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INTRODUCTION TO STRAND 1 

LEARNING SCIENCE: CONCEPTUAL UNDERSTANDING 

Strand 1 focussed on Learning Science: conceptual understanding; within this strand, the 

research studies essentially address the process of learning science to develop understanding.  

A central focus by all the researchers grouped under this strand is that learning science 

necessitates understanding science and this requires the comprehension of many ideas. As 

Bransford, Brown and Cocking (2000) point out: Learning with understanding suppose not to 

emphasize memory as often have been the case but to be able to use knowledge in different 

contexts and relate them. We have to take into account that a usable knowledge is not a mere 

list of disconnected facts. It needs connected and organized ideas around important nuclear 

concepts or models.  

Therefore, researchers that have submitted their work on Strand 1 are aware that not only the 

facts are important in order to think and solve problems, but that students also (a) need to 

grasp how science has interpreted such facts and has built coherent models, and (b) have to 

insert the new knowledge into their pre-existing system of ideas and concepts. 

So, as learning scientific concepts is not an easy process and as many teachers have 

experienced difficulties in this area, there has been much research devoted to addressing this 

problem, as shown by the large number of papers submitted to Strand 1. Also, the research 

shows different approaches to addressing this problem of learning with/for understanding.  

Previous research in the 1980s and 1990s showed how students’ conceptual difficulties were 

built on previous conceptions, e.g. compiled in the ICPE book: Connecting Research in 

Physics Education with Teacher Education (1997). This research was useful to identify the 

obstacles that must be overcome in student learning of the main topics in school curricula. 

Currently, however, the analysis of student’s difficulties for conceptual understanding takes 

on new perspectives. Now, we find research studies to determine student difficulties in topics 

addressed at higher educational levels such as: Quantum, Relativity, Astronomy, Mechanistic-

chemistry, etc. Genetics and Theory of Evolution are also recurring subjects of attention, 

often related with personal beliefs. 

Building on previous research, the current research reported goes beyond identifying gaps in 

students’ conceptual knowledge and conceptual errors, but aims to propose and evaluate 

teaching strategies that should enable teaching towards conceptual understanding.  To this 

end, different “Learning progressions” have been presented in this Strand 1 to trace students’ 

ideas (for example: E. Osman, L. Wang, H. Hamdan, G. Ampatzidis, etc).  Other studies in 

this Strand suggest that an understanding of the microscopic view of structure of matter can 

be a good teaching strategy (J.P. Burde, W. Wu, etc.) or that student use of modelling to 

connect ideas and learn (e.g. C. Fazio, A. C. Dindar,) give rise to in-depth learning. 

We also highlight the research evaluating various strategies and resources that have been 

studied to help the process of modelling, such as: 

(a) Use of conceptual maps as a teaching-learning strategy (for example, R. Grobler, 

F. Lombard) 

(b) Solve problems in different contexts (A. Ferreira) 

(c) Propose Peer discussions (C. Wagner) 

(d) Use of educational games, ICTs, etc. (A. Guerra, A. Almeida) 
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It is also noted that there are a number of research papers dealing with the process of learning 

as influenced by the social and cultural conditions of students and their beliefs about their 

environment (for example, J. Weber, V. Vieira). 

Finally, we should remark that the research papers under Strand 1 have two characteristics:  

(a) The specific concepts to be learnt or the models to be built are clearly defined in all 

the studies. That is, there are no pedagogical or general reflections applicable in all. 

They are focused on particular specific scientific topics. 

(b) A qualitative methodology is most frequently used in order to collect and analyse 

the data. This provides a rich data set that helps researchers to understand in depth 

what happens along the process of building conceptual models, rather than merely 

counting the frequency of some particular conceptual construction. 

 Odilla Finlayson and Roser Pinto 
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LEARNING PROGRESSIONS TO ENHANCE STUDENTS’ 

UNDERSTANDING OF GENETICS 

 

Enja Osman and Saouma BouJaoude 

Department of Education, American University of Beirut, Lebanon 

 

Abstract: The purpose of this study was to develop a valid, coherent, and reliable learning 

progression-driven genetics unit based on students’ misconceptions and difficulties and students’ 

and teachers’ recommendations for improving the curriculum and to investigate its impact on 

students’ understanding of genetics. The study consisted of a descriptive phase followed by an 

intervention that used a quasi-experimental design with a design-based research approach. The 

descriptive phase investigated students’ level of genetics understanding and evaluated the 

existing genetics curriculum. Questionnaires were administered to 729 students (Grades 7-12) 

and 20 biology teachers followed by semi-structured interviews with a representative sample of 

students and teachers. Data analysis revealed misconceptions in basic genetics concepts possibly 

caused by the incoherent genetics curriculum and the traditional teaching methods. Data from the 

first phase were used to develop, implement, and evaluate a learning progression and a learning 

progression-driven genetics unit which was validated by four biology teachers and implemented 

in one section of a Grade 9 class, while another section used the official textbook. Data came 

from pretests and posttests, classroom observations, student focus groups, and teacher 

questionnaires and interviews. Findings revealed that the genetics unit was coherent and 

logically sequenced but did not improve student understanding of genetics. Causes for the results 

and implications for practice are discussed. 

 

Keywords: conceptual understanding, learning progressions, misconceptions 

 

INTRODUCTION 

Research-based reforms in science education have emphasized the importance of learning 

progressions (LPs) in promoting the understanding and retention of scientific concepts. LPs are 

“descriptions of the successively more sophisticated ways of thinking about a topic that can 

follow one another as children learn about and investigate a topic over a broad span of time” 

(National Research Council (NRC), 2007). LPs are developmental and guided by theory and 

research on how students learn and on misconceptions associated with concepts (Duncan & 

Hmelo-silver, 2009). Accordingly, LPs provide a means for mapping and designing curricula, 

assessment tasks, and instructional materials that are coherent and logically-sequenced (Furtak, 

Roberts, Morrison, Henson, & Malone, 2010; Johnson & Tymms, 2011). 

Research has shown that students encounter difficulties and develop misconceptions in many 

areas of modern genetics (e.g. Duncan & Reiser, 2007; Kurth & Roseman, 2001; Lewis & 

Kattmann, 2004; Tsui & Treagust, 2003) due to its interdisciplinary nature, high level of 

reasoning needed to interpret genetics information, difficulty to demonstrate genetics concepts in 
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labs, outdated methods of teaching, and the low quality of science textbooks. Similarly, 

Lebanese educators claim that understanding genetics is impaired by the poorly sequenced, 

incoherent, and developmentally inappropriate genetics curriculum which needs to be revised in 

order to meet the needs of students. Although the review of literature reveals the existence of a 

LP in genetics (e.g., LP by Duncan, Rogat & Yarden, 2009), their LP has been described as 

conjectural and needs validation in classrooms (NRC, 2007), and there has not been any research 

on the topic in Lebanon. 

Consequently, the main objectives of this study were to (1) develop a valid, coherent, and 

reliable LP-driven genetics unit based on students’ misconceptions and difficulties and students’ 

and teachers’ recommendations for improving the curriculum and (2) investigate its impact on 

students’ understanding of genetics. 

Specifically, this study aimed to: 

 

1. Determine teachers’ perception of the coherence and organization of the Lebanese 

genetics curriculum across grade levels. 

2. Determine teachers’ perception of the effect of the Lebanese genetics curriculum on 

students’ understanding of genetics concepts. 

3. Identify the misconceptions and difficulties encountered by students during genetics 

instruction. 

4. Examine ways of improving the genetics curriculum, from teachers’ and students’ 

perspectives, to achieve improved student understanding in genetics.  

5. Develop a valid and reliable learning progression based on data collected from objectives 

1-4, and previous research. 

6. Investigate the level of the content coherence of the existing Lebanese national genetics 

curriculum and the learning progression-driven genetics unit. 

In order to determine the effectiveness of the proposed learning progression, the newly 

developed genetics unit for Grade 9 was implemented and evaluated. This part of the study 

aimed to answer the following two questions: 

1. Does instruction based on the learning progression produce better results for most 

students? 

2. What are the major educative practices that might support the proper design and 

implementation of an LP-driven curricular unit? 

 

METHODOLOGY 

This study employed a mixed-methods approach in two main phases, a descriptive phase and a 

quasi-experimental design-based learning phase. During the first phase, participants consisted of 

729 Grade 7-12 students and 20 biology teachers from three private and three public schools that 

used the same national biology textbook. This phase aimed to describe students’ level of 

understanding of core genetics concepts, identify students’ misconceptions and difficulties, and 

evaluate the scope and sequence of the existing genetics curriculum. For this purpose, teacher 

and student questionnaires were distributed and semi-structured interviews were conducted with 

a randomly selected representative sample of students and teachers. In addition, a systematic 
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analysis of the genetics curriculum was done to evaluate its content in terms of possible 

conceptual gaps, organization, and coherence of core concepts. Data from student and teacher 

questionnaires was analyzed; means, standard deviations, frequencies, and percentages of 

responses on individual items were calculated and compared across grade levels. Student and 

teacher interview responses were transcribed and categorized by two researchers to insure 

validity of results. Then, a hypothetical LP was developed for Grades KG-12 and is centered, 

similar to that by Duncan, Rogat, & Yarden (2009), on two major constructs or big ideas: (1) The 

nature of genetic information and (2) the inheritance of genetic variation. One more sub-idea was 

added under the construct “Inheritance and Variation of traits” which addresses the mechanisms 

by which humans can control and manipulate genetic information through genetic technologies 

in order to improve different aspects of people’s lives (e.g. Tables 1 & 2). This designed LP was 

used to write a genetics unit for Grade 9. 

The second phase of the study used a quasi-experimental design-based research approach to 

investigate the effectiveness of the LP and the LP genetics unit in enhancing Grade 9 students’ 

understanding of genetics concepts. This phase was implemented in two grade 9 sections 

(experimental and control) in a private school in Southern Lebanon. To assess the quality, 

feasibility, and reliability of the LP and LP-driven unit, a questionnaire was distributed to four 

experienced biology teachers who provided suggestions for improvement. Necessary 

modification where made, then, the unit was implemented in the experimental section (19 

students) while the control section (20 students) received instruction using the existing national 

biology textbook. The same experienced teacher taught both sections.  Data included results 

from a pretest and posttest given to students before and after implementation of the LP unit 

respectively; results were analyzed to produce frequencies and percentages of correct responses 

on each test item. To determine if the genetics unit enhanced student learning, gain scores were 

compared. In addition, classroom observations were conducted to evaluate the quality of 

teaching and identify the difficulties encountered by both teacher and students. After 

implementation, focus groups were conducted with a sample of students from the experimental 

and control groups to explore their positions regarding the existing and LP-driven genetics units. 

The teacher was also interviewed and a questionnaire was given to four biology teachers to 

explore their opinions regarding the LP-unit as it compares to the existing one. Data were 

transcribed and independently analyzed by two researchers to produce categories of students’ 

views about the unit and insure validity of results. 

 

RESULTS 

Results of the study are summarized below: 

Phase 1 

1. Students of all grade levels showed inadequate conceptual understanding and misconceptions 

in basic genetics concepts such the role of DNA, difference between gene and allele, the 

relationship among DNA, genes and proteins, meiosis, mitosis, pedigree analysis, cloning, 

schematizing gametes, protein synthesis and DNA detecting techniques. 

 

2. Students’ level of conceptual understanding tended to increase with advancing grade levels. 
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3. Students across all grade levels had a low level of genetic literacy as they failed to answer 

questions on how genetics related to society, technology, and the environment. 

 

4. Students and teachers attributed difficulty in understanding genetics concepts to the poor 

quality of the national biology textbook which lacks coherence and logical sequencing of 

concepts, is overloaded with material, does not encourage critical thinking, does not match 

students’ cognitive level, and does not link genetics to everyday life. Students also 

underlined the use of traditional teaching methods as another major reason for the difficulty 

they face in understanding core ideas in genetics. 

 

5. Content analysis of the genetics curriculum showed lack of developmental progression across 

the grade levels, misalignment between content and objectives, absence of ethical and moral 

life-related issues, and shallow coverage of STS genetics issues. 

 

Phase 2 

1. Teachers’ and students’ evaluation of the LP-driven genetics unit revealed that the objectives 

and content were aligned, the concepts were coherent and logically sequenced, the content 

promoted genetic literacy, and the activities and assessment items encouraged critical 

thinking. This was consistent with the students’ opinions in the focus groups in which they 

indicated that the newly designed genetics unit had a clear and logically organized content 

which is enriched with quality illustrations, figures, questions and real-life examples that 

enhanced their understanding of genetics.   

 

2. Despite the improvement of the genetics curricular unit, a comparison between the gain 

scores of the experimental and the control groups showed an almost equal performance on 

most of the pretest/posttest items (Table 3). Also, students still found the concepts of mitosis 

and meiosis very difficult and confusing. 

 

Table 3 

Distribution of Final Averages of Experimental Group (N=19) and Control Group (N=20) 

Exam Experimental Control 

 
M SD Range M SD Range 

Monthly 1 11.3 4.3 5.0-19.0 10.5 4.4 5.0-19.0 

Monthly 2 10.3 3.6 6.0-18.0 11.7 3.6 6.0-17.0 

Mid-year  11.8 4.7 4.0-19.0 12.1 4.4 5.0-19.0 

Total Average 11.1* 0.6 5.0-18.3 11.4* 0.7 5.0-18.3 

 

*No significant difference between the score of the different groups 
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DISCUSSION & CONCLUSIONS 

Although there is a slight increase in the conceptual understanding of students across grade 

levels, a majority of the Lebanese students seem to have misconceptions and encounter 

difficulties in core genetics concepts similar to students in other developed countries. Results 

suggest two possible sources of these misconceptions and difficulties: the curriculum itself and 

traditional instruction. This might be due to lack of coherence and logical sequencing in the 

existing curriculum and the poor quality of content, activities, and illustrations, results that are 

consistent with previous research on other genetics curricula (Roseman, Caldwell, Gogos, & 

Kurth, 2006). Furthermore, when the content does not emphasize ethical and moral genetics-

related issues and barely tackles science/technology/society issues, it is not surprising that 

existing genetics curricula do not promote the development of genetically literate citizens who 

can apply knowledge to their daily life (e.g., Lewis & Kattmann, 2004). 

Moreover, although the LP-driven genetics unit favors group-discussion, use of inquiry, lab 

activities, and technology in instruction, classroom observations showed that teacher-centered 

methods dominate genetics instruction. This receptive type of instruction is characterized by a 

lack of accommodation of students’ abilities and interests, and the lack of use of technology 

and/or a variety of scientific resources which are integral to the teaching of science. On the 

contrary, the student-centered approach illustrated in the designed unit is imperative, especially 

for deep understanding of the abstract concepts of genetics.  

When asked to explain her approach, the biology teacher argued that time constraints, the 

overloaded curriculum, and student preparation for official exams resulted her traditional 

teaching methods. Such impediments may lower students’ motivation to learn genetics. 

Moreover, classroom observations provided evidence that the language of instruction (English) is 

another major factor which might hinder students’ learning, since it is different from their native 

tongue (Arabic). 

Jointly, all the factors mentioned above are possible explanations for Lebanese students’ 

persistent difficulties in understanding genetics concepts. When students do not have a firm 

grasp of basic genetics concepts in earlier grade levels, they carry their misunderstandings and 

misconceptions with them as they progress to higher grade levels. As a result, students are 

reaching higher grade levels without an adequate knowledge base that is necessary for 

understanding more complex genetics concepts. 

In terms of validating the effectiveness of the genetics unit that was based on the LP, teachers’ 

and students’ feedback provided evidence that the new unit addressed the major problems of the 

existing curriculum. Surprisingly, however, findings of this study showed that students from both 

experimental and control groups performed equally well on most of the post-test items. One 

possible reason may be the fact that the teacher used some activities included in the new genetics 

unit for both classes because of her perception that the unit was better adapted to students’ needs. 

This could have happened when the researcher was not conducting classroom observations. 

Other reasons include the lack of proper implementation of the unit, the teacher’s weak content 

knowledge, among other possible reason. 

This study presents several implications for practice. First, there is a need for an extensive 

revision of the Lebanese genetics curriculum. Second, proper sequencing of core concepts and 

sub-concepts is necessary, using LP as a framework, to enhance students’ understanding of 
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genetics, but alone is not sufficient. The best curriculum would fail if teachers are not offered the 

opportunity to be trained in strategies for the proper implementation of the designed curriculum. 

In addition, student-related factors (e.g. prior knowledge and language proficiency) need to be 

taken into consideration. As a result, it is highly recommended that schools, curriculum 

designers, and universities establish partnerships with the government to refine scholastic 

programs based on research in an attempt to nurture students, the knowledgeable citizens. 
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Abstract: Quantum physics is a fascinating but also challenging topic in physics at pre-
university level. This study has investigated how 170 students in upper secondary schools in 
Norway understand the concept of quantization and the wave-particle duality for light while 
working with digital resources developed in the project ReleQuant, where qualitative 
understanding and use of language is emphasized. Data were collected by means of students’ 
written responses to tasks on the digital platform, and by discussions between peers recorded 
on students’ own cell phones. It was found that the concept of quantization was poorly 
understood and often mistaken as quantification. For the wave-particle duality it was found 
that many students refer to the dual nature of light without paying attention to the 
contradiction between the models. However, some good student responses also indicate that 
qualitative understanding of quantum physics is possible even on pre-university level. The 
results contribute to the relatively scarce research literature on student understanding of 
modern physics on pre-university level. In ReleQuant, results are also used for further 
development of teaching resources, in line with the Educational Design Research 
methodology. New versions of the resources pay attention to students’ problems in 
understanding of the concept of quantization and emphasize the contradiction between a wave 
model and a particle model for light in a classical sense. Implications are discussed for design 
of teaching resources that support students in reflecting on how quantum physics breaks with 
classical physics and on its epistemological implications. 

Keywords: Quantum physics, student conceptions, Educational Design Research. 

 
INTRODUCTION 

Quantum physics has wide-ranging consequences for our worldview as well as for modern 
technology development. Theories in quantum physics break with our everyday experience of 
natural phenomena and with classical physics in fundamental ways that often fascinate young 
people. However, relatively little research has been undertaken to investigate students’ 
conceptions and learning processes in quantum physics on pre-university level. 

In contrast to the situation in most other countries, the Norwegian curriculum for physics in 
upper secondary school gives opportunities to explore interpretations of quantum physics and 
relativity and discuss the philosophical and epistemological consequences of theories in 
modern physics (Henriksen et al., 2014). The curriculum provides opportunities for students 
to explore the philosophical foundation for quantum physics, how it breaks with classical 
physics and its epistemological consequences. However, research also indicates that many 
physics teachers find it challenging to teach this part of the curriculum (Bungum, Henriksen, 
Angell, Tellefsen & Bøe, 2015). 

This paper reports results from the project ReleQuant, which combines research and 
development in developing digital teaching resources in quantum physics and theory of 
relativity by means of methodology from Educational Design Research (see Bungum et al., 
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2015). In the development of resources we emphasise qualitative understanding in line with 
the curriculum requirement, students’ reflection and their use of written and oral language in 
the learning process. The teaching material also exposes students to the nature of science in 
terms of how quantum physics developed historically, that physicists still disagree on 
interpretations, the implications of modern physics for our view of the world, and the use of 
quantum physics in modern technology. 

The specific study presented here investigates how Norwegian upper secondary physics 
students interpret fundamental principles in quantum physics before and during work with the 
digital teaching resources developed in the project ReleQuant. We focus on two fundamental 
principles in quantum physics; the wave-particle duality for light and the concept of 
quantization.  

Research questions for the study are:  

1. How do upper secondary physics students interpret the wave-particle duality for light? 

2. How do upper secondary physics students interpret the concept of quantization? 

The results contribute to the further development of ReleQuant resources, and in the 
discussion in this paper we will point to specific changes made in the resources based on the 
results. The study also has a more general value by throwing light on how upper secondary 
school students may perceive fundamental principles in quantum physics, and the 
opportunities and challenges in teaching quantum physics in qualitative ways on pre-
university level. 

PREVIOUS RESEARCH ON STUDENTS’ CONCEPTIONS IN 
QUANTUM PHYSICS 

Whereas a large body of research has documented students’ conceptions and learning within a 
range of topics in classical physics (see Duit, 2009), considerably less research has been 
undertaken to investigate students’ understanding and learning in modern physics. In 
mechanics, for instance, research has focused on how the physical description of e.g. motion 
and forces appears counterintuitive compared with students’ everyday experiences (Driver et 
al., 1994). In quantum physics and relativity, challenges are of a different nature, since these 
topics concern phenomena that cannot be visualized or experienced directly and where 
classroom experiments may be difficult or impossible to undertake.  

Research on university students’ conceptions of quantum physics indicates that their 
understanding is often fragmented and dominated by isolated facts not fitted into an internally 
consistent conceptual framework (Hadzidaki, 2008). This may be due to how quantum 
physics on university level is dominated by mathematics and abstract formalism. Pospiech 
(2000) pointed out that even if quantum physics cannot be fully understood without 
mathematics, the mathematical formalism often hides the philosophical issues important for 
understanding the full depth of modern physics. Based on a study of pre-university students’ 
understanding of quantum physics, Ireson (2000) gave five recommendations for teaching the 
topic: 1. Avoiding reference to classical physics; 2. Teaching the photoelectric effect by 
beginning with electrons rather than photons; 3. Using statistical interpretations of observed 
phenomena and avoiding dualistic descriptions; 4. Introducing the Heisenberg uncertainty 
principle for ensembles of quantum objects at an early stage; and 5.Avoiding the Bohr model 
in the treatment of the hydrogen atom. 

Ayene, Kriek and Damtie (2011) investigated university students’ conceptions of the wave-
particle duality, and found that most students described light in terms of classical models of 
waves and particles, or as mixed models with aspects of quantum physics combined with 
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classical models. Olsen (2002) found that the wave-particle duality was poorly understood by 
senior high school students in Norway, and some students clearly demonstrated 
misconceptions rooted in a classical physics worldview. One misconception identified was the 
view of light as particles moving in a wave-shaped trajectory. Cheong and Song (2014), in 
their study of university student conceptions, identified three levels of meaning of duality. 
The first level entails that light has both particle and wave properties, without any reference to 
a wave function. On the second level, students’ models include principles from quantum 
mechanics such as a wave function and Schrödinger’s equation. The third level includes an 
understanding of different interpretations of quantum theory, linking the theory to 
experimental observations. The first level of meaning of duality is most relevant to the 
Norwegian senior high school physics curriculum, since it describes a qualitative approach to 
quantum physics. However, the curriculum states explicitly that students should reflect on 
philosophical aspects of quantum physics and how it breaks with classical physics. This 
requires that students’ understanding of wave-particle duality moves beyond a statement that 
it is “both waves and particles”. 

Singh (2008) pointed to the importance of visualizations for students in order to build links 
between formal and conceptual aspects of quantum physics. Hadzidaki (2008), discussing 
teaching and learning in quantum physics, argued that students need to be made aware of the 
ways in which quantum physics represents a break with the principles of classical physics. 
This break and its epistemological consequences is an important objective in the Norwegian 
physics curriculum. Similarly, Renstrøm (2011) in her historically based teaching approach 
emphasized how quantum physics challenges basic assumptions in classical physics such as 
continuity, determinism and locality. 

METHOD 

Data for the study presented in this paper were gathered from students’ work with the digital 
ReleQuant material in physics classes during three subsequent cycles of development over the 
period March 2014 - March 2015. Eight classes at five different upper secondary schools 
participated, involving around 170 students taught by their regular teacher.  

Two kinds of data were collected for this study. Firstly, written student responses to questions 
in the ReleQuant teaching module were collected through the digital platform. For light, this 
firstly involved a question at the beginning of the teaching where students are invited to 
describe in writing what they think light is, based on their prior knowledge. Secondly, student 
discussions were recorded when students were asked to compare their written responses in 
pairs. For quantization, students were first challenged to suggest everyday entities that are 
quantized and respond in writing. Then they did audio recordings of peer discussions on these 
suggestions. Student discussions in pairs were recorded on the students’ own cell phones and 
e-mailed by students to their teacher after the session.  

Students’ responses (written and oral) were analyzed qualitatively using a thematic approach 
(Braun & Clarke, 2006) to identify patterns and themes within student responses. To some 
extent we have counted responses and reported as percentages of responses within categories 
of responses. However, since students partly worked in pairs and student numbers were 
varying during the sessions, we present the results mainly qualitatively with semi-quantitative 
measures in order to indicate how prevalent various student conceptions appear to be.  

RESULTS 

Students’ conceptions on the wave-particle duality 
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The most prevalent conception in students’ responses was light as waves and particles. Some 
of these students described the experimental evidence supporting each view, in particular 
interference patterns as a sign of wave properties. However, many students dealt with the two 
models in combination without further elaboration. For example, one student wrote: 

Light is energy in the form of small particles, photons. Light gets different colors 
depending on which wavelength it has. 

These responses indicate that students hold parallel conceptions of light as waves and 
particles, without considering the contradiction between these two models. Previous results 
from the project demonstrated that 40% of student responses reflect this kind of view 
classified as uncritical duality (Gjerland, 2015). 

A handful of respondents expressed a misconception concerning the wave-particle duality, 
describing photons as performing a wave motion, for example 

The particles move in «wave trajectories» through space 

A relatively small proportion of respondents expressed epistemological reflections on the fact 
that scientists still discuss the nature of light:  

It is hard to determine what a photon is. Even researchers disagree, there are many ex-
planations and definitions. They behave differently depending on the perspective you take 

Recorded oral discussions among students confirm the impression that students may think of 
light in different ways without recognizing any contradiction. For example, in the following 
dialogue student A speaks of light as electromagnetic waves, while student B explains it as a 
stream of photons and small particles: 

A: What are photons and light, really?  

B: Well, light is...  

A: It’s an electromagnetic wave, isn’t it? …that is sent out from a glowing body.  

B: Yes.  

A: Yes?   

B: Light is simply a stream of photons, then.  

A: Yes, you could say that.  

B: Photons, then, are…  

A: And then we have -  

B: Photons are very small, indivisible particles. 

The students here seem to think they agree on a common understanding, yet they refer to very 
different models for light. 

Students’ conceptions of quantization 

Concerning quantization, respondents were asked to think of everyday examples of quantized 
entities. Many came up with adequate examples such as the number of book pages in a library 
and the number of persons in a room.  

However, the students’ audio-recorded discussions reveal that the ideas underpinning their 
examples often entail a weak understanding of what quantization means. Their ideas range 
from quantization as any entity that is countable as integer numbers (in principle or in 
practice, e.g grains of sand in Sahara) or limited in number, to ideas of values as fixed (e.g. 
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the mass of an electron), conserved (e.g. the amount of water on earth) or predestined (e.g. the 
number of teeth a human gets). Many also mixed up the phrases (and in many cases the 
concepts) quantization and quantification, as in this statement where the student perceives 
quantization as entities that can be counted as integer numbers: 

Well.. Quantification is, well it is to divide into certain levels, like in everyday life you can 
say that you have a certain number of friends. You cannot have half a friend. You can 
have 1,2,3… You can have an integer number.  

Analysis undertaken by Myhrehagen (2015) indicates that about 80 % of students understand 
quantization as quantification, that is, something that can be assigned a number. Only 8 % of 
student utterances in writing or in discussions exposed an understanding of quantization as 
discontinuity. The following response, where the student uses a chain as an analogy, is a very 
good, but rare, example of how some students expose a good understanding of what 
quantization means: 

Like a chain has a smallest value of length. Because the length must be divisible with the 
length of one chain ring, in contrast to a thread that you can cut in any length you want. 
So the thread will be an example of something continuous when you cut the length, while a 
chain sort of has to make steps in lengths, and is not continuous, because you must 
consider the chain rings. So the chain is quantized.   

For most students, however, it was challenging to find good everyday examples of quantized 
entities in the sense the concept is used in physics. The problem is reasonable, since 
quantization beyond the trivial integer number examples is not easy to find in everyday life.  

DISCUSSION AND CONCLUSIONS 

This paper has investigated pre-university physics students’ conceptions of fundamental 
principles in quantum physics. Although our sample is not adequate for a statistical 
generalization, we anticipate that similar student conceptions also will be present in other 
classrooms. The results indicate that most students are well aware that light can be described 
as both waves and particles. Some refer to the experimental basis for the two descriptions, but 
only few respondents discuss the two models as complementary or (seemingly) contradictory.  

It seems that students try to combine the wave and particle view of light in ways that avoid 
the contradiction between the two models. For some, this leads to the misconception 
described by Olsen (2002), that the wave-particle duality means that particles are moving in a 
wave-shaped trajectory. Others speak of ‘energy packages’ in ways that fit how photons often 
are drawn in textbooks as short pieces of a wave. This visualization of a photon helps students 
combine a wave and a particle in one single conception, but may mask the break between 
classical physics and quantum physics, and may not be constructive in developing a deeper 
understanding of quantum physics. The results as a whole confirm the results reported by 
Ayene, Kriek and Damtie (2011), where students stick to classical conceptions and images in 
interpreting quantum physics. 

These results indicate that teaching of quantum physics should emphasize how quantum 
physics break with classical physics in fundamental ways. For the Wave-particle duality, this 
means that students should be made aware of the contradiction between a wave model and a 
particle model for light interpreted in a classical sense. This might help students avoid the 
typical misconceptions that are rooted in classical models. Exposing to students how different 
and conflicting interpretations exist among contemporary physicists may also stimulate their 
own epistemological reflections and illustrate how science is in continuous development, thus 
supporting a more nuanced view of the nature of science.  
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In line with Educational Design Research as a research methodology, the resources developed 
in the ReleQuant project are adjusted based on the research results. Figure 1 shows a 
screenshot from the next version of teaching resources, designed to make students more aware 
of how classical conceptions of a wave and a particle can not be combined in meaningful 
ways, since a wave is extended in space while a particle is a point (or a very small object). 
Students are here encouraged to discuss whether it is possible that light can be simultaneously 
a wave and particles, in order to make them aware of the shortcomings of classical models in 
quantum physics. 

 

 

Figure 1. Screenshot of ReleQuant page emphasizing how a wave model and a particle model 
for light contradict each other in a classical sense. 

 

For quantization, recorded student discussions indicate that a surprisingly large number of 
students hold insufficient understanding or mistaken ideas on what the concept ‘quantized’ 
means. Many respondents focused on how quantization concerns countable entities, whereas 
very few responses involved the idea of discrete levels or values. Some responses seem to be 
influenced by a confusion of the concept ‘quantized’ with ‘quantified’.  

The first prototype of the ReleQuant resources encouraged students to use everyday examples 
in order to elaborate on the concept of quantization. However, as results from the trials in 
classrooms exposed that many students had weak conceptions of quantization and that some 
students acquired limited or mistaken understanding by means of everyday examples, the 
resources were changed in this regard. Rather than focusing on everyday examples, the next 
version of the resources invite students to go deeper into the physics and how the issue of 
quantization can be traced back to ancient philosophy of nature. Even if research in physics 
education has warned against the use of the Bohr model for the atom (e.g. Ireson, 2000) in 
teaching modern physics, we find it useful to build on students familiarity with this for 
illustrating quantization of energy. Figure 2 shows a screenshot of the resources where energy 
levels in the hydrogen atom are contrasted to the continuously changing kinetic energy of an 
oscillating spring in order to illustrate the difference between quantization and continuity in 
the case of energy. The presentation of quantization from a historical perspective is shown in 
Figure 3. This includes links to Einstein presentation of the photon in original and translated 
version. 
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Figure 2. Screenshot from ReleQuant page comparing continuous energy in a spring and 
quantized energy in the Hydrogen atom. 
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Figure 3. Screenshot from ReleQuant page presenting the concept of quantization from a 
historical perspective. 

 

The use of language and student discussions in ReleQuant has contributed to exposing student 
conceptions in quantum physics as multifaceted. Even if students are often able to give 
adequate examples and definitions such as those found in textbooks, their discussions reveal 
that fundamental concepts in quantum physics are poorly understood. However, some good 
responses from students indicate that a deeper qualitative understanding of quantum physics is 
possible even on pre-university level, in the case of wave-particle duality this means 
progressing through the second and third level of meaning of duality as described by Cheong 
and Song (2014). 

As Pospiech (2000) has suggested, there is a clear need in teaching to go deeper into what 
fundamental concepts mean when teaching about quantum physics, and to express their 
significance for our understanding of the physical world. Moreover, more research is needed – 
and will be continued in repeated cycles of design and classroom trials in ReleQuant – to 
establish evidence-based knowledge on how teaching material can be designed to support 
students’ qualitative understanding and epistemological reflections in physics.  
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CONCEPT MAPPING AS A TEACHING-LEARNING 

STRATEGY IN NATURAL SCIENCES CLASSROOMS 
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Abstract: Learning is a life-long process and constructing a good learning framework for 

students is essential in order for them to be productive students throughout their lives. To 

construct and connect concepts to develop a framework which links content in a concept 

building process seems to be a better option than to merely flooding students with 

overwhelming terms and knowledge without making logical connections. According to 

Cheema and Mirza (2013), Buldu and Buldu (2010), Horton, McConney, Gall, Woods, Senn 

and Hamelin (1993) concept mapping is one strategy, which has shown promise in being a 

significant teaching-learning strategy. After various informal discussions with Natural 

Sciences teachers it became clear that only a few of them utilise concept maps as a teaching-

learning strategy. This study investigated the role of concept mapping as a teaching-learning 

strategy in South African Natural Sciences classrooms. A quasi-experimental design was 

utilised for this study. Two Grade 8 Natural Sciences classes took part in this investigation, 48 

students participated in the study, 24 within the control group and 24 within the experimental 

group. Both groups completed the pre-test questionnaire, both groups wrote the pre-test 

assessment on the topic ‘scientific investigation’, both groups wrote the post-test assessment 

on the learnt topic, and only the experimental group completed the post-test questionnaire. 

The results revealed that concept maps play an important role in Grade 8 Natural Sciences 

classrooms and although students prefer constructing maps in class, to constructing it on their 

own, they do use concept maps as a study strategy in preparing for the exams. 

  

Keywords: concept mapping, science education, teacher training 

 

BACKGROUND AND FRAMEWORK 

Meaningful learning in the Natural Sciences classroom refers to implementing a way of 

learning, where the new knowledge to be acquired is related to existing ideas and knowledge 

(Ausubel, 1968). Concept mapping has been rising in stature as an essential teaching learning 

tool to anchor new concept meanings into existing frameworks (Horton, McConney, Gall, 

Woods, Senn & Hamelin, 1993). 

Concept mapping has been found to be one of the teaching-learning strategies which place the 

student at the centre of learning activities and involve them in their own knowledge 

construction, while the teacher remains a facilitator (Cheema & Mirza, 2013). The use of 

concept mapping is believed to enhance recall and memory and can improve learning if 

carried out during instructional processes (Freeman & Jessup, 2004; Buldu & Buldu, 2010). 

The use of concept maps for instructional purposes has grown significantly over the last three 

decades (Jones, Ruff, Snyder, Petrich & Koonce, 2012), and has been found to be a potent 

instructional tool in information processing and for promoting meaningful learning (Horton, 

et al. 1993). 
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Nesbit and Adesope (2006) state that “initiating learning activities with constructive concept 

maps leads to small, positive effects on comprehension and their use as activity closing 

summaries produces somewhat larger positive effects, which is attributed to greater ‘learner 

involvement’”.  

According to Nesbit and Adesope (2006) and Willis and Miertschin (2006) pictures and 

visual learning may help students to retrieve prior knowledge about the concept and therefore 

can be used to imbed the knowledge and enhance retrieval. Concept maps take ideas and 

pictures, which radiate out from a central concept, capturing a specific topic in a non-linear 

fashion through incorporating graphics and colours (Budd, 2004). Thus tapping into visual 

learning and connecting with students whose learning style is not as well served by linear, 

text-based materials.  

Concept maps are believed to enhance memory (Freeman & Jessup, 2006) and when 

constructing concept maps it engages the student with the content, whereby they analyse their 

already existing knowledge structures and ideas and then integrate new knowledge with what 

they already know (Willis & Miertschin, 2006). Therefore, viewing or constructing concept 

maps in conjugation with text or spoken lessons may facilitate memory retention (Nesbit & 

Adesope, 2006). To adapt practices that encourage meaningful learning, it seems evident that 

teachers must also seek to learn ways in which subject matter can be taught meaningfully, by 

using knowledge representative systems that are useful in classroom settings. 

Students registered for the Post Graduate Certificate in Education (PGCE) at our institution 

need to do action research during their seven weeks of Work Integrated Learning (WIL) and 

submit their research report as an exam equivalent at the end of the year. After various 

informal discussions with practicing Natural Sciences teachers it became clear that secondary 

school students are flooded with overwhelming terms and knowledge without constructing 

and connecting concepts to develop a framework which links content together in a concept 

building process. Only a few of these practicing teachers indicated that they utilise concept 

maps as a teaching-learning strategy. One of the PGCE students thought it worthwhile to 

investigate the role of concept mapping as a teaching learning strategy in Natural Sciences 

classrooms in order to view what implications the utilization of concept maps may have on 

the academic achievement of these students. 

