order to avoid the possible

bias introduced by the penalty parameters update (see also [45] for details),

herein the approach presented in [22] is applied, since it is specifically designed220

for the current constrained problems, in the framework of PSO literature.

Specifically, the particles are confined within L using an inelastic wall-type

approach (IW). If a particle is found to violate one of the bounds in the transition

from k-th to (k+1)-th PSO iteration, it is placed on the bound setting to zero the

associated velocity component (see Fig. 3a). This approach helps the algorithm225

to explore the domain bounds. The IW approach is implemented in Alg. 3.
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Algorithm 3 Inelastic wall-type approach (IW)

1: for i = 1, number of particles do

2: for j = 1, number of variables do

3: if xki,j > uj then

4: xki,j = uj , vki,j = 0

5: else {if xki,j < lj}

6: xki,j = lj , vki,j = 0

7: end if

8: end for

9: end for

The use of IW has some limitations: in the unlikely event that all the par-

ticles tend to leave the domain from the same hyper-corner, the IW sets all

velocities to zero and the PSO progress may stop prematurely. For this reason,

a semi-elastic wall-type approach (SEW) is also used in this work. Specifically,230

in case the particle position violates a bound constraint, then the particle posi-

tion is modified in order to make that constraint active (i.e. the particle is moved

on the boundary of that constraint), while the associated velocity component is

defined as follows (see also Fig. 3b):

Algorithm 4 Semi-elastic wall-type approach (SEW)

1: for i = 1, number of particles do

2: for j = 1, number of variables do

3: if xki,j > uj then

4: vki,j = −vki,j/[χ(c1 + c2)]

5: else {if xki,j < lj}

6: vki,j = −vki,j/[χ(c1 + c2)]

7: end if

8: end for

9: end for

Observe that the damping factor [χ(c1 + c2)]−1 in Alg. 4 is used to confine235
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the particle in the feasible domain.

3.5. Number of function evaluations and PSO iterations

The maximum number of function evaluations Nfeval (evaluations budget)

in the present work is defined as

Nfeval = 2nNdv, where n ∈ N [7, 12] (16)

and therefore ranges from 128Ndv to 4096Ndv. As a consequence, according

with the setting in Eq. 11, the number of PSO iterations Niter performed is

given as

Niter =
Nfeval

Np
=

2nNdv

2mNdv
= 2n−m (17)

3.6. Evaluation metrics

Three absolute performance criteria are used to further assess the algorithms,

which are defined as follows [24]:

∆x =

√√√√ 1

Ndv

Ndv∑
j=1

(
xj,min − x?j,min

Rj

)2

, ∆f =
fmin − f?min

f?max − f?min

, ∆t =

√
∆2

x + ∆2
f

2

(18)

where ∆x represents a normalized Euclidean distance between the minimum

position found by the algorithm (xmin) and the analytical minimum position240

(x?
min), and Rj = |uj − lj | is the range of the j-th variable. ∆f is the associated

normalized distance in the image space, where fmin is the minimum found by the

algorithm, f?min is the analytical minimum, and f?max is the analytical maximum

of the function f(x) in the domain L. ∆t is a combination of ∆x and ∆f and

is used for an overall assessment.245

Additionally, the relative variability σ2
r,k [29] for each metric ∆x, ∆f , ∆t

(Eq. 18) is used to assess the impact of each setting parameter sk on the algo-

rithms’ performance. Let P be a set of |P| problems, defining the algorithm’s

setting parameter vector as s = [s1, s2, . . . , sS ]T ∈ RS , the relative performance

variability associated to its k-th component is

σ2
r,k =

σ2
k∑|S|

k=1 σ
2
k

(19)
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where

σ2
k =

1

|Ω|
∑
ω∈Ω

[
∆̂k(ω)

]2
−

[
1

|Ω|
∑
ω∈Ω

∆̂k(ω)

]2

(20)

with Ω containing the positions ω assumed by the parameter sk,

∆̂k(ω) =
1

|B|
∑
s∈B

∆̄(s), B = {s : sk = ω} (21)

and

∆̄(s) =
1

|P|
∑
p∈P

[∆(s)]p (22)

4. Optimization problems

4.1. Analytical test functions

One hundred analytical test functions are used in the preliminary numerical

experience, including a wide variety of problems, such as continuous and dis-

continuous, differentiable and non-differentiable, separable and non-separable,250

scalable and non-scalable, unimodal and multimodal, with dimensionality rang-

ing from two to fifty [26, 27, 28, 29, 46]. The numerical experience is conducted

setting a part problems with respectively less and more than 10 design variables,

as summarized in Appendix A (see Tabs. A.10 and A.11).

