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Comparative studies have shown that diet, life history, and phylogeny interact to

determine microbial community structure across mammalian hosts. However, these

studies are often confounded by numerous factors. Selection experiments offer unique

opportunities to validate conclusions and test hypotheses generated by comparative

studies. We used a replicated, 15-generation selection experiment on bank voles

(Myodes glareolus) that have been selected for high swim-induced aerobic metabolism,

predatory behavior toward crickets, and the ability to maintain body mass on a high-fiber,

herbivorous diet. We predicted that selection on host performance, mimicking adaptive

radiation, would result in distinct microbial signatures. We collected foregut and cecum

samples from animals that were all fed the same nutrient-rich diet and had not been

subjected to any performance tests. We conducted microbial inventories of gut contents

by sequencing the V4 region of the 16S rRNA gene. We found no differences in cecal

microbial community structure or diversity between control lines and the aerobic or

predatory lines. However, the cecal chambers of voles selected for herbivorous capability

harbored distinct microbial communities that exhibited higher diversity than control lines.

The foregut communities of herbivorous-selected voles were also distinct from control

lines. Overall, this experiment suggests that differences in microbial communities across

herbivorous mammals may be evolved, and not solely driven by current diet or other

transient factors.

Keywords: artificial selection, gut microbiome, herbivory, host-microbe interactions, voles

INTRODUCTION

Animals maintain diverse gut microbial communities that provide a number of physiological
functions to their hosts (McFall-Ngai et al., 2013) such as modulating host energy balance (Semova
et al., 2012), immune function (Round and Mazmanian, 2009), and behavior (Heijtz et al., 2011).
Recent research efforts have focused on understanding interactions between hosts and microbes.
Comparative studies have demonstrated that diet, gut anatomy, and phylogenetic history interact
to sculpt the gut microbial community structure of mammals (Ley et al., 2008; Muegge et al.,
2011). Additionally, experimental studies, particularly those with germ-free rodents lacking gut
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microbes, have revealed that gut microbes impact the behavior
(Heijtz et al., 2011), energy storage, and metabolic rates of
animals (Bäckhed et al., 2004). However, sterile animals are
highly unnatural, and so it is difficult to conclude whether these
differences are relevant in an evolutionary sense.

Selection experiments represent a bridge between these two
methods of study and have the potential to test hypotheses
and validate conclusions generated by prior comparative studies
(Garland, 2003). Selection experiments generally focus on whole-
organism traits, such as physiological performance or behavior,
and breed the top performing individuals to enhance the trait
in subsequent generations. Then, further investigations can be
conducted to determine the underlying mechanisms that might
drive differences in whole-organism traits. For example, selection
for voluntary wheel-running behavior in mice is coupled with
alterations in limb bone morphology (Wallace et al., 2012),
higher circulating levels of stress hormones (Girard and Garland,
2002), enhanced skeletal muscle glucose uptake (Dumke et al.,
2001), and altered gene expression in the brain (Kelly et al.,
2012). These studies highlight that selection for whole-organism
traits may be driven by changes at many levels of biological
organization (Garland, 2003). The gut microbiota is heritable
(Funkhouser and Bordenstein, 2013; Goodrich et al., 2014),
thought to influence host evolution (Sharon et al., 2010; Brucker
and Bordenstein, 2012), and is regularly implicated as an
underlying mechanism of differential host phenotypes. However,
to date no selection experiments have investigated connections
between selection on whole-organism traits and concomitant
changes in gut microbial community structure. Filling this
knowledge gap is critical, especially given new interest in the
“hologenome concept,” which proposes that selection acts on the
holobiont (host and associated microbes), and not simply on
animals in isolation (Bordenstein and Theis, 2015).

Here, we utilize a replicated, multidirectional selection
experiment on a non-laboratory, omnivorous rodent, the bank
vole (Myodes glareolus), with lines selected in three directions:
increased maximum rate of exercise-induced (swim) aerobic
metabolism (Aerobic-selected), ability of young voles (32–36
days) to grow on a low-quality herbivorous diet (Herbivorous-
selected), and intensity of predatory behavior toward crickets
(Predatory-selected; Sadowska et al., 2008). Four lines in each of
the three selection directions and four unselected (random bred)
control lines (Control) were maintained.