 

Research questions  

The study addressed the following questions: 

 Do Grade 8 students use concept mapping as a learning-strategy in Natural Sciences? 

 Does the academic achievement differ between a Grade 8 control group (not taught 

with concept maps) and a Grade 8 experimental group (taught with concept maps)? 

 What are the students’ opinions on the role of concept mapping on their academic 

achievement when utilized in the classroom by their Natural Sciences teacher during 

the teaching-learning process?  

 What are the students’ opinion on the role of concept mapping on their academic 

achievement when they utilize concept maps while preparing for a class test?     

 

RESEARCH DESIGN AND METHODOLOGY 

A quasi-experimental design was undertaken, whereby groups and their participants are not 

assigned randomly due to already constructed class groups being present in the school 

(Creswell, 2005). Permission to carry out the research was given by the school principal. 

Students and their parents were informed about the study and their permission to allow their 
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children to participate was requested. It was emphasised to all the parties involved that 

participation would be voluntary and that complete confidentiality would be maintained.  

Two Grade 8 Natural Sciences classes were assigned to the study by a school in Gauteng. The 

study was conducted over a seven week period where two Grade 8 classes (class 8.1 and 8.6) 

were assigned to the study, one class was randomly chosen as the control group (class 8.1) 

and the other as the experimental group (class 8.6). There were 24 students in each of these 

two groups.  

On day one both groups were given a questionnaire based on concept mapping to establish 

whether the students utilize concept mapping as a learning strategy. An assessment task as a 

‘pre-test’ on the topic ‘scientific investigation’ was then given to both groups. On day two the 

students from the experimental group were taught how to construct a concept map. The next 

three days both groups were taught on the current topic which correlated with the prescribed 

curriculum. The experimental group was taught through the construction of a concept map 

and were asked to learn and study with the aid of the concept map. The control group was 

taught using the ‘traditional teaching strategy’ and were asked to learn and study the topic 

without the use of concept maps. 

During the next class both groups did an assessment task (as a post-test) based on the topic 

‘scientific investigations’. The control group was then given a presentation on concept 

mapping and the construction thereof to avoid any bias that might have arisen. During the 

next few weeks both groups were taught with the aid of concept mapping as a teaching-

learning strategy. The lessons would start with the construction of a concept map of what was 

already known by the students on each topic. Throughout the instruction of the topic, concepts 

and ideas were incorporated and built onto the existing concept map with labelled lines 

linking the various ideas. During this process the map was analysed, discussed and any 

misconceptions were addressed. Each completed map was taken down by the students or 

integrated into their maps, i.e. building on concepts instead of stifling students with 

overwhelming knowledge collections. 

The experimental group completed a second questionnaire related to their stance and opinions 

towards the use of concept mapping as a teaching-learning strategy. This post-test 

questionnaire comprised of two parts. Section A investigated the participants’ stances towards 

the use of concept mapping as a teaching-learning strategy while Section B investigated the 

students’ opinions towards the use of concept mapping as a teaching-learning strategy in the 

Natural Sciences classroom.  

 

RESULTS 

The results from the questionnaire based on the role that concept mapping already played in 

the students’ learning strategies, such as studying strategies and classroom strategies are 

indicated in Table 1 for the experimental group and Table 2 for the control group. The 

percentages of students in both groups using concept mapping as a study strategy and to 

prepare for the exams are relatively high (61% to 78%). However, the percentages in both 

groups using concept mapping as a note taking strategy in the class, to convert their class 

notes into concept maps and to understand and solve problems are quite low (9% to 39%). 

The mean score for the participants of the control group in the assessment task based on the 

topic ‘scientific investigations’ as the pre-test was 54% whereas their mean score for post-test 

was 71%. The mean score for the participants of the experimental group in the pre-test 

assessment was 59% whereas their mean score for the post-test was 80%. Thus a marginally 

higher increase of 4% in the experimental group’s score compared to that of the control group 

was noticed.   
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Table 1. Utilisation of concept mapping (experimental group) 

 Yes No 

I use concept mapping as a study strategy for Natural Sciences 61% 39% 

I use concept mapping to prepare for Natural Sciences exams 65% 35% 

I use concept mapping as a note taking strategy in my Natural 

Sciences class 

30% 70% 

I convert my Natural Sciences class notes into concept maps 22% 78% 

I use concept mapping to understand and solve problems in 

Natural Sciences 

39% 61% 

  

 

Table 2. Utilisation of concept mapping (control group) 

 Yes No 

I use concept mapping as a study strategy for Natural Sciences 61% 39% 

I use concept mapping to prepare for Natural Sciences exams 78% 22% 

I use concept mapping as a note taking strategy in my Natural 

Sciences class 

26% 74% 

I convert my Natural Sciences class notes into concept maps 9% 91% 

I use concept mapping to understand and solve problems in 

Natural Sciences 

30% 70% 

 

The data from Section A of the post-test questionnaire showed that 52% of the students from 

the experimental group preferred the traditional teaching-learning strategy, 26% preferred 

concept mapping and the remaining 22% preferred a combination of the two strategies. Table 

3 is reflecting the data of Section B of the post-test questionnaire dealing with the opinions 

students from the experimental group have about concept mapping as teaching-learning 

strategy. The most prominent difference is between the students who agreed (78%) with the 

statement I enjoy Natural Sciences class when my teacher uses concept mapping to construct 

and link new knowledge to existing knowledge compared to the students who disagree (22%) 

with this statement. 
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Table 3. Opinions about concept mapping as teaching-learning strategy (experimental 

group) 

 SA* A* D* SD* 

I believe that concept mapping is an essential tool in learning 

Natural Sciences content 

13% 31% 52% 4% 

I feel all students can benefit from using concept mapping in 

learning Natural Sciences 

4% 44% 52% 0% 

I am eager to use concept mapping in studying for Natural 

Sciences tests 

22% 26% 43% 9% 

I enjoy Natural Sciences class when my teacher uses concept 

mapping to construct and link new knowledge to existing 

knowledge  

35% 43% 22% 0% 

Using concept mapping as a study strategy when studying 

Natural Sciences, increase my likeliness to achieve well 

academically 

13% 39% 22% 26% 

* SA – Strongly agree, A – Agree, D –Disagree, SD –Strongly disagree 

 

DISCUSSION AND CONCLUSION 

The pre-test questionnaire for both groups indicated that only a few students used the content 

mapping strategy to construct concept maps on their own in class during lessons, while many 

participants used a concept mapping strategy in studying and preparing for exams. Students 

like to know exactly which ideas or knowledge is needed to be learned (Cheema & Mirza, 

2013) and therefore they indicated that they enjoy the strategy where the teacher facilitates 

(during the construction of the map) specific ideas and knowledge of what is needed to be 

known for assessment. Therefore, teachers should consider teaching with concept maps as one 

of their teaching-learning strategies, but using other strategies (investigations, experiments, 

etc.) along with the concept mapping strategy may yield even more beneficial results. 

Having positively responded to concept mapping construction in class by the teacher and 

knowing that students like to know exactly which ideas or knowledge is needed to be learned 

(Cheema & Mirza, 2013), we can perhaps deduce that students enjoy the concept map 

strategy lessons because the teacher facilitates (during the construction of the map) specific 

ideas and knowledge of what is needed to be known out of the text material or lesson. 

According to Willis & Miertschin, 2006) the process of constructing a concept map engages 

the student with the content which is an active learning strategy that can be used during class 

instead of the traditional ‘chalk and talk’ strategy. Taking this into account we can deduce that 

the students responded well due to the active involvement they enjoyed when constructing 

concept maps in class. We can further find this response to be promising in that the students 

are in a place where they are exploring a heuristic strategy of teaching-learning (Novak & 

Gowin, 1984). According to Buldu and Buldu (2010) students prefer improving their learning 

in class to wanting to improve their grade-based achievement. This positive response to group 

map construction and facilitation engages students in an active interaction situation and out of 

the traditional ‘chalk and talk’ environment. 

Yahaya (2010) found that although it is reasonably easy to persuade students that they will 

benefit from new learning skills, since they need to improve, it is more difficult to motivate 
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average students to change their study strategies since they are already ‘getting by’ with 

techniques they use. This could be seen in the response to not being eager to use concept 

mapping in studying for Natural Sciences tests, but then a majority responded that they 

believe using concept mapping as a study strategy when studying Natural Sciences, increased 

their likeliness to achieve well academically. They need time and practice in class before they 

can master the skill to confidently construct a concept map alone.  

This study would have bided well with a larger selection group such as all Grade 8 classes in 

the school participating in the study. Random selection of the participants in the groups would 

strengthen statistical results and may ensure proper selection for experimental and control 

groups, where students in the control group have zero to a minimum conversance with 

concept mapping.  
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Abstract: Understanding the basic concepts of electricity represents a major challenge to most 

pupils in secondary science education. In particular, most learners do not succeed in 

developing an adequate understanding of “voltage”. Instead, students usually reason 

exclusively with current and resistance and often see voltage as a property or component of an 

electric current. According to the current state of research in physics education, the 

introduction of voltage as a potential difference can be considered to be very promising. By 

equating the electric potential with the electron gas pressure inside a wire, the electron gas 

model seeks to build on these research findings and give students a qualitative but robust 

conception of the electric potential. Similarly to DiSessa (1993), the idea is to achieve 

conceptual change by building on students’ prior knowledge regarding air pressure. In the 

electron gas model, voltage as potential difference is hence understood as an electric pressure 

difference across a resistor in the electric circuit that is as much the cause for an electric 

current as air pressure differences are the cause for an air flow. In a first step, the electron gas 

model was tested and evaluated in one-to-one teaching interviews with nine grammar school 

pupils in year 6 who never had a physics lesson before. It was found that the electron gas 

model including its underlying concepts such as the air pressure analogy was widely accepted 

and understood by the students. In particular, pupils could easily link their everyday 

experiences with air pressure (e.g. air pumps, syringes and bicycle tires) to the concept of 

electric pressure and subsequently developed an intuitive understanding of voltage as a 

pressure difference and cause of an electric current. This paper presents key findings from the 

teaching interviews and gives a short introduction to the main ideas of the subsequently 

developed teaching concept.  

 

Keywords: conceptual understanding, teaching concept, electricity, potential, voltage 

 

 

INTRODUCTION 

Despite several years of science education, many students leave secondary school without 

having developed an adequate understanding of the basic physical concepts of electric 

circuits. Voltage in particular seems to represent a major challenge to most pupils in 

secondary school science as it is often seen as a property or component of an electric current 

rather than an independent physical quantity (Rhöneck, 1986). As the electric current seems to 

dominate students’ understanding of electric circuits, they often fail to realise that voltage is 

not a property of the electric current, but the cause of it. While textbooks historically 

introduced electricity based on the concepts of electric potential and potential difference, 

explanations of electricity in textbooks nowadays mainly relate to the concepts of current and 

voltage. This seems rather odd as voltage by definition refers to a potential difference and one 

would therefore assume that any deeper understanding of the concept of voltage presupposes 

an understanding of the electric potential (Herrmann & Schmälzle, 1984, p.477). Research in 

physics education seems to back this view as it suggests that today’s approach to teaching 

electricity with its focus on current and sometimes voltage rather than potential difference 

unnecessarily hampers a deeper understanding of electric circuits. The introduction of 
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electricity based on potential differences, however, can be considered to be very promising 

according to numerous research findings (Schumacher & Wiesner, 1997; Gleixner, 1998; 

Clement & Steinberg, 2002, p.417). Examples of such approaches include the “flat water 

circuit analogy with a double water column” as shown in Figure 1 (Schwedes, Dudeck & 

Seibel, 1995, p.35) and the “stick model” developed in Munich (Gleixner, 1998) as illustrated 

in Figure 2. In both teaching concepts, the visual representation of the potential has proven to 

be an important factor for the learning success as it facilitates the build-up of a mental model 

of the electric potential (Schwedes, Dudeck & Seibel, 1995, p.35; Gleixner 1998, p.70).  

 

 

 

 

Figure 1. The flat water circuit analogy with a 

double water column visualises the potential 

difference using water columns.  

Figure 2. In the stick model, the electric potential is 

visualised by sticks with different heights. 

 

THE ELECTRON GAS MODEL 

Against the background that students usually reason exclusively with current and resistance 

while failing to develop and adequate understanding of voltage (Rhöneck, 1986), the 

objective of the electron gas model is to give students a qualitative but robust conception of 

the electric potential in order to enable them to effectively analyse electric circuits. Similarly 

to DiSessa (1993), the electron gas model seeks to achieve conceptual change by building on 

students’ prior knowledge, in this case their intuitive air pressure concept as a qualitative, 

low-abstraction prototype of the electric potential in conducting wires. It is important to note 

that we are not talking about the physical pressure concept in the technical sense of a state 

variable here, but an intuitive prototype concept of “pressure” in the sense that compressed air 

tries to push itself out of a container, e.g. based on everyday life experiences with air pumps, 

bicycle tires or air mattresses.  

As a first step, it is hence discussed that air always flows from areas of high pressure to areas 

of low pressure and that air pressure differences are the causal reason for an air flow in the 

first place. A dense fabric cushion impeding the air flow is then used in order to prepare 

students for the idea of electric resistors. Air pressure hence corresponds to the electric 

potential, air pressure difference to voltage, air flow to current and a dense fabric cushion 

impeding the air flow to an electric resistor.  

As a next step, the electron gas model proposes that electrons are always present in every wire 

in the form of tiny, freely mobile particles. These electrons form a compressible electron gas 

that spreads evenly across a wire as the electrons are negatively charged and therefore repel 

each other. The battery’s role in an electric circuit is to maintain a certain electron density in 

the wires directly attached to its terminals. A high electron density in the wire attached to the 

negative terminal corresponds to a high electric pressure and thus high electric potential. A 
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low electron density in the wire attached to the positive terminal on the other hand 

corresponds to a low electric pressure and thus a low electric potential. In the electron gas 

model, voltage as potential difference can hence be understood as an electric pressure 

difference across a resistor that is as much the cause for an electric current as air pressure 

differences are the cause for air flow.  

 

 

Figure 3. Electric pressure difference (=voltage) across a light bulb in a simple electric circuit. 
 

A big advantage of the electron gas model is that it is based on everyday experiences with 

pressure in compressed air and hence only requires an intuitive air pressure concept. In 

contrast, water is often perceived as an incompressible fluid by learners, which makes it 

difficult for them to develop an adequate pressure concept necessary to understand the 

popular closed water circuit analogy. In the electron gas model, on the other hand, the 

proportional relationship between electron density and electric pressure is clear to most 

students and can also be easily visualised in established circuit diagrams. The use of an 

external model thus becomes unnecessary, which reduces the students’ cognitive load and 

avoids potential transfer problems (cf. Kircher, 1984).  

Contrary to popular belief, different parts of an electric circuit are indeed differently charged 

as suggested by the electron gas model. The slight differences are a result of surface charges, 

which make the electric field that drives the homogeneously distributed conduction electrons 

inside the wire (Walz, 1985). The reason why most people have never heard of surface 

charges in this context is that the amount of surface charges is almost negligible compared to 

the amount of conduction electrons inside the wire (Muckenfuß & Walz, 1997). However, at 

around 10,000 volts it is possible to detect the electrostatic effects of surface charges in a 

simple electric circuit as described in Chabay & Sherwood (2011). For a more thorough 

discussion of the physical background of the electron gas model, please refer to Burde et al. 

(2014).  
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KEY FINDINGS FROM THE TEACHING INTERVIEWS 

In contrast to Clement & Steinberg (2002), a lot of effort was put in finding an intuitive 

visualisation of the electron gas model given the importance of visual representations for the 

build-up of a robust conception of the electric potential. A first draft of a teaching concept 

based on the electron gas model hence contained four different representations (see Figure 4) 

and was evaluated in one-to-one teaching interviews with nine grammar school pupils in year 

6, who never had a physics lesson before. Each teaching interview was about two hours long.  
 

 

Figure 4. Different visual representations of the electric potential in the electron gas model.  

Most favoured by the pupils was the dot-density representation closely followed by the colour 

representation, whereas the greyscale representation and the representation using plus-and-

minus-symbols were considered to be least helpful. However, when asked to draw in the 

electric potential themselves, most pupils used the colour representation rather than the dot-

density representation as colour coding proved to be far more practical than drawing hundreds 

of dots in a circuit diagram. Apparently, the students had no difficulty in switching between 

the dot-density and the colour representation.  

More importantly, however, the electron gas model and its underlying concepts such as the air 

pressure analogy and the idea of mutually repelling electrons in wires were widely accepted 

and understood by the students in the first part of the teaching interview. In particular, pupils 

could easily link their everyday experiences with air pressure (e.g. with air pumps, syringes 

and bicycle tires) to the concept of electric pressure in a wire and subsequently developed an 

intuitive understanding of voltage as a pressure difference and cause of an electric current. 

Given that most learners do not succeed in developing an adequate understanding of “voltage” 

in traditional teaching concepts, this can be considered to be a very promising result.  

The second part of the teaching interview was aimed at discovering potential learning 

difficulties that might occur in a teaching concept based on the electron gas model. While the 

basic ideas of the electron gas model itself proved to be relatively easy to understand, a 

number of new as well as known misconceptions particularly in regard to batteries and 

resistors could be identified. A battery was often seen by pupils as a source of constant current 

rather than constant voltage which led to a number of learning difficulties regarding the 

current and electric pressure in electric circuits. For example, pupils failed to realise that a 

battery maintains a certain electric pressure in the wires attached to its terminals and thought 

instead that the electric pressure in these wires depended on their length or physical size or the 

resistor used in the electric circuit (see Fig.5). Other students thought that in a parallel circuit, 

all areas of equal electric pressure had to have the same electric current. In other words, they 

could not distinguish clearly between the electric pressure concept and the electric current. 

Many students also held the widespread misconception that a battery stores electrons like an 

oil barrel and that these electrons leave the battery at one terminal and flow through the 

different circuit elements one after another – a misconception commonly referred to as 

sequential reasoning (Closset, 1984), which also prevents students from viewing an electric 

circuit as a system. Resistors also caused a number of learning difficulties, e.g. pupils 
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confused the resistance value with the physical size of a resistor or even thought that a resistor 

would consume the electrons flowing through it.  
 

 

Figure 5. New misconceptions: The electric pressure decreases if the length of the wire is increased, 

e.g. by connecting a light bulb in parallel, since the electrons then have more space to spread out 

(left). If the resistance is increased, the electrons “pile up” in front of the resistor, which makes the 

electric pressure difference increase (right).  

 

THE TEACHING CONCEPT 

Based on the findings of the teaching interviews and the observed learning difficulties in 

particular, a teaching concept including appropriate teaching resources was developed. The 

main objective of the teaching concept is to give students a qualitative but robust conception 

of the physical quantities “voltage”, “current” and “resistance”. In contrast to other teaching 

concepts, a lot of emphasis is initially placed on helping students develop an intuitive 

understanding of the electric potential as an “electric pressure” in order to then introduce 

voltage as an electric pressure difference that drives the electric current through resistors. In 

order to give students an adequate conception of “electric pressure”, the teaching concept 

starts with a brief discussion of electrostatics and air pressure.  
 

Electrostatics 

In a brief introduction to electrostatics, students learn that conductors, such as metals, can be 

negatively or positively charged and that two oppositely-charged objects attract each other 

while two objects with the like charge repel each other. Furthermore, they learn that the 

reason why objects are electrically charged is a lack or an excess of electrons, which can 

almost move freely in metals like copper while the atomic core remains stationary.  
 

Pressure differences cause air flows 

Based on the students’ everyday experiences e.g. with air-pumps and air mattresses, it is then 

discussed that an air flow is always the result of a pressure difference and that it is absolutely 

necessary to differentiate between pressure and pressure difference. By blowing air through a 

scarf or a towel, students then learn that the thicker a piece of cloth is, the more it obstructs 

the air flow in order to prepare students for the concept of electrical resistance.  

Situation A Situation B Situation C 

   

No piece of cloth is impeding the 

air flow. 

A thin piece of cloth is impeding 

the air flow. 

A thick piece of cloth is strongly 

impeding the air flow. 

Figure 6. Pressure differences are the causal reason for air flow while a piece of cloth impedes air flow.  
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Battery, electric pressure and voltage 

In this unit, the idea of pressure differences as the driving force for an air flow is transferred 

to electric circuits. Based on the idea that electrons can move just as freely in the wire as air 

particles can move in a tube, it is postulated that a battery causes a high electric pressure in 

the wires attached to the negative terminal and a low electric pressure in the wires attached to 

the positive terminal. This electric pressure is initially visualised using the same dot-density 

representation used to illustrate air pressure, but is then swapped for the colour representation 

since colour coding has proven to be far more practical in real lessons and draws the students’ 

attention to the electric pressure instead of the electric current. At the example of various open 

electric circuits, it is then emphasised that pressure and pressure difference are two different 

concepts and that the electric pressure in conductors is determined solely by the battery 

terminals and is not dependent on the length or size of the conductor. Similarly to weather 

maps, the potential is visualised using different colours: the more intense the red, the higher 

the electric pressure and the more intense the blue, the lower the electric pressure.  
 

 

 

 

 

Figure 7. Dot-density representation (left) and colour coding (right) of the electric pressure (potential).  
 

The electric current and resistance 

After the concept of electric pressure has been established at the example of open circuits, 

electric pressure differences – in analogy to air pressure differences – are now introduced as 

the causal reason for electric currents in closed circuits. For this purpose, it is argued at the 

example of a simple electric circuit consisting of a battery and a light bulb that the electric 

pressure difference across the light bulb drives the electrons through the bulb, which 

subsequently lights up. For each electron flowing through the light bulb from high electric 

pressure to low electric pressure, the battery moves an electron from its positive to its 

negative terminal. As a result, the battery maintains the same electric pressure difference in 

the attached wires and hence also the across light bulb.  

Similarly to the dense fabric cushion impeding the air flow, electrical resistance is initially 

introduced by simply stating that the higher the resistance, the more “difficult” it is for the 

electrons to move through the light bulb. A more in-depth explanation of electrical resistance 

referring to the collision of electrons with atomic nuclei is given at a later point. The effect of 

voltage and resistance on current is then discussed in order to work out the semi-

quantitatively relationships “the higher the electric pressure difference across the bulb, the 

higher the electric current” and “the higher the resistance, the lower the electric current”. The 

objective here is to give the students a semi-quantitatively understanding of the cause-effect 

relationships in electric circuits.  

Excess of electrons  

= high electric pressure 

Lack of electrons  

= low electric pressure 

Strand 1 Learning science: Conceptual understanding

31



Semi-quantitative relationship between voltage and current 

  
The higher the voltage (electric pressure difference), the higher the current. 

___________________________________________________________________________ 

Semi-quantitative relationship between resistance and current 

  
The higher the resistance, the harder it is for electrons to pass through the light bulb and the smaller is hence 

the current.  

Figure 8. Semi-quantitative relationship between current, voltage and resistance. 

 

Parallel circuits 

Parallel circuits can be easily understood using the electron gas model. Furthermore, they 

provide an excellent learning opportunity for students to help them distinguish clearly 

between the electric pressure concept and the electric current. As a first step, students have to 

learn that an (ideal) battery maintains the same electric pressure in the wires attached to its 

terminals at all times. In order to then analyse the electric current in a parallel circuit, students 

simply have to look at the electric pressure differences at the light bulbs and their resistance. 

As shown in Figure 9, the electric current through the two light bulbs with a low resistance on 

the left is 2 A while it is 1 A through the light bulb on the right, which has a higher resistance. 

The individual branch currents, which are a result of the electric pressure differences across 

the light bulbs, then sum up at each node of the parallel circuit.  

In other words, the total current which the battery needs to supply, is directly determined by 

the branch currents, which are in turn determined by the pressure differences at and resistance 

of the light bulbs. Another advantage of colour coding lies in the fact that it makes it 

extremely easy for students to identify blubs in parallel: If two bulbs have the same adjacent 

colours, they are connected in parallel.  
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Figure 9. Parallel circuit with three light bulbs. The right bulb has a higher resistance than the other 

two. 
 

Capacitors 

By analysing capacitor charging and discharging, students are introduced to the concept of 

transient states and dynamic model thinking in order to prepare them for the analysis of series 

circuits. The idea behind transient states is that it takes some time for the electric pressure to 

reach a steady state in the whole circuit and that the steady state is only achieved gradually 

over so-called transient states. At the example of Figure 10, this can easily be explained.  

 

Figure 10. Transient state during capacitor charging. 

 

Initially, we have a high electric pressure in section A and a low electric pressure in section C 

while we still have a normal electric pressure in section B and D. The reason is that no 

electron has flown through the light bulbs yet – they have only just started moving, which is 

why the bulbs are lit. During the transient state, electrons now flow from section A to section 

B (high electric pressure to normal electric pressure) and as a consequence the electric 

pressure in section B increases. At the same time, electrons flow from section D to section C 

(normal electric pressure to low electric pressure) and as a consequence the electric pressure 

in section D decreases. After the transient state of capacitor charging, the capacitor reaches 

the steady state, where the electric pressures on each side of the light bulbs have become 

aligned. Discussing capacitor charging and discharging can also help students overcome a 

number of common misconception, e.g. the belief that there are initially no electrons in wires, 

that the battery stores electrons as an oil barrel stores oil and that the electric current simply 

leaves the battery at the negative terminal in order to flow through the circuit step by step 

(“sequential reasoning”).  
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Series circuits 

Using the concept of transient states, a series circuit of a light bulb with a high resistance and 

a light bulb with a low resistance shall now be analysed step by step. Initially, when the 

battery is not yet connected, we have a normal electric pressure in all parts of the wire 

(yellow). Once the battery is connected, we have a high electric pressure in the top wire (red) 

and a low electric pressure in the bottom wire (blue). In the middle wire, we still have a 

normal electric pressure (yellow) since no electrons have flown through the light bulbs yet 

(transient state). At this point, we have the same electric pressure difference (=voltage) across 

both light bulbs, but since the top light bulb has a higher resistance than the bottom light bulb, 

fewer electrons flow into the middle wire than out of it. As a result, the electric pressure in the 

middle wire decreases so that the electric pressure difference increases at the top bulb and 

decreases at the bottom bulb. This makes the electron flow rates through the top and bottom 

bulbs more and more equal until they are identical. This state is called the steady state since 

both the electric pressure in the wires and the electric current in the circuit do not change any 

further.  
 

         Initial state       Transient state         Steady state 

   

Figure 11. Step by step analysis of a series circuit with two different light bulbs. 

 

Ohm’s Law and quantitative measurements 

After a qualitative understanding of the basic concepts “voltage”, “current” and “resistance” 

has been established, students then learn about the quantitative relationship between these 

physical quantities using the definition of resistance R := V / I. For this purpose, the voltmeter 

and ammeter are introduced as measuring instruments and visualised as illustrated in Figure 

12. In order to determine the pressure difference, the voltmeter is equipped with two “sensor 

cables”, which measure the electric pressure before and after a resistor. By not colouring in 

these “sensor cables”, it is clearly visualised that they are part of an external measuring 

instrument and – at least at this stage – not part of the actual electric circuit. As can also be 

seen in Figure 12, the wide “electron tubes” that have so far been used to illustrate wires, are 

now dropped for conventional circuit diagrams.  
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Figure 12. Illustration of voltmeters and ammeters in a simple circuit. 

In the teaching concept, Ohm’s law is treated as an exception rather than the rule since most 

resistors do not have a fixed resistance value. Since the students are already familiar with the 

qualitative relationship between the physical quantities “voltage”, “current” and “resistance”, 

the known qualitative relationship is transformed into a quantitative relationship as a last step 

of the teaching concept.  
 

Qualitative relationship Quantitative relationship 

 

 
 

 

𝑰 =  
𝑽

𝑹
 

Figure 13. Transition from a qualitative to a quantitative relationship of the physical quantities 

current, voltage and resistance. 
 

CONCLUSION AND OUTLOOK 

In summary it can be said that the electron gas model has proven to be a promising approach 

to teaching electricity in secondary schools. The conducted teaching interviews show that 

students generally accept and understand all basic concepts and ideas behind the teaching 

concept and develop a solid understanding of “voltage” as an electric pressure difference that 

makes the electrons flow through light bulbs. This is a particularly promising result given the 

relatively short time frame for the teaching interviews and that many students fail to develop 

an adequate concept of “voltage” in traditional teaching concepts.  

Based on the findings of the teaching interviews, a teaching concept including various 

resources for teachers and students was developed and is currently being evaluated in the 

classroom. Using a pre- and post-test design, it is planned to compare the learning progress of 

traditionally taught classes with physics classes that were taught using the new teaching 

concept. The learning progress is measured using Urban-Woldron’s valid and reliable 

electricity test (cf. Urban-Woldron, 2013). Furthermore, it is planned to conduct a survey with 

some of the 25 teachers around Frankfurt who have agreed to participate in our study in order 

to get some qualitative feedback on their experiences with the new teaching concept.  
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Abstract: In this contribution we discuss the application of a quantitative, non-hierarchical 

clustering method to make sense of the answers that 120 engineering undergraduates students 

at the University of Palermo, Italy, gave to four open-ended questions on the meaning of the 

modeling processes in Science. We will show that the use of non-hierarchical analysis allows 

us to easily separate students into groups that can be recognized and characterized by 

common traits in students’ answers without any prior knowledge on the part of the researcher 

of what form those groups would take (unbiased classification). 

Keywords: Cluster Analysis; Physics Education Research; Modeling 

 

INTRODUCTION 

Extensive qualitative research involving open answer questionnaires has provided 

instructors/teachers with tools to investigate their students’ conceptual knowledge of various 

fields of physics. Some of these studies examined the consistency of students’ answers in a 

variety of situations. Others looked at problems where the underlying physical systems are 

similar from the point of view of an expert. In recent years, some papers have tried to develop 

more detailed models of the consistency of students’ reasoning, or to subdivide a sample of 

students into intellectually similar subgroups. Bao and Redish (2006) introduced model 

analysis as a framework for exploring the structure of the consistency of the application of 

student knowledge, by separating a group of students into intellectually similar subgroups. 

The problem of taking a set of data and separating it into subgroups where the elements of 

each subgroup are more similar to each other than they are to elements not in the subgroup 

has been extensively studied through the statistical method of Cluster Analysis (ClA). ClA 

can separate students into groups that can be recognized and characterized by common traits 

in their answers, without any prior knowledge of what form those groups would take 

(unbiased classification).ClA, introduced in Psychology by R.C. Tyron in 1939, has been the 

subject of research since the beginning of the 1960s, with its first systematic use by Sokal e 

Sneath in 1963. The application of techniques related to ClA is common in many fields, 

including Information Technology, Biology, Medicine, Archeology, Econophysics and 

Market Research. For example, in market research it is important to classify the key elements 

of the decision-making processes of business strategies as the characteristics, needs and 

behavior of buyers. These techniques allow the researcher to locate subsets or clusters within 

a set of objects of any nature. These have a strong tendency to be homogeneous “in some 

sense”. The results of the analysis should reveal a high homogeneity within the group (intra-

cluster), and high heterogeneity between groups (inter-clusters), in line with the criteria 

chosen. 

In the literature concerning research in education, some studies using ClA methods are found. 

They group and characterize student responses by using open-ended questionnaires 

(Wittmann & Scherr, 2002; Fazio et al., 2012; Fazio et al., 2013) or multiple-choice tests 

(Ding & Beichner, 2009). A recent paper (Stewart et al., 2012) analyses the evolution of 

student responses to seven contextually different versions of two Force Concept Inventory 

questions, by using a model analysis for the state of student knowledge and ClA methods to 
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characterize the distribution of students’ answers. This paper shows that ClA methods are an 

effective way to examine the structure of student understanding and can produce significant 

subgroups of a data sample. The authors conclude that the ClA method is an effective 

mechanism for extracting the underlying subgroups in student data and that additional insight 

may be gained from a careful, qualitative analysis of clustering results. In fact, each cluster is 

characterized by means of a careful reading of the typical trends in the answers of the 

individuals that are part of the cluster. It is well known that there are inherent difficulties in 

the classification of student responses in the studies mainly involving open-ended 

questionnaires. In fact, the problem of quantifying qualitative data has been widely discussed 

in the literature for many years (Green, 2001), and it has been pointed out that, very often, a 

small or even unconscious researcher bias means that the categories picked out tend to find 

those groups of students that the researcher is already looking for. A recent paper (Hammer & 

Berland, 2014) points out that researchers “should not treat coding results as data but rather as 

tabulations of claims about data and that it is important to discuss the rates and substance of 

disagreements among coders” and proposes guidelines for the presentation of research that 

quantifies qualitative data. Another paper (Chi, 1997) discussed the need to describe the 

process of developing a coding scheme, by outlining that in the process of quantifying 

qualitative data, data means the qualitative records supplied by students and not the result of 

the coding scheme. If we call these records “raw data” we have to take into account that the 

data being quantitatively analyzed, which is obtained through the process of data reduction 

(Hammer & Berland, 2014) contained in the coding scheme, is biased by the subjective 

interpretation of researchers. It is important for this to be taken into account in the 

interpretation of the results of the subsequent quantitative analysis. 

In this paper we start from a description of the data coding needed in ClA, in order to discuss 

the meanings and the limits of the interpretation of quantitative results. Then a method 

commonly used in ClA is described and the variables and parameters involved are outlined 

and criticized. The application of this method to the analysis of data from an open-ended 

questionnaire administered to a sample of university students and the related quantitative 

results is presented. In the last section we discuss the meaning of our results for the physics 

education researcher and outline some points of strength and limits. 

 

METHODS 

Data setting 
Research in education that uses open-ended questions and is aimed at quantifying qualitative 

data usually involves the development of coding procedures. This requires an accurate 

reading of student answers in order to reveal (and then examine) patterns and trends, and to 

find common themes emerging from them. These themes are then developed in a number of 

categories, which can be considered the typical “answering strategies” put into action by the 

N students tackling the questionnaire items. Therefore, it is possible to summarize the whole 

set of answers given to the questionnaire into a limited number, M, of answering strategies, 

making the subsequent analysis easier. Through coding and categorization we produce a set of 

M data (the answering strategies) for each of the sample subjects (the N students doing the 

questionnaire). As a consequence, each subject, i, can be identified by an array, ai, composed 

of M components 1 and 0, where 1 means that the subject used a given answering strategy to 

respond to an item, and 0 means that he/she did not use it. Then, a M x N binary matrix (the 

“matrix of answers”) modeled on the one shown in Table 1, is built. The columns in it show 

the N student arrays, ai, and the rows represent the M components of each array, i.e. the M 

answering strategies. 
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Table 1. Matrix of data: the N students are indicated as S1, S2, …,SN., and the M 

answering strategies as AS1, AS2, …, ASM. 

Strategy Student 

 S1 S2 … SN 

AS1 1 0 … 0 

AS2 1 0 … 1 

… 0 … … … 

ASM 0 1 … 0 

For example, let us say that student S1 used answering strategies AS1, AS2 and AS5 to respond 

to the questionnaire questions. Therefore, S1 column in Table 1 will contain the binary digit 1 

in the three cells corresponding to these strategies, while all the other cells will be filled with 

0.The matrix depicted in Table 1 contains all the information to describe the sample behavior 

with respect to the questionnaire items. However, it needs some elaboration in order to make 

this information understandable. ClA classifies subset behaviors in different groups (the 

clusters). These groups can be analyzed in order to deduce their distinctive characteristics and 

point out similarities and differences among them. ClA requires the definition of new 

quantities that are used to build the grouping, like the “similarity” or “distance” indexes. 

These indexes are defined by starting from the M x N binary matrix discussed above.In the 

literature the similarity between two elementsi and j of the sample is often expressed by 

taking into account the distance, dij, between them (which actually expresses their 

“dissimilarity”, in the sense that a higher value of distance involves a lower similarity). The 

distance index can be defined by starting from the Pearson’s correlation coefficient. It allows 

the researcher to study the correlation between elementsi and j if the related variables 

describing them are numerical. If these variables are non-numerical variables (as in our case, 

where we are dealing with the arrays ai and aj containing the binary coding of the answers of 

elementsi and j, respectively), we propose a modified form of the Pearson’s correlation 

coefficient, Rmod, similar to that defined by Tumminello et al. (2011) as, 

                                 

 
 

   

   
   
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i j
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p a a

MR a a
M p aM p a

p a p a
M M

 


  
         ( 1 ) 

where p(ai) and p(aj) are the number of properties of ai  and aj explicitly present in our 

elements (i.e. the numbers of 1's in the arrays ai and aj, respectively), M is the total number of 

properties to study (in our case, the possible answering strategies) and p(aiaj) is the number 

of properties common to both elements, i and j (the common number of 1's in the arrays ai and 

aj). By following eq. (1) it is possible to find for each student, i, the N-1 correlation 

coefficients Rmod between him/her and the others students (and the correlation coefficient with 

him/herself, that is, clearly, 1). All these correlation coefficients can be placed in a N x N 

matrix that contains the information we need to discuss the mutual relationships between our 

students. The similarity between subjects i and j can be defined by choosing a type of metric 

to calculate the distance dij. Such a choice is often complex and depends on many factors. If 

we want two subjects, represented by arrays ai and aj and negatively correlated, to be more 

dissimilar than two positively correlated subjects (as is often advisable in research in 

education), a possible definition of the distance between ai and aj, making use of the modified 

correlation coefficient, Rmod(ai, aj), is: 

                                                  
  mod2 1 ,ij i jd R a a 

                ( 2 ) 
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This function defines a Euclidean metric (Gower, 1966), which is required in order to use it 

for the following calculations. A distance dij between two students equal to zero means that 

they are completely similar, while a distance dij = 2 shows that the students are completely 

dissimilar. By following eq. (2) we can, then build a new N x N matrix , D, containing all the 

utual distances between the students. The main diagonal of D is composed by 0s (the distance 

between a student and him/herself is zero). Moreover,  D  is symmetrical with respect to the 

main diagonal. 