4.2. Hull-form SBD optimization of a high-speed catamaran255

The high-speed Delft catamaran [3] is used as SBD test problem. This is

an international benchmark geometry used for both experimental and numer-

ical studies, including capabilities of CFD predictions for complex flows with

associated validation and global shape optimization for calm water and wave

conditions. For the current problem, the objective function f(x) is defined as

f(x) =
RT

W
(23)

where RT is the total resistance at Froude number (Fr) equal to 0.5 in calm

water, and W is the weight force modulus. Geometry modifications have to fit

in a box, defined by maximum overall length, beam, and draught. Two feasi-

ble design spaces are considered. The first includes overall dimension bounds,

15



whereas the second includes overall dimension bounds and, in addition, con-

stant length between perpendiculars (LBP ) [5]. Modifications of the parent

hull are performed using high-dimensional free-form deformation (FFD) and

95%-confidence dimensionality reduction based on KLE as shown in [6]. Four

variables are used for the first design space and six for the second, referred to

in the following as 4D and 6D space, respectively. New designs g are produced

as

g(x) =

1−
Ndv∑
j=1

xj

g0 +

Ndv∑
j=1

xj gj (24)

where −1 ≤ xj ≤ 1,∀j ∈ [1, Ndv] are the design variables; Ndv = 4 for the

first design space, whereas Ndv = 6 for the second; g0 is the original geometry

and gj are the geometries associated to the design space principal directions (or

eigenmodes), as provided by KLE for dimensionality reduction. For details, the

reader is referred to [5, 6].260

Simulations are conducted using the WARP (WAve Resistance Program)

code, developed at CNR-INSEAN. Wave resistance computations are based on

linear potential flow theory and details of equations, numerical implementation,

and validation of the numerical solver are given in [33]. The frictional resistance

is estimated using a flat-plate approximation, based on local Reynolds number265

[47]. Simulations are performed for the right demi-hull, since the problem is

symmetrical with respect to the xz-plane. The free surface is discretized as

follows: 20× 1 panels on the inner-upstream sub-domain, 20× 40 on the outer-

upstream, 20 × 1 on the inner-hull, 20 × 40 on the outer-hull, 80 × 1 on the

inner-dowstream, 80 × 2 on the transom-downstream, 80 × 40 on the outer-270

downstream; the body is discretized by 125 × 50 panels (see Fig. 4). Domain

bounds are defined by 1LBP upstream, 4LBP downstream and 2LBP sideways.

Since the analytical solution of the optimization problem is not available, the

algorithm performance is evaluated considering the objective reduction and its

convergence. The design solutions are finally compared with earlier optimization275

results produced using a high-fidelity CFD solver [5].
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5. Numerical results

5.1. Test functions and DPSO parameters guideline identification

Results on the 100 analytical test functions are presented in the following

sections and used to define the guidelines for SDPSO and ADPSO, adopted280

later for the SBD problem.

5.1.1. SDPSO

Figures 5 and 7, show the performances of SDPSO versus the budget of

function evaluations (Nfeval/Ndv), in terms of ∆x, ∆f , ∆t, for Ndv < 10 and

≥ 10 respectively. Average values are presented, conditional to number of par-285

ticles, particles initialization, coefficients set, and wall-type approach, respec-

tively. Figures 6 and 8 show the relative variance σ2
r of ∆x, ∆f , ∆t for Ndv < 10

and ≥ 10 respectively, retained by each of the aforementioned parameters. The

particles initialization is found the most significant parameter to affect SDPSO

performance, especially for Ndv ≥ 10, whereas the coefficients set (selected290

herein) and the wall-type approach are shown to be the least relevant. Tables

4 and 5 show the five best performing setups for each ∆x, ∆f , and ∆t, for

Ndv < 10 and ≥ 10 respectively, varying the budget of function evaluations.

Average values and standard deviations for all SDPSO setups are also provided.