We investigated whether the experimental evolution of
phenotypic traits was paired with changes in gut microbial
community structure. We collected contents from the cecal
and foregut (from Herbivorous-selected and Control lines only)
chambers and inventoried microbial communities by sequencing
the 16S rRNA gene. Importantly, the individuals used in the
analyses were never subjected to any phenotypic tests (such as the
swim test, feeding on low-quality diets, or exposure to crickets).
Thus, the low-quality diet or other factors resulting from the
tests would not confound differences in microbial community
structure.

It is well-known that herbivorous mammals harbor distinct
and more diverse gut microbial communities, distinct from those
of other mammals (Ley et al., 2008; Muegge et al., 2011) and the

gut microbiome was important for the evolution of herbivory
(Mackie, 2002; Stevens and Hume, 2004). Consequently, we
predicted that Herbivorous-selected lines would harbor distinct
cecal microbial communities from Control lines, and particularly
more diverse microbial communities. We also predicted that
the Herbivorous-selected lines might harbor communities
with higher abundances of fermentative microbes (such as
Ruminococcus). Further, the stomachs of voles have a foregut
chamber anterior to the gastric chamber (Stevens and Hume,
2004). This foregut chamber houses a dense and active microbial
community in other herbivorous rodents (Kohl et al., 2014a),
and is thought to be important for the evolution of herbivory
in rodents (Carleton, 1973). Therefore, we also predicted that
the foregut communities of Herbivorous-selected voles would be
distinct and more diverse when compared to Control lines.

Voles from the Aerobic-selected lines not only achieve
a higher exercise-induced metabolic rate, but also have an
increased basal metabolic rate (Sadowska et al., 2015) and daily
food consumption (Dheyongera et al., 2016), which can be
associated with changes in gut microbiome (Spor et al., 2011).
A growing body of evidence indicates that the microbiome can
also affect various aspects of animal behavior (Heijtz et al.,
2011; Ezenwa et al., 2012). Therefore, we also investigated
the cecal microbiome of the Aerobic- and Predatory-selected
lines. However, due to the lack of comparative studies into the
microbiota of animals with different metabolic rates or behaviors,
we did not have any specific a priori hypotheses or predictions.
Distinct microbial communities between Control lines and the
Aerobic- or Predatory-selected lines would be suggestive that
the microbiota is influenced by selection on the host-level
phenotypes.

MATERIALS AND METHODS

Animals and the Selection Experiment
This work was performed on bank voles (Myodes =

Clethrionomys glareolus Schreber 1780) from generation 15
of an ongoing artificial selection experiment maintained at the
Jagiellonian University (Poland). While it would be interesting
to compare the gut communities of generations prior to this,
samples for microbiome analyses were not preserved until
generation 15. The rationale, history and protocols of the
experiment have been presented in our earlier work (Sadowska
et al., 2008, 2015; Chrząścik et al., 2014; Konczal et al., 2015).
Briefly, the colony was started from wild-caught individuals in
2000–2001, and for a few generations the voles were randomly
mated and were used as a basis for quantitative genetic studies
of metabolic traits (Sadowska et al., 2005, 2009). Then, the
selection experiment was designed to mimic the adaptive
radiation of mammals (Sadowska et al., 2008). The selection
was applied based on the following criteria: High aerobic
metabolism (Aerobic-selected)—the maximum 1-min rate of
oxygen consumption (VO2 swim), achieved during 17-min
of swimming at 38◦C; Herbivorous capability (Herbivorous-
selected)—body mass change in a 4 day trial, during which voles
were fed a low-quality, herbivorous diet (made of dried grass
powder, same as used as a component of standard diet, and
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flour); Predatory behavior (Predatory-selected)—ranked time to
catch a live cricket in a 10-min trial (ranks 1–5: cricket caught in
0.5, 1, 3, 6, or 10min, respectively; rank 6: cricket not caught).
The measurements of swim-induced aerobic metabolism and
the predatory behavior tests were performed on adults (about
75–95 days old), and the tests with low-quality diet on young,
growing animals (32–36 days). All the trait values used as
selection criteria were mass-adjusted (residuals from ANCOVA
including also other covariates and cofactors). Four replicate
lines for each selection direction and unselected control lines (C)
were maintained (to allow valid tests of the effects of selection),
with 15–20 reproducing families in each of the 16 lines (which
avoided excess inbreeding).