 

Clustering technique 

In this paper we use a technique known as Non-Hierarchical Clustering (NH-ClA), that 

basically allows us to partition the data space into a structure known as a Voronoi diagram (a 

number of regions including subsets of similar data). Among the many NH-ClA algorithms, 

we use here the k-means, which was first proposed by MacQueen (MacQueen, 1967). In this 

method, the final result is a bi-dimensional Cartesian plane containing points that represent 

the students of the sample placed in the graph according to their mutual distances. As said 

before, for each student, i, we know N distances. It is, then, necessary to define a procedure to 

find two Cartesian coordinates for each student, starting from these N distances. This 

procedure consists in a linear transformation between a N-dimensional vector  space and a 2-

dimensional one and it is well known in the specialized literature as multidimensional scaling 

(Borg & Groenen, 1997). The starting point is the choice of the number of clusters one wants 

to populate and of an equal number of “seed points”, randomly selected in the bi-dimensional 

Cartesian plane representing the data. The subjects are then grouped on the basis of the 

minimum distance between them and the seed points. Starting from an initial classification, 

subjects are transferred from one cluster to another or swapped with subjects from other 

clusters, until no further improvement can be made. The subjects belonging to a given cluster 

are used to find a new point, representing the average position of their spatial distribution. 

This is done for each cluster and the resulting points are called the cluster centroids. This 

process is repeated and ends when the new centroids coincide with the old ones. The spatial 

distribution of the set elements is represented in a two-dimensional Euclidean space, creating 

what is known as the k-means graph (see Figure 2). 

NH-ClA has some points of weakness and here we will describe how it is possible to 

overcome them. The first involves the a-priori choice of the initial positions of the centroids. 

This can usually be resolved by repeating the clustering procedure for several values of the 

initial conditions and selecting those that lead to the minimum values of the distances between 

each centroid and the cluster elements. Furthermore, at the beginning of the procedure, it is 

necessary to arbitrarily define the number of clusters. A method widely used to decide if the 

number of clusters, q, initially used to perform the calculations is the one that best fits the 

sample element distribution is the calculation of the so-called Silhouette Function, S. 

(Rouseeuw, 1987).  

Several values of the function S are calculated once a value of the number of clusters, q, is 

fixed:  

 the individual value, Sk,i(q), with k=1, 2,..q, for each student, i, of the sample. It gives a 

measure of how similar student iis to the other students in its own cluster Clk, when 

compared to students in other clusters. It ranges from -1 to +1; a value near +1 indicates 

that student i is well-matched to its own cluster, and poorly-matched to neighboring 

clusters. If most students have a high silhouette value, then the clustering solution is 

appropriate. If many students have a low or negative silhouette value, then the clustering 

solution could have either too many or too few clusters (i.e. the chosen number, q, of 

clusters should be modified). 

 The average silhouette value in cluster Clk, < Sk(q)>, with k=1, 2,..q. It gives the average 

value of Sk,i(q), calculated on all the students belonging to cluster Clk  and it is  a measure 
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of the density of the cluster. Large values of  < Sk(q)>  are to be related to cluster 

elements being tightly arranged in the cluster k, and vice versa (Rouseeuw, 1987).  

 The total average silhouette value, < S(q)> for the chosen partition in q clusters. It  gives 

the average value of Sk,i(q), calculated on all the students belonging to the sample. Large 

values of < S(q)> are to be related to well defined clusters (Rouseeuw, 1987). It is, 

therefore, possible to perform several repetitions of the cluster calculations (with different 

values of q) and to choose the number of clusters, q, that gives the maximum value of 

<S(q)>. 

Once the appropriate partition of data in q clusters  Clk (with k = 1,..q) has been obtained, as 

well as  their related centroids, Ck, (i.e. the coordinates in the 2-dimensional space of the q 

points that represent the average positions of the cluster spatial distributions), it is possible to 

transform such coordinates in terms of the same variables that represent the students in the 

plane. In particular, for each centroid, Ck, we find an array bk with the same number M of 

components of the array, ai, that identifies a generic real student i, (i.e. the number M of 

answering strategies to the questionnaire) and composed, as ai, by 0 and 1 values.  bk  can be 

considered as the array representing a virtual student in cluster Clk. By  considering the 

meaning of cluster Clk  centroid, we could use the answering strategies contained in array bk 

to make sense of the features of the clusterreal students. 

A remarkable feature of array bk, that can validate our idea to use the centroid to characterize 

the features of the cluster Clk real students, is that it contains 1 values exactly in 

correspondence to the answering strategies most frequently given by students belonging to 

Clk. In fact, since a centroid is defined as the geometric point that minimizes the sum of the 

distances between it and all the cluster elements, by minimizing this sum the correlation 

coefficients between the cluster elements and the centroid are maximized and this happens 

when each centroid has the largest number of common strategies with all the students that are 

part of its cluster. 

It is worth noting that if some answering strategies are only slightly more frequent than the 

other ones all those with similar frequencies should be also considered. In order to analyze 

how well each centroid characterizes its own cluster Clk, we propose a coefficient, rk, defined 

as the centroid reliability, that relates the cluster density to its dimension. It is calculated as 

follows: 

( ) 1

1 ( )

k
k

k k

S q
r

S q n

 


  
      (3) 

where nk  is the number of students contained in cluster Clk  and < Sk(q)> is the average value 

of the S-function on the same cluster. High values of rk indicate that the centroid characterizes 

well the cluster, as this happens for dense clusters or for clusters with a low number of 

students. In fact, considering two equally dense clusters, the one with a lower number of 

students involves smaller cluster dimensions, i.e. a lower variability of student properties. 

 

Example of quantitative study 

In this section we analyze the answer strategies to an open-ended questionnaire supplied by a 

sample of university students, using the techniques discussed above. 

 

The questionnaire and the sample 

The questionnaire is made up of four-items that focus on an understanding of the modeling 

concept (see Appendix). They are part of a more complex questionnaire, which has already 

been used, in previous research (Fazio et al., 2012). The selected four items refer to: I) the 

definition of a physics model, II) the subjects’ beliefs about the representational modes of 
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physics models, III) the main characteristics of models and IV) the student's beliefs about the 

modeling process. The questionnaire was administered to 124 freshmen of the Information 

Technology and Telecommunications Engineering Degree Course at the University of 

Palermo, during the first semester of the academic year 2013/2014. The students were given 

the questionnaire during the first lesson of general physics, before any discussion on the 

model concept had started. 

 

Categorization of student answers 

After the questionnaire had been submitted to our student sample, three researchers 

independently read the students’ answers in order to identify the main characteristics of the 

different student records (the raw data). Then, they agreed to construct a coding scheme 

through the identification of keywords that were relevant for an understanding of these 

records. During the first meeting, the selected keywords were compared and contrasted, and 

then grouped into categories based on epistemological and linguistic similarities (for example, 

students that defined models as simple phenomena or experiments or reproductions of an 

object on a small scale have been put on the same category since the three definitions have 

been intended as giving a ontological reality to models.). These categories were also re-

analyzed through the researchers’ interactions with the data, and taking into account the 

existing literature about models and modeling (Grosslight et al., 1991; Van Driel & Verloop, 

1999, Treagust et al., 2002; Pluta et al., 2011). As a third step, the researchers read the student 

records again and applied the new coding scheme, by assigning each student to a given 

category for each question. Given the inevitable subjectivity of the researchers’ 

interpretations, the three lists were compared and contrasted in order to get to single agreed 

list. The inter-rater reliability of the analysis was good. Discordances between researcher lists 

were usually a consequence of the different personal decisions of the researchers to divide the 

student answers into a more or less restricted number of typologies. In some cases, 

discordances were due to different researcher interpretations of student statements. This 

happened 14 times when comparing tables of researchers 1 and 2, 9 times for researchers 2 

and 3, and 12 times for researchers 1 and 3. Hence we obtained very good percentages of 

accordance (97%, or higher) between the analysis tables of each researcher pair. When a 

consensus was not obtained, the student answer was classified in the category “statement not 

understandable”. 

It is worth noting that very often the researchers’ discussions while assigning each student to 

a given category produced a more refined definition of these categories. The complete list of 

20 categories shared by researchers with respect to the four questions can be seen in 

Appendix A. As a result of the coding and categorization, we obtain a matrix like the one 

depicted in Table 1, where N = 124 and M = 20. This matrix of data represents a set of 

properties (the categories to which student answers have been assigned) for each subject (the 

student being analyzed).  

 

RESULTS 

All the clustering calculations were made using a custom software, written in C language. The 

graphical representations of clusters in both cases were obtained using the well-known 

MATLAB software. 

In order to define the number q of clusters that best partitions our sample, the mean value of 

S-function, <S(q)>, has been calculated for different numbers of clusters, from 2 to 10 (see 

Figure 1). The figure shows that the best partition of our sample is achieved by choosing four 

clusters, where <S(q)> has its maximum. The obtained value <S(4)> = 0.62 indicates that a 

reasonable cluster structure has been found (Struyf et al., 1997). 
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Figure 1. Average Silhouette values for different cluster partitions of our sample. 

 

Figure 2 shows the representation of this partition in a 2-dimensional graph. The four clusters 

show a partition of our sample into groups made up of different numbers of students (see 

Table 2) 

 

Figure 2. K-means graph. Each point in this Cartesian plane represents a student. Points 

labeled C1, C2, C3, C4 are the centroids. 

 

The four clusters Clk (k=1,…,4) can be  characterized by their related centroids, Ck. They are 

the four points in the graph whose arrays, bk, contain the answering strategies most frequently 

applied by students  in the related clusters (see Table 2). The codesused refer to the answering 

strategies for the questionnaire items described in Appendix A. Table 2 also showsthe number 

of students in each cluster, the mean values of the S-function <Sk(4)> (k=1,..,4) for the four 

clusters andthe normalized reliability index rk
norm

 of their centroids (in order to have 

comparable reliability values rk, they have been normalized (rk
norm

= [(rk - <rk>]/(rk), where 

<rk> and (rk) are the mean value and the variance, respectively). 

Table 2. An overview of the obtained results  

Cluster centroid C1 C2 C3 C4 

bk  

(Most frequently 

given answers) 

1C, 2B, 3A, 

4A  

1B, 2B, 3E, 

4A 

1B, 2C, 3B, 

4A 

1C, 2C, 3B, 

4B 

Number of students 63 19 18 24 

<Sk(4)>  0.60  0.62 0.75 0.56 

rk
norm

  -0.92  -0.02 1.4 -0.46 
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We can see (from the value of <Sk(4)>) that cluster Cl3 is denser than the others, and Cl4 is 

the most spread out. Furthermore,  the values of  rk
norm

   show  that  centroid C3  best 

represents its cluster, whereas centroid C1 is the least representative and characterizes less 

well the cluster. 

 

DISCUSSION AND CONCLUSIONS 

The four questions in our questionnaire mainly refer to: I) the definition of a physics model, 

II) the subjects’ beliefs about ways of representing physics models, III) the main 

characteristics of models and IV) the subjects' beliefs about the modeling process. We have 

classified student answers into categories, also called answering strategies, that explain 

student reasoning strategies. Looking at our results, the four clusters identified are 

characterized by the related centroids and each centroid is represented by one array bk, which 

describes the different answering strategies categorized for each question. These strategies are 

defined as follows: b1: (1C, 2B, 3A, 4A), b2: (1B, 2B, 3E, 4A), b3: (1B, 2C, 3B, 4A), b4: (1C, 

2C, 3B, 4B), where the codes in brackets refer to the questionnaire answer strategies reported 

in the Appendix. We have already pointed out that the array describing the cluster centroid 

describes to the answers most frequently given by the students in the cluster, and in this sense 

we can identify at what frequency each answering strategy is shared by the cluster students. 

In particular, cluster Cl4 is mainly composed of students that use higher level answering 

strategies to deal with the concepts in the questionnaire. In fact, these students recognize that 

a model is a mental representation of a real object or phenomenon,which takes into account 

the characteristics that are significant for the modeler (1C). They also think that modelsare 

creations of human thought and their creation comes from continuous interaction with the 

“real” external world and from its simplification (2C) and that a modelmust highlight the 

variables that are relevant for the description and/or explanation of the phenomenon 

analyzed (or the object studied) and their relationships (3B). The modeling process is seen as 

a construction where the model can still contain errors or uncertainty connected with the 

possibility (or ability) to carefully reproduce the characteristicswe are interested in (4B). It is 

worth noting that only 19% of the students belong to cluster Cl4  and show an informed view 

of physics models. Such low percentages are also found in the literature (Grosslight et al., 

1991; Treagust et al., 2002),  although quantitative comparisons cannot be performed, given 

the differences in the analyzed samples. 

Students in cluster Cl2 show the weakest understanding of the model concept. They refer to a 

model as a simple phenomenon or the exemplification of aphenomenon through an 

experiment or a reduced scale reproduction of an object(1B), and believe that models are 

simple creations of human thought like mathematical formulas, or physics laws and/or they 

are what we call theories or scientific method (2B), and give answers regarding the main 

characteristics of a model that are confused and unclear  (3E). For these students every 

natural phenomenon can be simplified in order to be referred to a given model (4A). 

Cl2  students can be reported to the level II modelers based on the classification scheme 

developed by Grosslight et al. (1991). Level II modelers see models as representations of real-

world objects or events and not as representations of ideas about real-world objects or events. 

They also see the use of different models as that of capturing different spatio-temporal views 

of the object rather than different theoretical views. Similar results have been obtained in 

other studies, as for example paper Treagust et al. (2002), that found a significant group of 

students with a narrow and naïve understanding of the concept of model as an exact replica: 

the scale replica, a precise representation, which has accuracy and detail; and the imprecise 

representation, which doesn’t have the accuracy or detail, and may be nothing like the object, 

but can provide insight into why and how something works the way it does. Some  studies 

involving teacher conception of scientific models (Justi& Van Driel, 2005; Danusso et al., 
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2010) report conceptions related to such realistic view, mainly where teachers focus on the 

role of models as examples of objects/processes or their simplifications. To sum up, we can 

say that the students in cluster Cl4  seem to share many conceptions connected with an 

epistemological constructivist view (Treagust et al., 2002). Students in cluster Cl2, on the 

other hand, often held beliefs that correspond with a “naïve realist” epistemology, i. e. they 

usually considered models to be exact copies of reality, albeit on a different scale, or 

simplified representations (Treagust et al., 2002). 

Students in clusters Cl1 and Cl3 do not show a full coherence in their answers, although in 

different ways. Cl3  students seem to share with Cl2 students the ideas concerning the 

definition of physics models and the modeling process, but they also share their beliefs about 

the function as well as the characteristics of physics models with the students from cluster Cl4. 

In fact, they state that physics defines models as a simple phenomenon or the exemplification 

of a phenomenon through an experiment or a reduced scale reproduction of an object (1B). 

However, they also say that they are creations of human thought and their creation comes 

from continuous interaction with the “real” external world and from its simplification  (2C). 

Furthermore, they seem to share the idea that in a modeling process it is important to 

highlight the variables that are relevant for the description and/or explanation of the 

phenomenon being analyzed (or the subject being studied) and their relationships (3B) and 

that every natural phenomenon can be simplified in order to be referred to a given model 

(4A). Such conception of physics model can be reported to literature findings (Fazio et al., 

2013; Hrepic et al., 2005) that analyze students’ reasoning in different fields and define some 

kinds of reasoning as ‘‘hybrid models’’ (Ding & Beichner, 2009) or ‘‘synthetic models’’ 

(Justi & Gilbert, 2002), by referring to composite mental models that unify different features 

of initial spontaneous models and scientifically accepted models.  Research reveals (Bao & 

Redish, 2006; Hrepic et al., 2005) that a student can use different mental models in response 

to a set of situations or problems considered equivalent by an expert.  In particular, Bao and 

Redish (2006) developed a way to deal with these composite mental models  and  define 

students’ model states that can change with specific contextual features in different equivalent 

questions. Our data point out that such inconsistency is deployed in the elicitation of model 

constituents as well as of  functions and characteristic of the modeling process. 

Students in cluster Cl1 share the idea that a model is a mental representation aimed at 

describing a real object or a phenomenon, which takes into account the characteristics that 

are significant for the modeler (1C). However, they also think that models are simple 

creations of human thought, like mathematical formulas or physics laws, and/or they are what 

we call theories or scientific method (2B). These ideas are not completely consistent with the 

characteristics assigned to the model or with the students’ ideas about the modeling process. 

In fact they declare that a model must contain all the rules or all the laws for a simplified 

description of reality and/or it must account for all the features of reality (3A) and that every 

natural phenomenon can be simplified in order to be referred to a given model (4A). Their 

focus on the process of “simplification” is also made explicit in the examples they report in 

order the explain their sentences. For example, for many of such students “the motion without 

friction is a model as well as the perfect gas (not the motion with friction or real gases". 

On the other hand, it must be taken into account that the value of the reliability, rk
norm

, of the 

C1 centroid is the lowest, showing that array b1 is not very significant in representing the 

answering strategies of thecluster students. Also, looking in detail at b1 array, the answering 

strategies are not easily understandable from the point of view of consistency and although  

they represent the answers most commonly given by Cl1  students, these do not have very 

high frequencies. For example, no more than 38% is assigned to category 1C. Other answers 

were also given by a large number of students; for example answering strategy 1B (A physics 

model is a simple phenomenon or the exemplification of a phenomenon through an 
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experiment or a reduced scale reproduction of an object) was selected by 30% of Cl1 

students.  In our opinion, this may show that a substructure is present in cluster Cl1, and this 

should be analyzed through different analysis methods, like, for example Hierarchical Cluster 

Analysis (Everit et al., 2011), that can point out a higher number of clusters and help to make 

sense of them. 

In conclusion, in this paper, we discussed the problem of quantifying qualitative data in order 

to analyze how to identify groups with common behavior, ideas, beliefs and conceptual 

understanding in a sample of students. We presented a method of cluster analysis and 

analyzed definitions, variables and algorithms in detail, in order to understand the possibilities 

offered by such a method and its limits. We gave an example of their application in order to 

demonstrate the necessary approximations and the different ways of interpreting results. The 

example is an analysis of the answers to a questionnaire given to a sample of university 

students. It is worth remembering that data that are quantitatively analyzed are the results of a 

categorization of raw data (the individual student answers) and this reduction of the initial 

data can be subject to errors, which obviously influences the final evaluation and the inference 

about the reasoning strategies supporting students’ answers. Such errors can only be reduced 

(through a clear process of coding and subsequent categorization) and not eliminated, and this 

must be taken into account when we try to infer typical students’ reasoning strategies. 

Looking at the meaning of the concept of a physics model as understood by the students in 

our sample, our results are consistent with those described in the literature, which illustrate a 

continuum of ideas/beliefs ranging from naive conceptions to constructivist ones (Grosslight 

et al., 1991; Van Driel & Verloop, 1999, Treagust et al., 2002; Pluta et al., 2011) . Our 

analysis gives details of student conceptions about the function of a physics model and its 

properties, by identifying features of intermediate conceptions as well as groups of students 

sharing such conceptions, in a continuum of this type. Furthermore, the results of this study 

provide important hints and insights for teaching methods that may improve students’ model-

based reasoning, and provide teachers with information about their students’ level of 

understanding, with which they can make instructional decisions. 
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APPENDIX. QUESTIONNAIRE AND ANSWERING STRATEGIES 

Q1. The term “model” is very common in scientific disciplines, but what actually is the 

meaning of “model” in physics? 

1A) A set of variables or rules or laws or experiments and observations that simplify reality 

and represent it in a reduced scale. 

1B) A simple phenomenon or the exemplification of a phenomenon through an experiment or 

a reduced scale reproduction of an object.  

1C) A mental representation aimed at describing a real object or a phenomenon, which takes 

into account the characteristics significant for the modeler. 

1D) A simplified representation describing a phenomenon aimed at the understanding of its 

mechanisms of functioning (or at explaining it or at making prediction). 

1E) No answer or not understandable answer 

Q2. Are the models creations of human thought or do they already exist in nature? 

2A) Models really exist and are simple, real life situations or simple experiments and humans 

try to understand them, sometimes only imperfectly. 

2B) Models are simple creations of human thought like mathematical formulas, or physics 

laws and/or they are what we call theories or scientific method. 

2C) Models are creations of human thought and their creation comes from continuous 

interaction with the ‘‘real’’ external world and from its simplification. 

2D) Models are creations of human thought aimed at explaining natural phenomena and 

making predictions. 

2E) No answer or not understandable answer 

Q3. What are the main characteristics of a physical model?  

3A) It must contain all the rules or all the laws for a simplified description of reality and/or it 

must account for all the features of reality. 

3B) It must highlight the variables that are relevant for the description and/or explanation of 

the phenomenon analyzed (or the object studied) and their relationships. 

3C) Their characteristics can classify models as descriptive or explicative or interpretative. 

3D) Their main characteristics are simplicity and/or uniqueness and/or comprehensibility. 

3E)  No answer or not understandable answer. 

Q4. Is it possible to build a model for each natural phenomenon?  

4A) Yes, every natural phenomenon can be simplified in order to be referred to a given 

model. 

4B) Yes, but the model can still contain errors or uncertainty connected with the possibility 

(or ability) of carefully reproducing the characteristics we are interested. 

4C) No. There are phenomena that cannot be described or explained with a model and/or that 

cannot be defined in terms of precise physical quantities. 

4D) No. There are phenomena that have not been still explained and these, perhaps, will be in 

the future. 

4E) No answer or answer not understandable 
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Abstract: This study was designed to investigate whether the use of Information and 

Communication Technologies (ICT) would be fruitful to change several misconceptions of 

students about astronomy (the solar system, stars, etc.). It was developed with a group of 23 

children, aged between eight and nine years old, who attended the 3
rd

 grade of primary 

education in a school in Lisbon, Portugal. This research can be classified as an action-research 

project based on a quasi-experimental study in the context of teaching practice leading to a 

master´s degree qualifying the students to be teachers in the first six years of schooling. The 

research was developed in several stages, being initiated with the application of a 

questionnaire to identify misconceptions about astronomy. The result of this application 

confirmed that these misconceptions were similar to those already identified by other studies 

with children of the same age. Subsequently, ICT were used to design activities to promote 

conceptual change in order to provoke cognitive conflicts in the children about their own 

ideas when compared with scientific ones. After this intervention, the same questionnaire was 

applied in two different moments in order to evaluate possible changes. The first application 

was at the end of the school year, right after the above mentioned treatment; the second 

application took place at the end of September, in the following school year, after the summer 

school holidays. In both applications, a marked decrease of the misconceptions held by the 

children was revealed, which indicates that the use of ICT can be a relevant tool to promote a 

persistent conceptual change. 

Keywords: Primary School; Misconceptions; Astronomy concepts 

 

INTRODUCTION  

Scientific concepts are ideas that can help us to understand how the world functions. 

However, each of us constructs, since childhood, their own interpretations of a large variety 

of phenomena based on daily experience. These interpretations are very often scientifically 

incorrect and are commonly called misconceptions (Martin, Sexton, & Gerlovich, 2002; 

Anderson, Fisher & Norman, 2002; Kose, 2008). When at school, these misconceptions for 

scientific phenomena interfere in the learning process of pupils. As Allen (2014) mentions, 

pupils at school do not absorb scientific ideas in a passive way but try automatically to 

connect their own knowledge with the new material that teachers approach during lessons. 

And even when facing new concepts for the first time in a formal learning context, these 

conceptions may also be constructed. 

It is a naïf idea to think that these misconceptions can be easily changed, only by the correct 

explanation of scientific phenomena. On the contrary, they are resistant to change and have an 

impact in school learning (Carmichael et al., 1990; Santos, 1991). For Santos (1991), a proof 

of this resistance stems from the fact that these ideas return, even after an apparently rigorous 

and structured approach of the scientific contents in formal education and persist along 

adulthood. And Allan (2014), based on several studies, states that, since misconceptions are 
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useful, consistent and good enough to explain everyday phenomena, their owners don´t feel 

the necessity to change their own ideas. Allan gives an example: The misconception that the 

Earth is closer to the sun during July (in summertime) makes apparently more sense than the 

real situation that our planet is in the furthest position from the sun during this time of the 

year. Rowell, Dawson & Lyndon (1990) also quote that pupils frequently conceive two 

different worlds, using the correct concept in the formal context but revealing the 

corresponding misconception in their daily life. The main problem is that the correct concept 

is frequently no longer necessary after leaving school.  

In fact, to change pupils’ misconceptions effectively is a very hard work and several steps are 

needed without a guarantee of success extended to all the pupils.  

To start with, the identification of pupils’ misconceptions can help teachers to better design 

learning activities in order to promote cognitive conflicts leading to their eradication. In fact, 

this initial process can prove essential to facilitate a meaningful learning of a scientific 

content. The strategies for this identification can include, for instance, addressing pupils 

directly about their own ideas, asking them to draw a concept, using concept maps, using 

scientific apparatus or promoting a role playing activity. The selection of these strategies 

depends a lot on pupils’ age and on the nature of the concepts we want to identify, but the 

principle is quite simple: a learning process not focused on the teacher allows a greater 

exposure of pupils' thinking and an easier identification of the misconceptions that they have 

about several scientific ideas.  But for this identification, teachers can also appeal to the 

results of a multitude of studies with students of different ages which have sought to identify 

misconceptions related to a variety of scientific issues.  

It is true that learning is an idiosyncratic process and that a multiplicity of misconceptions can 

be generated. But, in practice, for each scientific concept, a few misconceptions are normally 

detected in different samples with different cultural contexts, even knowing that some ideas 

are in fact specific of a certain cultural reality (Allen, 2014).  

To promote conceptual change Posner, Strike, Hewson & Gertzog (1982) claim the following 

conditions as essential: i) dissatisfaction – if the concept owned by pupils does not solve a 

current problem; ii) intelligibility – if the correct concept can be understood; iii) plausibility – 

if it works to solve present discrepancies, iv) applicability - if its applicability can solve future 

problems. To achieve these conditions it is also important to design powerful strategies and 

activities. It is in this context that the use of New Information and Communication 

Technologies (ICT) was considered as a potential tool for this purpose. 

The main aim of the present research 

The present research aimed at the following objectives:  

● To verify the incidence of certain misconceptions that literature highlights as frequent in 

children of the 1
st
 cycle of primary education related with the solar system, stars, etc.;  

● To verify if activities based on Information and Communication Technologies (ICT) can 

help to change these misconceptions  

According to Miranda (2007), ICT are a combination of computer technology with 

telecommunications that have on the Internet their form of greater expression. Nowadays, ICT 

are widespread in society, promoting important changes in our forms of communicating, as 

well as the way we access knowledge. Most children are acquainted with ICT and School 

feels that it should take advantage of this knowledge and of the skills associated with their 

handling, which are often developed at home and in other non-formal contexts. 

Indeed, it is sometimes difficult to be aware of how ICT are already part of our daily lives and 

of how their integration has been taking place increasingly in the Portuguese education 

system. Even so, in Portugal, this integration has been uneven in the different cycles of 
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schooling and slower in primary school (1
st
 cycle). For this fact several factors can be 

identified, as the smaller investment of the political power in the first years of schooling, with 

reflection in the lack of equipment essential for the implementation of ICT activities, or the 

lack of teacher training related with their use.  

All this divestment is contrary to the educational potential of ICT claimed by several authors. 

For instance, to Kozma (2005), the use of ICT in education has several advantages, like the 

following: (i) to facilitate access to education and knowledge; (ii) to focus on learning, 

increasing the digital literacy of citizens; (iii) to enhance integrated learning in the different 

areas of the curriculum (iv) to promote knowledge creation, technological innovation and the 

sharing of knowledge; (v) and it can also help to improve meaningful learning which can 

contribute to the desired conceptual change. Harlen & Qualter (2008) also highlight several 

benefits to teachers and learners by using ICT: teachers can have visual aids, explore ideas 

more effectively by using different types of software; pupils can interact and have an active 

role by discussing information and also presenting it in a more innovative way.   

However, Solomon (1983) pointed out, more than three decades ago, that children's exposure 

to media can also promote misconceptions. Hence, the use of ICT does not seem to exempt 

the active role of the teacher, especially as a tutor of the learning process, also selecting the 

best strategies that lead to their use (Santrock, 2009).  

 

METHOD  

This study is an action-research project based on a quasi-experimental model. It was 

developed in a primary school of Lisbon between April and September of 2014 in the context 

of teaching practice, a curricular unit that is included in a master´s course qualifying students 

to be teachers in the first 6 years of schooling. Teaching practice occurs always in real 

contexts during a month and a half and in-service teachers yield their classes for this purpose. 

During this time, students teach all the areas of the curriculum, which include, beyond 

Science, Mother Tongue (Portuguese), History, Geography, Math and Artistic Expressions. 

At the same time, a research issue related with their practice should be designed and 

implemented.  

At the beginning of teaching practice, each student must define, after a period of observation, 

their own intervention aims. In the present case, the teaching practice occurred in a 3
rd

 grade 

class with 23 students, 17 female and six male aged between eight and nine years old. The 

children were from middle class, and their parents have either secondary or higher education. 

One of the aims was to promote the understanding of scientific concepts, deconstructing 

misconceptions in a persistent way. With this purpose the following objectives were defined: 

-to identify misconceptions related with astronomy concepts in the class where teaching 

practice occurred; 

-to use ICT activities, especially PowerPoint presentations, short videos from YouTube and 

interactive games, to discuss the above mentioned misconceptions, promoting cognitive 

conflicts in the pupils; 

-to promote class discussions about the misconceptions, comparing right and wrong ideas; 

-to verify changes in the misconceptions, after the intervention period. 

The steps and the main aims of the study are presented in Table 1. 
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Table 1. The several steps of the present study. 

List of the different steps 

1
st
 step – Literature revision  

Main aim: To identify the misconceptions related with the research theme in other 

studies 

2
nd

 step – Building of the questionnaire and its validation 

Main aim: To build a questionnaire based on several misconceptions related with the 

solar system, stars, etc. to verify their presence in the pupils 

3
rd

 step - First administration of the questionnaire (End of April) 

Main aim: To administrate the questionnaire before the period of teaching practice 

related with the theme 

4
th

 step - Analysis of children´s responses  

Main aim: To conform the presence of the same misconceptions revealed  by literature 

5
th

 step – Design of the ICT activities and their implementation  

Main aim: To design ICT activities especially through the deconstruction of the 

misconceptions that are most common  

6
th

 step - Second administration of the questionnaire and analysis of children´s 

responses (End of May) 

Main aim: To verify possible changes after the teaching practice period 

7
th

 step - Third administration at the beginning of the next school year (End of 

September) 
Main aim: To verify the persistence of those changes 

 

Several misconceptions about the solar system, stars, etc. in children of a similar age of the 

sample of the present study were identified in studies from Schoon (1989), Hapkiewicz 

(1992), Langhi & Nardi (2011) and Teixeira (2011), for instance. Based on these results, a 

questionnaire with open and closed questions was built. In this questionnaire, it was 

impossible to include all the misconceptions related with this issue. Therefore, the selection 

was related with the concepts present in the 1
st
 Cycle curriculum, which are: the shape of the 

earth, the phases of the moon, the differences between stars and planets and the main 

characteristics of the solar system.  

Before its administration, the questionnaire was validated by two experts in didactics and 

piloted with eight children of the same age and social characteristics. The questionnaire 

included the questions present in Table 2. 

The questionnaire was applied (pre-test) to the sample at the end of April of 2014. The 

verification of the incidence of certain misconceptions was essential for a better selection of 

the didactic resources related with ICT to promote conceptual change. The resources were the 

ones already mentioned. The videos were always presented twice and a discussion was 

promoted between the two presentations of the same video. This discussion intended to 

focalize pupils in the understanding of scientific concepts with a higher incidence of 

misconceptions. After four weeks, at the end of May, the questionnaire was administered 

again (post-test1) to verify possible first changes in these misconceptions. Finally, at the end 

of September, in the following school year, the same questionnaire was administered again to 

verify the consistence of the conceptual change (post –test2). 

Each questionnaire was quoted as follows: the value "1", for each right question, in which the 

student did not reveal a misconception and "0" in the opposite situation. In the multiple choice 

items, a reason was demanded and these answers were categorized by content analysis. An 

answer was only considered correct when the justification matched the chosen option. 
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Table 2. The questions included in the questionnaire. 

Questions Their nature 

1.1.The Sun is … (a planet, a comet, a satellite) Multiple choice 

1.2. The celestial bodies that own light are… (the 

planets, the stars, the comets, the asteroids) 

Multiple choice 

1.3. The phase of the moon that we observe is… 

(always the same, depends on the earth´s place) 

Multiple choice 

2.1. The solar system ends on the last planet. (True, 

False – Justify) 

Multiple Choice 

Justification: Open question 

2.2. The Earth is bigger than the Sun. (True, False – 

Justify) 

Multiple Choice 

Justification: Open question 

2.3. All the planets are rocky. (True, False – Justify) Multiple Choice 

Justification: Open question 

2.4. The stars have tips. (True, False – Justify) Multiple Choice 

Justification: Open question 

3. Given the position of the Sun and the planets, which 

of the schemes, A (geocentric model) or B (heliocentric 

model), represents the solar system? 

Multiple Choice 

Justification: Open question 

 

The global quotation of the questionnaires was compared for the first and second 

administrations and for the first and the third ones, applying the Wilcoxon signed-rank non-

parametric test, since the pattern of responses not always followed a normal distribution. The 

level of significance adopted was p<0.05.  

 

RESULTS 

Table 3 presents the questions included in the questionnaire as well as the incidence of the 

wrong ideas (misconceptions) in the three moments of its administration. 

In the pre-test, several children revealed the same misconceptions present in other studies. 

With a high incidence, 78% of the children thought that a moon phase varies with the place 

where we are on earth and 57% thought that stars have tips. In relation to the Earth size when 

compared with the Sun and the physic nature of the planets of the solar system, the percentage 

of incorrect answers was also high, now aided by the discrepancy between the option in a 

multiple choice item and its justification. Table 4 shows some of the justifications expressed 

by the pupils. 
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Table 3. Percentage results from the questionnaires (pre-test, post-test1 and post-test2). 

The sample consists of 23 children. The scientific conception is in bold. 

Questions 
Relative frequencies 

Pre-test Pos-test1 Pos-test2 

1.1.The Sun is …  

a planet. 9%  0% 0% 

a comet 4%  0% 0% 

a satellite. 4%  0% 0% 

a star. 83% 100% 100% 

1.2. The celestial bodies that own light are…   

the planets. 35% 0% 0% 

the stars. 30% 100% 96% 

the comets.  22% 0% 4% 

the asteroides.  13% 0% 0% 

1.3. The phase of the moon that we observe…   

is different from country to country . 35% 0% 4% 

is different from continent to continent. 17% 0% 4% 

is different in each hemisphere. 26% 0% 13% 

is the same in the whole planet. 22% 100% 78% 

2.1. The solar system ends on the last planet.  

True 26% 0% 9% 

False 48% 100% 91% 

Not scored. The justification does not match the 

chosen option 26% 0% 0% 

2.2. The Earth is bigger than the Sun.  

True 35% 8% 4% 

False 48% 88% 96% 

Not scored. The justification does not match the 

chosen option 
17% 4% 

0% 

2.3. All the planets are rocky.  

True 35% 0% 0% 

False 43% 91% 96% 

Not scored. The justification does not match the 

chosen option 

 

22% 

 

9% 

 

4% 

2.4. The stars have tips.  

True 57% 0% 0% 

False 30% 100% 100% 

Not scored. The justification does not match the 

chosen option 

13% 0% 0% 

3. Given the position of the Sun and the planets, which of the schemes, A 

or B, represents the solar system? 

 

Scheme A (geocentric model) 13% 0% 0% 

Scheme B (heliocentric model) 87% 100% 100% 
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Table 4. Some of the misconceptions revealed by the children. Some of them are only 

reasons that can not exactly be considered misconceptions. 

Questions Some justifications 

2.1. The solar system ends on the last planet. 

 

It´s true because… 

 The solar system begins in the first 
planet and ends in the last. 

 I learnt it in a movie. 

 They explained it to me like that. 
2.2. The Earth is bigger than the Sun. 

 

It´s true because… 

 The sun is only a ball of fire. 

 In fact they have the same size. 

 The Earth is bigger. 

 The Sun is smaller. 