5.1.2. ADPSO295

Generally, ADPSO results are found similar to SDPSO. Specifically, Figs. 9

and 11, show the performances of ADPSO versus the budget of function eval-

uations, in terms of ∆x, ∆f , ∆t, for Ndv < 10 and ≥ 10 respectively. Average

values are presented, conditional to number of particles, particles initialization,

coefficients set, and wall-type approach respectively. Figures 10 and 12 show the300

relative variance σ2
r of ∆x, ∆f , ∆t for Ndv < 10 and ≥ 10 respectively, retained

by each of the aforementioned parameters. The particles initialization is again

the most significant parameter to affect ADPSO performance, especially for low

budgets and Ndv ≥ 10. The coefficients set (selected herein) and the wall-type

approach are shown to have a limited effect on the performance, compared to305
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other parameters. Tables 6 and 7 summarize the five best performing setups

for each ∆x, ∆f , and ∆t, for Ndv < 10 and ≥ 10, respectively, varying the

budget of function evaluations. Overall averages and standard deviations for all

ADPSO setups are also included.

5.1.3. Suggested guidelines310

The most promising setups are selected from Tabs. 4, 5, 6, and 7, in order

to define a reasonable and robust guideline for the use of SDPSO and ADPSO.

These are summarized in Tab. 8.

Figures 13 and 14 show the performance of the suggested setups, for SDPSO

and ADPSO and Ndv < 10 and ≥ 10, respectively. Average performance,315

standard deviation, and best performing setup among all combinations is also

shown for each budget. The guideline setups (“Guide”) are found always very

close or coincident to the “Best”. In addition, it may be noted how ADPSO is

always equivalent or slightly better than SDPSO.

5.2. High-speed catamaran SBD optimization320

A preliminary sensitivity analysis for each design variable is shown in Fig. 15,

showing ∆f(%) compared to the parent hull. Changes in f reveal a reduction of

the objective function close to 9% for the 4D design space and close to 10% for

the 6D. For the current study, all design variables are deemed required for the

hull form optimization, each one providing a significant variation of the design325

objective. Accordingly, the sensitivity analysis is not applied for dimensionality

reduction.

The optimization is performed with both SDPSO and ADPSO, as per the

guideline suggested in Tab. 8. SDPSO and ADPSO iterations are shown in

Fig. 16, revealing a quite fast convergence. It may be noted that the final330

configuration for the first design space (4D) is fairly close (except for the second

variable) to that obtained using metamodels and a URANS solver in [5], used

here for reference (Fig. 17a). For the second design space (6D) the differences

are more significant (Fig. 17b). As a general result, one can also observe by
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the optimization results (see Tab. 9) that SDPSO and ADPSO with both IW335

and SEW lead to a reduction of the objective function close to 20%, for the

4D design space, and greater than 20% for the 6D design space. Furthermore,

the optimum configuration leads to a considerable reduction of wave’s elevation

compared to the original shape (Figs. 18 and 19). There are not significant

differences between the results obtained by SDPSO and ADPSO, except for340

SDPSO with IW for the 6D design space. In this case the IW approach induces

the optimization to stop after 6 iterations. As shown in Fig. 17, differences in

optimal design variables are mainly due to IW or SEW.

6. Discussion345

The analyses of SDPSO and ADPSO performances on the benchmark func-

tions, conditional to the setting parameters, have shown the importance of the

particles initialization specially for problem with a high number of design vari-

ables. In particular, the initialization on the domain boundary only is always

the worst, and the use of a non-null initial velocity is more advisable (see Figs.350

5b, 7b, 9b, and 11b).

The number of particles becomes moderately relevant when the budget of

function evaluations increases, specially for problems with a smaller number

of variables. More in particular, Figs. 5a, 7a, 9a, and 11a show that a setting

with a higher number of particles performs better with a high budget of function355

evaluations. This can be explained recalling the correlation between the number

of particle and the number of algorithm iterations, for a fixed budget of function

evaluations. On one hand, a low number of particles requires a larger number of

iterations, providing a fast convergence but possibly also a fast stagnation. On

the other hand, a high number of particles requires a lower number of iterations,360

providing a slower convergence and possibly delaying stagnation. This is the

reason why the choice of the number of particles should be taken in correlation

with the budget available, that is usually low in the SBD context, specially when
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CPU-time expensive solvers are used.