The animals were maintained in standard plastic mouse cages
with sawdust bedding, at a constant temperature (20 ± 1◦C)
and photoperiod (16:8 h light:dark; light phase starting at 2:00
am). Water and food (a standard rodent chow: 24% protein,
3% fat, 4% fiber; Labofeed H, Kcynia, Poland) was provided ad
libitum. Animals were never co-housed across selection lines,
but no sanitary barrier was maintained between the cages.
The cages were of the open type (model 1264C or 1290D;
Tecniplast, Bugugiatte, Italy), and voles from different lines were
placed in the same rooms and often on the same racks, so
dust containing feces and also fecal pellets were transferred
(although not intentionally) between cages. No sanitary barrier
was maintained during routine work, such as cage changes or
weighing the animals (we did not change gloves or weighing
dishes between handling subsequent animals). Thus, all the voles
were practically exposed to microbes present in feces produced
by all other voles.

Gut contents were sampled from 95 individuals (five or six
individuals from each of the four replicate lines of four selection
directions) of both sexes at the age of 148–182 days (mean:
166 days). Details regarding sample sizes, sex, and mean age
for each line can be found in Supplementary Table 1. The
individuals chosen for this project represented a random sample
from respective lines and were not used in any physiological
trials. Particularly, they were not used in the test with low-
quality diet. All individuals came from different mothers and
different cages. The animals were euthanized with CO2 in
a chamber with gradually increasing CO2 concentration, and
immediately dissected. Contents of caecum and the foregut
(proximal chamber of stomach) were removed, preserved in
RNAlater, and stored at−22◦C for 4–5 months.

All the procedures were approved by the decision of the
Local Ethical Committee for Experiments on Animals in Kraków,
Poland (decisions No. 99/2006, 21/2010, and 22/2010).

DNA Sequencing
All samples were transported on dry ice to the University
of Utah and stored at −80◦C for 2 months. Whole DNA
was extracted using a QIAamp DNA Stool Mini Kit (Qiagen,
Germantown, MD). Extracted DNA was stored at −80◦C for no
more than 1 month, and was then shipped on dry ice to Argonne
National Laboratories for sequencing. Bacterial inventories were
conducted by amplifying the V4 region of the 16S rRNA gene
using primers 515F and 806R and paired-end sequencing on an

Illumina MiSeq platform (Caporaso et al., 2012). All sequences
were deposited in the Sequence Read Archive (SRA) under
accession PRJNA283286.

Sequences were analyzed using the QIIME software package
(Caporaso et al., 2010). Sequences underwent standard quality
control and were split in to libraries using default parameters in
QIIME. The sequences were grouped into de novo operational
taxonomic units (OTUs) using UCLUST (Edgar, 2010) with
a minimum sequence identity of 97%. The most abundant
sequences within each OTU were designated as a “representative
sequence” and then aligned against Greengenes 13_5 (DeSantis
et al., 2006) using PyNAST (Caporaso et al., 2009) with default
parameters set by QIIME. Chimeric sequences were detected
and removed using ChimeraSlayer (Haas et al., 2011). A PH
Lane mask supplied by QIIME was used to remove hyper
variable regions from aligned sequences. FastTree (Price et al.,
2009) was used to create a phylogenetic tree of representative
sequences. OTUs were classified using the Ribosomal Database
Project classifier with the standard minimum support threshold
of 80% (Wang et al., 2007). Singleton OTUs and sequences
identified as chloroplasts or mitochondria were removed from
analysis. Relative abundances of microbial phyla and genera were
normalized using variance stabilizing transformation of arcsin
(abundance0.5; Shchipkova et al., 2010; Kumar et al., 2012).
We did not use rarefied data when comparing abundances of
microbial taxa (McMurdie and Holmes, 2014).