 Many people think that the sun is 
bigger. But from the Earth, we can 

see that the Sun is smaller 

2.3. All planets are rocky. 

 

It´s true because… 

 Only those that are hit by comets 

are rocky.. 

 All planets have rocks. 

 The planets are strong so they have 
rocks. 

 The planets could not be composed 

otherwise. 

2.4. The stars have tips. 

 

It´s true because… 

 I can see that they have tips. 

 When I draw a star it has tips. 

 The stars are pointy 
3. Given the position of the Sun and the 

planets, which of the schemes, A or B, 

represents the solar system? 

Scheme A (geocentric) because… 

 It makes sense like that. 

 In this scheme the planets are in 
their right positions. 

 

 

The justifications for the several items were somehow inconclusive. Children tend to justify 

their ideas without elaborating much, only saying that they learnt it like that or just because it 

makes sense like that. Even so, a few justifications are quite interesting and we highlight the 

following: “the earth is bigger than the sun because de sun is only a ball of fire”; “all planets 

are rocky because they are strong so they have rocks”; “The planets could not be composed 

otherwise” or “the stars have tips because when I draw one it has tips”. 

In the second moment (pos-test1), after the already mentioned treatment using ICT activities, 

there was a clear reduction of the expressed misconceptions. Even so, still 12% of the 

children continue to argue that the Earth is bigger than the Sun, and 9% claim that all planets 

are rocky. This decrease revealed to be consistent because in the results of the 3rd 

administration the percentage of children with misconceptions was also very small. 

Nevertheless, the percentage of children considering that the phase of the moon depends on 

our location on the Earth, as well as those who think that the terminus of the solar system is in 

the planet more distant from the Sun increased a little. But, at the same time, there was also a 

small decrease in the number of children stating that the Earth is bigger than the Sun and that 

all the planets are rocky. 

The application of the Wilcoxon signed-rank test showed that the score differences between 

the first administration and the second, as well as between the first and the third were both 

statistically significant, respectively z = -3,955; p < 0.001 and z = -4,163; p < 0.001. 
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CONCLUSIONS AND IMPLICATIONS 

This study helped to confirm that some of the misconceptions about the solar system, stars, 

etc., identified in previous studies, were also present in the children inquired. The complexity 

of these topics is one of reasons why these misconceptions are not easy to change. 

Consequently, Kavanagh, Agan & Sneider (2005), based on several studies, stated that a topic 

like the phases of the moon, for instance, should be addressed at the fifth or sixth grade level, 

and not below. But it seems that curriculum developers sometimes tend to ignore some of the 

results of educational research.  

The good news are that the use of ICT activities, especially with animations and short films, 

but always accompanied by a systematic opposition of the aspects observed with the wrong 

ideas of the children, made it possible to deconstruct the majority of the misconceptions 

expressed by them, considering that they were at the third level of schooling and have to learn 

a complex issue. We also think that the already described active role of the teacher was also 

essential for the success of the intervention. 

This study was not exempt of limitations. For instance, it was impossible to compare the 

results of the pupils of the sample with those from other classes submitted to a different 

research design or simply to a more traditional approach in which teachers tend to ignore the 

children´s misconceptions and don´t use ICT activities. After all, the success of the 

intervention was in part a surprise, since the time to explore science issues was scarce and 

during the teaching practice period all the curriculum areas were taught. 

Independently of the good results, this study also allows to highlight the possibility of every 

teacher to include a research dimension in the course of their own practice, thus contributing 

to change at least some of the misconceptions expressed by children about different scientific 

topics.  
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Abstract: Students encounter many real life events from an early age and they relate to what 

they already know and construct coherent understanding of these events. During in chemistry 

learning process, students often experience difficulties and lack conceptual understanding of 

basic concepts even though their effort. In the current study, acids and bases concepts were 

investigated, which is one of the fundamental topics in chemistry and easily influenced by 

daily language and experiences. The participants were 40 eleventh grade high school students; 

and their initial ideas about the acidity and basicity of materials, substances or events, and 

their understanding of acids and bases concepts to address their nature of mental models of 

acids and bases were investigated via an alternative assessment tool. In order to assess 

students’ ideas on acids and bases a reading log, one of alternative assessment techniques, 

was used, which included daily life events that students might find interesting to learn. The 

most significant finding was that none of the students or groups used any scientific model in 

determining the acidity or basicity of the substances. Their decisions and explanations in 

determining the substances’ acidity or basicity was quite in basic level, none of them not even 

consider any scientific exploration when having difficulties in the determination process. 

Therefore, student-centered instructions with inquiries, hands- and minds-on activities with 

more laboratory usage, and more frequently giving real-life examples related to topics might 

increase students’ scientific models and meaningful understanding of the concepts. In 

addition, teachers, curriculum developers, and textbook writers should clearly emphasize on 

the nature of science to help students understand and interpret their surroundings. 

Keywords: Mental Models, Chemistry, High school level, Alternative Assessment  

INTRODUCTION  

Today, every citizen is expected to be a scientifically literate person by means of being able to 

understand real life events, having the joy of knowledge about the natural world, applying 

scientific processes in personal life, asking and suggesting reasonable solutions for questions, 

make decisions, be good at social communication, and able to use technology. 

Chemistry is such a branch that any event in real life may be explained with the help of 

chemistry, which can also encourage student curiosity and make sense why they learn about 

chemistry. Students encounter many real life events from an early age and they relate to what 

they already know and construct coherent understanding of these events. During in chemistry 

learning process, students often experience difficulties and lack conceptual understanding of 

basic concepts (Ben-Zvi, Eylon, & Silberstein, 1986; Krajcik, 1991; Nakhleh, 1992; Osborne 

& Cosgrove, 1983). Students usually tend to learn factual knowledge presented and tries to 

grasp the knowledge that they just need for exams, without making any meaningful 

connections to what they already know or constructing an understanding of the underlying 

concepts, they only hold their own coherent understanding based on their prior knowledge 

and experience (Nakhleh, 1992; Osborne & Wittrock, 1983). In the case of Turkish high 

school students, students are mostly focused on the university entrance examination and 
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performance rather than learning, the important points for them to take high grades in exams, 

make good memorization to answer the questions rather than inquiring for scientific facts.  

In the current study, acids and bases concepts were investigated, which is one of the 

fundamental topics in chemistry and easily influenced by daily language and experiences. 

Students’ understanding of learning usually is assessed by traditional assessment techniques 

such as multiple-choice questions, which are often more preferable in science classes since 

they are easy to apply. Even students are successful in conventional tests, this success does 

not reveal that the students’ understandings of given concepts. A student could get a high 

score by chance and luck factor; which does not reveal meaning learning. In order to assess 

students’ ideas on acids and bases a reading log, one of alternative assessment techniques, 

was used, which included daily life events that students might find interesting to learn. 

Alternative Conceptions in Acids and Bases 

The origin of student difficulties in acids and bases concepts besides the abstractness of the 

subject (Herron, 1975) could be as well as having alternative conceptions in acids and based 

concepts (Demerouti et al., 2004; Demircioglu, et al., 2005; Hand, 1989; Hand & Treagust, 

1988; Schmidt, 1995; Sheppard, 1997), the lack of understanding of the particulate nature of 

matter (Nakhleh, 1994; Nakhleh & Kracjik, 1993), the various definitions of acids and bases 

based on different theories (Schmidt, 1995; Vidyapati & Seetharamappa, 1995; Sheppard, 

1997; Furio-Mas et al., 2005; Kousathana, Demerouti, & Tsaparlis, 2005), or experiencing 

confusing terminology in real world (Schmidt, 1995). Therefore, students should reveal in-

depth understanding of some basic concepts such as particulate nature of matter, chemical 

reactions and chemical equilibrium in order to understand acids and bases concepts.  

Hand and Treagust (1988) revealed the students’ ideas on acids and bases that they were: 

“acids eat materials away, acids can burn you, testing for acids can only be done by trying to 

eat something away, strong acids eat materials away faster than weak acids, reactions of acids 

with metals and carbonates are examples of acids eating something away, a base is something 

that makes up an acid, neutralization is the breakdown of an acid or to change from being an 

acid.” Hand and Treagust determined these aforementioned alternative conceptions before the 

topic of acids and bases and during the topic, then students were enabled to do activities, each 

of which aimed to remedy one of the aforementioned alternative conceptions. Ross and 

Munby (1991) conducted a study with high school students on acids and bases via concepts 

maps and interviews; their findings revealed that students hold alternative conceptions on 

acids and bases, such as “all acids are strong acids, concentration is the same as strength, a 

strong acid has a higher pH than a weak acid, and strong acids produce more hydrogen when 

reacted with a metal than do weak acids.” The researchers emphasized that students assumed 

acids to be more powerful and had difficulties in understanding of bases concepts. Nakhleh 

(1992) conducted a study with high school students in order to get student models of matter 

via semi-structured interviews in which students were asked a set of questions about acids, 

bases, and pH before and after performing a series of titrations. This study disclosed another 

point of view on acids and bases, expressing that students had poor knowledge of acids and 

bases since they had lack of understanding of the particulate nature of matter.  

Additionally, students had difficulties in transforming verbal definitions to drawings because 

of confusion in representations of matter as particulate and continuous. Vidyapati and 

Seetharamappa (1995) interviewed higher secondary school students and compiled a 

questionnaire regarding acids and bases. The researchers found that students had an 

alternative conception that acids and bases reactions always resulted in a neutral solution. 

Additionally, the researchers argued that students were not able to connected acids and bases 

with real life experiences since they just gave examples of acids and bases from their 

textbooks. Smith and Metz (1996) conducted a study with graduate and undergraduate 

chemistry students to evaluate their understanding of acid strength and solution chemistry. 
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The findings of students’ microscopic representations revealed that students had difficulties in 

representations although they did not have any problems in solving mathematical problems in 

acids and bases. Students misrepresented ions, bonding and dissociation on acid strength 

though they successfully defined acid strength verbally. 

The literature review reveals that students have some ideas about acids and bases; however, 

their ideas are not consistent with the scientists and they generally find chemistry abstract, 

complex and difficult to learn. Students’ alternative conceptions about science that may be 

developed via interactions with parents, peers, teachers or objects in everyday life and are not 

considered correct from the scientific point of view are often resistant to change. 

There is substantial amount of literature on students’ alternative conceptions in acids and 

bases but these studies do not generally focused on the background of these alternative 

conceptions; addressing the mental models could help determining the source of the 

alternative conceptions. The study of Coll, France and Taylor (2005) stated that mental 

models are crucial in the learning process because these mental models provide valuable 

information about students’ conceptual frameworks and reflect their beliefs on concepts. For 

assessing students’ mental models, an alternative assessment tool was developed instead of 

using a traditional tool since this tool could be more motivating for students to learn about 

acids and bases they encounter in their everyday life. Therefore, the primary aim of the paper 

is to state an empirical evidence on students’ mental models via alternative assessments.  

DESIGN OF THE STUDY 

Subjects 

The sample of the present study consisted of 40 eleventh grade students (52.5% girls and 

47.5% boys). The students participated in the study were about 17 or 18 years old. Students 

were not much different in terms of the education level of their parents, income, or living 

standards. Most of the students took additional support for their courses. Students in 

elementary level learn about acids and bases; therefore, the students had some ideas about 

acids and bases. 

Instruments 

Reading logs were used in this study, which were developed by the authors as an alternative 

assessment tool and was also an introduction activity designed for students to introduce them 

with some acidic and basic substances they often used in their daily life; and also to make 

them aware that not all acids or bases are dangerous or hazardous, some of which are directly 

in our daily life, in our food or surroundings. 

There were two version of this reading log (see Figure 1); the purpose of the first version was 

to get student ideas about what materials, substances or events they thought to be related with 

acids and bases in their everyday life, and the purpose of the second version was to give the 

informative knowledge about acidic or basic materials, substances or events related to acids 

and bases; such as soap is an alkali substance or in the process of baking a cake how the cake 

rises was explained emphasizing the reaction of acids with carbonates. The students in groups 

discussed their previous ideas using the second version of the instrument. 

Additionally, these reading logs aimed to motivate students to learn about acids and bases 

concepts. Some basic knowledge (such as what materials in a daily life are acidic or basic), 

explanations of daily events (such as why statues get deformed), practical knowledge or key 

points (such as not to use acidic detergents with alkali ones), and open-ended queries (such as 

how a cake rise) related to acids and bases were given in the instrument to increase their 

interest to the subject and made them curious about the acids and bases unit.  
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Figure 1. Examples of the screenshots of the reading logs (a. the first version querying 

student ideas on acids and bases from daily life, b. the second version with details about 

acidic and basic materials form daily life) 

Data analysis 

The categorization of the students’ mental models was done by one of the researchers and for 

the reliability of the categorization another experienced educator also did the categorization 

and the reliability of raters was 96%. The categorization of students’ mental models is shown 

at the Table 1. The substances which were students not sure about their acidity or basicity 

were determined for the future activities as these substances were going to be used 

specifically by the students; therefore, the students themselves could make experiments to 

determine the substance’s acidity or basicity. 

FINDINGS  

The goal of the instrument was to determine students’ prior knowledge and their thoughts for 

substances of being acidic or basic. The students’ individual and group ideas about the 

substances acidity or basicity were both considered in the categorization section (see Table 2). 

There were some substance which were the students were not sure about their acidity or 

basicity, they were toothpaste, milk, onion, aspirin, and mineral water. The students also 

mentioned that they realized that they very often came across acidic and basic substances in 

their everyday life. 
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Table 1. The categorization of students’ mental models 

Mental model  Sub-criteria  Definition   

Property  Flavor  Students determine the acidity or basicity of the 

substance based on its flavor, bitter or sour. 

 Toxicity   Students determine the acidity or basicity of the 

substance based on being toxic, eatable or not 

eatable. 

Ingredients Made of Students determine the acidity or basicity of the 

substances based on its consisting matters. 

 Contain gas Students determine the acidity or basicity of the 

substance based on the solution involves gases.  

Character  Surface name  Students determine the acidity or basicity of the 

substance based on the names of the substances. 

Previous 

knowledge  

Being told or heard of  Students determine the acidity or basicity of the 

substance based on being told by teachers, elders, 

peers, etc., or heard on TV. 

 

Table 2. The categorization of the students’ responses 

Mental model  Sub-criteria  Examples (with student quotations)   

Property  Flavor  Bitter  Base – Chocolate, soap, onion, aspirin, tea (“When 

there is no sugar in it, its taste is bitter. Bases have a 

bitter taste.”) 

Sour  Acid – Vinegar, milk, apple, lemon 

Toxic  Eatable  Acid – Aspirin, fruits (“We can eat them, can’t be 

basic”), chocolate (“Something we can eat.”), onion, 

tear drops, salt, baking soda (“My mom makes a cake 

with it; if we can eat it, it is an acid.”) 

Not eatable  Base – Soap, toothpaste, washing detergent 

Ingredients Made of Acid – Dairy products (Airan (“Since it is made of 

yogurt”), yogurt (‘Since it is made of milk’)) 

 Contain gas Acid – Coke, mineral water (“It contains some gases 

like coke”), tea, coffee, baking soda 

Character  Surface name  Acid – Stomachache (stomach acids), acid rain 

Previous 

knowledge  

Being told or heard of Saliva (“Our biology teacher told us, saliva is basic”), 

stomachache (stomach acids, “I know stomach has an 

acid from the biology course”), coke (“My mom said 

it is acidic”), rain (acid rains, “I heard about acid 

rain”), washing detergents 
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CONCLUSIONS AND DISCUSSION 

In this study, the most significant finding was that none of the students or groups used any 

scientific model in determining the acidity or basicity of the substances. Their decisions and 

explanations in determining the substances’ acidity or basicity was quite in basic level, none 

of the students or groups not even consider any scientific exploration when having difficulties 

in the determination process. This lack of scientific attribution may indicate that the students’ 

mental models were not much developed as expected. If students know about how to seek for 

knowledge, they will achieve better and enhance meaningful learning. For instance, some 

students thought that all bases were toxic and harmful for people; for this reason, teachers 

should give more examples of weak bases and also acids from daily life. In the study of 

Schnotz and Kurschner (2008), it was stated that the students’ mental models were affected 

by exposure to external representations.  

Therefore, students should experience more activities using basic materials from daily life and 

given more examples related to real world. Activities that could develop students’ mental 

model should be more taken into account into classroom since the studies support the 

improvement of students’ mental models (Coll & Treagust, 2003; Hubber, 2006). Hence, 

student-centered instructions with inquiries, hands- and minds-on activities with more 

laboratory usage, and more frequently giving real-life examples related to topics might 

increase students’ scientific models and meaningful understanding of the concepts. 

Conducting instructional activities enhance the students to explicit their ideas and involving 

them to learning process, the students become more aware of their own learning, use their 

learning in daily context, and make interpretations from daily events. Furthermore, students 

are more motivated to learn scientific concepts when the concepts include familiar situations 

to them, which also promote their interest in chemistry learning. In addition, teachers, 

curriculum developers, and textbook writers should clearly emphasize on the nature of 

science to help students understand and interpret their surroundings. Furthermore, 

longitudinal studies could provide better insights on how students’ mental models develop 

over time.  
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Abstract:This study within PhD project is focused on a part of chemistry curriculum in the 8
th

 

grade of primary school in Bosnia and Herzegovina and on studying effectiveness of teaching 

strategy with web-based learning material (WBLM) in resolving students’ misconceptions on 

structure of matter. In pilot phase we specified most common students’ misconceptions of 

selected chemical concepts in the 8
th

 grade of primary school chemistry. We have also 

gathered students’ opinions on WBLM and instruments for data collection, and made some 

changes after processing results. In the main study, focus is set on further development of the 

teaching strategy with WBLM, especially designed to connect macroscopic observations with 

interpretation on the submicro level. The study included following topics of the 8
th

 grade 

primary school chemistry: structure of matter, states of matter, pure substances and mixtures. 

Sample in main study includes approx. 210 students aged 13 to 14 years: 50 in control group 

(CG), 85 in experimental group 1 (EG1) and 75 in experimental group 2 (EG2). In EG1 we 

have tested the effectiveness of WBLM applied as homework for students after teaching, in 

EG2 students were learning using WBLM on their chemistry classes at school, while the 

control group was taught using textbook (without WBLM) and teacher centered approach. 

The following instruments for data collection were used: knowledge tests, tests of intellectual 

ability and questionnaires. It is expected for results to reflect the impact of the chosen strategy 

based on WBLM in which will be outlined the link between macroscopic observations and 

submicroscopic explanations in understanding selected chemical concepts. 

Keywords: Macroscopic observations, Submicroscopic level, Web-based learning material, e-

Learning, Structure of matter. 

INTRODUCTION 

Misconceptions or students’ ideas not congruent with the scientifically accepted conceptions 

(Driver et al., 1985) can lead to a range of learning difficulties. They can be a significant 

barrier for learning various chemistry topics (Garnett et al., 1995) if the teacher does not try to 

choose the appropriate teaching strategies to reduce the possibility of their occurrence. 

Teaching strategies in chemistry should lead towards understanding of chemical concepts in a 

way to include macroscopic, submicroscopic and symbolic level (Johnstone, 1982; Johnstone, 

1993). Scientists describe matter on macroscopic (phenomenological) and on submicroscopic 

(molecular, atomic, kinetic) level, and students need to learn the relationship between levels 

(Johnstone, 1993; Stieff et al., 2013), which is crucial for explaining concepts described or 

observed at macrolevel (Gabel, 1994; Papageorgiou& Johnson, 2005). Therefore models, both 

mental and physical, are very important in understanding chemistry. A chemist works out a 

mental model and transfers it to physical models for visualization. Learners, however, observe 

and compare physical models and develop advanced mental models for relevant issues (Barke 

et al., 2012).  

Complete understanding of chemical concepts is acquired only when all three conceptual 

levels are interchanging in students’ memory (Devetak et al., 2009; Chittleborough, 2014). 
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According to Piaget’s theory of cognitive development, students at age 11 start to develop an 

abstract way of thinking (Wadsworth, 2004). Learning submicro-macro thinking is abstract 

and thus can be difficult for students at this age (Gilbert & Treagust, 2009). This implies that 

those concepts that include processes on submicro level can be too demanding for students if 

they are taught using teacher-centered teaching.  

Web-based learning material (WBLM) is intended to support teaching chemistry within 

teaching strategy called e-learning. E-learning is defined as an instruction delivered on a 

digital device such as a computer or a mobile device that is intended to support learning 

(Clark and Mayer, 2011.).  

WBLM contains a variety of media elements: text, audio, still and motion visuals, and it is 

designed for teaching structure of matter and particulate nature of matter by connecting 

submicro and macro level of representation. At this stage symbolic level is not introduced.  

The impact of e-learning on students’ achievement is complex and depends onmany factors, 

but studies showed that students learn best with e-learning when interactively engaged in the 

content(Clark and Mayer, 2011.). 

METHOD 

This study is focused on four important topics in the grade 8 chemistry curriculum in Bosnia 

and Herzegovina: structure of matter and states of matter (SSM), pure substances and 

mixtures (PSM) and on studying effectiveness of teaching strategy with web-based learning 

material (WBLM), especially designed to connect macroscopic observations with 

interpretation on submicro level in teaching these concepts. 

Study was divided in two parts: a pilot study conducted during 2013 and main study 

conducted during 2014 and 2015. Purposes of pilot study were to determine students 

understanding and potential misconceptions regarding structureof matter, to apply WBLM 

and to see outcomes and practical aspects of its application in school.Results and experiences 

gained within pilot study served as a base for developing the methodology for main study. 

According to curriculum for primary school in Bosnia and Herzegovina, chemistry is taught 

in 8
th

 and 9
th

 grade. Science, however, is taught earlier within Nature, Biology and Physics. 

Relevant concepts for chemistry are taught within 7
th

 grade Physics. Therefore we have 

started pilot study with test of knowledge within 7
th

 grade Physics, regarding concepts of 

states of matter, phase changes, atoms and molecules. Study continued during 8
th

 grade within 

Chemistry. 

Instruments for data collection were knowledge tests (structure and states of matter, pure 

substances and mixtures, applied one week after teaching and after three months as delayed 

test), tests of intellectual ability and questionnaires. In designing instruments we used 

modified instruments that test conceptual understanding, reading and drawing submicroscopic 

schemes (Davidowitz et al., 2010), intellectual ability tests: Raven’ matrices (Raven, Raven & 

Court, 2000) and Mill Hill vocabulary test (Raven, Raven & Court, 1998), questionnaire 

regarding learning motivation (Juriševič, 2010), and students’ opinion on chemistry lessons 

(Juriševič et al., 2010; Vrtačnik, 2010). 

Pilot Study 

Pilot study started in May 2013 and continued in September 2013. First part of the study 

(May 2013) included 108 7
th

 grade students from two primary schools in urban region of 

Sarajevo, while the second part (September 2013 – December 2013) was conducted with 57 

8
th

 grade students from this group who attended one primary school.  

First part contained test of knowledge in 7
th

 grade Physics. Second part of pilot study included 

only experimental group with main aim to explore the potential application of web-based 
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learning material and to determine students’ achievements and opinions on this new 

instructional approach.  

Teaching SSM and PSM in experimental group was conducted in IT classrooms in selected 

school. Due to insufficient number of PC’s, students were learning in pairs.  

Pilot study methodology is presented on Figure 1. 

 

Figure 1: Pilot study methodology 
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Results and experiences gained within pilot study served as a base for developing 

methodology for main study. In main study focus is set on further development and testing the 

teaching strategy with WBLM. Sample includes approx. 210 students aged 13 to 14 years 

divided in three groups: experimental group 1 (EG1, WBLM applied as homework for 

students after teaching), experimental group 2 (EG2, students were learning using WBLM on 

their chemistry classes at school) and control group (CG, taught using textbook (without 

WBLM) and teacher-centered approach).  

RESULTS 

Selected Pilot Study Results 

Test of knowledge conducted within 7
th

 grade Physics (TK 7
th

 grade) contained nine multiple-

choice items regarding concepts relevant to Chemistry.Results of this test revealed some 

students’ misconceptions regarding these concepts (Table 1). 

Table 1. List of most frequent misconceptions identified in this study - TK 7
th

 grade 

7
th

 grade students misconceptions (N=108) % 

1. We cannot obtain liquid water from water vapor since it 

disappeared. 28.7 

2. We cannot obtain liquid water from water vapor since it has 

changed. 34.3 

3. Bubbles formed when water is heated are made out of gaseous 

hydrogen and oxygen. 20.4 

4. Bubbles formed when water is heated are made out of heat. 44.4 

5. Evaporation can shrink water molecules. 41.7 

6. Freezing can shrink water molecules. 17.6 

7. If we make a leaflet of gold, its atoms become closer to each other. 20.4 

8. If we make a leaflet of gold, its atoms become straightened. 28.7 

9. Water is composed of hydrogen and oxygen molecules. 34.3 

10. Water is composed of hydrogen and oxygen atoms (no chemical 

bond). 33.3 

11. When spilled, water splits up to hydrogen and oxygen. 67.6 

 

We should note that concepts of atom and molecule are taught within Physics for one 

teaching hour at the end of spring semester, before summer break. These concepts are more 

extensively taught within Chemistry in the 8
th

 grade, so some preconceptions noted regarding 

atoms and molecules are somewhat expected, but also addressed during this study. 

After processing results of test of knowledge in 7
th

 grade and after teaching selected content 

(Structure and States of matter) using WBLM in one school (N=57), we have administered 

test of knowledge regarding taught concepts, both one week after teaching (TK 8
th

 grade-1) 

and three months after teaching (TK 8
th

 grade-2). These tests were the same, with 10 multiple 

choice items, similar but not the same to the items in TK 7
th

 grade.  

Descriptive statistics of students’ achievements is presented in Table 2.  

 

Table 2. Descriptive statistics: TK 8
th

 grade-1 and TK 8
th

 grade-2 (N=57) 

 M SD 

TK 8
th

 grade-1 4.04 2.54 

TK 8
th

 grade-2 5.27 2.47 
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Mean and standard deviation for students’ achievements shows moderate progress in 

students’ knowledge during three months. When considering retention of students’ 

knowledge, we have noted moderate correlation (r = .619, p>.05) but also statistically 

significant difference on TK 8
th

 grade-2 (t(57) = -2.616, two-tail p = .010). 

In addition to TK results, we have processed results of questionnaires for students, regarding 

their opinion on this new instructional approach. Selected results of these questionnaires for 

both SSM and PSM are presented in Table 3.  

Table 3. Students’ perceptions on the use of WBLM 

Statement 
SSM PSM 

M SD M SD 

Photos and images helped me in understanding the 

subject. 
4.30 0.84 4.37 0.84 

I like having the opportunity to check my understanding. 4.12 0.98 4.04 0.93 

I like the explanation of a wrong answer. 3.91 1.10 4.28 0.90 

I like the opportunity of going back to the parts that I 

have not well understood. 
4.12 1.04 4.24 0.96 

I like using a computer in learning chemistry. 4.16 1.05 4.31 1.00 

I'd like to learn more with the help of computers. 4.39 0.97 4.49 0.95 

I like learning at my own pace. 3.97 1.01 3.94 0.94 

These questionnaires were Likert-type based with scale 1-5 (1-strongly disagree, 5-strongly 

agree).  

DISCUSSION AND CONCLUSION 

During pilot study we have encountered with some objective difficulties regarding the time 

needed for teaching since we needed an IT classroom and PCs. Therefore IT teacher needed 

to give us her lessons so we could conduct our study. At the same time, chemistry teacher 

could not teach these concepts again during chemistry lessons. Students were working in pairs 

due to insufficient number of PCs in classroom and we could not ensure individual approach 

to teaching content. Therefore we needed to change these aspects of methodology for the 

main study. 

Preliminary pilot study results showed that some phenomena about states of matter students 

know from everyday experience, but they are not able to explain them on submicro level. 

Some research already showed comparable findings (Barke et al., 2009; Rappoport & 

Ashkenazi, 2008; Treagust et al., 2003;Kozma & Russell, 1997). 

Results of TK 7
th

 grade administered in May 2013 showed that most students did not 

differentiate macroscopic and submicroscopic level of the structure and states of matter. 

Results of both tests of knowledge in 8
th

 grade (TK 8
th

 grade-1 and TK 8
th

 grade-2) showed 

that even though some misconceptions were noted again, WBLM has a positive impact on 

students’ understanding of particulate nature of matter. Since teacher did not go back with the 

same teaching content,we presume that explanation for this fact can be possible teachers’ 

intervention after teaching this content and writing test. 

In addition, students’ perceptions on the use of WBLM were positive. Teaching content did 

not influence on their perceptions since they gave similar and positive impressions on 

statements given in questionnaires for both SSM and PSM teaching content. We believe that 
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more frequent use of web-based learning material can enhance students’ interest in chemistry 

and therefore give better results when their knowledge and understanding is considered. Since 

our students did not perform quite well in external testing (TIMSS 2007), we should be 

looking for ways to improve our teaching practice.  

 

 

REFERENCES 

 

Barke, H.-D., Harsch, G., & Schmid, S. (2012). Essentials of Chemical Education. Berlin, Heidelberg: 

Springer-Verlag. 

Barke, H.-D., Hazari, A., & Yitbarek, S. (2009). Misconceptions in Chemistry: Addressing 

Perceptions in Chemical Education. Berlin, Heidelberg: Springer-Verlag. 

Chittleborough, G. (2014). The Development of Theoretical Frameworks for Understanding the 

Learning of Chemistry. In Devetak, I. & Glaţar S. A. (Eds.), Learning with Understanding 

in the Chemistry Classroom, (pp. 25-40). Dordrecht, Netherlands: Springer 

Science+Business Media B.V. 

Clark, R.C.,& Mayer, R.E. (2011). E-learning and the Science of Instruction: Proven Guidelines for 

Consumers and Designers of Multimedia Learning. 3rd Ed. Pfeiffer: San Francisco. 

Davidowitz, B., Chittleborough, G., & Murray, E. (2010). Student-generated submicro diagrams: a 

useful tool for teaching and learning chemical equations and stoichiometry. Chemistry 

Education Research and Practice, 11(3), 154–164.  

Devetak, I., Vogrinc, J., & Glaţar, S. A. (2009). Assessing 16-Year-Old Students' Understanding of 

Aqueous Solution at Submicroscopic Level. Research in Science Education, 39(2), 157–179. 

Driver, R., Guesne, E., & Tiberghien, A. (1985). Children’s ideas in science. Philadelphia: Open 

University Press. 

Gabel, D. (1994). Improving Teaching and Learning through Chemistry Education Research: A Look 

to the Future. Journal of Chemical Education, 76(4), 548–554. 

Garnett, P. J., Garnett, P. J., & Hackling, M. W. (1995). Students’ alternative conceptions in 

chemistry: a review of research and implications for teaching and learning. Studies in 

Science Education, 25(1), 69–95. 

Gilbert, J. K., & Treagust, D. (Eds.) (2009). Multiple Representations in Chemical Education. 

Dordrecht: Springer Science+Business Media B.V. 

Johnstone, A. H. (1982). Macro- and micro-chemistry. School Science Review 64(227), 377–379. 

Johnstone, A. H. (1993). The development of chemistry teaching: A changing response tochanging 

demand. Journal of Chemical Education, 70(9), 701–705. 

Juriševič, M. (2010). UM – Vprašalnik za učence osnovne šole. In: Interim Report V5-0424: Analiza 

dejavnikov, ki vplivajo na trajnejše znanje z razumevanjem naravoslovno-tehniških vsebin 

(pp. 2–5). Ljubljana: Pedagoška fakulteta Univerze v Ljubljani. 

Juriševič, M., Vogrinc, J., & Glaţar, S. A. (2010). Izvedba učne ure. In: Interim Report V5-0424: 

Analiza dejavnikov, ki vplivajo na trajnejše znanje z razumevanjem naravoslovno-tehniških 

vsebin (p. 9). Ljubljana: Pedagoška fakulteta Univerze v Ljubljani. 

Kozma, R. B., & Russell, J. (1997). Multimedia and understanding: Expert and novice responses to 

different representations of chemical phenomena. Journal of Research in Science Teaching, 

34(9), 949–968. 

Papageorgiou, G., & Johnson, P. (2005). Do Particle Ideas Help or Hinder Pupils’ Understanding of 

Phenomena? International Journal of Science Education, 27(11), 1299–1317. 

Rappoport, L. T., & Ashkenazi, G. (2008).Connecting Levels of Representation: Emergent versus 

submergent perspective. International Journal of Science Education, 30(12), 1585–1603. 

Raven, J., Raven, J. C., & Court, J. H. (2000). Manual for Raven's Progressive Matrices and 

Vocabulary Scales. Section 3: The Standard Progressive Matrices. San Antonio, TX: 

Harcourt Assessment. 

Raven, J., Raven, J. C., & Court, J. H. (1998). Manual for Raven's Progressive Matrices and 

Vocabulary Scales. Section 5: The Mill Hill Vocabulary Scale. San Antonio, TX: Harcourt 

Assessment. 

Strand 1 Learning science: Conceptual understanding

70



Suzić, N., Saničanin, Ţ., Alić, A., Skelić, Dţ., Rukavina, D., Alibegović Goro, E., Dţumhur, Ţ., 

Šahinović Batista, S., Milinković Rosić, I., Mešić, V., Ibraković, A. (2009, December). 

Sekundarna analiza TIMSS 2007 u Bosni i Hercegovini.  Retrieved from 

http://www.aposo.gov.ba/wp-

content/uploads/2012/08/Sekundarna_analiza_TIMSS_2007.pdf 

Stieff, M., Ryu, M., &Yip, J. C. (2013). Speaking across levels – generating and addressing levels 

confusion in discourse. Chemistry Education Research and Practice, 14(4), 376-389. 

Treagust, D., Chittleborough, G., & Mamiala, T. (2003). The role of submicroscopic and symbolic 

representations in chemical explanations. International Journal of Science Education, 

25(11), 1353–1368.  

Vrtačnik, M. (2010). Ocena učne ure. In: Interim Report V5-0424: Analiza dejavnikov, ki vplivajo na 

trajnejše znanje z razumevanjem naravoslovno-tehniških vsebin (p. 10). Ljubljana: 

Pedagoška fakulteta Univerze v Ljubljani. 

Wadsworth, B. J. (2004). Piaget's Theory of Cognitive and Affective Development: Foundations of 

Constructivism. Boston, MA: Pearson Education. 

Strand 1 Learning science: Conceptual understanding

71



 
 
 

CONCEPTUAL PROFILES FOR DOLL’S FOUR R'S 
Jan-Eric Mattsson¹ and Ann Mutvei¹ 
¹ Södertörn University, School of Natural Sciences, Technology and Environmental Studies 
 

Abstract: As academic organisers and teachers with different positions teacher training 
programs at Södertörn University we have had the opportunity to develop and assess different 
types of pedagogic activities and use, e.g., the 4 R´s proposed by Doll, recursion, relations, 
richness, and rigor in assessments. Here pre-service teacher student reflections assessed by 
use of the 4R’s are compared with other texts by the same students in order to assess the 
quality of their understanding of evolutionary theory. Written performances of biology 
students are also compared with those of pre-service teacher students in order to reveal 
differences in the use of scientific concepts between the groups. Analysis of student 
performances show a relation between the use of the 4R’s, and the use of scientific concepts. 
Analyses of texts by students in evolution theory show a relatively low use of scientific 
concepts often regarded as important in scientific text. This may be explained by students’ 
good skills in giving scientific explanations in every-day language. Teacher students used 
more biological and evolutionary concepts compared to biology students. The emphasis on 
the use of concepts, especially in school, may be exaggerated. Professional biologists have to 
communicate with people outside the scientific community but teachers often cares about a 
strict scientific language. This is also found here where teacher students use the concepts to a 
larger extent than biology students. School biology should focus on the basic processes of 
organic evolution as the foundation of all teaching in order to enhance the students’ deeper 
understanding. 

Keywords: biology, evolution, primary school, concepts 

 

INTRODUCTION 

As science teachers at universities for more than 25 years and organisers and teachers in pre-
service teacher training programs with an intercultural profile at Södertörn University during 
the last ten years we have had different opportunities for personal development. Different 
positions in the management of courses have not only promoted the development and 
assessment of different types of pedagogic designs in a varied range of courses related to 
educational sciences, teacher internship and science didactics but also improved and deepened 
the strategies of our own teaching practice. We have never been that type of teachers who 
want to communicate all facts and theories they learned themselves, but we have moved from 
positions were we wanted to communicate specific methods about how to learn. During the 
years we have experienced a personal improvement towards professional designers of 
pedagogic events aiming at the encouragement of the students’ development towards personal 
goals out of their possibilities and aspirations.  

This personal development has not always been consciously promoted. Sometimes we didn’t 
realise the relations between our early ideas and later findings. For example, Mattsson & 
Lättman (2004, p. 247) discussed and showed the importance of narrative methods to help 
students to show their learning outcomes in evolutionary theory. Ten years later Mattsson & 
Mutvei (2014) showed how open question, which may be regarded as being of a narrative 
type, gave students better possibilities to show understanding compared to more closed 
questions, without making any references to the older publication. Similarly, but here with 
different perspectives, we are today working within the theory of conceptual profiles 
(Mortimer & El-Hani, 2014). This was anticipated within another theoretical framework in 
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discussions about the need of being interpretative instead of explanatory (Mattsson & 
Lättman, 2004, p. 247). 