The coefficients set and the wall-type approach seem to be the less relevant365

parameters. In particular, it can be said that the Clerc coefficients (χ = 0.721,

c1 = c2 = 1.655 [31]) and the SEW-type approach are the most effective and

efficient choices for both SDPSO and ADPSO performances (see Figs. 5c, 7c,

9c, 11c, 5d, 7d, 9d, and 11d). Moreover, the use of SEW is further suggested

in order to prevent an early stop of the swarm particle dynamics, as shown for370

the 6D design space of the naval engineering problem.

The asynchronous mechanism of ADPSO shows equivalent or slightly better

performance (in terms of number of objective function evaluations and objective

reduction) compared to SDPSO, probably due to the diversity in the information

update. This aspect of ADPSO provides a further interesting opportunity for375

exploitation of parallel architectures in HPC systems.

7. Conclusions

A guideline for an effective and efficient use of SDPSO and ADPSO, in a com-

putational framework characterized by limited resources, has been suggested. A

parametric analysis has been performed varying the number of particles, the ini-380

tialization of the swarm, the set of coefficients, and the wall-type approach for

the box constraints. The assessment is based on 100 analytical test functions

(with dimensionality from two to fifty) and three different absolute performance

criteria. All possible combinations of DPSO parameters led to 420 optimizations

for each function. The most promising DPSO setups have been discussed, iden-385

tified, and successfully applied to a ship SBD optimization problem, namely the

hull-form optimization of the high-speed Delft catamaran, advancing in calm

water at fixed speed, using a potential-flow solver. The optimization aimed at

the reduction of the ratio between the total resistance and weight force, using

four- and six-dimensional design spaces.390

The particles initialization has been found the most significant parameter for

the DPSO performance, especially for a number of design variables Ndv ≥ 10
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and low budgets of function evaluations. Conversely, the coefficients set and

the wall-type approach have been found having a little influence on the DPSO

performance, compared to the other parameters.395

For problems with less then 10 variables, the suggested SDPSO and ADPSO

setups coincide: (a) number of particlesNp equal to 4 times the number of design

variables; (b) particles initialization including HSS distribution on domain and

bounds with non-null velocity; (c) set of coefficients proposed in [31], i.e., χ =

0.721, c1 = c2 = 1.655; (d) inelastic and semi-elastic wall-type approach, for400

SDPSO and ADPSO.

For problems with more then 10 design variables, the suggested setups dif-

fer in the particle initialization for both SDPSO and ADPSO: (a) number of

particles Np equal to 4 times the number of design variables; (b) particles ini-

tialization including HSS distribution on domain with non-null velocity; (c) set405

of coefficients proposed in [31]; (d) semi-elastic wall-type approach.

The performance of the suggested guideline for the test functions proved

to be very close or coincident to the best setup among all 420 configurations

available (see “Guide” and “Best” in Figs. 13 and 14). In addition, the guide-

line setups have proved to perform well on both the 4D and 6D ship SBD410

optimization problems.
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Tables565

Table 1: Synchronous and asynchronous DPSO characteristics.

SDPSO ADPSO

Update At the end of each iteration As soon as the objective function

is evaluated

Information The whole swarm uses information

from the same iteration

A particle could use information

from both current and previous it-

erations

Table 2: Swarm initialization.

HSS, sub-domain v = 0 v 6= 0

Domain A.0 A.1

Bounds B.0 B.1

Domain and bounds C.0 C.1
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Table 3: Coefficient set.

ID Set Name χ c1 c2 β

1 Shi and Eberhart (1998) 0.729 2.050 2.050 0.864

2 Carlisle and Dozier (2001) 0.729 2.300 1.800 0.864

3 Trelea (2003) 0.600 1.700 1.700 0.638

4 Clerc (2006) 0.721 1.655 1.655 0.693

5 Peri and Tinti (2012) 0.754 2.837 1.597 0.953
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Table 8: Suggested guideline for SDPSO and ADPSO.

Ndv Np/Ndv Initialization Coefficients set Wall-type

SDPSO
< 10 4 C.1 4 IW/SEW

≥ 10 4 A.1 4 SEW

ADPSO
< 10 4 C.1 4 IW/SEW

≥ 10 4 A.1 4 SEW

Table 9: SBD results.