Data Analysis
We compared several aspects of microbial diversity of cecal
communities across all selection directions. First, we calculated
the mean Shannon Index from 20 iterations of sub-sampling
of 22,800 sequences from each sample. The Shannon Index
was compared using pair-wise nested ANOVA comparing
experimental selection lines with control lines. We used selection
direction and selection line nested within selection direction
as variables. We also compared community membership (the
presence and absence of bacterial lineages) and community
structure (taking relative abundances into account) of cecal
communities across selection directions. We randomly selected
22,800 sequences per sample and then pooled them within a
selection line in order to make each selection line an independent
unit. We calculated unweighted (for community membership)
and weighted (for community structure) Unifrac distances of
the resulting pooled sequences (Ley et al., 2005). Principal
coordinates analysis (PCoA) was used to visualize the similarities
of these microbial communities. Community membership and
structure were statistically compared using analysis of similarity
(ANOSIM; Clarke, 1993). For nested ANOVAs and ANOSIM
tests, we handled the pairwise comparisons differently. Given
the strong a priori hypotheses regarding differences between
the Control and Herbivorous-selected lines, we treated this as
a “planned contrast,” for which correction for multiple tests is
not required (e.g., Sokal and Rohlf, 1995). When comparing the
Control lines to the Aerobic- and Predatory-selected lines, we did
not have strong a priori hypotheses, and our analysis was largely
exploratory. Thus, here we conducted Bonferroni adjustments,
using a α-value of 0.025 for these comparisons.
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Relative abundances of bacterial phyla and genera were
compared using nested ANOVA with selection direction and
selection line nested within selection direction as variables.
P-values were corrected using False Discovery Rate correction
for multiple comparisons (Benjamini and Hochberg, 1995). Due
to the large number of comparisons and our limited number of
independent units (selection lines rather than individuals), we
also present near-significant trends (0.05 < P < 0.1).

We further investigated changes in themicrobial communities
of lines selected for herbivory by comparing foregut communities
between control and herbivory-selected lines, and also
comparing foregut communities to cecal communities within
these lines. The data analysis was largely similar to cecal
samples as described above. However, due to slightly lower
return of sequences per sample from some foregut samples,
we were limited to randomly choosing 14,000 sequences per
sample.

RESULTS

In generation 15, voles from the Aerobic-selected lines
achieved a 55% higher swim-induced maximum rate of oxygen
consumption, those from the Herbivorous-selected lines lost
2.2 g less mass in the test with low-quality diet, and those
from the Predatory-selected lines attacked cricket 7.7 times
more frequently than voles from the unselected Control lines
(Figure 1).

For cecal samples, we obtained an average of 62,988 ± 4301
high-quality sequences per sample. The number of sequences
did not differ across selection directions [Nested ANOVA: Line
nested within Selection Direction: F(12, 79) = 0.76, P = 0.69;

FIGURE 1 | Direct effects of 15 generations of selection on bank voles

toward: high swim-induced aerobic metabolism, herbivorous

capability measured as ability to maintain body mass on a low-quality

diet, and predatory propensity measured as ranked time to attack a

cricket. Comparison of the cumulative effects of selection in the three

directions is expressed as a difference between the means of four selected (in

each direction) and four control lines, expressed in units of phenotypic

standard deviation. In generation 8 and 13 the food composition used in

selection trial in the “Herbivorous” lines was different than in other generations,

which resulted in the irregular pattern (marked with broken lines). In generation

12 selection in “Aerobic” lines was relaxed (broken line).

Selection Direction: F(3, 12) = 0.05, P = 0.98]. Roughly 3500–
3800 OTUs were identified per sample at a sampling depth of
22,800 sequences (Supplementary Figure 1).