In some cases we have been aware of original ideas but never communicated them to our 
students. After reading Mattsson & Lättman (2004) one of our students exclaimed: “So, the 
chaos in our courses is consciously organised!” A course should be organized in such a way 
that it encourages transformation from chaos to personally integrated communicable 
knowledge. One way of achieving this is to organize some disorder in the system, which 
needs to resettle in order to continue functioning. (Mattsson & Lättman 2004, p. 246). 

The importance of chaos in the learning process is important for Doll (1993), but it is also 
supported by others like, e.g., Freire (1970, 1975). It also possible to interpret the Vygotskian 
idea of the proximal learning zone as an example of this. Using the model of Luckner & 
Nadler (1997, Brown, 2008) the comfort zone may be the zone of total comfort, were nothing 
new is learned and only old knowledge is preserved or maybe consolidated. The student does 
exercises on the same level as before without achieving any further skills. The panic zone is 
governed by such total chaos that it is impossible to start ordering it. In between, the learning 
zone also contains chaos but it should not be terrifying, but promoting the process of 
arranging and developing in new direction often without explicit formulated goals.  

Markers of quality 

Doll’s 4R’s, richness, recursion, relations and rigor, (Doll, 1993) may be used to evaluate 
learning (Mattsson & Mutvei, 2014). Richness is the ability to see the possibility of many 
interpretations, recursion the ability to make reflections about processes during learning, 
relations the ability to see connections between own experiences, different subjects, cultural 
events and learning and rigor the ability to accept the complexity of indeterminacy and 
combine it with the hermeneutics of interpretation. Together, the 4R’s show how learning is 
dependent on the ability to change perspective (Doll, 1993, p. 174–183). The results from the 
study of Mattsson & Mutvei (2014) may be used for analyses of other performances of the 
same group of students. Are there differences in the performances of students using the 4R’s 
in their reflections on the fieldwork and when they are producing other texts in other courses 
or contexts?  

We have also found a correlation between the increased uses of evolutionary concepts on the 
expense of biological concepts in reflections by students. Further, when analysing the quality 
of the texts by using richness, recursion, relations and rigor, texts containing many concepts 
had most of the 4 R’s indicating a broader knowledge of evolution (Mutvei, et al., 2015). As 
we have student material from several courses in different programs it may be possible to 
compare the use of concepts to investigate if this is a general trend and also to relate these 
texts to the 4R’s. 

Visibility of quality markers 

The retrospective summary in the introductions represents a teaching context that reveals 
some important characteristics, although only faintly described. The importance of relations 
in the text above is obvious for most readers but the word occurs only once. The other quality 
markers richness, recursion, and rigor (Doll 1993, Mattsson & Mutvei, 2014) are absent in 
the text as written concepts, but traces of them may be found by the observant reader. This 
fairly short text gives several examples of similar phenomena from different angles 
(richness), the reflections return to different times and situations (recursion), and there is a 
consequence in its inconsistence as it jumps between different theoretical frameworks (rigor).  

Thus, the structure of the text above reveals the use Doll´s 4R´s, but the content of the text 
exposes writers snared in a limited contextual network. The construction of the users’ 
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conceptual profiles of the 4 R’s may have visualized their contextual dependence and 
facilitated the use of them in other contexts.  

Similarly, it ought to be possible to reveal the quality of student performances out of their use 
of scientific concepts. Analyses of students’ reflections in order to reveal the quality out of the 
4R’s (Mattsson & Mutvei, 2014) may be compared with other performances of the same 
students using the methods of Mutvei et al. (2015). 

OBJECTIVES 

Thus, the first objective of this study is to investigate the relation between the use of scientific 
concepts and the conceptual profiles of Doll´s 4 R´s among students. If this relation is 
positively established, then the second objective is to investigate other texts in order to assess 
their quality out of the appearance of scientific concepts. 

METHODS 

The work of Doll was known (Mattsson) since the beginning of 2001 and the theory was used 
when designing courses for biology students at Södertörn University. This is described by 
Mattsson & Lättman (2004) together with interpretations of the concepts. Documentation 
from planning, implementation and evaluation from these courses from 2002 until 2009, when 
the biology program terminated, was available. Corresponding material from teacher training 
courses were available from 2008. Further, about 30 publications were available for analysis. 
In addition a large number of student performances from different courses are available. This 
material is extensive, texts only referring to the theory of evolution comprises more than 
150 000 words and these texts are selected for this study.  

Based on the previous results of analyses of the use of the 4R’s of Doll (Mattsson & Mutvei, 
2014) we investigated the same group of primary school teacher students written examination 
tasks from a course in evolutionary theory which was held the same semester as they wrote 
their reflections on the fieldwork. The texts from the evolutionary course were analysed 
according to (Mutvei, et al., 2015) in order to reveal correspondence between use of the 4R’s 
and scientific concepts.  

Further, the students’ use of biological and evolutionary concepts in their written exams was 
studied with comparison between biology students and primary school teacher students 
(Mutvei, et al., 2015). Here we used texts from four different courses for biology students 
2003–2008 and two courses for pre-service teacher students 2008 and 2013. 

The texts were searched for scientific concepts and the number of occurrences were recorded. 
In addition, frequencies of the concepts were calculated and the length of the texts were 
compared. The results of the two groups, biology and teacher students, were also compared. 

RESULTS 

Relation between use of the 4R’s and other concepts 

Teacher students using Doll’s 4R in written reflections on their fieldwork use more 
evolutionary concepts and write longer texts in their examination tasks in evolutionary theory, 
however, with lower frequencies of the occurring concepts than other students (Table 1). 

One group of students using relations and rigor differs from the others. Almost all of them 
uses all 4R’s and produces longer texts mainly with lower frequencies of evolutionary 
concepts and also reached a higher mark in their examinations. 
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Table 1. Students use evolutionary concepts in relation to their use of Doll's 4R. 

 All Any 
R

Rich-
ness

Re-
cursion

Re-
lations

Rigor All 
4R

n 47 18 17 12 8 8 7
No of used concepts 324 114 113 90 56 79 55
Total no of words 40105 16291 15044 11995 10189 10206 8942
% evolutionary 
concepts 

0.81% 0.70% 0.75% 0.75% 0.55% 0.77% 0.62%

No of words/student 853 905 885 1000 1274 1276 1277
Evolutionary 
concepts/student 

6.89 6.33 6.65 7.50 7.00 9.88 7.86

Relative length 100% 110% 106% 124% 166% 166% 164%
Relative use of 
evolutionary concepts 

100% 87% 95% 112% 102% 157% 117%

 

Differences in use of scientific concepts between biology and teacher 
students 

Differences in use of specific concepts 

Analyses of examinations written by students in different evolution theory courses, four 
groups in biology and two in teaching show a relatively low use of scientific concepts (Table 
2). Here, the biology students show lower frequencies in their use of different scientific 
concepts compared to teacher students.  

Table 2. Student´s use of biological concepts in texts used in examinations related to 
evolution and phylogeny. Biol = Biology students, (four groups), Biol T = Biology 
teacher students, PST = Primarys School Teacher students.  

Concept 
n 

Biol 1
14

Biol 2
36

Biol 3
3

Biol 4 
11

Biol T 
10 

PST 
47 

Adaptation 8 51 8 8 1 50 
Development 16 42 18 78 21 97 
Environment 27 52 3 52 3 126 
Evolution 4 106 45 183 105 214 
Family 6 15 8 34 0 9 
Gene 0 9 3 55 0 26 
Generation 0 50 15 32 3 100 
Genus 8 14 3 32 1 10 
Hereditary 0 0 2 0 3 3 
Heredity 0 1 2 1 0 13 
Mutation 0 9 2 17 17 55 
Natural selection 0 6 3 4 15 107 
Origin 4 5 4 9 1 1 
Pool 0 0 0 6 0 1 
Population 12 12 15 50 6 67 
Random 2 2 0 2 4 51 
Selection 0 8 0 18 2 15 
Trait  3 63 2 40 4 244 
Variation 3 24 4 14 9 101 
No of concepts used 93 469 137 635 195 1300 
No of words 19820 47012 9642 39426 6726 40105 
Percentage of concepts 0.47% 1.00% 1.42% 1.61% 2.90% 3.24% 
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Differences in use of biological and evolutionary concepts 

Teacher students used more biological and evolutionary concepts in general in written exams 
compared with biology students (Table 3). 

Table 3. Students use of biological and evolutionary concepts in texts used in 
examinations related to evolution and phylogeny. 

 Biology students Teacher students 
 n=64 n=57
No of biological concepts used 1334 1495
No of evolutionary concepts used 165 355
No of words 115900 46831
Percentage of biological concepts used 1.15% 3.19%
Percentage of evolutionary concepts used 0.14% 0.76%
% of evolutionary concepts out of biological 12.37% 23.75%

 

Differences in use of specific evolutionary concepts 

Also the use of different evolutionary concepts differ between the groups (Table 4).  

Table 4. Students use of evolutionary concepts in texts used in examinations related to 
evolution and phylogeny. 

 Biology students Teacher students 
 n=64 n=57 
Adaptation 75 51 
Natural selection 13 122 
Random 6 55 
Selection 26 17 
Variation 45 110 
Total no 165 355 

 

DISCUSSION 

The first analysis of student performances show a relation between the use of the 4R’s, 
especially relations (n=8), rigor (n=8) and all 4R’s (n=7) the use of scientific concepts. These 
students have low relative frequencies of evolutionary concepts. This may be explained by a 
better understanding and ability to explain in every-day language. This indicates ability to see 
the possibility of many interpretations (richness), to make reflections (recursion), to see 
connections (relations), and to accept complexity (rigor). 

Analyses of examinations written by students in evolution theory courses show a relatively 
low use of scientific concepts often regarded as important in scientific text, although many of 
them, according to their marks (not shown here), show good knowledge of evolutionary 
theory (Table 2). This may also be explained by these students’ good skills in giving scientific 
explanations in every-day language.  

Teacher students used more biological and evolutionary concepts in written exams compared 
to biology students (Tables 3 and 4). Also here the explanation may be similar to the previous. 
Biology students, often with deeper understanding of the theories, may have it easier to 
describe their content compared to teacher students. In addition, the professional biologist 
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have to know how to communicate with the general public, while the teacher often is locked 
in the world of school science where the use of concepts is regarded as an important skill. 

The emphasis on the use of concepts, especially in school, may be exaggerated. For the 
professionals it is usually important to communicate with people outside the scientific 
community and they have to have the ability to use a non-scientific language. It is important 
not only to know the concept and its’ definition but also to have the ability to use it in 
different situations. A necessary condition for this is good understanding of the reality behind 
the concepts. Otherwise it is hard to change perspectives and explain it in other contexts.  

School biology should focus on the basic processes of organic evolution as the foundation of 
all teaching in order to enhance the students’ deeper understanding. 
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Abstract: This paper is part of a larger study aiming at the development of a two-tier data-

gathering tool for exploring students’ views about the predictability of nature’s response to 

disturbance/protection. We report here the results of a case study conducted with the current 

version of our tool and our focus is set on (a) how predictable educational sciences students 

think ecosystems are, and (b) how they justify the degree of predictability they attribute to 

disturbed/protected ecosystems when provided with certain options. Ninety-two educational 

sciences master-students completed the current version of a two-tier questionnaire, developed 

during four pilot studies and consisted of 11 items, 9 of which concern us here. From 

students’ choices, justifications and verbal/written comments in the first two pilot studies – 

where we used an earlier version of the questionnaire with fixed alternative choices and free 

justifications – six categories of reasoning about the ecosystems’ predictability arose. Using 

these categories we composed a two-tier questionnaire consisted of a first tier where students 

answered about the predictability of the ecosystem on a four-item Likert scale, and a second 

tier where they justified their answers by choosing from a list of six alternatives or writing 

their own. Early versions of this questionnaire were used for our third and fourth pilot studies 

with students and educational researchers, respectively. Considering the feedback we had, we 

came up with the current version which we used in the case study we report here. The analysis 

of students’ responses suggests that they averagely don’t believe strongly neither in a 

predictable nor in an unpredictable nature. When trying to explain the ecosystems’ 

predictability/unpredictability, most students use the assumptions of a globally-unstable 

nature, while many use those of a globally-stable nature instead. Finally, only few seem to 

appeal to the currently more valid view of a resilient nature. 

Keywords: ecological reasoning; nature’s predictability; two-tier questionnaire  

 

INTRODUCTION 

Ecosystems are complex and dynamic systems (Ladle & Gillson, 2009); in the light of current 

ecological research nature is not considered as constant and balancing, but as constantly 

changing in both time and space in non-linear contingent ways (Gunderson, Allen, & Holling, 

2010). Nevertheless, although criticized as not representative of natural systems (Cuddington, 

2001; Kricher, 2009), the idea of a ‘balanced nature’ seems to be rather widespread in school 

science (Jelinski, 2005; Korfiatis, Stamou, & Paraskevopoulos, 2004) and popular culture 

(Ladle & Gillson, 2009). Is this ‘mismatch’ between researchers and public opinion 

something one should worry about? 

The ideas people hold concerning ecosystems’ function, and more specifically their response 

to disturbance or protection, play a significant role in public debate about environmental 

issues (e.g. climate change, sustainability), which requires from citizens to make informed 

decisions concerning nature (Westra, 2008). This essential, contemporary need has shifted the 

goal of science education from preparing future scientists to preparing future, scientifically 

literate citizens (Assaraf & Orion, 2005). The development of scientific literacy gets more 
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important when it comes to pre-service teachers, as their assumptions may influence the 

beliefs of their students as well. 

How do pre-service teachers reason about the ecosystems’ response to disturbance or 

protection? Dealing with scenarios of ecosystems suffering disturbances, educational sciences 

students were frequently found to believe in a certain or possible full/partial recovery, while 

they rarely suggested that ecosystems wouldn’t recover at all (Ampatzidis & Ergazaki, 2014; 

Ergazaki & Ampatzidis, 2012). Moreover, students were frequently found to believe that 

protected ecosystems would certainly or possibly remain the same over time, while some of 

them claimed a different or possible different picture for such ecosystems (Ampatzidis & 

Ergazaki, 2014; (Ergazaki & Ampatzidis, 2012). Finally, they very rarely suggested that it 

wasn’t feasible to make predictions about their future (Ergazaki & Ampatzidis, 2012). 

In both studies, some students seemed to suggest that there is a degree of uncertainty about 

the future of disturbed/protected ecosystems. Nevertheless, this uncertainty was rarely based 

on the idea of an intrinsic unpredictability of the ecosystems (Ergazaki & Ampatzidis, 2012). 

Since we think that students’ views about whether and why nature’s response to disturbance 

or protection may be predictable are worth exploring in a large scale, we are in the process of 

developing a two-tier data-gathering tool (Tan, Goh, Chia, & Treagust, 2002; Treagust, 1988; 

Tsui & Treagust, 2010) for a future use in a survey with students of different countries.  

In this paper, we report the results of a case study conducted with the current version of our 

tool. Our focus is set on students’ ideas on nature’s predictability. The research questions we 

address are:  

(a) ‘How predictable ecosystems may be according to students of educational sciences?’. 

(b) ‘How do students justify their views about the degree of predictability they attribute to 

disturbed/protected ecosystems when provided with certain options?’. 

 

METHODS 

Students participating in the fifth case study (CS5) presented here as well as in the previous 

four pilot studies (CS1-4) have majors in different fields and are currently following 

educational sciences master-studies (pre-service primary school education). The data-

gathering tool we used in CS5 was the fifth version of a two-tier questionnaire developed 

during CS1-4. The scenarios of this tool as well as the scenarios of its previous versions are 

summarized in Table 1. There were also scenarios relevant to social systems which are out of 

focus here. 
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Table 1. Participants and scenarios of the case studies (CS). 

 CS1 CS2 CS3 CS4 CS5 

Questions 

type 

Closed-ended 

questions/ 

open-ended 

justification 

Closed-ended 

questions/ 

open-ended 

justification 

Two-tier 

closed-

ended 

questions 

Two-tier 

closed-

ended 

questions 

Two-tier 

closed-

ended 

questions 

Participants 22 students 77 students 38 students 42 edu 

researchers 

92 students 

Scenario 1 P r o t e c t e d  f o r e s t  

Scenario 2 I n t r o d u c t i o n  a n d  s u b s e q u e n t  r e m o v a l  o f  a  p o p u l a t i o n  

i n  a  l a k e  

Scenario 3  Introduct ion and subsequent  removal  of  

nutr ients  in  a lake  

Scenario 4  F o r e s t  f i r e  

Scenario 5    Oil spill in the sea and 

subsequent removal of the 

oil 

Scenario 6    Flooding of a meadow and 

subsequent retreat of the 

water 

Scenario 7    Arrival of a new 

population in a forest and 

subsequent departure 

Scenario 8    Disappearance of a 

population in a river 

caused by a fatal illness 

and subsequent re-

introduction 

Scenario 9    Decline of a fish 

population and subsequent 

fishing regulation 

 

CS1-2 were conducted with the purpose of developing the alternative answers of our tool’s 

second tier. In CS1-2, students dealt with scenarios concerning disturbed/protected 

ecosystems and answered about their predictability and future in closed-ended questions 

developed on the basis of previous research (Ampatzidis & Ergazaki, 2014; Ergazaki & 

Ampatzidis, 2012). Students had to justify their answers in an open-ended part and were also 

asked to make written/verbal comments on the questionnaire during and after its completion. 

From students’ choices, open-ended justifications and their comments in CS1-2, six 

categories of reasoning about the ecosystems’ predictability arose. We used these categories 

to compose the alternative answers of a two-tier questionnaire which was delivered for CS3: 

in the first tier students answered about the predictability of the ecosystem on a four-item 

Likert scale and in the second tier they justified their answers by choosing from a list of six 

alternative answers or writing their own. 
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The fourth version of our questionnaire was developed by considering the feedback we had 

and adding new scenarios aimed at testing different variables (e.g. human-driven/natural type 

of disturbance). This version was delivered to educational researchers in the context of CS4 

and, based on the relevant feedback we received, we finally developed the fifth version of the 

questionnaire that was delivered to 92 students for CS5 that we present here.  In Table 2, there 

is an example of the alternative answers of the second tier. 

 

Table 2. Example of the alternative answers of the second tier (scenario 3 of CS5). 

Alternative 

answer 1 

I can predict that, several years after the restore of the amount of 

nutrients, the lake will return to its initial state (namely the one it had 

before the introduction of the excessive nutrients) 

Alternative 

answer 2 

I can predict that, several years after the restore of the amount of 

nutrients, the lake will be different comparing to how it initially was 

(namely how it was before the introduction of the excessive nutrients) 

Alternative 

answer 3 

I cannot really predict but I think that, several years after the restore of 

the amount of nutrients, the lake will be close to its initial state 

(namely the one it had before the introduction of the excessive 

nutrients) 

Alternative 

answer 4 

I cannot predict because I have no idea 

Alternative 

answer 5 

I cannot predict because I think it is impossible to predict 

Alternative 

answer 6 

I think that, several years after the restore of the amount of nutrients, 

the lake will be different comparing to how it initially was (namely 

how it was before the introduction of the excessive nutrients), but I 

cannot predict to what way it will be different 

Other: (Free answer) 

 

Scores 1-4 were assigned to Likert scale items ranging from ‘I can predict’ to ‘I cannot 

predict’ respectively. To test the questionnaire’s reliability, we calculated Cronbach’s alpha 

coefficient for the total of students’ answers in the first tier. For the following analysis we 

disregarded all answers that (a) were not followed by a choice in the second tier and (b) were 

followed by the choice ‘I have no idea’ in the second tier. We did so with the purpose to 

exclude the replies that were not justified or were driven by a mere unfamiliarity with the 

question. Moreover, we detected seven open-ended answers in the second tier which we 

recoded to the six alternative answers already existed. 

Finally, we tried to correspond students’ responses in the second tier to the views of nature 

suggested by Gunderson et al. (2010). The three views of nature they suggest are the 

following: 

• ‘Balanced Nature’: nature is globally stable; if nature is disturbed, it will return to an 

equilibrium through negative feedback processes. Alternative answers 1 and 3 are related 

to this view. 

• ‘Anarchic Nature’: nature is globally unstable; it is dominated by positive feedback 

processes and hyperbolic processes of growth and collapse. Alternative answers 2 and 6 

are related to this view. 
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• ‘Resilient Nature’: nature exists in multi-stable states which may shift abruptly when 

certain tipping points are reached; it is organized by both positive and negative feedback 

processes, discontinuous events and nonlinear processes. Alternative answer 5 is related to 

this view. 

 

RESULTS 

Regarding the first tier, the mean of students’ choices on the Likert scale was 2,504 with a 

standard deviation of 1,018. Since the score of students’ choices ranged from 1 to 4, it seems 

that the students who filled our questionnaire averagely don’t have a strong belief neither in a 

predictable nor in an unpredictable nature. The Cronbach’s alpha coefficient was calculated to 

0,79. 

Regarding the second tier, the most popular answer seems to be the answer according to 

which the ecosystems will be different after the disturbance or regardless the protection but it 

is not predictable in what way (answer 6) (Figure 1). The second most popular is the answer 

according to which the ecosystem, after the disturbance or regardless the protection, will be 

quite predictably different comparing to how it initially was (answer 2). Finally, the least 

popular answer is the answer which recognizes an inherent incapability to predict the future of 

an ecosystem which is disturbed or protected (answer 5) (Figure 1). 

 

 

Figure 1. Percentages of the alternative answers on the second tier of CS5. 

 

Moreover, our coding on the basis of Gunderson et al. (2010) showed that the ‘anarchist’ 

view of nature is dominant in the participants’ reasoning (Figure 2):  answers 6 and 2 which 

are related to this conceptualization of nature were the ones with the highest frequencies. On 

the other hand, the ‘resilient’ view of nature was very little appealing among the students that 

filled our questionnaire: answer 5 which is related to this conceptualization of nature was the 

one with the lowest frequency of all (Figure 2). 
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Figure 2. Percentages of the ‘nature views’ (Gunderson et al., 2010) according to the 

answers on the second tier of CS5. 

 

DISCUSSION 

Students seem to be ‘moderate’ in their ideas about the predictability of nature; when asked 

about how predictable ecosystems may be they averagely appear to believe in a nature that is 

neither strongly unpredictable nor strongly predictable.     

Moreover, considering students’ responses, we might argue that the idea of nature’s 

predictability can be contradictory in their minds. More specifically, the majority of students 

seem to think that (a) an ecosystem which undergoes a disturbance won’t recover, even in the 

case there is a subsequent human-driven effort to restore it, and (b) that an ecosystem which is 

protected will, nevertheless, be different after some time; in both cases, students argue that it 

is unpredictable how different these ecosystems may be. In other words, their responses 

suggest that they can actually predict that an ecosystem will be different after a disturbance or 

regardless its protection, but they claim they cannot predict in what way. 

Finally, regarding the ways they explain ecosystems’ predictability/unpredictability using the 

views of nature according to Gunderson et al. (2010), most students use the assumptions of 

the ‘anarchist-nature’ view, while many use the assumptions of the ‘balanced-nature’ view 

instead. It seems that most students believe in a globally unstable nature driven by positive 

feedback loops, while many of them believe in a globally stable nature driven by negative 

feedback loops. Only a few students reason about ecosystems’ predictability by appealing to 

the currently more valid view of the ‘resilient-nature’, which assumes that nature may exist in 

more than one stable states driven by stochastic events and nonlinear processes, to reason 

about ecosystems’ predictability. 

These conceptualizations of nature may have impact on students’ environmental reasoning, as 

well; they may interfere with the ways they possibly think about the preservation of  nature: 

(a) believing in a globally unstable nature (‘anarchist nature’), one assumes that the use of 

technology is eventually catastrophic for the environment and the purpose of environmental 

policy should be the maintenance of the status quo (Gunderson et al., 2010) and (b) believing 

in a globally stable nature (‘balanced nature’) may undermine the significance of not 

disturbing ecosystems implying their almost ‘magical’ power to recover initial state (Westra, 
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2008). In both cases, the relevant assumptions about nature’s function may hinder 

environmental awareness, along with conceptual understanding as already explained. Such 

results (a) underline the need for developing teaching materials and ways of instruction in 

order to challenge scientifically controversial views of nature such as the ‘anarchist nature’ 

and the ‘balanced nature’ and construct a meaningful understanding about how ecosystems 

may function, and (b) offer some insight on ideas that should inform such development. 
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Abstract: Identifying misconceptions and difficulties encountered by students in learning a topic 

is a crucial step which should precede the design of any learning progression-driven curricular 

unit. Consequently, the purpose of this study was to investigate students’ misconceptions and 

difficulties in genetics, an important yet difficult topic, in an attempt to design a curriculum that 

would enhance student understanding of genetics. Using quantitative and qualitative data-

collection methods, we obtained an in-depth understanding of the nature of misconceptions and 

difficulties encountered by Grades 7-12 students, determined the level of their genetic literacy, 

and explored the progression of the level of conceptual understanding of major genetics concepts 

across grade-levels. A questionnaire was administered to 729 students (G7-12) in 6 schools and 

was followed by interviews with 62 students to validate the questionnaire results, gain further 

understanding of students’ misconceptions, and assess their level of genetic literacy. Findings 

showed that patterns of inheritance, the deterministic nature of genes, and the nature of genetic 

information were among the most difficult concepts. Students also had inadequate understanding 

of gene-trait relations. However, there was growth in understanding some genetics concepts as 

grade levels advanced. Furthermore, students across all grade levels showed low levels of genetic 

literacy as evidenced by minimal understanding of real-life examples like hybridization, genetic 

engineering, and polygenic traits. Implications for practice and research are discussed. 

Keywords: conceptual understanding, genetics, genetics literacy, misconceptions  

 

INTRODUCTION 

Recently, there is growing interest in research-based curriculum reform where students’ 

difficulties, correct conceptions, and incorrect conceptions (misconceptions) are advocated as 

vehicles for refining curricula and ensuring a better alignment between instructional objectives, 

pedagogical strategies, and assessment (Maskiewicz & Lineback, 2013). This recognition 

constitutes the cornerstone of developing learning progressions (LPs) that are used to design 

instructional materials to enhance student learning (Hadenfeldt, Bernholt, Liu, Neumann & 

Parchmann, 2013). 

Research studies revealed common genetics topics in which students encounter difficulties and 

hold misconceptions (e.g. Lewis & Wood-Robinson, 2000; Lewis & Kattmann, 2004; Duncan & 

Reiser, 2007; Haambokoma, 2007; Mills Shaw, Horne, Zhang, & Boughman, 2008), and 

uncovered possible sources and origins of these misconceptions (e.g. Castéra et al., 2008; 

Donovan & Venville, 2014; Duncan & Reiser, 2007; Lemke, 1990; Lewis & Wood-Robinson, 

2000; Lewis & Kattmann, 2004). Results of these studies have been used to design genetics LPs 

(e.g. Duncan, Rogat, & Yarden, 2009; Roseman Caldwell, Gogos, & Kurth, 2006).  
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In conjunction with other researchers, we believe that identifying the common misconceptions 

and difficulties encountered by G7-12 Lebanese students in learning genetics and determining 

their genetics literacy constitute the initial steps for developing a genetics learning progression 

and more comprehensive genetics units that foster better learning. With the Lebanese Curriculum 

being currently under revision and teachers highlighting the importance of contextualized 

research, this study considered the conceptual understanding, difficulties, and misconceptions 

Grade 7-12 Lebanese students encounter in studying genetics rather than building on research 

investigated in Western countries. It is worth noting that this paper is part of a larger research 

study whose purpose was to design and validate a genetics learning progression and LP-driven 

unit (the development and authentication will be presented in future papers). 

While biology teachers claim that Lebanese students hold the same misconceptions across grade 

levels, there are currently no empirical studies which identify the type(s) of misconceptions that 

might impair students’ understanding or investigate the progression in students’ level of 

conceptual understanding of major genetics concepts across G7-12. Consequently, we sought to 

(1) investigate the misconceptions and difficulties encountered during genetics instruction, (2) 

examine the progression in the level of student understanding of major genetics concepts across 

grade levels, (3) determine students’ level of genetics literacy, and (4) explore students’ 

perspectives on improving the genetics curriculum. 

 

METHODOLOGY 

This study adopted a descriptive mixed-methods design. Quantitative and qualitative data 

collection methods were used to explore variations in the level of conceptual understanding of 

major genetics concepts across grade levels and obtain an in-depth understanding of the major 

misconceptions and difficulties encountered by G7-12 students enrolled in three private and three 

public schools that use the same national textbook. Participating schools were located in three 

geographic regions in Lebanon. Two sections were randomly drawn from each of the grade levels 

7-12 at each of the schools resulting in a total of 729 students for participation in the study. 

A questionnaire constructed by the researchers based on an extensive literature review (including 

standards identified by AAAS project 2061) and the learning outcomes identified by the 

Lebanese Center for Educational Research and Development (CERD) was validated by 5 biology 

educators and piloted with 100 students from two public and two private schools that were 

different from those participating in the study. Necessarily modifications were made and the final 

version of the questionnaire consisted of 38 items: 9 items provided data on student background 

(school, age, gender, grade level, etc.); 12 items assessed student’s opinions about the existing 

genetics curriculum and addressed genetics misconceptions using a 5-point Likert-type scale; 11 

ordered-multiple choice (OMC; Fig.1) items identified students’ level of conceptual 

understanding in specific genetics concepts; and 6 open-ended items addressed students’ level of 

genetics literacy and understanding of major genetics concepts. 

The OMC items (see Figure 1) feature a set of correct response options, where each response is 

linked to a discrete level of conceptual understanding: low (level 1), average (level 2) or high 

(level 3). The option “I don’t know” was also included. 
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A child suffering from Down’s Syndrome has 47 chromosomes instead of 46 chromosomes. He has an extra copy 

of chromosome 21. How is this explained? 

a. This child inherited 2 copies of chromosomes 21 from one parent and one copy of chromosome 21 from 

another parent. 

b. The homologous pair chromosome 21 fails to separate during meiosis in one of the parent producing a sex 

cell with two copies of chromosome 21. 

c. The cells of this child underwent DNA duplication resulting in three copies of chromosome 21 

Figure 1. An example of ordered-multiple choice (OMC) items. 

 

 

The same questionnaire was administered to students during a 50-minute biology class by the end 

of April to ensure that all students have studied genetics. Although G7-8 students do not study 

genetics, they were included in the sample to uncover any prior knowledge acquired from 

informal sources (media, family, etc.). 

Means, standard deviations, frequencies, and percentages were used to analyze students’ 

responses to multiple choice items. Percentages of correct/incorrect responses were compared 

across grade levels. Chi-square tests for each item determined whether variations in student 

responses were statistically significant and one-way ANOVAs verified whether students’ level of 

misconceptions differed across G7-12. Two researchers analyzed students’ open-ended responses 

using categories of genetics misconceptions identified by Mills Shaw et al. (2008). Discrepancy 

in classification was discussed until consensus was reached. Inter-rater agreement was 95%. 

Students at a certain grade level were considered to be highly genetically literate if at least 80% 

of them were able to answer more than 80% of the questions correctly, or having an average level 

of genetics literacy if the percentages were 60-80%, or of a low level of genetics literacy if the 

percentages were less than 60%. 

Additionally, 62 students were randomly selected from all grade levels to participate in semi-

structured interviews (11 open-ended questions) which required students to explain real-world 

genetics phenomena, determine their positions on the genetics curriculum, and suggest means for 

improving genetics instruction. Interviews were carried out in English by one of the researchers 

and lasted 25-30 minutes each. All interviews were tape-recorded, transcribed, coded, and 

categorized by a researcher, an experienced biology teacher, and an assistant researcher to 

determine similarities and/or differences in students’ responses. Disagreements were discussed 

until consensus was reached. Inter-rater agreement was 90%. 

 

RESULTS 

In this section, findings drawn from students’ responses to both the questionnaire and interviews 

will be presented as they pertain to each of the four research objectives. 

1. Students at all grade levels exhibited high levels of misconceptions (79.3-94.0%), showed 

inadequate understanding of major genetics concepts (e.g. polygenetic inheritance, 

differences between gene and allele, environment’s role in modifying phenotypes, genetic 

origin of diseases), and revealed a low level of progression in their conceptual understanding 

of major genetics concepts across grade levels (Figure 2; Tables 1 & 2). 
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2. One-way ANOVA indicated that the level of misconceptions in genetics is highly influenced 

by grade level as indicated by a statistically significant difference in the mean scores of the 

six different grade levels at the p<.05 level [F (5, 723) = 7.68, p<.01]. 

 

Item 16: Change in DNA is always expressed and 

leads to harmful consequences on an individual 

 

Item 17: Different cell types found in an individual’s 

body contain different DNA 

Item 18: Information in the DNA of a human does not 

affect the behaviors of the human. 
Item 19: Like humans, plant cells and fungi have 

genes that determine their traits. 
 

Item 20: Each cell contains only the specific genetic 

information required for its function. 
Item 21: All diseases which have genetic origin are 

hereditary diseases  

 

Figure 2. Percentage of students with correct and incorrect responses across grades levels. 
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Table 1. 

Students’ Conceptions of DNA, Chromosomes, Genes, and Traits across Grade Levels 

Grade 

level 
Students’ conceptions and misconceptions 

7 

- DNA contains information about one’s body. 

- Chromosome is something carrying information 

inside a DNA. 

- Genes form chromosomes. 

- Genes show the characteristics or traits 

of a person. 

- DNA determines person traits. 

- DNA is a test. It helps identify 

paternity hood and family relations. 

 

8 

- DNA is used to identify the identity of individual. 

- Genes determine eye color, body form. 

- Brain determines my traits. 

- My height is determined by glands. 

- DNA is a structure in the cell. It helps us determine 

blood group. 

 

- DNA is a test for our origin. 

- Different DNA determines different 

traits. 

- Chromosomes mean abnormalities. 

- Traits are determined by Go or 

parents  

- DNA helps show relation with 

relatives. 

 

9 

- DNA is a test. 

- Chromosomes and karyotype determine my traits. 

- Karyotype is used to determine whether we look 

like our mother or father. 

- Alleles are inside genes. 

- DNA is a blood test to detect parenthood.  

- Different traits are determined by different alleles. 

- A gene is found on a chromosome and 

carries information. 

- Genes determine traits & DNA 

determines identity. 

- Each cell exists in a location that 

changes its function. 

- Finger print is part of skin. 
 

10 

- Gene is one pair of chromosome, while DNA is all 

the chromosome. 

- Chromosomes carry DNA & Genes hold alleles. 

- DNA is the test used to determine paternity hood 

and relationship. 

- Height is inherited from my father. 

- Gene is a trait found on a chromosome and 

chromosomes make DNA. 
 

- DNA is a sequence of genes. 

- DNA is related to characteristics, but I 

don’t its structure. 

- DNA is information from parents. 

- Genes determine traits but I don’t 

know how. 

11 

- DNA is a double helix containing nucleotides coiled 

around an axis of chromosomes.  

- Gene is a segment of DNA. 

- Chromosomes hold the genes & DNA holds specific 

characteristics. 

- Each chromosome codes for one molecule of 

DNA.  

- DNA is a section of chromosome. A gene is the 

trait on chromosome and it’s a DNA segment. 

- DNA is a protein and chromosomes are made up 

of DNA. 
 

- DNA is a small part of chromosomes 

and gene is part of DNA. 

- Genes make DNA, DNA makes 

proteins and proteins form the 

genotype and the genotype determines 

phenotype. 

- DNA is found in the gene. 

- Gene is inside chromosome, DNA is 

inside gene and alleles are formed of 

genes. 

- DNA is a protein and DNA identifies 

pedigrees. 
 

12 
- Genes make up DNA and DNA makes 

chromosomes. 

- Gene is part of DNA and DNA is part 

of chromosome. 

 

*Major common misconceptions are in bold and italics. 
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Table 2.  

Conceptual change on the cause of albinism: Statements expressed by students 

Grade Level Statements 

Grade 7                              I don’t know 

 Its inherited from parents 

 It’s due to a white gene 

 Albino people don’t sit in the sun.  

 These people have cells different from ours, they have no color but I can’t explain why 

 These people have excessive vitamin C 

 

Grade 8  I don’t know 

 It’s inherited from parents 

 Due to lack of calcium and nutrients taken by the pregnant mother. 

 Due to weak immunity.  

 Skin cells of albino people  don’t absorb sunrays when exposed to UV radiations 

 

Grade 9  I don’t know 

 It’s due to a gene inherited from parents. 

 It’s due to an allele 

 Wrong medication taken by the pregnant woman 

 Errors in the chromosome 

 Due to influence of nuclear bomb on genes 

 

Grade 10  I don’t know 

 Maybe, but I don’t know how 

 Yes, for example sport and physical exercises (environment) can affect my height 

 Yes, sometimes, the food taken by my father might affect a gene, and this is transmitted to 

me. 