Wall-type RT [N] W [N] f [−] ∆f [%]

Design space Original 50.15 852.5 5.88e-2 −

4D

SDPSO
IW 39.92 850.9 4.69e-2 -20.24

SEW 40.36 850.6 4.67e-2 -20.57

ADPSO
IW 39.85 851.1 4.68e-2 -20.41

SEW 40.68 851.7 4.71e-2 -19.90

6D

SDPSO
IW 39.41 849.1 4.64e-2 -21.10

SEW 34.29 835.4 4.10e-2 -30.27

ADPSO
IW 34.31 835.5 4.11e-2 -30.10

SEW 34.08 830.8 4.09e-2 -30.30
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Figure 1: Block diagrams for parallel SDPSO (a) and ADPSO (b). The green boxes represent

the first set of particles evaluated by the algorithm [14].

-0.5

 0

 0.5

-0.5  0  0.5

-0.5

 0

 0.5

-0.5  0  0.5

-0.5

 0

 0.5

-0.5  0  0.5

(a) Domain (b) Bounds (c) Domain and bounds

Figure 2: Examples of initializations in L = [−0.5, 0.5]× [−0.5, 0.5] with 32 particles.
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Figure 4: Panel-grid for the CNR-INSEAN WARP potential-flow code.
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Figure 5: SDPSO average performance for Ndv < 10
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r(%) of SDPSO setting parameters for Ndv < 10
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Figure 7: SDPSO average performance for Ndv ≥ 10
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Figure 8: Relative variance σ2
r(%) of SDPSO setting parameters for Ndv ≥ 10
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(a) Average performance, conditional to swarm size Np
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(b) Average performance, conditional to swarm initialization
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Figure 9: ADPSO average performance for Ndv < 10
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Figure 10: Relative variance σ2
r(%) of ADPSO setting parameters for Ndv < 10
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(a) Average performance, conditional to swarm size Np
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(c) Average performance, conditional to coefficients set
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(d) Average performance, conditional to wall-type approach

Figure 11: ADPSO average performance for Ndv ≥ 10
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Figure 12: Relative variance σ2
r(%) of ADPSO setting parameters for Ndv ≥ 10
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Figure 13: Performance of suggested guidelines using SDPSO
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Figure 14: Performance of suggested guidelines using ADPSO
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Figure 15: Sensitivity analysis.
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Figure 16: Convergence of SDPSO and ADPSO.
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Figure 17: Comparison between optimal design variables of SDPSO, ADPSO with IW and

SEW by PF and those obtained by metamodels with URANS in [5].
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(a) Original Delft catamaran

(b) SDPSO with IW

(c) SDPSO with SEW

(d) ADPSO with IW

(e) ADPSO with SEW

Figure 18: 4D SBD results.
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(a) Original Delft catamaran

(b) SDPSO with IW

(c) SDPSO with SEW

(d) ADPSO with IW

(e) ADPSO with SEW

Figure 19: 6D SBD results.

Appendix A. List of test functions

Tables A.10 and A.11 summarize the analytical test functions with Ndv < 10

and Ndv ≥ 10, respectively, used in the current work.570
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Table A.10: Analytical test functions with Ndv < 10.