The cecal chambers of Herbivorous-selected lines exhibited
6% higher microbial biodiversity, quantified with the Shannon
index, than those of the Control lines [Figure 2; Nested ANOVA:
Line nested within Selection Direction: F(6, 40) = 0.66, P = 0.68;
Selection Direction: F(1, 7) = 4.76, P = 0.035]. There was
no difference in the Shannon index between Control lines and
Aerobic-selected or Predatory-selected lines (Effect of Selection
Direction: P > 0.70 for both). The higher Shannon index of
Herbivorous-selected cecal communities was driven by these
voles harboring communities with higher community evenness
[Nested ANOVA: Line nested within Selection Direction:
F(6, 40) = 0.73, P = 0.63; Selection Direction: F(1, 7) =

4.98, P = 0.031], and to some extent higher observed
microbial OTU (operational taxonomic unit) richness [Nested
ANOVA: Line nested within Selection Direction: F(6, 40) =

0.43, P = 0.85; Selection Direction: F(1, 7) = 3.19, P =

0.082] compared to Control lines (Supplementary Figure 2).
This pattern was also reflected in phylogenetic diversity, though
the differences were not statistically significant (Supplementary
Figure 1). The cecal communities of Herbivorous-selected lines
also differed significantly from Controls in terms of community
membership (Figure 3; ANOSIM: R = 0.45, P = 0.028),
while Aerobic- and Predatory-selected lines did not differ
from Controls (P > 0.3 for both). Selected lines did not
exhibit significant differences from Control lines in community
structure of cecal communities (Figure 3; ANOSIM: P > 0.15
for all).

When combining data across all groups, the cecal community
was dominated by the phyla Firmicutes (56.7 ± 1.5% of
community), Bacteroidetes (25.2 ± 1.7%), Spirochaetes (6.3 ±

0.8%), and Proteobacteria (5.8 ± 0.4%). The relative abundances
of 16 additional phyla were all less than 1%. The most abundant
identifiable genera were Oscillospira (5.8 ± 0.3% of community),
Treponema (2.9 ± 0.3%), and Ruminococcus (2.1 ± 0.1%).

FIGURE 2 | Shannon index of microbial communities in the ceca of

voles selected for different traits. Points represent mean ± SEM. C,

Control; A, Aerobic; H, Herbivorous; P, Predatory. Herbivorous-selected lines

exhibited significantly higher biodiversity.
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FIGURE 3 | Principal coordinate analyses of cecal communities of voles selected for various traits. Community membership uses unweighted UniFrac

distances, and thus investigates the presence or absence of bacterial lineages. Community structure uses weighted UniFrac distances, which take relative

abundances of taxa into account.

We did not find any identifiable bacterial phyla or genera
that exhibited significantly different or near-significant trends
in relative abundances across selection directions for cecal
communities.

For foregut samples, we obtained an average of 51,427± 5266
high-quality sequences per sample. There was no difference in the
number of foregut sequences between Control and Herbivorous-
selected lines and no significant difference between the number
of sequences from foregut and cecal samples [Nested ANOVA:
Line nested within Selection Direction: F(6, 86) = 1.19, P = 0.32;
Selection Direction: F(1, 6) = 0.003, P = 0.95; Gut Region:
F(1, 86) = 1.79, P = 0.19].

Foregut samples harbored a lower diversity when compared
with cecal samples [Figure 4; Nested ANOVA: Gut Region:
F(1, 86) = 103.27, P < 0.0001]. This analysis utilized the same
cecal data as presented above, only utilizing a lower number of
sequences for analysis, due to a slightly lower return of sequences
from some foregut samples. When all Control and Herbivorous-
selected samples were investigated together, there were no
differences in diversity between selection directions or replicate
lines [Line nested within Selection Direction: F(6, 86) = 0.59,
P = 0.73; Selection Direction: F(1, 6) = 0.03, P = 0.86]. When
only foregut samples were analyzed, there was no difference in
the Shannon Index between Control and Herbivorous-selected
lines [Nested ANOVA: Line nested within Selection Direction:
F(6, 41) = 0.66, P = 0.68; Selection Direction: F(1, 7) = 2.06,
P = 0.16].