 Yes, skin cancer is induced by UV radiations. UV light weakens the  skin which becomes  

more prone to infections 

 

Grade 11  No, except during fetal development where mutation might occur 

 Yes, But I can’t explain how 

 Yes, some chemicals in polluted areas can cause lung diseases. However, I can’t explain the 

mechanism.  

 Yes, cold environment can cause bigger noses.  

 Yes, insufficient food supply can harm people. 

 Probably, because X-rays and nuclear weapon can cause changes but on the long run. 

 

Grade 12  No, there is no effect 

 Yes, environment affects genes. Exposure to sun can cause skin cancer by affecting the 

genes. 

 Yes, X-rays, pollutants… can cause mutation and lead to abnormalities. 

 Yes,  African people have dark skin, Lebanese people have white skin 

 Yes, moth which have a dominant white color turns black under the effect of pollution in 

the environment!!!!!!!!! 

 

*Major common misconceptions are in bold and italics. 

Strand 1 Learning science: Conceptual understanding

91



3. Students at all grade levels showed a high level of conceptual understanding (Table 3). 

4. Chi-square analyses on each of the items were significant (p<.05) indicating a statistically 

significant difference in students’ levels of conceptual understanding across grades 7 to 12. 

 

Table 3.  

Percentages for the Level of Conceptual Understanding for Items 23-33 

Item  
Level 1 

(%) 

Level 2 

(%) 

Level 3 

(%) 

Don’t 

know 

(%) 

23. Which statement is true about these body cells? 27.3 19.5 45.3 7.8 

24. Relationship between a gene and a trait 38.8 21.3 26.3 13.6 

25. Cause of muscular dystrophy 14.8 20.3 20.3 8.4 

26. Concept of alleles on homologous chromosomes 12.5 20.6 58.3 8.6 

27. What determines height 26.9 24.6 38.1 10.4 

28. Genetic predisposition of breast cancer 11.8 21.1 59.3 7.8 

29. Relationship between chromosomes, DNA and molecules 26.7 26.6 23.5 23.2 

30. Genetic information in the body cells of son and parent 16.5 30.0 43.9 9.6 

31. Heritable mutation 24.1 34.4 25.7 15.8 

32. Explaining Down Syndrome in a child 17.7 28.8 36.2 17.3 

33. Creation of “Dolly” sheep 17.7 31.0 34.3 17.0 

 

5. A high percentage of students (79.6%) identified six main genetics topics as difficult to 

understand (Figure 3). 

 

 
Figure 3. Percentage of students identifying difficult genetics concepts in decreasing 

order of difficulty. 

 

6. Findings depicted more or less the same misconceptions and difficulties in genetics, 

especially in the meiotic and genetics models, among students in public and private schools. 

7. Students across all grade levels revealed a low level of genetics literacy (63.8-90.9%) and 

failed to correctly explain genetically-related world phenomena (69.8-89.6%) (Table 4). 
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Table 4. 

Percentages of Responses for the Benefits of Cloning (Item 36A) by Grade Level 

 

Grade 

Cures 

Diseases 

(%) 

Making new 

organs and 

tissues 

(%) 

Avoiding animal 

extinction 

(%) 

Increase species 

population 

(%) 

I don't know 

(%) 

7 2.2 1.5 1.5 1.5 93.3 

8 0.0 0.0 0.0 0.7 99.3 

9 21.1 0.0 0.9 4.4 73.7 

10 8.0 3.6 2.9 1.5 83.9 

11 8.2 6.0 6.0 2.2 77.6 

12 17.2 19.0 5.2 1.7 56.9 

 

8. Students attributed their difficulty in understanding genetics to (a) the national biology 

textbook which lacks coherence, logical sequencing, meaningful illustrations, and activities 

that meet their cognitive levels and (b) the use of traditional teaching methods. 

9. Students attributed their misconceptions to erroneous ideas accumulated from previous 

instruction/informal sources, mostly evident in responses of G7-8 students. 

10. Student recommended strategies to overcome learning difficulties and increase genetics 

literacy, including: re-sequencing concepts, introducing genetics at early grade levels, using 

multi-media to explain abstract processes (e.g. meiosis, protein synthesis…), and adopting 

student-centered teaching that promotes deeper understanding. 

  

DISCUSSION & CONCLUSIONS  

Similar to their peers of other nationalities, G7-12 students in Lebanon showed high levels of 

misconceptions and exhibited difficulties in understanding basic genetics concepts. Possible 

reasons include abstractness, cognitive demand of complex concepts, erroneous ideas acquired 

from informal sources, and the lack of prior-knowledge essential for understanding new and more 

advanced genetics concepts. 

Similar to previous research (e.g. Haambokoma, 2007), findings indicate that the nature of 

misconceptions and difficulties originate from external factors (curriculum content, teaching 

methodology…), and not from students. Moreover, the low level of students’ genetics literacy 

probably stems from overlooking social and ethical issues in student textbooks and/or during 

instruction. 

Analysis of students’ responses to OMC items showed that many students chose the correct 

answer that reflects a high level of conceptual understanding by selecting longer phrases, 

guessing, or seeking teachers’ assistance. Consequently, the reliability of research using OMCs in 

determining the level of conceptual understanding is questioned. Alternative reliable tools might 

include open-ended questions and interviews. 

Implications for practice underscore the importance of teachers’ and curriculum developers’ 

awareness of students’ misconceptions, difficulties, and level of development, to ensure effective 

instruction and ultimately enhance understanding. Additionally, this study highlights some 

measurement practices that researchers need to consider when selecting the most reliable tools for 
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assessing the evolution in the level of student understanding of core concepts in any scientific 

domain. 

 

REFERENCES 

Castéra, J., Clément, P., Abrougui, M., Nisiforou, O., Turcinaviciene, J., Sarapuu, T., … 

Carvalho, G. (2008). Genetic determinism in school textbooks: A comparative study 

conducted among sixteen countries. Science Education International, 19(2), 163-184. 

Donovan, J., & Venville, G. J. (2014). Blood and Bones: The influence of the Mass Media on 

Australian Primary Children’s Understanding of Genes and DNA. Science & Education, 

23(2), 325–360. 

Duncan, R. G., & Reiser, B. J. (2007). Reasoning across ontologically distinct levels: Students’ 

understandings of molecular genetics. Journal of Research in Science Teaching, 44(7), 

938-959.  

Duncan, R. G., Rogat, A., & Yarden, A. (2009).A learning progression for deepening students’ 

understandings of modern genetics across the 5
th

-10
th

 grades. Journal of Research in 

Science Teaching, 46(6), 655-674.  

Haambokoma, C. (2007). Nature and causes of learning difficulties in genetics at high school 

level in Zambia. Journal of International Development and Cooperation, 13(1), 1-9.  

Hadenfeldt, C. J., Bernholt, S., Liu, X., Neumann, K., & Parchmann, I. (2013). Using Ordered 

Multiple-Choice Items To Assess Students’ Understanding of the Structure and 

Composition of Matter. Journal of Chemical Education, 90(12), 1602–1608. 

Lemke, J. L. (1990). Talking science: Language, learning, and values. In J. Green (Ed.), 

Language and educational processes. Norwood, NJ: Cablex. 

Lewis, J., & Kattmann, U. (2004). Traits, genes, particle and information: Re-visiting students’ 

understandings of genetics. International Journal of Science Education, 26(2), 195-206. 

Lewis, J., & Wood-Robinson, C. (2000). Genes, chromosomes, cell division and inheritance- do 

students see any relationship? International Journal of Science Education, 22(2), 177-195. 

Maskiewicz, A. C., & Lineback, J. E. (2013). Misconceptions Are “So Yesterday!” CBE—Life 

Sciences Education, 12(3), 352–356. 

Mills Shaw, K. R., Van Horne, K., Zhang, H., & Boughman, J. (2008). Essay contest reveals 

misconceptions of high school students in genetics content. Genetics, 178(3), 1157-1168. 

Roseman, J., Caldwell, A., Gogos, A., & Kurth, L. (2006). Mapping a coherent learning 

progression for the molecular basis of heredity. Paper presented at the National Association 

for Research in Science Teaching Annual Meeting. San Francisco, CA. 

Strand 1 Learning science: Conceptual understanding

94



STUDENTS´ MISCONCEPTIONS ABOUT INVISIBLE 
RADIATION 

Thomas Plotz and Martin Hopf 
University Vienna 
 
Abstract: For good science teaching it is necessary to possess knowledge about students’ 
preconceptions. A lot of studies about typical ideas that students bring to the science 
classroom have been conducted in science education research. Most of these studies focus on 
mechanics, optics and thermodynamics, whereas only a few of them deal with 
electromagnetic radiation (e.g. Rego and Peralta, 2006 or Neumann and Hopf, 2012). The 
present case study aims at exploring ideas and preconceptions of 17-year old students on the 
topic of invisible radiation. Over a one-year-period those students did a small research work 
for their final exam. They worked on different topics in the field of radiation (e.g. UV or IR). 
During this one-year-period semi-structured interviews with the students were conducted and 
written drafts of their reports were collected. In spring 2015 the final interviews, the student’s 
research documents and videos of their final presentation were conducted. The analysis 
involves open and axial coding additionally to constant comparative methods from Grounded 
Theory. First findings show that the interviewed students possess a sophisticated conception 
about the danger of radiation. They have problems to define the concept of artificial. Students 
differentiate between artificial and natural radiation, but they are not able to distinguish 
between these concepts. Furthermore, an evidence-based mental model of the sender-receiver-
concept could be developed. 
Keywords: radiation; students´ conceptions; case study; mental model 

INTRODUCTION 
In the last decades of educational research a lot of research in the field of student 
misconceptions has been carried out. There are plenty of conceptions for mechanics, optics or 
thermodynamic documented (Driver, Guesne, & Tiberghien, 1985; Duit, 2009; Müller, 
Wodzinski, & Hopf, 2011). It is interesting, that there is only little research in the field of 
invisible electromagnetic radiation (Neumann & Hopf, 2012; Rego & Peralta, 2006). The 
results are pointing out different misconceptions for electromagnetic radiation. Due to their 
design these documented conceptions were hints for further investigations. For every modern 
technology (WIFI, Microwave, Mobile phones…) electromagnetic radiation is an important 
part. Therefore students should have a good understanding of the scientific concepts of 
radiation. 
There are three goals in this project. The first goal is to find and describe misconceptions of 
students about electromagnetic radiation. One question is, whether the misconceptions are 
similar to the one found in Neumann and Hopf (2012) and if they are, can they be described 
in a better way. The second goal is to understand the learning processes of the students 
through their research. What do they learn? Do they change their conceptions about radiation? 
The third goal is to investigate, if there is a conceptual change (Duit, Treagust, & Widodo, 
2008) observable. In which way can the change be observed? What sort of problems can be 
witnessed? The presented results focus on the first goal of the study. 

METHOD 
The study is designed as case study. A group of seven students (aged between 17 and 18) 
from four different schools in Vienna volunteered to work with the author for more than a 
year. These students conduct a small study about the conceptions of younger pupils about 
radiation. These studies were designed as empirical studies with interviews or questionnaires. 
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This research task was part of their final exam. They had to write an additional report at the 
end and made a presentation about their results. 
Before the students began to work on their study, a semi-structured interview took place. 
There were several questions about the perceptions of radiation to create different associations 
with the term “electromagnetic radiation”. These associations were grouped to a mind-map 
and the students explained why they arranged it in their own particular way. Additional to that 
the students where asked about their knowledge about X-rays, ultraviolet radiation, infrared 
radiation and microwaves.  
These interviews were coded and analysed with methods from Grounded Theory (Strauss, 
Corbin, Niewiarra, & others, 1996) (open coding; axial coding; constant comparison) to get 
well-described categories for the perceptions of the students. The produced mind maps were 
another big part in the data analyses process. Due to the explanations of the students we were 
able to enrich the information that lies in these maps. We can understand the structure and 
also the concepts that control the ordering process. The maps were compared to a scientific 
order of the terms brought up by the students. This scientific order was made by the author 
and discussed with experts in science education and practicing teachers to validate the “right” 
map.  

During their research the students where supervised and continuously advised (for example: 
how to conduct the research, how to analyse the date and so on) by the author and their 
teachers. They used different methods to investigate the conceptions of the younger pupils 
and tried to work in a scientific way. We first thought about using the data collected by the 
students for further analyses. Though it is a problem to use the data they collected. Students 
are not scientists so their data is flawed in many ways, from bad interview questions to 
questionnaires that are not well constructed. Nevertheless every student wrote a final report 
and presented the results at the end in a fifteen-minute presentation. These presentations were 
filmed. Afterwards, a post- interview with questions similar to the first one was conducted 
with every student.  

Through the whole year of the study an enormous amount of data was collected and not every 
piece of data is analysed yet. We can therefore give only a small glimpse of the results we 
expect after analysing the whole data set. In the next section, first results referring to the 
interviews and the first written documents from the students will be presented. 

RESULTS 
Mind maps 

In figure 1 and 2 two different examples of mind maps are printed. Figure 1 shows a 
map with a clear physic-based structure. The student refers in the interview to the 
electromagnetic spectrum. His scheme is the spectrum and the different types of 
radiation are ordered on this spectrum with several additional terms. 

Figure 1. Mindmap from Student 1 
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The map of figure 2 is quite different. The structure is not clear in a scientific view. The 
student refers in the interview to some semantic links he made between the associations. 
Most of his explanations were ad-hoc constructions in the interview. He had no overall 
system in his mind map. What we can identify are different islands. Various terms on 
one island fit together in his explanation. Overall we found a great variety of maps. 
Most of them were not in a physical based order. Therefore we can conclude, that even 
after eight years of science education, only a little percentage of students is capable of 
making a systematically right order from a physics point of view.  
 

 
Figure 2. Mindmap from Student 2 

Mental model 
Two models were found in the interviews and the following drafts. The first refers to 
the understanding of the sender-receiver-concept. Two students claim, that if they turn 
of the WIFI on their mobile phone, there will be significantly less radiation around 
them. They do not understand that some devices are only changing electromagnetic 
radiation into a form, which is perceivable for the human body (see Figure 3). Turning 
off the changer won´t affect the source and therefore won´t reduce the amount of 
radiation. So there is confusion between sender, changer and receiver. In this model the 
changer can be any machine transforming electromagnetic radiation into a perceivable 

 
Figure 3. Model „sender-changer-receiver“ 
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form. As an example we can take a radio (changing radio waves into sound) or an 
infrared camera (changing infrared-radiation into a visible picture). Looking closer to 
this model, we examine that a lot of problems refer to this concept. Knowing the 
difference between a changer and a source is necessary to understand the concepts of 
radiation. Most parts of the spectrum are not perceivable for the human body and so we 
have to use changers to detect those parts. Confusing those changers with the source 
leads to false conclusions.  

The second model refers to the understanding of the danger of X-rays. The effect of X-
rays for the body is not clear for the students. There is evidence in the data, for relaying 
on a sort of a threshold value for damage caused by radiation. Is the amount of radiation 
below this value, the students claim that there is no health-risk. Damage is only caused, 
if the threshold value is passed over. The human body has a certain resistance to 
radiation. There is a threshold that defines the dose of radiation that can be handled by 
the human body without damage (see Figure 4). In radiology this model has been 
vigorously debated in the last years. Nevertheless the linear model is widely used in the 
explanation of the relation between low radiation dose and cancer.  

 
Figure 4. Two models of human response to radiation 
Additionally, one student argues using the quote from Paracelsus “All things are 
poisons, for there is nothing without poisonous qualities. It is only the dose which 
makes a thing poison.” (Paracelsus & Pörksen, 2003) talking about dose and response.  

 “I mean, the dose makes the poison, clearly,…1” student 5 

She argues that ultraviolet radiation is much more dangerous than radiation from 
wireless LAN. She also point out, that the X-rays are dangerous but useful and if you 
don´t have an X-ray very often it does not matter at all. 

Radiation is artificial 
Students struggle with this point. They do not realize that electromagnetic radiation is 
always around us and every object emits radiation. So they name radiation as artificial. 
They also argue that machines like a microwave oven or a mobile phone produce 
radiation. This type of radiation is classified as artificial. On the other hand, they talk 
about the sun, which they name a natural source of radiation. There emerges a conflict 
between the concept of natural and artificial. This conflict is non-detachable for the 
students during the interview. They are not able to define attributes to decide whether 
something is natural or artificial.  

DISCUSSION AND CONCLUSIONS 
The results above lead to some interesting conclusions.  
First, there are a lot of new concepts in the field of radiation, which are not documented 
previously: The mind maps lead to the assumption, that the knowledge is not structured and 
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shows a big diversity. That leads to the conclusion, that students were not empowered to 
understand basic structures in the field of radiation. This fact is surprising because the 
students are at the end of their physics education in school and invisible radiation is part of 
the curriculum in Austria. Further studies should investigate this problem to find more 
evidence for the conclusion above. Maybe a change in the curriculum is a solution to this 
problem. Today radiation is not a single point in the curriculum like mechanics. Different 
types of radiation appear on different points in the physics curriculum. A summery and 
holistic view to the topic is therefore not guaranteed. 
Second it is surprising, that the students have better understanding about the danger of 
radiation in general. The result from Neumann and Hopf (2012) that “radiation is dangerous” 
can not be completely confirmed for the students in this study. There is a great variation in the 
answers from the students relating to the danger of radiation. X-rays for example are seen as 
useful in the context of medical use, but also identified to cause cancer. The threshold model 
refers to a confusion of dose and amount of radiation. We are not able to explain this 
confusion yet. 

Third and last conclusion refers to the problem of differing artificial and natural. The question 
if radiation is artificial or natural is not important in the world of physics; thus, it may be 
concluded the result is worthless from a professional physicist point of view. Keeping 
however in mind that students constantly struggle with this question we can conclude that 
teaching radiation, as a topic should avoid this problem. Often the students tie negative 
feelings to the adjective artificial. So when teachers introduce radiation in the context of 
technical things, radiation can be tied to this negative feeling. Teachers assume the topic is 
interesting for students when it is linked to their everyday life. This focus on technology 
probably leads to the problem of understanding. We suggest introducing radiation as a natural 
phenomenon and addressing therefore the positive thoughts that are tied to the adjective 
natural. 
Electromagnetic radiation surrounds us. This key idea is hard to believe for most of the 
students. The source-changer-receiver-model is a reference to this idea and the misleading 
conclusions. We have to develop teaching concepts and material to address this idea and help 
students understand this basic principle. 
It must be mentioned, that there are clear limitations of this study. The predictions and models 
above cannot be generalized due to the design as a case study. Notwithstanding, the results 
are a hint to further investigations.  

Overall the study shows that the misconceptions found by Neumann and Hopf seem to 
develop with age. This opens the field for further investigations. The results above are hints to 
understand the possible structure of the misconceptions. Future findings may help to classify 
their structure relating them to the different existing theories (a great overview is given in 
Aufschnaiter & Rogge, 2015).
                                                
1 Translations from German by the first author. 
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Abstract: Context-based education has been stated as a valid approach for improving  the 
learning of science but still needs to be clarified how to effectively handle this methodology 
to learn key ideas of the theories of science. Meaningful learning has been characterized as 
transfer capability (i.e. applying science knowledge in new contexts) and four groups of 15-
year-old secondary students have been investigated. The different results have been 
interpreted and correlations between teaching strategies and transfer have been identified. The 
focus of the scientific literacy to be transferred has been the competency “Explain and predict 
phenomena scientifically” and the science content was the particulate nature of matter. Data 
was collected using questionnaires for students (for transfer assessment) and interviews with 
their teachers (to identify their educational aims and methods for introducing and 
assessing).Additional data was collected about the willingness and reasons of students to 
continue or not with scientific or technologic studies. The results show significant better 
transfer results for two of the groups, one of them had a high socio-cultural background and 
they were used to high demanding assignments while the other one had a low socio-economic 
status but a wide range of fruitful teaching strategies were used, namely metacognitive 
regulations, school science activity (which means learning content through real 
experimentation) and context-based teaching of concepts. The amount of students that are 
willing to pursue a scientific itinerary was additional data. A new framework for transfer in 
science education is discussed to relate the several aspects involved and to characterize the 
transfer profiles of students. The proposed scheme may be useful for the design of scientific 
literacy assignments as well as for the elaboration of context-based teaching-learning 
sequences that might help all types of students to be scientifically literate. 

 

Keywords: Transfer, context-based, secondary school 

 

INTRODUCTION 

Lack of relevance and difficulty for transfer knowledge are two of the major problems that 
science education has to face in the third millennia (Gilbert et al. 2011). Context-based 
education has been regarded in many researches as a valid approach for increasing the interest 
in science, which may result in an increase of vocations in science and technology (Ultay and 
Calik 2012). Nevertheless, more research is needed to clarify the effect of the use of contexts 
in learning key ideas of the theoretical models of science that are considered as essential in a 
“Science for all” curriculum (Broman and Parchmann, 2014). For this reason, contextualizing 
cannot only mean that students learn descriptive information of the relevant situations but it 
has also to include the learning of theoretical models that are useful for all citizens. 

In a previous research (Marchán-Carvajal and Sanmartí, 2013), a proposal of criteria for the 
design of context-based teaching-learning sequences that may foster transfer capability was 
validated through a case study. The analysis of the data showed us the potential of contexts 
when they are used as a guiding thread that articulates a wide range of teaching strategies, 
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among which metacognitive regulation activities must be highlighted for its contribution to 
meaningful learning. It seems reasonable to carry out another research that seeks for a more 
general validation of this approach in comparison to other conventional methodologies. 
Therefore, the specific objectives of the research are as follows: 

1. To analyze the transfer capability of several groups of students, one of them with a context-
based approach. 

2. To identify effects on transfer capability related to teachers' pedagogical content knowledge 
(PCK). 

3. To interpret and describe transfer capability of students and their difficulties. 

  

METHODS 

This research was carried out in four high schools of the region of Barcelona, Spain. All of 
them were State Schools in urban areas but there were significant differences in students’ 
typology (see table 1). We used a total sample of 158 students mostly aged 14 or 15 years old. 
They are in year 9 of compulsory secondary education and it is the last year that science is 
compulsory. 

Table 1. Comparison of schools 

High 

School 

Number of 

students 

Socioeconomic background of 

students 

Number of students with 

special needs 

A 48 Low High 

B 40 Medium-low Medium 

C 33 High Low 

D 37 Low High 

 

This is a mixed methods research. On the one hand it is a quasi-experimental research because 
group D of students has followed a context-based approach to learn key ideas of chemistry 
along the school year and as a result it will be considered as an experimental group while 
groups A,B and C were control groups. On the other hand transfer performance is interpreted 
according to the information gathered from an inductive analysis of students' answers to a 
questionnaire and interviews to their teachers. The questionnaire consisted of six questions 
that required applying key ideas of the particulate nature of matter in different relevant and 
meaningful contexts, i.e. transferring. A 40-50 minutes semi-structured interview to the 
science teacher of each group was carried out to characterise their PCK. Finally, the 
willingness of the students to choose the optional subject “physics and chemistry” the next 
year as well as the reasons for doing it (or not) were treated as additional data.  

An inductive analysis of the answers to the questionnaire was done to distinguish between 
different levels of transfer performance of students. Five levels were identified and described 
according to a description from Sevian & Talanquer (2014). Table 2 shows the average level 
for each student, each question and each group was determined and compared using a Xi-
square statistical test. As far as the interviews are concerned, five aspects of teacher’s 
comments in the interviews have been highlighted for having a possible effect (fostering or 
hindering) on the transfer performance of their students. See table 3 for a description of each 
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aspect and how it may affect transfer performance, according to the theoretical frameworks 
from the literature. Lastly, students of each group were classified in three groups: those that 
want to choose physics and chemistry next year, those that do not want and other. The main 
reasons given by students for their future intentions were qualitatively analysed and four 
categories were found: intrinsic motivation (I), extrinsic motivation (E), perception of self-
efficacy (P) and other reasons (O). 

 

Table 2. Levels of performance in transfer assessed from the mode of reasoning 

Level Mode of 

reasoning 

Description 

0 Prestructural None of the necessary ideas of the model are cited in the answer. 

1 Unistructural 

simple 

Only one aspect of the necessary ideas of the model is cited and a 

relation with the problematic context is not established. 

2a Unistructural 

relational 

Only one aspect of the necessary ideas of the model is cited but a 

clear relation with the problematic context is reasoned.  

2b Multistructural 

simple 

Several aspects of the necessary ideas of the model are cited but a 

relation with the problematic context is not established. 

3 Multistructural 

relational 

All the necessary ideas of the model are cited and a full answer with 

clear relations to the context is provided. 

 

Table 3. Teachers PCK components and how they contribute to transfer 

Aspect of teaching Description Fosters transfers when... 

Model-based inquiry 

(Windschitl. et al, 

2008) 

Integrating laboratory 

experiments with science 

theories for learning 

specific concepts through 

the interpretation of the 

results 

Taking profit of active 

engagement to meaningfully learn 

science theories. Engagement 

with experiments and 

manipulating substances and 

instruments. 

Scientific literacy 

assessment 

(Fensham 2009) 

Assessment of the 

application of science 

knowledge in 

contextualized activities 

Get used to be assessed in a non-

memoristic way. Not just 

repeating a classroom exercise but 

facing a new problem that can be 

solved when related to what has 
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been learnt in lessons. 

Metacognitive 

regulation 

Self and peer-to-peer 

assessment, sharing 

learning goals, sharing 

assessment standards to 

check them periodically, 

activities of “what has been 

learnt so far”. 

Student’s interaction helps in 

learning and also self-reflection 

about what is known and not, and 

what to do to solve the difficulties 

that appear. 

Contextualisation 

(Gilbert 2006) 

Use of the context as the 

guiding thread of the 

sequence when learning the 

key ideas 

Engagement with the context 

makes important the need to learn 

new concepts to understand a 

situation or solve a problem. 

Key ideas and 

theoretical models 

(Harrison & Treagust 

2000) 

Selection of key ideas of 

the theoretical models and 

establishing relationships 

between them. 

Learning abstract ideas of science 

(and how they are related) that are 

universal is important for 

transferring from one situation to 

another. 

 

 

RESULTS 

The average level of transfer performance for each group (table 4) and for each question 
(table 5) was done according to the rubric described earlier (table 2). Students from groups C 
and D have a significant difference (p-value lower than 0.05) in their ability to apply key 
ideas of the particulate nature of matter in several contexts. 

 

Table 4.  Average level of transfer performance for each group 

High school Group average 

of the test 

A 0,6 

B 0,8 

C 1,4 

D 1,4 
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Table 5.  Average level of transfer performance for each question 

Question 1 2 3 4 5 6 

A 0,8 0,5 1,0 0,5 0,1 0,7 

B 1,0 0,6 1,1 1,1 0,4 0,7 

C 1,9 1,8 1,6 1,3 0,7 1,2 

D 1,6 0,9 2,0 2,1 1,3 0,9 

 

A qualitative description of the five elements that contribute to transfer for each teacher has 
been done from their appearance in the transcription of the interviews. Table 6 shows the 
percentage of students of each group that has the intention to choose the optional subject 
physics and chemistry next year. Table 7 shows the percentage of each category of reasons. 

 

Table 6. Percentage of students that want to chose Physics and chemistry next year 

High school % yes % no 

A 42 46 

B 15 83 

C 39 55 

D 65 35 

 

Table 7. Percentage of each category of reasons 

School Yes No 

 I  P  E  O  I  P  E  O  

A 35  2  6  0  12  12  17  4  

B  5  2  7  2  25  45  10  2  

C 21  0  18  0  6  12  33  3  

D  42  10  10  0  3  16  12  4  

 

The pedagogical content knowledge of the teachers from the sample was characterised 
through the interviews and the collection of their written tests.  The analysis of all this content 
has been done using the five components of PCK from table 3 and results are shown in table 
8. 

Table 8. Description of the PCK components for each teacher 
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Teacher  Model-based 
inquiry  

Scientific 
Literacy 
Assessment  

Metacognitive 
Self-assessment  

Contextualization  Theoretical 
models and 
abstract ideas  

A  Separates 
Experiments 
and theory  

Reproductive, 
simple and 
without context  

Not used  Known but no used 
because it is too 
difficult  

Only Ideas of 
science  

B  Separates 
experiments 
and theory  

Reproductive, 
simple and 
without context 

Used as a group 
discussion after 
exams  

Not known and not 
valued as useful  

Ideas of and 
about science  

C  Separates 
experiments 
and theory  

Productive, 
complex, 
without context, 
Mostly 
calculations  

Used when 
students explain 
what they do on 
the blackboard  

Known, used in an 
optional subject and 
very prone to know 
more about this 
methodology  

Ideas of and 
about science  

D  Integrated 
modelling 
through 
experiments 

Productive, 
complex and 
within context  

Mostly 
Explaining 

Used in 
individual and 
small group 
activities  

An integrated 
context-based and 
modelling approach 
is used  

Ideas of and 
about science  

 

DISCUSSION 

As far as the relation between students' transfer capability and teachers' PCK, the previous 
results suggest that: 

-  Integrating modelling processes with inquiry experiments so that the key ideas of 
theoretical models are learnt meaningfully fosters that this knowledge can be transferred.  

- Assessing students using contextualised, productive and complex assignments combined 
with the appropriate metacognitive self-assessment strategies contributes positively to 
transfer. 

-  Low social status students may obtain similar learning outcomes in transfer compared to 
high social status students when PCK of teachers is based on research-based evidences in 
science education. 

-  Teaching a selection of abstract science ideas does not necessarily mean that this knowledge 
can be transferred to real-world situations (the problem of the “Inert knowledge”, according to 
Bransford et al. 1986). 

- Teaching experience and being a discipline specialist is not a crucial element of PCK that 
contributes to transfer capability of students. 

As far as the relations between students' perception of the relevance of science and teachers' 
PCK the previous results suggest that: 

- Using the context-based approach with relevant situations improves students’ perception of 
the relevance of science and generate interest in it. 

- Using a model-based inquiry approach and metacognitive self-assessment strategies 
contributes to intrinsic motivation for science,  it may reduce the number of students that are 
demotivated because they feel that science is too difficult for them. 

- Other aspects such as teaching style (attitude, communication, humour...) may play a 
relevant role in the learning process and the perception of science relevance.  
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Nevertheless, more research is needed to clarify all this issues because there are many other 
variables that are contributing to transfer capability and motivation of students, such as the 
teaching style (empathy, communicative style, affiliation, among others). 

 

CONCLUSIONS 

Firstly, the significant differences in average transfer performance between the four schools 
may be interpreted in terms of the socio-economic status of students but school D 
(experimental) has a similar performance to school C despite the fact that C has a more 
favourable socio-cultural background and fewer students with special needs. This may 
indicate that the PCK of the teacher is contributing to transfer capability. 

Secondly, these differences in performance can also be interpreted in terms of the educational 
priorities of the science teachers, as well as the teaching strategies they use. The assessment 
of scientific literacy using new problems that have not been treated in class (schools C and D) 
must have contributed to transfer capability because students are more used to apply science 
knowledge in unknown scenarios. In addition, students in school D were involved in self-
regulation activities that must have helped them to meaningfully learn the theoretical models. 
Another strong point of teacher D is the integration of experiments for the construction of the 
theoretical model. In the other schools experiments were carried out as a separate curriculum 
and disconnected of the learning of science models (“theory lessons”) which makes more 
difficult for students to engage in the understanding of abstract entities. 

Thirdly, the differences in performance in the six questions may be attributed to the difficulty 
of the transfer task, which has been interpreted in the literature (Gilbert et al. 2011) as the 
similarity (near versus far) between the learning and the final context. In order to clarify why 
some tasks could be called “far transfer” and other “near transfer”, a scheme of the 
dimensions involved when transferring science knowledge is presented in figure 1. 
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Figure 1. Scheme of the dimensions involved when a transfer has to be carried out. 

 

Finally, the different amount of students that are willing to pursue a scientific or technological 
career is higher in school D may be justified by the use of relevant contexts in classroom. 
Making the utility of science explicit to students must contribute to student’s perception of the 
importance of science in the real world and also in their professional future . 
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Abstract: In this work we present an educational board game named “Organic & Action” 

related to some organic chemistry concepts like nomenclature, chemical structure, function 

and isomerism. The game was designed and implemented with secondary students (15-17 

years) at a Brazilian public School in Rio de Janeiro. Our goal was to review and rework 

those conceptual topics with the students. The usefulness of this game as an educational tool 

was evaluated using a 5-point Likert-type scale. The results showed that the game “Organic & 

Action” was well accepted by students. The distribution of students’ responses is majority 

“strongly agree” score in both perceptions about the usefulness of the game and as an 

educational tool. The conceptual errors of the students helped teacher to lead them to 

reevaluate their answer using hints or additional questions discussed with the class. The game 

successfully motivated students to review and rework their organic background, providing 

enjoyable activities in classroom and enabled socialization of the students. 

Keywords: educational game, organic chemistry. 

INTRODUCTION 

Chemistry learning is not an easy task for most students. Its specific vocabulary, associated 

with the abstract concepts, interpretation of different models and mathematic skills became 

the teaching-learning process a real challenge for teachers and students at any level. The 

students should be able to deal with concepts like chemical formulae, equations, nomenclature 

and functions. Sirhan (2007) reported that “the interplay between macroscopic and 

microscopic worlds is a source of difficulty for many chemistry learners”. But also the 

representational level of chemistry is a great obstacle to be overcome by students. 

Regardless of abstract thought of students to be fundamental in chemistry learning, sometimes 

to memorize some concepts is required. For example, the set of rules to name chemicals, to 

write down chemical formulae or even to point out the correct organic function present in a 

molecule. In that case, the student’s motivation is very important to reduce obstacles in the 

learning process and educational games can achieve this goal (Franco-Mariscal, 2014).  

People can growth their knowledge dealing with the working memory, processing a few 

information at time (Khoii and Sharififar, 2013). The literature states that the students’ 

achievements are related not only with memorization strategies but also with elaborations e 

control learning strategies (Areepattamannil and Caleon, 2015). So, the act of playing games 

can help the construction of students’ long-term memories (Antunes et al., 2012).  

Educational games are a very nice tool to motivate students and to improve attention and 

memory of them (Franco-Mariscal et al., 2015). They can be used to introduce or reinforce 

conceptual topics. But its powerful aspect is the playful. In spite of Daubenfeld and Zenker 

(2015) state that “application of game-based learning will not automatically improve student 

achievement”, numerous educational games are proposal in the literature to study chemistry. 

For example, board game (Antunes et al., 2012; Bayir, 2014), digital 3D game (Chen et al., 

2014) and card games (Costa, 2007; Franco-Mariscal et al., 2012; Bayir, 2014; Martí-

Centelles & Rubio-Magnieto, 2014; Moreno et al., 2014). 

In this work we present an educational board game named “Organic & Action” related to 

some organic chemistry concepts like nomenclature, chemical structure, function and 

isomerism. The game was designed and implemented with secondary students at a Brazilian 
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public School in Rio de Janeiro. Our goal was to review and rework those conceptual topics 

with the students. The usefulness of this game as an educational tool was evaluated. The 

conceptual errors of the students helped teacher to lead them to reevaluate their answer using 

hints or additional questions discussed with the class. 

METHOD 

The educational game “Organic & Action” is based on a mixture of strategy and chance like a 

roll-and-move board game, where player’s tokens are moved based on a throw of the dice. 

The game is composed by a board game (Figure 1), 5 tokens, 1 regular dice, 1 hourglass and 

50 cards (Figure 2). The game requires a minimum of two teams. Figure 1 presents an english 

version of the board of the game. 

 

Figure 1. The English version of the board used in the game “Organic & Action”. 

Labels: FG- functional group, N- IUPAC nomenclature, SF- skeletal formulae, SP- 

structural plane condensed formulae, MF- molecular formulae, I- isomerism, CM- 

Chemistry model,  - everybody plays. 

To play the game, the teams initially position their tokens on the square labeled “Start” (see 

Figure 1). First, one player of each team throws the dice to see who start the game (get the 

greatest number) and the sequence of players. After that, the player rolls the dice and 

advances the number of squares indicated on it. Each square of the game board is labeled with 

a letter representing a specific question (see Figure 1 and its caption). So one player of the 

team picks the first card out of the pile and writes down on the blackboard one of the data 

describe on the card – name, structural formulae or skeleton formulae (see Figure 2) that it 

should be different from the question. Then, the others players of the team have 3 minutes to 

give the answer. If the answer was correct the same team plays again. If it was wrong the next 

team rolls the dice and plays. The team that reaches the last square labeled “Finish” first wins. 

The teacher supervises the game and judges the students’ answers. 
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Figure 2 presents a set of three cards used in the game. All cards in the game contain the 

IUPAC name, the structural formulae and the skeleton formulae of an organic compound. 

Basically, one can find some cards representing hydrocarbons (alkanes, alkenes and alkynes), 

alcohols, ethers, aldehydes, ketones, carboxylic acids and esters. 

 

Figure 2. A set of cards used in the game “Organic & Action”. The substances are 

Butane (left), methylpropane (center) and but-1-ene (right). 

At the end of the game the students’ perceptions of the usefulness of the game as educational 

tool was achieved using a survey containing 13 items (Table 1). A 5-point Likert-type scale 

was used from strongly agree (one) to strongly disagree (five). The students also have the no 

opinion (SO) option. 