fp Name Dimension Bounds Optimum

Ndv [l, u]j,...,Ndv f?min

f1,2 5n loc. minima (Levy) 2, 5 [−5, 5]Ndv 0.000

f3,4 10n loc. minima (Levy) 2, 5 [−5, 5]Ndv 0.000

f5,6 15n loc. minima (Levy) 2, 5 [−5, 5]Ndv 0.000

f7 Ackley 2 [−5, 4]Ndv 0.000

f8,9 Alpine 2, 5 [−9, 7]Ndv 0.000

f10 Beale 2 [−4.5, 4.5]Ndv 0.000

f11 Booth 2 [−10, 10]Ndv 0.000

f12 Bukin n.6 2 [−15,−5]× [−3, 3] 0.000

f13 Colville 4 [−10, 10]Ndv 0.000

f14,15 Cosine Mixture 2, 4 [−1, 0.5]Ndv −0.100 ·Ndv

f16,17 Dixon-Price 2, 5 [−1, 1]Ndv 0.000

f18 Easom 2 [−100, 100]Ndv -1.000

f19,20 Exponential 2, 4 [−9, 7]Ndv -1.000

f21 Freudenstein-Roth 2 [−5, 5]Ndv 0.000

f22 Goldstein-Price 2 [−2, 2]Ndv 3.000

f23,24 Griewank 2, 5 [−9, 7]Ndv 0.000

f25 Hartman n.3 3 [0, 1]Ndv -3.860

f26 Hartman n.6 6 [0, 1]Ndv -3.320

f27 Matyas 2 [−9, 7]Ndv 0.000

f28,29 Multi Modal 2, 5 [−1, 0.5]Ndv 0.000

f30 Powell 8 [−4, 5]Ndv 0.000

f31 Quartic 2 [−10, 10]Ndv -0.352

f32 Rosenbrock 2 [−30, 30]Ndv 0.000

f33 Schaffer n.2 2 [−100, 90]Ndv 0.000

f34 Schaffer n.6 2 [−100, 90]Ndv 0.000

f35 Schubert penalty 1 2 [−10, 10]Ndv -186.731

f36 Schubert penalty 2 2 [−10, 10]Ndv -186.731

f37 Shekel n.5 4 [0, 10]Ndv -10.153

f38 Shekel n.7 4 [0, 10]Ndv -10.403

f39 Shekel n.10 4 [0, 10]Ndv -10.536

f40 Six-Hump Camel Back 2 [−2.5, 2.5]× [−1.5, 1.5] -1.032

f41 Sphere 2 [−5, 4]Ndv 0.000

f42,43 Styblinski-Tang 2, 4 [−5, 5]Ndv −39.166 ·Ndv

f44 Test Tube Holder 2 [−10, 10]Ndv -10.872

f45 Three-Hump Camel Back 2 [−5, 4]Ndv 0.000

f46 Treccani 2 [−5, 4]Ndv 0.000

f47 Tripod 2 [−100, 100]Ndv 0.000

f48 Vincent 5 [0.25, 10]Ndv −Ndv

f49 Xin-She Yang n.2 5 [−2π, π]Ndv 0.000

f50 Xin-She Yang n.4 5 [−10, 10]Ndv -1.000
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Table A.11: Analytical test functions with Ndv ≥ 10.

fp Name Dimension Bounds Optimum

Ndv [l, u]j,...,Ndv f?min

f1,2 5n loc. minima (Levy) 10, 20 [−5, 5]Ndv 0.000

f3,4 10n loc. minima (Levy) 10, 20 [−5, 5]Ndv 0.000

f5,6 15n loc. minima (Levy) 10, 20 [−5, 5]Ndv 0.000

f7,8,9 Ackley 10, 30, 50 [−5, 4]Ndv 0.000

f10,11 Alpine 10, 20 [−9, 7]Ndv 0.000

f12,13,14 Dixon-Price 10, 25, 50 [−1, 1]Ndv 0.000

f15,16 Griewank 10, 20 [−9, 7]Ndv 0.000

f17,18,19 Mishra n.11 10, 25, 50 [−10, 9]Ndv 0.000

f20,21 Multi Modal 10, 20 [−1, 0.5]Ndv 0.000

f22,23,24 Pathological 10, 25, 50 [−100, 90]Ndv 0.000

f25 Paviani 10 [2.0001, 9.9999]Ndv -45.778

f26,27 Powell 16, 24 [−4, 5]Ndv 0.000

f28,29,30 Rastrigin 10, 30, 50 [−5.12, 5.12]Ndv 0.000

f31,32,33 Rosenbrock 10, 25, 50 [−30, 30]Ndv 0.000

f34,35,36 Schwefel 10, 25, 50 [−500, 500]Ndv −0.100 ·Ndv

f37,38,39 Trigonometric n.2 10, 25, 50 [−500, 500]Ndv 1.000

f40,41 Vincent 15, 30 [0.25, 10]Ndv −Ndv

f42,43,44 Xin-She Yang n.2 10, 25, 50 [−2π, π]Ndv 0.000

f45,46,47 Xin-She Yang n.4 10, 25, 50 [−10, 10]Ndv -1.000

f48,49,50 Zacharov 10, 25, 50 [−5, 10]Ndv 0.000
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