Selection for the ability to cope with a high-fiber diet
significantly altered the foregut microbial community in
comparison to Control lines. Foregut communities of
Herbivorous-selected lines exhibited significantly different
microbial community membership (Figure 5; ANOSIM:
R = 0.38, P = 0.05) and community structure (Figure 5;
ANOSIM: R = 0.47, P = 0.04). However, cecal communities
did not exhibit distinct microbial community membership

FIGURE 4 | Shannon index of microbial communities of voles selected

for different traits. Points represent mean ± SEM. C, Control; H,

Herbivorous. The foregut chamber harbored lower microbial diversity than the

cecal chamber. No difference in diversity was observed between the foregut

communities of Control and Herbivorous-selected voles. Cecal communities of

Herbivorous-selected lines were significantly more diverse than Control lines.

The points for cecal samples represent the same samples as presented in

Figure 2, except here we used a lower number of sequences per sample for

analysis, due to a slightly lower return of sequences from some foregut

samples.

(ANOSIM: R = 0.28, P = 0.11) or structure (R = 0.15,
P = 0.26) in this analysis.

The foregut community was also dominated by Firmicutes
(53.7 ± 4.0% of community), Bacteroidetes (30.9 ± 4.1%),
and Proteobacteria (10.6 ± 1.7%). We did not detect any
foregut microbial phyla that differed significantly in relative
abundances between Control and Herbivorous-selected lines;
however differences were detectable at lower taxonomic units.
The microbial genus Treponema was significantly less abundant
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FIGURE 5 | Principal coordinate analyses of foregut and cecal communities of control and herbivorous-selected voles. Community membership uses

unweighted UniFrac distances, and thus investigates the presence or absence of bacterial lineages. Community structure uses weighted UniFrac distances, which

takes relative abundances of taxa into account. The points for cecal samples represent the same samples as presented in Figure 3, except here we used a lower

number of sequences per sample for analysis, due to a slightly lower return of sequences from some foregut samples.

FIGURE 6 | Relative abundances of Treponema and Lactobacillus in

the foregut chambers of control and herbivorous-selected voles. Points

represent mean ± SEM.

in the foregut of Herbivorous-selected lines compared to
Controls [Figure 6; Nested ANOVA of transformed abundance
data: Line nested within Selection Direction: F(6, 45) = 0.68,
P = 0.66; Selection Direction: F(1, 6) = 8.09, FDR-correct
P-value = 0.049]. There was also a near-significant trend for
Herbivorous-selected lines to harbor a 1.7 × higher abundance
of Lactobacillus compared to Control lines [Figure 6; Nested
ANOVA of transformed abundance data: Line nested within
Selection Direction: F(6, 45) = 0.44, P = 0.85; Selection
Direction: F(1, 6) = 7.05, FDR-correct P-value= 0.065].

DISCUSSION

Here, we tested whether whole-organism selection for
physiological and behavioral traits might be paired with

changes in gut microbial community structure. We found
that voles selected for herbivorous capability harbored distinct
microbial communities (although, the differences were only
marginally significant), while voles selected for high aerobic
capacity or predatory behavior exhibited no differences from
control lines.

We did not observe any differences in cecal microbial
community structure between Control lines andAerobic-selected
or Predatory-selected lines. Germ-free animals have lower basal
metabolic rate, heart size, cardiac output, hematocrit, and overall
blood volume compared to conventional animals (Gordon et al.,
1963; Bäckhed et al., 2004; Crawford et al., 2009). Therefore,
one might postulate that evolution of microbiome communities
could accompany the evolution of metabolic performance traits.
Similarly, the microbiome has been implicated as a mechanism
in the evolution of various animal behaviors (Ezenwa et al.,
2012). Though, Ezenwa et al. (2012) acknowledge that not all
animal behaviors are likely to influence or be influenced by
the microbiome. Determining which behaviors are associated
with the microbiome will help us in understanding the
potential and limitations for microbes to serve as drivers
of behavioral evolution. Our study suggests that both higher
exercise-induced metabolic rates and predatory behavior could
evolve independently of alterations in gut microbial community
structure. Though, it should be noted that we only inventoried
taxonomic diversity, and there may be underlying changes in
the abundance of genes with associated functions that would be
uncovered by metagenomic sequencing.