Table 1 presents the thirteen items used in the survey and its respective subjects and 

statements for response. 

Table 1. Items used for students’ perceptions. 

  Subject  Statements for response 

Item    about the game 

S1.  Concentration  The game demands concentration 

S2.  Challenge  The game is challenge 

S3.  Ability  The game demands or develops some abilities 

S4.  Goal  The goal of the game is obvious 

S5.  Rules  The rules of the game are understandable 

S6.  Presentation  The presentation of the game is appropriate 

S7.  Socialization  The game enables socialization 

S8.  Satisfaction  I recommend the game to others classes 

    
about the educational value 

S9.  Approaching  The game proper approaches the chemical subjects 

S10.  Goal  The educational goals of the game are obvious 

S11.  Motivation  The game is motivating 

S12.  Application  The game is applicable to others chemical concepts 

S13.  Adaptation  The discussed content is appropriated to my skills 

 

The game was developed in two different classes at a Brazilian public secondary school (15-

17 years). Class A consisted of 22 students (7 males and 15 females) and class B 28 (7 males 

and 21 females), which were arranged into teams of 5-6 at the beginning of the term. The 
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game was used to review and reinforce the subjects of nomenclature, chemical formulae, 

molecular geometry, function and isomerism in organic compounds. 

RESULTS 

Figures 3 and 4 present the graphics with the distribution of the students’ responses about the 

usefulness of the game (items S1-S8) and as an educational tool (items S9-S13), respectively.  

 

 

Figure 3. Survey items vs. Likert scale plot representing the students’ perceptions about 

the “Organic & Action” game. (see Table 1) 

 

Figure 4. Survey items vs. Likert scale plot representing the students’ perceptions about 

the pedagogical value of the “Organic & Action” game. (see Table 1) 

The analysis of students’ responses was procedure by descriptive statistical data analysis. The 

mean scores and their errors for each surveys’ items were determined. Table 2 presents the 

mean scores and standard errors from the student’s perceptions about the “Organic & Action” 

game. The statements for students’ responses are described in Table 1. The 5 points Likert 

scale scoring used are: strongly disagree (1), disagree (2), neutral (3), agree (4) and strongly 

agree (5). A “no opinion” point was used in the survey aiming to give the students an 

abstention option. Nevertheless, everybody answered all questions. 
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Table 2. Items used for students’ perceptions. 

Item
a
 Mean scores

b,c
 Standard errors

c
 

S1 4,62 0,11 

S2 4,54 0,10 

S3 4,28 0,14 

S4 4,63 0,12 

S5 4,62 0,12 

S6 4,60 0,09 

S7 4,86 0,06 

S8 4,78 0,08 

S9 4,84 0,08 

S10 4,72 0,09 

S11 4,60 0,11 

S12 4,65 0,10 

S13 4,26 0,15 
aSee Table 1 for the survey statement text. 
bMean scores on a 1-5 Likert scale scoring as strongly 

disagree (1), disagree (2), neutral (3), agree (4) and 

strongly agree (5). 
cN = 50. 

 

DISCUSSION AND CONCLUSIONS 

The analysis of data suggested that the game “Organic & Action” was well accepted by 

students. The distribution of students’ responses (see Figures 3 and 4) is majority “strongly 

agree” score in both perceptions about the usefulness of the game (items S1-S8) and the 

educational tool (items S9-S13). These results are reaffirmed by the average values from 

Table 2. For all items the mean scores were greater than 4.5 excepted items S.3 (ability) and 

S.13 (adaptation). The highest rankings were S.7 (Socialization) and S.9 (Approaching) 

demonstrating that the game enables the socialization of students and the proper approaching 

of the chemical concepts discussed in the activities. 

The most important point achieved was the opportunity created by the game for teacher’s 

perceptions about the misconceptions of the students. The teacher was able to discuss about 

those conceptions with the class during the game and solved them.  

The game “Organic & Action” successfully motivated students to review and rework their 

organic background. The conceptual errors of the students helped teacher to lead them to 

reevaluate their answer using hints or additional questions discussed with the class. The game 

provided enjoyable activities in classroom and enabled socialization of the students.  

Acknowledgement: The authors thank the graduate student Monique Braz for the design of the 

English version of the board of the game. They also express thanks for FAPERJ and CAPES 

for financial supports. 
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Abstract: For the development of students’ progressive and deep understanding of chemistry 

big idea, the study aims to evaluate students’ progressions of chemical change to know: 

students’ learning progression and how to improve teaching according to the results of the 

assessment. We built a hypothetical learning progression of chemical change by unpacking 

the big idea-chemical change into smaller constructs represented by a concept map on the 

inspection of chemistry standard, university chemistry textbooks, junior secondary school 

chemistry textbooks; and the development of assessment tasks. All the concept maps and 

propositional knowledge statement and 15 tasks developed were validated by a college expert 

who was involved in teaching chemistry, a junior secondary school chemistry teacher, a 

college expert who was involved in teaching chemistry education. Then we developed the 

instrument which used to make empirical progressions. About 211 students were involved in 

the large scale paper and pencil test. Six teachers participated in the interview to help 

students’ building progressions and concluding the results. Six chemistry educators finished 

the work of scoring. Scorer reliability was calculated by SPSS program. And the program was 

used to calculate the frequencies, ANOVA and T test. Rasch model were used to (1) review if 

certain items were necessary to add or delete; (2) divide different progression levels. From the 

study, we can see that: there were 3 progressions from ‘knowing’, ‘applying’ to ‘problem 

solving’; students’ learning progressions of chemical change were not quite consistent with 

which were expected; the 1
st
 level of ‘knowing’ progressed significantly, while other abilities 

in ‘problem solving’ level, such as reflection and evaluation, inferring, designing, generalizing 

and putting forward new questions are expected to be improved. Instruction is essential for 

students’ progressions and teachers’ understanding of core concepts is very important. 

Keywords: assessment, learning progression, chemical change 

INTRODUCTION 

Over the past decade, there has been increased interest in learning progression(LP) (Smith , 

Wiser, Anderson , Krajcik ,2006; Salinas ,2009).Recent studies focused on curriculum 

design(National Research Council[NRC],2012),instruction and assessment(Xiufeng 

Liu&Kathleen,2005; Wilson 2005,2009; Johnson&Tymms, 2011).Four building block 

model(Wilson 2005,2009) and construct-centered design(CDD) process (Shin,Stevens,Short 

& Krajcik,2009) has been followed to build learning progression. Rasch’s measurement 

model has been used more and more to divide different learning progressions (Xiufeng Liu, 

2010) in specific domain. 

Students' heavy academic burden in junior secondary school has been a real problem of 

Chinese education; it has also been mentioned to solve in the next 10 years. Through decades 

of implementation of chemistry curriculum, we have seen far from meeting the demand of the 

problem-solving, because there is too much detail to be memorized. Therefore, it is necessary 

to assess students’ progressive and deep understanding of big ideas, such as chemical change. 

However, large-scale examination, as well as homework , to assess the students’ deep 
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understanding is weak.For the development of students’ progressive and deep understanding 

of chemistry big idea, the study aims to evaluate students’ progressions of chemical change. It 

is important to know: What is the junior secondary students’ learning progression of chemical 

change? Whether instructions influence students’ progression and how to improve present 

teaching. 

METHOD 

There is lots of definition of learning progression. From the perspective of curriculum study, 

to develop a thorough understanding of scientific explanations of the world, students need 

sustained opportunities to work with and develop the underlying ideas and to appreciate those 

ideas’ interconnections over a period of years rather than weeks or months. Findings from 

research about children’s learning and development can be used to map learning progressions 

in science. That is, one can describe the successively more sophisticated ways of thinking 

about a topic that can follow and build on one another as children learn about and investigate 

a topic over a broad span of time (e.g., 6 to 8 years) (NRC, 2007).Learning progressions may 

extend all the way from preschool to 12th grade and beyond-indeed, people can continue 

learning about scientific core ideas their entire lives (NRC, 2012).  

From the perspective of instruction, learning progression is descriptions of successively more 

sophisticated ways of thinking about an idea that follow one another as students learn: they 

lay out in words and example what it means to move toward more expert understanding 

(Smith et al., 2006). 

From the perspective of assessment and evaluation, learning progressions are descriptions of 

successively more sophisticated ways of thinking about an idea that follow one another as 

students learn: they lay out in words and examples what it means to move toward more expert 

understanding. Learning progressions should be developed around the organizing principles 

of science such as evolution and kinetic molecular theory. Such organizing principles-which 

are sometimes referred to as the big ideas of science-are the coherent foundation for the 

concepts, theories, principles, and explanatory schemes for phenomena in discipline

（NRC,2005）. 

Synthesized different definitions of learning progression, it is regarded that: learning 

progression raised concerns about the curriculum, instruction, assessment and paid a lot of 

attention to students. From the perspective of the development of individual and group of 

students, learning progressions describes the start, process and end of learning, with time as 

the ‘scale’ to measure students’ development and define learning content. In this study, we 

considered more on junior secondary students’ progression in one year. 

Previous studies of learning progression focused on two facets in chemistry: key concepts and 

inquiry learning skills. Some research focused on the nature of matter, for example, atomic 

structure, electrical force (Stevens, Delgado& Krajcik, 2010); others studied macroscopic 

properties of matter, atomic-molecular explanations of matter and so on (Johnson&Tymns, 

2011); still others research on the growth over academic year in understanding matter 

(Xiufeng Liu, 2005, 2006).Previous researches seem to paid little attention to chemical 

change. While, in this study, we focus on the big idea ‘chemical change’, for it is the most 

important learning content and main object in chemistry. We refer to ‘change’ because in 

junior secondary school students are taught to distinguish between physical changes and 

chemical reactions/chemical changes. 

Rasch’s measurement model is widely used to develop the assessment of learning progression. 
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It is an item response theory (IRT), which tries to get an objective and equally spaced scale 

through testing students’ reaction. Recently, Rasch’s measurement model has been used more 

and more in psychology and pedagogy for it overcame the CTT’s (Classical Test Theory) 

disadvantages of tool-dependent and sample-dependent. Previous studies developed ‘four 

building blocks’ to test students’ learning progressions, which include: (1)construct maps; 

(2)the items design; (3)the outcome space; (4)evidence of high-quality 

assessment(Wilson,2005,2009). Science educators proposed construct-centered design 

process (Shin et al., 2009), and computer model based-assessment (Xiufeng Liu, 2010) 

process. Based on the literatures, we followed the steps: (1) Build the model of specific 

domain cognitive mode by interview, content analysis and mental simulation for cognitive 

activity; (2) Unpacking and constructing the framework; (3) Constructing learning 

progressions assessment; (4) Develop instrument based on Rasch’s measurement model;(5) 

Survey and revise the cognitive mode and instrument;(6) Identify the level of learning 

progressions-build the level model; (7) Use the level model to find the difference among 

students; (8) Use the level model to trace students’ progression.   

The process can be divided into 2 parts. First, researchers need to unpack the core idea into 

smaller ones which serves as a Hypothetical Learning Progression (HLP). Second, by data 

collection and analysis students’ performance, researchers built development level model. 

This step include review on misconceptions and students interview; then design items, 

conduct pilot test and build the ‘scaling rule’ according to students’ performance. 

Questionnaire survey then followed, to get the evidence of students’ performance. Data 

analysis is based on Rasch’s measurement model from which to revise the items and 

characterize the development level. 

Build a Hypothetical Learning Progression (HLP)  

Similar to construct-centered design process, we unpacked the big idea –chemical change into 

smaller construct in a concept map based on inspection of chemistry syllabus. As a reliability 

check, in order to ensure all the knowledge referred to the same topic area, seven concept 

maps were developed. The entire concept maps were validated by a college expert who was 

involved in teaching chemistry, a junior secondary school chemistry teacher, a college expert 

who was involved in teaching chemistry education. Tasks, such as recognizing, predicting, 

were chosen based on Bloom’s taxonomy of Educational Objectives (Revised), and informed 

by the analysis of the large scale assessment, such as PISA, TIMSS, NAEP, and the inspection 

of the national standards documents. 
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Table 1. Task and performance in items  

Task Performance 

Produce/Generalize Put forward new questions  

Reflect /Evaluate Reflect/evaluate experimental design effectively 

Conclude Prove/Argue/Find Solutions; Draw Conclusions 

Design 
Design experimental procedures, or select and effectively combine 

experimental apparatuses 

Hypothesize/Predict Predict based on given information 

Infer Infer from one or more perspectives 

Analyze 
Analyze certain types of chemical reactions from one or more 

perspectives  

Explain Explain types of chemical changes 

Judge/Decide Make judgments on types of chemical changes 

Compare/Contrast Compare two or more types of chemical reactions 

Summarize/Classify Determine the type of chemical reaction 

Translate Interpret chemical reaction information from tables or figures 

Exemplify Cite required examples 

Represent Represent/Describe the phenomena of chemical changes 

Recognize 
Remember the knowledge related to change. e.g., Write familiar 

chemical reaction equations 

After inspection of experts, we developed the HLPs of students’ performance aiding by 

Winstep3.72.0 software (John M. Linacre, 2011) and SPSS SPSS17.0 statistical software. 

Developing Empirical progressions (EP) 

Instrument  

Multiple-choice items and constructed-response items were designed to examine whether the 

students were able to accomplish certain tasks. 

Participants  

About 211 students form 3 junior secondary schools were involved in the research. Six 

teachers from the 3 junior secondary schools accepted the interview. 

Data analysis  

The data were analyzed by the score. Six chemistry educators finished the work of scoring. 

Scorer reliability was calculated by SPSS program. And the program was used to calculate the 

frequencies, ANOVA and T test. Winstep as a software based on Rasch’s measurement model 

was used to (1) review if certain items were necessary to add or delete; (2) divide different 

progression levels. 
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RESULTS 

Analysis of the performance test data provides results regarding the students’ progressions. As described 

earlier, we used the Rasch’s measurement model to develop the measuring instrument. After revising the 

items, we finally selected 60 items to make the item pool to test the students’ performance. In total, 211 

students participated in the test. As for reliability, participant reliability was 0.90, while item reliability was 

0.98 .Next, we checked the validity by person-item map (see Figure 1). From Figure 1, we can conclude 

that, on the whole, the items developed matched the students’ abilities.  

 

Figure 1. Person-item map of students’ performance 

However, there is a problem with these results: we were unable to compare differences among 

students with respect to their progress as repeated items. To solve this issue, we selected 15 

items for the main concept of ‘change’ to create a level model. Each item belongs to a certain 

task, as shown in Table 1, such as remembering or analyzing, etc.  

First, we used Winstep3.72.0 software to make the person-item map of the students’ 

performance with respect to the concepts of ‘chemical change’ (see Figure2). 
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Figure 2. Person-item map of students’ performance for ‘chemical change’ 

For the results shown in Figures2, we used SPSS 17.0 software to make a paired- sample T 

test for level division (see Tables 2). 
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Table 2. Paired-sample T test for ‘chemical change’ 

  Paired Differences 

t df 

Sig. 

(2-tailed) 

  

Mean 

Std. 

Deviatio

n 

Std. 

Error 

Mean 

95% Confidence 

Interval of the 

Difference 

  Lower Upper 

Pair 

1 
cA1058– cA3061 .057 .303 .021 .016 .098 

2.72

4 
210 .007 

Pair 

2 
cA3061–cA4063 .057 .333 .023 .012 .102 

2.47

9 
210 .014 

Pair 

3 
cA4063–cB2087 .066 .473 .033 .002 .131 

2.03

6 
210 .043 

Pair 

4 
cB2087–cB1064 .033 .581 .040 -.046 .112 .830 210 .407 

Pair 

5 
cB2087–cB3088 .142 .389 .027 .089 .195 

5.31

3 
210 .000 

Pair 

6 
cB3088–cB5095a .009 .647 .045 -.078 .097 .213 210 .832 

Pair 

7 
cB3088–cA5059a .062 .704 .048 -.034 .157 

1.27

1 
210 .205 

Pair 

8 
cB3088–cC4120 .137 .565 .039 .061 .214 

3.53

4 
210 .001 

Pair 

9 
cC4120–cC3116 .076 .564 .039 .000 .152 

1.95

3 
210 .052 

Pair 

10 
cC4120–cB4096a .085 .619 .043 .001 .169 

2.00

2 
210 .047 

Pair 

11 
cC4120–cA2062 .085 .678 .047 -.007 .177 

1.82

8 
210 .069 

Pair1

2 
cC4120–cC2113 .090 .558 .038 .014 .166 

2.34

6 
210 .020 

Pair1

3 
cC2113–cC5122 .232 .515 .035 .162 .302 

6.55

5 
210 .000 

Note: P < .05 

According to the data above, students’ performance for ‘chemical change’ can be divided into 

eight levels, in three hierarchies (Table 3).  
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Table 3. Levels of junior secondary students’ performance for ‘chemical change’ 

Hierarchy Level Item Description of Level 

H3: problem solving L8 cC5122 Produce/Generalize 

L7 cC2113 Design 

L6 cA2062，cB4096a，cC3116，cC4120 
Represent, Analyze, Conclude, 

Reflect/Evaluate 

H2: applying 
L5 cA5059a，cB5095a，cB3088c,C1117 

Summarize/Classify, Infer, 

Explain, Hypothesize/Predict 

L4 cB1064，cB2087 Compare/Contrast, Judge/Decide 

H1: knowing L3 cA4063 Translate 

L2 cA3061 Exemplify 

L1 cA1058 Recognize 
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Figure 3. Hierarchies of students’ performance for ‘chemical change’ 

Thus, we can assess the students’ performance in chemistry from the stage of knowledge 

acquisition to problem solving. The level model for the concepts of ‘chemical change’ can be 

used as a scale to test the different performance levels of students from different schools to 

make pedagogical suggestions for each school, and to measure students’ progression from 

grade 1 (G1) to grade 2 (G2). Grade 1 and grade 2 students were assessed to see their progress. 

The grade 1 means that students were tested after acquiring new knowledge. The grade 2 

means that students were tested after they had finished their junior secondary school 

chemistry learning and passed the senior secondary school entrance exams. The results are 

shown in the following tables (Tables 4) and figures (Figures 4 to 5). 

From Table 4 we can see the frequencies of students’ right answers for ‘chemical change.’ 

While it was expected that the grade 2 student would show better performance for ‘chemical 

change’ because of their more experienced levels of learning, not all of the actual 

performance results did fit this expectation. 

 

 

 

 

H2 

H3 

H1 
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Table 4. Student performance by grade for ‘chemical change’  

Hierarchy Level Item Description of Level G1/% G2/% Total/% 

H3: 

problem 

solving 

L8 cC5122 Produce/Generalize 30.0 10.0 20.0 

L7 cC2113 Design 60.0 58.3 59.2 

L6 

cC3116 Conclude 38.3 73.3 55.8 

cB4096a Analyze 38.3 43.3 40.8 

cA2062 Represent 55.0 85.0 70.0 

cC4120 Reflect/Evaluate 53.3 48.3 50.8 

H2: 

applying 

L5 

cA5059a Summarize/Classify 96.7 100.0 98.3 

cB5095a Infer 63.3 61.7 62.5 

cC1117 Hypothesize/Predict 45.0 93.3 69.2 

cB3088 Explain 36.7 43.3 40.0 

L4 
cB1064 Compare/Contrast 60.0 83.3 71.7 

cB2087 Judge/Decide 70.0 90.0 80.0 

H1: 

knowing 

L3 cA4063 Translate 66.7 95.0 80.8 

L2 cA3061 Exemplify 81.7 98.3 90.0 

L1 cA1058 Recognize 91.7 100.0 95.8 

Data analysis by T test showed that student performance was significantly different for the 

items of ‘recognize (p=.002, <.05)’ , ‘exemplify(p=.000, <.05)’ , ‘represent(p=.000, <.05)’ , 

‘translate(p=.000, <.05)’ , ‘judge(p=.001, <.05)’ , ‘compare/contrast(p=.000, <.05)’ , 

‘predict(p=.000, <.05)’ , ‘conclude(p=.000, <.05)’ and ‘produce(p=.001, <.05),’ for ‘chemical 

change.’ All the performance scores for the grade 2 group were better than those of the grade 

1 students, except for the item of ‘produce/generalize’ (see table 4) .The students in these 

groups seem to have not been taught to put forward new questions for ‘chemical change.’ 

 

Figure 4. Student performance hierarchies for ‘change’ (from G1 to G2) 

From Figure 4, for Hierarchy 3, the students in grade 2 did not perform better than the 

students in grade 1.  
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Figure 5. Student performance levels for ‘change’ (from G1 to G2) 

From Figure 5, for levels 8 and 7, students in grade 2 did not perform better than those in 

grade 1. We can see progress at the lower levels and middle levels, but not at the higher levels. 

Some abilities, such as putting forward new questions, seemed to be neglected in the 

classroom. 

DISCUSSION AND CONCLUSIONS 

There are different progressions in chemical change which are not quite consistent with the 

expected. It has been found that: 

Students’ learning on chemical change was divided into 3 learning progressions form 

‘knowing’, ‘applying’ to ‘problem solving’. Knowing is the first progression level. It is easier 

for students to memorize familiar chemical change and write down chemical equations; 

classify the type of chemical reactions. To compare or explain is more difficult. It is hard for 

students to design experiment procedures, or select and effectively combine experiment 

apparatus, or prove/argument/ find solutions/draw conclusions. Reflection/evaluation 

effectively on experiment design is difficult task to finish.  

Students’ learning on chemical change progressed in the 1-year junior secondary chemistry 

instruction, especially in ‘knowing’ level. Obviously, we can see student’ progression of 

recognizing, exemplifying, translating, judging and comparing. But, some abilities are 

expected to be improved, such as the ability of ‘explain’. Additionally, students’ ability on 

predicting and concluding after recitation are better than that of new teaching. Some abilities 

progression is weak, for example, explaining, analyzing and classifying. Reflection and 

evaluation, inferring, designing, generalizing and putting forward new questions are expected 

to be improved. 

Problem solving is the most difficult hierarchy of students’ progression. Some of the tasks in 

this hierarchy had not progressed significantly after recitation instruction, such as generalizing 

and putting forward new questions .We should reflect whether students had been asked to 

finish this kind of task in our classroom. Other abilities like reflection and evaluation, 

inferring, designing are to be improved. Present instruction has developed students’ abilities 

in ‘knowing’ level and some abilities in ‘applying’ and little in ‘problem solving’. It is hard 

for students to evaluate or design because these kinds of abilities need more synthesis, or say 

integration, which include the synthesis of knowledge and the synthesis of knowledge and 

difficult tasks, such as inferring. The latter one is students’ another difficulty. It is hard for 

students to finish difficult tasks. Thus, instruction should pay more attention of students’ 
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difficulties and present various tasks in students’ activities in chemistry classroom rather than 

recall or recognize only. And, teachers’ understanding of core concepts is very important to 

accomplish the above instructions. 
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TEACHER’S MODELS ABOUT MIXING COLOURS IN 
NAHUATL-SPEAKING COMMUNITIES: DEPENDENCE OR 

INDEPENDENCE OF THE INDIGENOUS CULTURE? 
Fernando Flores-Camacho, Leticia Gallegos-Cázares, and Elena Calderón-Canales 

Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de 
México, México 

Abstract: This paper shows the development and structure of indigenous teachers’ ideas about 
mixing colours and their ideas about colours derived from their school context and cultural 
traditions. In order to know the teachers’ scientific school knowledge, two questionnaires and one 
interview were implemented. In addition, group sessions were conducted in which teachers’ 
traditional tales and stories that were related with colours were noted. The obtained information 
within the present study shows a difference between the teachers’ physical phenomenological 
ideas about colours and their cultural beliefs. Analysis of the teachers’ physical 
phenomenological models constructions were made based on the Possible Partial Model, which 
states that the inferences and explanations used to describe a subject consist of constricting ideas, 
rules of correspondence and a set of phenomenological inferences about processes. Based on the 
Possible Partial Model’s components, models to describe the conceptions about mixing colours 
were developed. The performed cultural analysis involves the way in which colours are related to 
their cultural environment by taking stories and tales that add properties to colours depending on 
their effects on people. In the scholarly context, the results showed that teachers change from a 
conception that focuses on colours as unchanging entities that become an additional property of 
the object (model M1) to the idea that colour represents a quality of substances or objects that can 
be modified by mixing colours (model M2). Before the intervention process, teachers 
implemented both models; however, after the intervention, teachers demonstrate a tendency to 
use model M2. It seems that there is no influence from colour’s cultural aspect (colour strength or 
influence on people) over the teachers’ constructions. Based on the results, the present study 
considers that indigenous culture has scarce influence over the understanding of some school 
physical knowledge.  

Keywords: Science Education, Teacher Ideas, Models, Indigenous Education 

INTRODUCTION 
Several researches have been developed within indigenous communities. Most of the studies 
analyse the educational difficulties that evolve into learning deficiencies. These learning 
difficulties have several repercussions on indigenous community students. The cultural 
knowledge is viewed as threatened by the education on “western science” (Aikenhead & Elliott, 
2010; Le Grange, 2007).  The Culturally Relevant Approaches, or Cultural Responsive 
Schooling, orient most programs and research projects. One of the main problems in this 
approach is that teachers that are not native to the indigenous communities do not understand the 
native culture. Because of this, the main purpose of several academic researchers is to incorporate 
modified schoolbooks and activities that integrate the native cultural knowledge from the 
community. The understanding of the community and their culture is fundamental to achieving 
this goal (Atwater & Crokett, 2003; Lee, Yen & Aikenhead, 2012; Loving & de Montellano, 
2003; Ninnes, 2003). 
Research on science education with indigenous communities has shown that there is some 
difficulty integrating cultural knowledge with academic scientific knowledge (Kitchen, Hodson 
& Cherubini, 2011). There is a great challenge for teachers to understand school scientific 
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concepts and apply them in their communities and classrooms. Such challenge, is based on 
multiple causes that involve a teacher’s insufficient or lack of proper preparation affecting the 
cultural and scientific education. There is a present lack of support to indigenous educational 
programs and an unchanging preference to traditional education practices (Kitchen, Hodson & 
Cherubini, 2011; Ríos & Caballero, 2002). The same challenges can be observed with indigenous 
community native teachers. 
From another view, the learning process in diverse cultural environments happens in an 
independent way. Cultural knowledge does not interfere with scientific knowledge and vice versa 
(Hong et al., 2000; Legare, Evans, et al, 2012). These studies focus on the cognitive processes 
and how they develop and activate in specific contexts.  
Some studies (Gallegos et al, 2014; Gutiérrez & Rogoff, 2003) have shown that it is the scholarly 
environments that establish the independence between the scholarly education and the cultural 
context. Within this point of view, there are no studies on teachers that explain how their cultural 
knowledge is related to their understanding of scientific knowledge. Additionally, there is no 
information about the conceptual relationship from the teachers’ native cultures and their 
knowledge and reading about science. 
This research focuses on the conceptual construction of native indigenous teachers of scientific 
school knowledge, especially the mixture of colours. The main objective is to identify if these 
school constructions of teachers show some kind or relation with their cultural knowledge about 
colours.  

The educational background of indigenous teachers in Mexico 
Most of the teachers of indigenous schools in Mexico are bilingual; they speak their indigenous 
language and Spanish. They also belong to the community where they work. However, their 
preparation is not specialized in educating bilingual children. Most of the teachers from this 
community were educated in the teachers’ rural schools or by several induction courses, and a 
very few in a university mainly their local UPN (National Pedagogical University). These courses 
had only the objective to provide an introduction to teaching bilingual children in order to prepare 
them as bilingual teachers (Salmerón & Porras, 2010) under the assumption that, because the 
educator knows an indigenous language and understands the community cultural background, 
they are able to teach (Ríos & Caballero, 2002).  

Since 2004, there has been teaching specialization in intercultural and bilingual education. 
However, there has not been a specialized education for the teachers in the use of the languages. 
There is no further education in the indigenous language and handwriting. As a result, children 
and some teachers do not write in their maternal Nahuatl language.  

The main educational backgrounds of teachers are Spanish and instruction in Mathematics, 
History and Geography. However, there is deficient or null education in the natural sciences and 
related topics (Ríos & Caballero, 2002). Leading to an educational shortage and great difficulty 
by children and teachers to understand science, which can be observed in the National Education 
Evaluations (INEE, 2007). 
Based on the research of Castillo (1997), colours and their Nahuatl names are organised into five 
basic colours. The main colours are black, white, red, green and yellow. There are also other 
colours that are direct descendants from the basic colours. Those colours are blue, orange and 
purple, which are also derived from nature and come from the designation of the sky, orange and 
wild cherry (dark purple fruit) respectively. There are also some colours learned from the Spanish 
language; however, they were not originally from the community. There are tales and stories 
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about the benefits or curses of colours. These tales are spread by verbal transmission. These tales 
and stories will be analysed in order to know their influence on the notions of teachers about the 
mixture of colours. 

METHOD 
Main Characteristics of the Community, Teachers and Subject Sample 
The participants are bilingual teachers (Spanish – Nahuatl). They work as teachers in preschool 
and primary levels of education (indigenous multilevel program). They also belong to the 
community where they work. They belong to the township of Cuautempan, located at Sierra 
Norte of Puebla.  

The subject sample consists of 27 teachers who work at preschools (6 teachers) and primary-level 
community schools (17 teachers) and 4 teachers that work as technical pedagogical counsellors 
(ATP). All the teachers are undergraduates, and the 4 ATP have a master’s in education. None is 
a specialist in science education. 

Research Design 
During the training and before the teachers applied a didactical proposal in class, there were held 
two sessions to identify the meanings and use of colour in the teachers’ cultural traditions. For 
registering the subject constructions about the colour mixing process from the scholarly context, 
there were used two questionnaires. The first one was applied before the preparation course 
(questionnaire QBI). Three months later, when teachers ended the application of the proposal 
with their students, they received the second questionnaire (questionnaire QAI). Also 9 teachers 
from the subject sample were interviewed. 

Instruments 
Questionnaire Before Intervention (QBI) is a questionnaire with 12 open questions about mixing 
colours, mixing process, their explanations and expected results. 
Questionnaire After Intervention (QAI) is a questionnaire with 16 open questions included on the 
pre-test. 
Interviews. The applied interviews were semi-structured (20 to 30 minutes), included the same 
topics of the questionnaires. 
Acquiring of cultural ideas. Teacher participated in two sessions; in each one they told stories and 
tales they remembered. 

Analysis Elements 
The information obtained within this study in relation to the teachers’ physical phenomenological 
ideas about colours and their beliefs about colours from their cultural point of view are quite 
different. The construction of physical phenomenological teachers’ models was analysed from 
the Possible Partial Model (Flores y Gallegos, 1998, Gallegos et al, 2014). The Possible Partial 
Model proposal is a variation of the formal structure adapted to describe the inferences and 
explanations from non-scientist expert subjects about their representation or comprehension of 
phenomena. It is a constituted model formed by two main sets of concepts or conceptions. The 
first of them is the constricting concepts (CC), that is, the constrictions or conditions that the 
phenomenological elements should satisfy and the second is the rules of correspondence (RC) 
that is all kind of relationships between phenomenological elements, concepts and conditions. 
There is also an application set (A) that represents any phenomena that can be described by the 
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sets CC or RC. Both sets (CC and RC) and set A are constituted in a unique model (M). In this 
particular research and with the purpose of broadening our proposal, we include the term of 
constricting ideas (CI) instead of constricting concepts. This allows us to analyse the 
corresponding teachers’ ideas without restrictions and without modifying the proposal or the 
partial possible models structure. 

The second subject involves how colours are related to their cultural environment. They are based 
on stories and tales that add properties to colours depending on their effects on people. We started 
from the consideration that diverse tales and stories, verbally expressed by the community, are an 
important cultural tradition with the main function of preserving ancestral knowledge 
(Montemayor, 1999). Therefore, the tales and stories also belong to the conceptions and notions 
from the community teachers. These ideas had a different structure that needs other types of 
analysis -in particular, non-sequential functional mechanisms as the Boyer and Ramble (2001) 
criteria: 1) be a pointer to a particular domain concept; 2) be expressed in an explicit way in 
which the intuitive reasoning is violated in a specific event; and 3) accomplish other intuitive 
expectations, that was applied. Because of these considerations, it is possible to consider tales 
and stories, specifically about colours, as analysis materials. They belong to their cultural model, 
being recognised, remembered and transmitted by the community. In addition, the consistent and 
coherent use of cultural ideas about colours will confirm that the teachers also share these ideas 
and can be considered cultural experts (Legare et al., 2012). 

RESULTS 
I. Colours within the community cultural context  
From the sessions where teachers tell their stories and tales about colours in their tradition, there 
appear ideas as the colour belongs to objects; tales as that rainbow has negative effects over 
people. In all cases colour is an entity with the possibility to interact with people as show Table 1. 
Table 1. Described tales from teachers from their cultural ideas about colours. 

Colour identifications 
according to common objects 

Negative effects from colour  Positive effects of colours  

Colours come from nature. The 
lamb’s wool has brown and 
black colours and it is used to 
produce covering material. 

Cutting a purple flower makes 
you a dish breaker. 

Pointing out a rainbow with the 
finger can provoke disease on 
the pointing finger. 

If a pregnant woman looks at 
the rainbow, her child might be 
born without a finger. 

If a pregnant woman finds 
herself in a place that is being 
painted, her baby will be born 
with a stained face. 

Red colour brings protection 
from jealous people and some 
diseases and also brings health. 

White flowers protect the 
spirits of dead people. 

Black colour cures and re-
establishes the soul. 
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II. Colours in the School Context 
Below will be shown, in a fragment from a questionnaire, how to obtain the elements f and RC 
from the teachers’ models.  
 Case 4. Questionnaire QBI, Q#= question number, T2= teacher 2, preschool (all grades). 

Q10: Imagine that we gather together (one above the other) two filters (coloured 
transparent plastics), one of blue colour and another yellow. What would happen? 

T2: Colour combinations. 
Q11: In which colour do you think the things would look like? Why? 

T2: Of two – colours, bicolour. 
In this case, teacher T2 answers that when the filters join they will produce a new combination of 
colours (RC.1); however, in the second answer, it can be observed that the result of the 
combination is that you can see two colours (f.1), which is a denial of RC.1. Resuming: 

RC.1: The colours can be combined, mixed or joined. 
f.1: When the two colours are combined, you can see at the end the two colours. 

Table 2 shows the set of relations RC and the phenomenological appliances f. 
Table 2. RCs relations and phenomenological expression sample of teachers. 

RC Phenomenological expressions (f) 

RC.1 Coloured substances 
can be combined or be 
together. 

RC.2 Some colours are 
stronger than others. 

RC.3 The resulting colour 
of the mixture depends on 
the ratio or amount of the 
mixed colours. 

f.1 When two colours are combined, at the end, you can observe 
both colours. 
f.2 When two colours are combined, at the end, you can observe 
only one of them. 
f.3 When the colours are combined, at the end, you can observe the 
one that remains on top. 
f.4 When the colours are combined, at the end, you can observe 
that the strongest is the one that predominates. 
f.5 When the colours are combined, at the end, you observe the 
most weak or transparent. 
f.6 When the colours are combined, at the end, you can observe a 
different colour (correct). 
f.7 When the colours are mixed, at the end, you can observe a 
different colour (incorrect). 
f.8 The colour observed is the result of the mixture of the other 
colours (inverse correct). 
f.9 The colour observed is the result of the mix of other colours 
(inverse incorrect). 
f.10 Different proportions of colour give different hues or 
intensities of the resulting colour. 
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For explaining teachers’ cognitive constructions from the framework of the models, there is a 
need to establish the CIs and their causal inference relations. From all the obtained data, it can be 
observed that there are two main sets of applications or phenomenological explanations. One of 
them establishes that the combinations of colour do not produce a different colour (f.1, f.2, f.3, 
f.4, f.5). The other explanation establishes that the combination of two or more colours produce a 
different colour (f.5, f.6, f.7, f.8, f.9, f.10). From the first set, it is possible to infer that the colour 
conception is strongly related and attached to substances, and objects conditions that are found in 
their environment, creating an ideological barrier that cannot be modified, which can be 
expressed as CI.1 Colours are entities that do not change, corresponding to the first set of 
proposals. On the other hand, from the second set, it can be inferred that colours are only some 
qualities from substances or objects but not dependent on them; this provokes the idea that colour 
can change; CI.2 Colours are modifiable qualities, corresponding to the second proposal set.  
The analysis results (CI’s; RC’s; f’s) show that there are two main models: M1 explains an 
absence of change after colour combination; M2 explains that colour combination can produce a 
new colour. Table 3 show models M1 and M2 by teacher in questionnaires QBI and QAI.  

Table 3. Use of models M1 and M2 by teacher (T is for teacher); M1-M2 means use both 
models; M1M2 means M2 is more used than M1. 