Conversely, the Herbivorous-selected lines harbored more
diverse cecal microbial communities when compared to Control
lines. These findings are consistent with comparative studies,
which demonstrate that a more diverse microbial community is
a trait of herbivorous mammals (Ley et al., 2008). This higher
diversity has largely been attributed to the higher fiber content
of diets of herbivorous mammals (Ley et al., 2008) and the
fact that diet has a large influence on microbial community
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structure (Carmody et al., 2014). Our results suggest that a
more diverse microbial community may be an evolved trait of
mammalian herbivores, given that the animals in our study were
all feeding on the same nutrient-rich rat chow and had never been
exposed to an herbivorous diet (below we discuss an alternative
explanation of the results). Prior studies have found positive
correlation between the taxonomic diversity of a microbial
community and its functional diversity (HMP Consortium,
2012); if this holds true in our system, the Herbivorous-selected
vole microbiota may have more diverse functions compared
to control lines. Additionally, when comparing microbiomes
across mammalian species, taxonomically distinct microbial
communities encode functionally distinct repertoires of enzymes
active against carbohydrates (Muegge et al., 2011). Thus, the
microbiota of Herbivorous-selected voles may be functionally
diverse and distinct compared to Control voles, which likely
aid them in coping with high-fiber diets. Alternatively, the
microbiota can influence systemic nutrient routing and storage
by the host (Bäckhed et al., 2004; Crawford et al., 2009).
Since the selection metric for our study is maintenance
of body mass on a high-fiber diet, the distinct microbial
communities hosted by Herbivorous-selected lines may be solely
associated with increasing maintenance of body mass. Further
physiological studies could elucidate the functions provided by
these communities.

The community structure in the foregut chamber also
differed between Control and Herbivorous-selected lines of
voles. This chamber has long been suggested to be important
for the evolution of herbivory in rodents (Carleton, 1973;
Toepfer, 1891). Other herbivorous rodents (Neotoma spp.) house
dense microbial communities that produce high concentrations
of volatile fatty acids within the foregut chamber (Kohl
et al., 2014a). Our results showed that selection for herbivory
altered the microbial community structure of this chamber,
including changes in the relative abundances of several taxa.
The genus Treponema exhibited lower abundances in the
foreguts of Herbivorous-selected voles compared to Controls.
While members of Treponema do not degrade cellulose, they
can degrade other plant polysaccharides (Paster and Canale-
Parola, 1985; Piknova et al., 2008) and their presence enhances
fiber fermentation by other cellulolytic bacteria (Kudo et al.,
1987). Thus, it is somewhat puzzling why abundances of
this fermentation-enhancing genus would be lower in the
Herbivorous-selected lines compared to Controls. However,
Treponema may perform different functions in the unique
chamber of the rodent foregut. It would be very interesting
to compare how the microbial communities of Control and
Herbivorous-selected lines change when placed on a high-fiber
diet.

We also observed a near-significant increase in the abundance
of Lactobacillus in the foregut chambers of herbivorous-selected
voles. Lactobacillus is the dominant genus in the foregut
chambers of other herbivorous rodents (Kohl and Dearing,
2012; Kohl et al., 2014a; Shinohara et al., 2016). It is unlikely
that members of Lactobacillus are conducting extensive fiber
fermentation in the foregut chamber, given they are not largely
cellulolytic and residence time of food material in this chamber

is very short (Kohl et al., 2014a). This microbial population could
be important for recycling urea nitrogen, given that the rodent
foregut contains high concentrations of ammonia nitrogen (Kohl
et al., 2014a). Nitrogen recycling may improve animals’ nitrogen
economy, thus allowing them to maintain body mass on a low-
protein food (Stevens and Hume, 2004).

Several mechanisms may underlie how Herbivorous-selected
voles come to harbor distinct and diverse communities. First,
the microbiome is easily altered by diet (Carmody et al., 2014)
and is transmitted from mother to offspring (Funkhouser
and Bordenstein, 2013; Kohl et al., 2014b). It could be argued
that mothers simply acquire from the experimental diet some
microbes not present in the standard food, and then transmit
it to the offspring. However, a controlled feeding trial in wood
rats (Neotoma spp.) found that the microbial species present
in laboratory animal chows accounted for only 0.5% of the
fecal microbiota (Kohl and Dearing, 2014). Additionally,
exposure to the high-fiber diet might alter the microbiota of
mothers, which in turn affects which microbes are transmitted
to offspring (Sonnenburg et al., 2016). Though, an elegant study
in humanized-mice (germ-free mice colonized with human
microbiota) demonstrated that founder effects can be important
for initial community structure, but that current diet supersedes
these effects over time (Turnbaugh et al., 2009). Mothers in
our selection experiment are fed the high-fiber diet for 4 days
from the age of 32–36 days, and are then fed basic rodent
chow for roughly 2.5 months before reproducing. Thus, it is
unlikely that the transient effect of the high-fiber diet impacts
which microbes are transmitted from mother to offspring, and
that the altered composition is maintained in the offspring
for the next 5 month, especially given that the gut microbiota
rapidly responds to changes in diet (David et al., 2014a,b).
Moreover, because of the lack of any sanitary barrier between
cages, all voles in the colony were permanently exposed to the
same load of microbes dispersed in feces or dust containing
dried fecal particles. Rather, it is likely that there is selection
within the microbial communities for members that aid in
digestion or maintenance of body mass of the hosts. However, to
completely render the possibility of transient effects not related
to the selection, further experiments should be performed to
check whether the microbiome differences are maintained also
when mothers from Control lines are fed the experimental
diet or are co-housed with those from the H-selected
lines.

Distinct microbial communities could also be brought
about by host evolution. For example, changes in sequences
or expression profiles of epithelial-produced glycans (Hooper
and Gordon, 2001), antimicrobial peptides (Franzenburg
et al., 2013), or other genes (Spor et al., 2011) may drive
changes in microbial community structure. Future studies
could investigate the mechanisms that facilitate these evolved
changes in microbial community structure. Fortunately,
continued selection experiments provide further generations
of animals to test these questions. It would be especially
interesting to correlate changes in microbial community
structure across generations with the differential performance
metrics between control and selected lines. For example, do
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the Herbivorous-selected individuals with higher microbial
diversity exhibit higher performance on the low-quality
diet?

Understanding the evolution of mammalian herbivory is
important, given that herbivory is the most common feeding
strategy among mammals (Price et al., 2012), and herbivores can
play large roles in determining the structure of entire ecosystems
(Martin and Maron, 2012). The evolution of herbivory is
thought to be largely facilitated by mutualistic relationships
with gut microbes that aid in the digestion of fiber (Stevens
and Hume, 2004) and the degradation of plant toxins (Kohl
et al., 2014c). Here we have demonstrated that omnivorous
rodents selected for the ability to maintain body mass on a
fiber-rich diet maintain distinct and more diverse gut microbial
communities independent of current diet. This work supports
the “hologenome concept” by demonstrating that selection on a
host performance metric can result in changes in the associated
microbiota (Bordenstein and Theis, 2015). Importantly, the
“hologenome concept” assumes that these changes can be
driven by the genetics of the host, the microbiota, or both
(Theis et al., 2016). Therefore, further work is needed to check
whether the differences in microbial composition are robust to
environmental factors, to uncover the functions provided by
these microbial communities, and understand the mechanistic
basis underlying their community assembly. We argue that our
selection experiment is a promising tool to further investigate
the role of gut microbes in facilitating the evolution of herbivory
in mammals and their broader functions in ecology and
evolution.

AUTHOR CONTRIBUTIONS

KK performed microbial inventories and data analysis, and
wrote the paper. ES and AR conducted the selection experiment,
collected samples, and assisted with revisions of the paper. MD
and PK helped with interpretation of data, oversaw the project,
and revised the paper. All authors approve the final version for
publication.

FUNDING

This research was supported by the National Science Foundation
(Doctoral Dissertation Improvement Grant, DEB 1210094, to
MD and KK; DEB 1342615 to MD; and DBI 1400456 to KK) and
the Polish National Science Centre (NN 303 816740 to PK) and
the Jagiellonian University (DDS/WBINOZ/INOS/757 to PK).

ACKNOWLEDGMENTS

We are grateful to several students and technicians for their
contribution to animal maintenance and gut contents sampling,
especially to K. Baliga-Klimczyk, K. Chrząścik, J. Hajduk, I.
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