Cycle T QBI QAI 

Pr
es

ch
oo

l 

1 f.2, f.4, f.6, f.7 M1-M2 f.6, f.8, f.10  M2 
2 f.1, f.2, f.4, f.6, f.7  M1>M2 f.6, f.7, f.8, f.10 M2 
3 f.1, f.6, f.7  M1< M2 f.6, f.8, f.10 M2 
4 f.2, f.3, f.4, f.6, f.7  M1 >M2 f.4, f.6, f.8  M1<M2 
5 f.2, f.4, f.6, f.7 M1- M2 f.4, f.6, f.8 M1<M2 
6  f.2, f.4, f.5, f.6, f.7  M1 > M2 f.4, f.7, f.9  M1<M2 
7 f.6  M2 f.4, f.6, f.8  M1<M2 

1 

8  f.2, f.4, f.6, f.7 M1-M2 f.4, f.6, f.8 M1<M2 
9 f.4, f.6, f.7 M1<M2 f.6, f.8  M2 
10 f.4, f.6, f.7 M1<M2 f.6, f.8 M2 
11 f.2, f.4, f.7 M1 >M2 f.6, f.8, f.10 M2 

12 f.4, f.6, f.7 M1<M2 f.4, f.6, f.8  M1<M2 

2 

13 f.2, f.4, f.6  M1 >M2 f.4, f.6, f.8  M1<M2 
14 f.4, f.5, f.6 M1 >M2 f.4, f.6, f.7, f.8, f.10  M1<M2 
15 f.2, f.4, f.6, f.7 M1-M2 f.4, f.6, f.8, f.10 M1<M2 
16 f.4, f.6, f.7 M1< 𝑀2 f.4, f.6, f.8 M1<M2 

3 

17 f.6, f.7 M2 f.6, f.9 M2-M2 
18 f.2, f.4, f.6, f.7 M1-M2 f.6, f.8, f.10  M2 
19 f.2, f.4, f.6, f.7 M1-M2 f.6, f.7, f.8 M2 
20 f.2, f.4, f.5, f.6 M1 >M2 f.4, f.6, f.7, f.8 M1< M2 
21 f.3, f.4, f.5, f.6 M1 >M2 f.4, f.6, f.7, f.8, f.10 M1< 𝑀2 
22 f.2, f.4, f.6, f.7 M1-M2 f.6, f.7, f.8, f.10 M2 
23 f.2, f.4, f.6  M1 >M2 f.4, f.6, f.7, f.8, f.10  M1< 𝑀2 

A
TP

 

24 f.2, f.4, f.6, f.7 M1- M2 f.6, f.8 M2 
25 f.6  M2 f.6, f.7, f.9  M2  
26 f.6 , f.7 M2 f.4, f.6, f.7, f.8 M1< 𝑀2 
27 f.6, f.7 M2 f.6, f.8 M2 
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DISCUSSIONS AND CONCLUSIONS 
An element that stands out is that teachers, who were educated in teachers’ schools and even in 
Pedagogical University, presented on their QBI the idea that colours cannot be mixed (CI.1). This 
is surprising, because most of the teacher formation focuses on basic education and preschool 
education. Both educational levels require particular attention to the understanding of colour and 
the development of activities with them. 
As a second aspect, is the idea transformation process from the correspondent constricting ideas 
CI.2. From this process of transformation, the colour combination is possible, and therefore, there 
is a change from the use of model M1 to model M2. When the teachers change their conception 
of colours from M1 to M2 models, they shift from viewing colour as a concrete object to 
conceiving a transformative process, thereby reaching a better understanding of the physical 
process of colour subtraction (light absorption); this only happens on 44.4% of the subject sample 
(9/16 women and 5/11 men). However, almost all the sample (92.6%) uses the M2 model, even if 
it is in a shared way with the M1 model. This implies that for the teachers, there is an unclear 
difference between both conceptions; therefore, their inferences depend on specific colour 
mixtures. 
Although teachers had no preference between M1 and M2 models before the intervention 
process, after the intervention, teachers demonstrate a tendency to prefer the use of the M2 
model. Even though there is a difference between teachers’ preference before and after the 
intervention, it seems that there is no apparent influence of cultural aspects (colour strength or 
colour influences on people) over teachers’ constructions. Even the conception of colour as 
object is not particular to Nahuatl Culture, it appears in other cultures and in young children, 
therefore it is possible to explain it in terms of implicit physical conceptions. 

Therefore, we consider that indigenous culture has little influence over the understanding and 
construction of some school physical knowledge. Nevertheless, other cultural elements related 
with different ontological issues, may be have some influence in other science topics.  
We consider that the school process needs to strengthen both perspectives, as in the culturally 
responsive schooling approach, but always specifying their differences. For example, it is 
important that teachers from the analysed community have more references of their colour ideas 
and classifications. In this way, a clear recognition for their different context and their influence 
in daily, professional and school life will allow them to see academic knowledge as the “other 
point of view” and not as a knowledge substitution that replaces any other way of knowledge. 
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Abstract: The phenomena of freezing and evaporation both involve a change in physical 

properties depending on the same factors, temperature and pressure. However literatures show, 

after formal teachings, students still had difficulties of understanding about freezing and 

evaporation. Therefore, this study investigated the students’ conceptual development of the 

two phenomena with empirical survey and the correlations of students’ learning between the 

two phenomena and microscopic particles. Accordingly, there were three questions of 

research: (1) what were students’ conceptions of freezing and evaporation from fourth to 

twelfth grades? (2) what were the differences of students’ learning about freezing and 

evaporation? (3) what were the correlations of students’ learning about freezing and 

evaporation to microscopic particles? The participants were 832 fourth to twelfth graders in 

Taiwan. The instruments included Examination of Particle Nature (EPN) and Examination of 

Phase Transitions (EPT). EPN was used to examine students’ understanding of particulate 

nature of ice, water and vapor and EPT was used to test students’ conceptions of freezing and 

evaporation. Cronbach’s αs were all over .80. The results showed that the students’ concepts 

of microscopic particles stayed low percentage of correctness before eighth grade but 

increased sharply from ninth to tenth grade. Secondly, the students’ conceptual development 

of freezing was earlier then evaporation. And the significant differences existed in identical 

matter and recoverability, but not in conservation of mass. Finally, the significant correlations 

of concepts of microscopic particles to the concepts of freezing and evaporation were found. 

In sum, it was inferred in this study that the origin of learning differences between freezing 

and evaporation was students’ lack of microscopic particles concepts. Therefore, the authors 

suggested that pre-established microscopic particles concepts could be arranged in teachings 

and then could help students use the same principles to acquire a better understanding of 

freezing and evaporation.  

Keywords: conceptual development, learning differences, freezing and evaporation, 

microscopic particle 

INTRODUCTION 

The concepts of microscopic particles are critical for students to understand in science 

learning. However, in most countries students learned these concepts in early middle school 

(approximately 11 to 14 years old) much later then they should (Martin et al., 2004). 

Moreover, empirical studies pointed out the low understanding of microscopic particles 

among middle school (Harrison & Treagust, 2002). In addition, phase transitions were 

frequently used to teach microscopic particles (Wu & Chiu, 2013b) because they were daily 

phenomena. Using empirical surveys, this study investigated what students learned about 

freezing and evaporation and how the concepts of microscopic particles in students’ 

understanding of freezing and evaporation evolved. 

In science education, learning processes of scientific knowledge played a major role in 

researches and teachings (Posner et al., 1982), i.e. Ontological tree (Chi, 2005) and 

Framework Theory (Vosniadou, 2002). According to researches on phase transitions, four 

kinds of misconceptions in phase transitions were discussed to literature 
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review:“compositions” (Benson et al., 1993), “properties” (Johnson & Papageorgiou, 2010), 

“structure of three states” (Stavy, 1990; Tsai, 1999), and “transition processes” (Costu, et al., 

2010). The above misconceptions involved students’ misunderstanding of microscopic 

particles and they often misunderstood particle motion as a direct process rather than an 

emergent process as shown in Chi (2005). 

To sum up, this study investigated the students’ conceptual development of freezing and 

evaporation and the correlations to microscopic particles concepts. Accordingly, there were 

three questions in this research: (1) What were students’ conceptions of freezing and 

evaporation from fourth to twelfth grades? (2) What were the differences of students’ learning 

about freezing and evaporation? (3) What were the correlations of students’ learning about 

freezing and evaporation to microscopic particles? 

METHOD 

832 Taiwanese fourth to twelfth graders participated in this study, and Examination of Particle 

Nature (EPN) and Examination of Phase Transitions (EPT) were used to survey students. EPN 

was used to exanimate students’ understanding of particulate nature of ice, water and vapor. In 

EPN, students were to choose the properties tendency in five-level items design. EPT was 

used to test students’ understand of phase transitions, freezing and evaporation. Two-tier 

design was conducted in EPT, which the first tier items include four or five choices and the 

second is the reasons. According to Wu & Chiu (2013b), the internal reliabilities of EPN and 

EPT (Cronbach’s α) were all over .80l. 

RESULTS 

1. The results of EPN 

In EPN, students compared the amount, mass and volume of particles in the states of ice, 

water and vapor. There states were different but they shared the equal amount, mass and 

volume of particles. Therefore, students who answered “less” properties (1 and 2) and “more” 

properties (4 and 5) were excluded from analysis. The numbers and percentages of correct 

answers (3) were shown in Table 1 and Figure 1. 

Table 1. The correct numbers and percentages in amount, mass and volume of 

microscopic particles 

Grade 

Concepts 4 5 6 7 8 9 10 11 12 

amount of particles 2(2%) 7(8%) 5(5%) 7(6%) 19(24%) 24(26%) 60(62%) 54(56%) 52(56%) 

mass of particles 1(1%) 6(7%) 2(2%) 6(6%) 14(18%) 22(24%) 54(56%) 54(56%) 49(53%) 

volume of particles 1(1%) 5(6%) 5(5%) 6(6%) 13(18%) 17(18%) 36(37%) 33(34%) 36(39%) 

Total in each grade 86 84 95 109 80 92 97 96 93 
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Figure 1. The bar chart of percentages in amount, mass and volume of microscopic 

particles 

As shown in Figure 1, in tenth to twelfth grade, the percentage of correct responses increased 

sharply and remained over 50% for the concepts of amount and mass of particles.  

2. The results of EPT 

In EPT, students compared some properties of phase transitions with two phenomena of 

freezing and evaporation. Three properties were analyzed in this paper, including (1) Identical 

matter”: matter is identical after transitioning, (2) Recoverability: matter can recover after 

transitioning, and (3) Conservation of mass: mass remains during transitioning. In freezing, 

the numbers and percentages of correct answers were shown in Table 2 and Figure 2. 

Table 2. Count and percentages of correct answers about the concepts of freezing 

Grade 

Concepts 4 5 6 7 8 9 10 11 12 

Identical matter 33(38%) 39(46%) 42(44%) 68(62%) 53(66%) 65(71%) 88(91%) 85(89%) 75(81%) 

Recoverability 49(57%) 46(55%) 56(59%) 76(70%) 65(81%) 80(87%) 90(93%) 88(92%) 90(97%) 

Conservation of mass 30(35%) 22(26%) 20(21%) 42(39%) 27(34%) 37(40%) 60(62%) 66(69%) 68(73%) 

Total in each grade 86 84 95 109 80 92 97 96 93 

 

 

Figure 2. The bar chart of percentages in freezing 

In evaporation, the results were shown in Table 3 and Figure 3.  
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Table 3. Count and percentages of correct answers about the concepts of evaporation 

Grade 

Concepts 4 5 6 7 8 9 10 11 12 

Identical matter 22(26%) 31(37%) 13(14%) 39(36%) 44(55%) 51(55%) 67(69%) 67(70%) 64(69%) 

Recoverability 38(44%) 36(43%) 37(39%) 47(43%) 41(51%) 69(75%) 75(77%) 81(84%) 73(78%) 

Conservation of mass 33(38%) 30(36%) 26(27%) 34(31%) 32(40%) 42(46%) 54(56%) 58(60%) 55(59%) 

Total in each grade 86 84 95 109 80 92 97 96 93 

 

 

Figure 3. The bar chart of percentages in evaporation 

In comparison with Figure 2 and Figure 3, over half of students who understood identical 

matter were from seventh grade in freezing and from eighth grade in evaporation. In 

recoverability, over half of students offered the correct responses in fourth grade and above in 

freezing, and in eighth grade and above in evaporation. The percentage of students who 

respond the correct answer in conservation of matter reached over 50% from seventh grade in 

freezing concepts and from eighth grade in evaporation concepts. 

To sum up, students’ concepts of freezing tended to develop earlier then concepts of 

evaporation. Therefore, this study adopted the paired-sample T test to analyze the learning 

differences. The results showed in Table 4. 

Table 4. Paired-Sample T Test of learning developments in freezing and evaporation 

 

Concepts 

Identical matter Recoverability Conservation of mass 

Mean t p Mean t p Mean t p 

Freezing 60.89 
6.14** <.00 

71.11 
6.65** <.00 

41.33 
.34 =.74 

Evaporation 44.22 55.22 40.44 

**p<.00 

In Table 4, the means of percentages in learning of freezing were all higher then learning of 

evaporation. The learning differences between freezing and evaporation reached the 

significant differences only in identical matter and recoverability, but not in conservation of 

mass. 

3. The correlation analysis between students’ learning of microscopic 

particles and two phenomena, freezing and evaporation. 

This study investigated the correlation of students’ learning of microscopic particles concepts 
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to two phenomena in three stages, primary school (fourth to sixth grade), junior high school 

(seventh to ninth grade) and senior high school (tenth to twelfth grade). The results showed in 

Table 5. 

Table 5. Pearson's correlation between students’ learning of microscopic particles and 

phase transitions 

Stage  Result 

Primary school Person Correlation 

Sig. (2-tailed) 

Sum of Squares and 

Cross-products 

Covariance 

N 

.37** 

.00 

 

5457.19 

20.67 

265 

Junior high school Person Correlation 

Sig. (2-tailed) 

Sum of Squares and 

Cross-products 

Covariance 

N 

.50** 

.00 

 

13654.66 

48.77 

281 

Senior high school Person Correlation 

Sig. (2-tailed) 

Sum of Squares and 

Cross-products 

Covariance 

N 

.54** 

.00 

 

15604.13 

54.75 

286 

**p<.00 

The results in Table 5 showed that the high correlations were found from .37 to .54. 

DISCUSSION AND CONCLUSIONS 

1. The percentages of students’ understanding of microscopic concepts 

increased sharply from ninth to tenth grade. 

According to Piaget’s cognitive developmental theory, the most of middle school students 

should reach the abstract thought stage and be able to understand microscopic concepts. But, 

in this survey, the results in Figure 1 were not shown as expected (Wu & Chiu, 2013b). In 

addition, both of students’ concepts did not come to the plateau period until tenth grade when 

the learning of microscopic particles advanced. This can be explained that there were few 

teaching materials of particles in early middle school in Taiwan and Martin et al. (2004)’s 

research also indicated the similar results in other countries. 

2. The learning development of freezing and evaporation reached the 

significant differences in identical matter and recoverability. 

Both of the two phase transitions, freezing and evaporation, belonged to physical change 

depending on pressure and temperature conditions. Although students’ conceptual 

development followed a similar increasing trend, there were still the significant differences 

between them (shown in Table 4) in identical matter and recoverability but not in conservation 

of mass. Obviously, students’ concepts of freezing developed earlier then the concepts of 

evaporation. It was clear that students did not understand the two phenomena on the basis of 

principles of phase transitions. 
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3. There were the high correlations between concepts of microscopic 

particles and two phenomena, freezing and evaporation. 

The concepts of microscopic particles can be the basis for students to learn phase transitions 

(Wu & Chiu, 2013a) and promote students to understand freezing and evaporation via the 

identical principles, namely, microscopic particles. And the result showed the statistically 

significant correlations. According to Vosniadou (2002), belief and presuppositions can 

restrict students’ mental model and the knowledge acquisition process. With concepts of 

microscopic particles, students can reduce misconceptions of phase transitions in following 

teachings. 

In conclusion, in this study it was inferred that the key to learning differences between 

freezing and evaporation was students’ lack of microscopic particles concepts. Chi (2005) 

argued that the first step to conceptual change is to acquire the correct ontological categories. 

Students may enhance the concepts of phase transitions while understanding microscopic 

processes of phase transitions as an emergent process. Therefore, the appropriate teaching 

sequence would include microscopic particles concepts before teaching of phase transitions. 

ACKNOWLEDGE 

The authors thank to a grant from the National Science Council in Taiwan (NSC 

100-2420-H-003-009-DR). 

REFERENCES 

Benson, D. L., Wittrock, M. C., & Baur, M. E. (1993). Students' preconceptions of the nature 

of gases. Journal of research in science teaching, 30(6), 587-597. 

Chi, M. T. H. (2005). Commonsense conceptions of emergent processes: Why some 

misconceptions are robust. The Journal of the Learning Sciences, 14(2), 161-199. 

Coştu, B., Ayas, A., & Niaz, M. (2010). Promoting conceptual change in first year students' 

understanding of evaporation. Chemistry Education Research and Practice, 11(1), 

5-16. 

Harrison, A. G., & Treagust, D. F. (2002). The particular nature of matter : challenges in 

understanding the submicroscopic world. In J. K. Gilbert, O. D. Jong, R. Justi, D. F. 

Treagust & J. H. V. Driel (Eds.), Chemical education: Towards a research-based 

practice ( pp. 189-212). The Netherlands: Kluwer Academic Publishers. 

Johnson, P., & Papageorgiou, G. (2010). Rethinking the introduction of particle theory: A 

substance-based framework. Journal of Research in Science Teaching, 47(2), 130-150. 

Martin, O., Mullis, I., Gonzales, E., & Chrostowski, S. (2004). Timss 2003 international 

science report. Boston College, MA: TIMSS and PIRLS International Study Centre. 

Posner, J., Strike, K., Hewson, P., & Gertzog, W. (1982). Accommodation of a scientific 

conception: Toward a theory of conceptual change. Science Education, 66, 211-227. 

Stavy, R. (1990). Children's conceptions of changes in the state of matter: From liquid (or 

solid) to gas. Journal of Research In Science Teaching, 27(3), 247-266. 

Tsai, C. C. (1999). Overcoming junior high school students' misconceptions about 

microscopic views of phase change: A study of an analogy activity. Journal of Science 

Education and Technology, 8(1), 83-91. 

  

Strand 1 Learning science: Conceptual understanding

141



 

 

Wu, W. L. & Chiu, M. H. (2013a). Investigating the development and influence of 

Particle-oriented and Two-Stage Teaching Module via conceptual evolutionary 

approach. Presented at NARST Annual International Conference, April 6 - 9, 2013, 

Rio Grande, Puerto Rico, USA.  

Wu, W. L. & Chiu, M. H. (2013b). Students’ conceptual evolutionary pathways of phase 

transitions: toward empirical and theoretical approaches. Paper will be presented at 

the European Science Education Research Association (ESERA) 2013, September 2th 

- 7th, Nicosia, Cyprus. 

Vosniadou, S. (2002). On the nature of naive physics. In M. Limon & L. Mason (Eds.), 

Reconsidering conceptual change: Issues in theory and practice (pp. 61-76). 

Dordrecht: Kluwer. 

Strand 1 Learning science: Conceptual understanding

142



 
 
MEASUREMENT ESTIMATION SKILLS AND STRATEGIES 

OF LOWER GRADE STUDENTS  
 
Lisa Stinken and Stefan Heusler 
Westfälische-Wilhelms Universität Münster, Germany 
 

Abstract: Measurement estimation is an important part of everyday live and a higher-level 
competence in science and mathematics education. In order to improve estimation skills, at 
first, estimation abilities and strategies have to be examined. In this study, a questionnaire and 
an interview survey are combined in order to determine measurement estimation skills and 
strategies used by German students. So far, over 800 students in the grades eight to ten and 30 
college juniors participated in the questionnaire survey. First results show no significant 
improvement of the estimation abilities for higher grades. Both; pupils and students have a 
lack in estimation skills. We found that estimates of physical quantities which are used 
quantitatively in everyday live, and/or perceptible quantities (such as temperature) were more 
accurate than others like force or acceleration. In addition to the questionnaire, first interviews 
revealed that students are untrained estimators, but also that they have too high confidence in 
their own estimates. Besides this, a whole number of different estimation strategies could be 
identified, confirming those known from previous estimation studies in mathematics, but 
expanding the range to physical quantities such as force or velocity, where new strategies like 
‘physical decomposition’ were observed. 

Keywords: measurement estimation, accuracy, strategies  

 

INTRODUCTION 
Estimation ability is an interdisciplinary competence. It has a great relevance in mathematics 
and natural sciences. It is not only used in the laboratory or the classroom, but is essential also 
in everyday live. Furthermore, estimation is often the only possible way to achieve a result, 
for example if measurements are impossible, or if not all data are known, or if the situation is 
too complex for exact calculations. Making estimates is timesaving and can give a quick 
overview of the situation. It can also serve as a basis for decision making, not only in science, 
but also in economics and even politics. For these reasons, one important aspect of natural 
science education is to enable students to make accurate estimates. However, in physics 
education, measurement estimation is mostly taught implicitly. In Germany, measurement 
estimation is even only part of elementary school education in mathematics. But is this 
sufficient? How can estimation skills be improved? Which estimation strategies emerge, 
which are most successful? 

 
State of Research 
Studies in the field of mathematical education over the last 60 years have shown that both 
students and adults have great deficits in their ability of measurement estimation (Crawford & 
Zylstra, 1952; Reys et al. 1982; Hildreth, 1983; Crites, 1992; Joram et al., 2005). But almost 
all of the studies existing so far have focused on quantities like numbers, length or area, which 
play an important role in mathematics. Only a few studies included some physical quantities 
like velocity, time or temperature (e. g. Corle, 1960; 1963). The principal aim of this study is 
to fill in this gap and to investigate the estimation ability of students concerning quantities 
which are commonly used in the physics classroom. Additionally, estimation strategies will 
be analyzed. 
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METHODS 
Given the aim of investigating the estimation abilities and strategies used by students for 
different physical quantities, a broad range of estimation tasks has been developed. First, a 
questionnaire to determine the accuracy in measurement estimation was designed; second, 
interview questions were formulated to identify the estimation strategies. Additionally, some 
of the questionnaire and interview tasks involved the request to quote the accuracy of the own 
estimation just made. The study deals with physical quantities length, mass, time, 
temperature, area, volume, density, acceleration, speed and force. A first run of the 
questionnaire survey also included more abstract quantities like energy, power and current. 
For each quantity, there were at least four different everyday life objects or activities to 
estimate (TEO: ‘to estimate object’) in order to determine the accuracy of the given 
estimations for the given quantity. The estimation tasks were structured in five everyday 
situations. In Figure 1 the first estimation situation is shown as an example. 

 
Figure 1. Everyday life situations as shown in the example give the context for the 
estimation task for the different physical quantities.  

The aim of the interview survey was to identify strategies used by students to generate 
estimates. There were two different types of estimation tasks: measurement estimation 
problems in which the TEO was physically present and problems in which it was physically 
absent. Again, the accuracy of the estimates was determined; and afterwards the estimation 
strategies were analyzed.  

Pilot tests of the questionnaire and the interview guideline were conducted on a small number 
of students to ensure that children are familiar with TEOs and are able to understand all 
involved tasks.  

By now over 800 grammar school pupils from North Rhine-Westphalia and Lower Saxony in 
the grades eight to ten (14-16 years) participated in the questionnaire. In addition over 30 
first-year college students took part as comparison group. 

 
RESULTS 
The results are separated in two sections: (1) the accuracy of the measurement estimations for 
different quantities and (2) the used measurement estimation strategies. 
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Accuracy  
In order to determine the accuracy of the given estimates the mean ratio of each estimate and 
the related TEO was calculated for each student and physical quantity. 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 = �
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖
𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

An accuracy value of one represents perfect estimates, a value above one indicates that the 
student tents to overestimate this quantity and a value beneath one indicates an 
underestimation of this student on average. In Figure 2 the resulting boxplots for each 
quantity are shown. It can be seen that lower grade students are rather good in estimating 
length and temperature. Over 50% of the given estimates are within the range of -50% to 
+100% of the TEO. In mean, the quantities velocity, force, area and volume were 
underestimated by the students, especially force and volume with over 50% of the estimates 
less than half the size of the TEO. In contrast, more than half of the students tend to 
overestimate the quantities mass, time, acceleration and density. Particularly striking are the 
estimates concerning time and density. Over 75% of the students overestimate times by a 
factor of two. The large variations of the estimation ability can be seen especially in the 
accuracy of the estimates concerning density. The range of the given estimates varies 
strongly, as can be seen on the length of the box, which represents the range of the middle 
50% of the estimates. Again, length and time are the quantities for which not only the highest 
accuracy in the estimates could be identified, additionally almost all students show similar 
estimation abilities (small box length).  

 

 
Figure 2. Box-plots of estimates given by the students in the questionnaire survey. 
Presented are the mean ratio of the estimates to the TEOs, the dashed lines represent a 
deviation of -50% to +100% to the TEO. 
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The questionnaire survey showed almost no increase in the measurement estimation ability 
between the grades eight to ten and first-year college students. There were no significant 
differences between the grades eight and ten and only significant differences in the estimation 
ability concerning the quantities mass, acceleration (8th grade vs. students), Temperature (8th, 
10th grade vs. students) and force (10th grade vs. students).  

Additionally, only the minority of expected correlations between the estimation ability of 
interconnected quantities like length and area could be verified. For this purpose, the 
Spearmans correlation coefficient was determined for each combination of investigated 
physical quantities. Small positive significant correlations (**p ≤ 0.01) could only be found in 
the combinations of area and volume (rs=.214** to rs=.337**) and acceleration and velocity 
(rs=.267** to rs=.302**). 

Also of interest is, that for the majority of students no significant correlation between the 
physical expertise and their estimation ability was determined. 

 

Strategies 
The analysis of the 31 interviews confirmed the questionnaire results concerning the accuracy 
of the estimation ability of students for different quantities. Here again the estimates of 
Length and Temperature were most accurate.  

The analysis of the used strategies showed that students use various strategies when 
estimating physical quantities. Strategies that have been described in previous mathematical 
education studies, for instance by Forrester et al. (1990), Hildreth (1983), Joram et al. (1998) 
and Siegel et al. (1982), could be recovered. Additionally, some new adequate strategies like 
‘Physical Decomposition’ could be discovered. In total, students applied 31 different 
estimation strategies separated in four main categories (see Figure 3).  

 

 
Figure 3. Estimation strategies used by the students. The percentages are normalized to 
the total number of estimation strategies used by all students in the interviews.   

The most commonly used strategies were Benchmarks (23%), Argumentation (14%), Physical 
Decomposition & Calculation (14%), Mental / Real Measurement (11%) and Limits (9%). 
The use of Benchmarks means in general the comparison of a known standard or familiar 
object with known size to the TEO. For example, in order to estimate the height of a door one 
could imagine the own body height and compare this height with the door to generate an 
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estimate. By using the Argumentation strategy one justifies the estimation on every day or 
physical knowledge. For instance the temperature of a pocket warmer has to be below 100°C, 
since otherwise the user would burn himself. The Physical Decomposition & Calculation 
simply describes the decomposition of the TEO into subTEO, which can be estimated easier. 
Subsequently, the subTEOs are combined with the help of a known formula. One example for 
this strategy is the decomposition of a rectangle in its length and width. After estimating these 
subTEOs, the area can be determined by multiplying the length and width. When using a 
Mental / Real Measurement students imagine either a measurement device next to the TEO 
reading the value mentally or they use an object with known size as measurement instrument 
(e.g. finger range). Another often used strategy is the statement of Limits. In this case students 
indicate instead of a specific estimate a range with lower and upper limit in which they 
suspect the size of the TEO. 

The choice of the applied strategy is independent of the age of the asked student, 8th grade 
pupils and first-year students show no significant differences in their strategy choice.  

The applied strategy is also in the majority of the cases independent of the physical presence 
or absence of the TEO. Only exceptions are the quantities length and area. If the TEO is 
present while a length or area estimation, students tend to apply more real measurements, for 
example by using their finger range as measurement instrument. 

Strategies, which led to most accurate and most inaccurate estimates, are listed in Table 1. 
Nearly always one of the most used strategies leads to accurate estimates concerning at least 
one physical quantity. Only exception is the Argumentation, although Argumentation is in 
total the second most used strategy, the use of this strategy does not imply an accurate 
estimate. Quite the contrary seems to be true. Estimates, which base mainly on Everyday 
Argumentation, are often inadequate. For five of the ten physical quantities the use of 
Everyday Argumentation leads with a high probability to inaccurate estimates. Apart from 
Everyday Argumentation the use of Benchmarks, Real Measurement, Pseudo Physical 
Decomposition and Calculation (inadequate) increase the probability of inadequate estimates. 

The use of Benchmarks can lead to accurate estimates as well as to inaccurate estimates. The 
crucial factor when applying Benchmarks is the correct size of the known standard or familiar 
object. Although students, who imagine the comparison object with an incorrect size, may 
apply the Benchmark strategy correctly, they still achieve an inaccurate estimate due to the 
deviation between the real and their assumed size of the used comparison object. The same 
problem appears when using the Real Measurement strategy. As long as the assumed size of 
the known object, which is used as measurement instrument, is not identical with its real size 
this strategy will unavoidable lead to inaccurate estimates. Another not promising strategy is 
the Pseudo Physical Decomposition. Just as in the Physical Decomposition students start to 
break down the TEO into subTEOs, but instead of combining the subTEOs subsequently, they 
break off at this point. This may be due to the unawareness of the appropriate formula. Often 
the students switch after this failed estimation try to the Everyday Argumentation strategy. 
When using the Physical Decomposition & Calculation strategy main causes for inaccurate 
estimates are the use of an inappropriate formula (inadequate calculation) and the proceeding 
calculation of the TEO with previously inaccurate estimated subTEOs (adequate calculation). 
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Table 1. Strategies leading with high probability to accurate and inaccurate estimates 
for each physical quantity. 

Physical 
quantity 

Strategies used for most accurate 
estimates 

Strategies used for most 
inaccurate estimates 

Length Benchmarks Benchmarks (incorrect assumed size 
of Benchmark) 

Mass  Benchmarks Everyday Argumentation & Sense 
of Proportion 

Time Mental / Real Measurement Real Measurement (incorrect 
assumed size of measurement 
instrument) 

Temperature Benchmarks & Limits Everyday Argumentation 

Area Physical Decomposition & 
Calculation (adequate) 

Physical Decomposition & 
Calculation (adequate, but incorrect 
size of subTEOs or inadequate)  

Volume Benchmarks Extension 

Velocity  Physical Decomposition & 
Calculation (adequate) 

Pseudo Physical Decomposition & 
Everyday Argumentation 

Force Mental / Real Measurement Everyday Argumentation 

Density Physical Decomposition & 
Calculation (adequate) 

Pseudo Physical Decomposition & 
Everyday Argumentation  

Acceleration Physical Decomposition & 
Calculation (adequate) 

Benchmarks, Physical 
Decomposition & Calculation 
(inadequate) 

 
DISCUSSION AND CONCLUSIONS 
The study showed that pupils as well as college students are pretty good in estimating length 
and temperature. In contrast, they are poor estimators for abstract quantities such as 
acceleration or density. This is partly due to the lack of accurate Benchmarks, as well as due 
to the unawareness of appropriate formulas for calculating these quantities based on 
subTEOs. 

No significant correlation between the estimation ability and mathematical and physical 
knowledge is detectable. A significant correlation of estimation abilities could only be 
verified for the directly related quantities “area and volume” and “acceleration and velocity”. 
Since there is no significant increase in the estimation ability between the eighth grade and 
graduation, it can be assumed that teaching estimation skills implicitly does not work well. 
Our results also showed no differences in the strategy use for lower grade and first-year 
college students. This indicates, that students do not develop new estimation strategies. 
Therefore, it is necessary to improve the education concerning estimation abilities using those 
strategies which lead to the most accurate estimation results. The importance of a good 
estimation ability in daily live is obvious. Students must be given sufficient occasion to 
develop and practice their skills. The training of measurement estimation beyond the 
elementary school in mathematics and science could further increase the estimation ability of 
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students, especially since many physical quantities are first introduced in higher grades. 

One possible approach to increase the estimation ability of students is the development of an 
adequate benchmark system and the explicit training of different estimation strategies, since 
results up to now indicate that students are good estimators if they have a distinctive 
repertoire of adequate benchmarks for basic quantities (length, mass, time and temperature) 
and know how to determine derived physical quantities (are, volume, velocity, etc.) from 
basic quantities. In contrast, if students use Benchmarks with an incorrect assumed size or do 
not have the physical knowledge to calculate physical quantities based on underlying 
subTEOs, the probability for inaccurate estimates increases strongly (see. Tab. 1). 
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TIFIC INQUIRY THROUGH EXPLICIT INSTRUCTION: RE-

SULTS OF A CLASSROOM-BASED INTERVENTION 
Andreas Vorholzer 
Justus-Liebig-University Giessen, Germany 
 

Abstract: Promoting students’ knowledge and abilities of scientific inquiry (SI) is a central 
goal of science education. While it is generally agreed that students may not learn SI without 
engaging in hands-on inquiry activities, it is not yet clear how such activities have to be em-
bedded in instruction in order to be effective. Research presented in this paper utilizes a 
treatment-control design to investigate the impact of an explicit and an implicit instructional 
approach on the development of students’ knowledge and abilities of SI. Both approaches 
were embedded into a classroom-based intervention conducted in a German upper secondary 
school (N = 240). During the intervention the students worked together in groups of two or 
three; approximately fifty percent of these groups were documented on video. Students’ 
knowledge and abilities of SI were assessed before and after the intervention using a paper-
pencil test instrument. Additional data were collected prior to the intervention to assess stu-
dents’ subject-matter knowledge and to allow for control of dispositional factors (e.g., cogni-
tive abilities, interest in physics). Paper-pencil data collected were analysed using Rasch 
measurement techniques and repeated measures ANOVA. Results indicate that not only ex-
plicit but also implicit instruction fosters students’ knowledge and abilities of SI; however, 
explicit instruction appears to be substantially more effective. Furthermore, linear regression 
analyses were conducted to investigate the impact of students’ subject-matter knowledge and 
their prior knowledge and abilities of SI on the effectiveness of explicit / implicit instruction. 
Findings suggest that the intervention was equally effective for all students regardless of their 
prior knowledge. A preliminary attempt to link the paper-pencil and the video data collected 
is presented and a first approach for a video based analysis of students’ learning processes in 
an implicit and an explicit instructional approach is discussed. 

Keywords: scientific inquiry abilities; explicit and implicit instruction; student learning 

 

INTRODUCTION 
Enabling students to engage successfully in scientific inquiry (SI) is considered as an im-
portant part of scientific literacy and therefore a central goal of science education (e.g., Millar 
& Osborne, 1998; NRC, 2012; KMK, 2005). In line with the Framework for K-12 Science 
Education (NRC, 2012), we consider SI as knowledge and abilities necessary to do scientific 
inquiry1. Consequently, abilities of SI have to be differentiated from knowledge about in-
quiry, which can be considered as a facet of nature of science (cf. Lederman, 2007). Across 
the research literature and policy documents three SI abilities (and associated knowledge) are 
frequently mentioned and may, therefore, be considered as key abilities of SI: 1) Formulating 
scientific questions and hypotheses, 2) planning a scientific investigation and 3) evaluating 
and interpreting data (e.g., Cuevas et al., 2005; Klahr & Dunbar, 1988; NRC, 2012). Research 
presented in this paper explores the effectiveness of two different instructional approaches 
(implicit vs. explicit) on these three key abilities. 

 

THEORETICAL BACKGROUND 
Researchers and policy-makers agree that students’ participation in inquiry activities can lead 
to an improvement of their knowledge and abilities SI (e.g., NRC, 2012; Minstrell, 2000). 
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However, it is not clear how inquiry activities have to be embedded in instruction in order to 
be effective (Zimmerman, 2007). One assumption is that “doing inquiry” may not be suffi-
cient to develop knowledge and abilities of SI, rather, inquiry activities have to be embedded 
in instruction which directly targets corresponding concepts (e.g., Minstrell, 2000). This 
means that developing knowledge and abilities of SI requires opportunities for students to do 
inquiry and to reflect upon the concepts relevant for conducting inquiry in a scientific man-
ner. Even though the importance of the “reflection” has been advocated by researchers (e.g., 
Khishfe & Abd-El-Khalick, 2002; Minstrell, 2000), mainly the “doing” of inquiry is frequent-
ly highlighted as the key factor of instruction (e.g., NRC, 2012). Exposing students to instruc-
tion that includes both inquiry activities and concepts on how to do inquiry is what we refer to 
as explicit instruction. In contrast, we understand implicit instruction as solely “doing” in-
quiry assuming that students will not only develop abilities but also discover underlying con-
cepts “automatically” during the inquiry process (cf. Alfieri, Brooks, Aldrich & Tenenbaum, 
2011). So far, only for the Control of Variables Strategy (CVS), an important aspect of “plan-
ning a scientific investigations”, have the effects of explicit and implicit instruction been in-
vestigated comparatively (e.g., Chen & Klahr, 1999; Dean & Kuhn, 2007; Lazonder & Egber-
ink, 2014; Ross, 1988). Results of these studies indicate that explicit instructional approaches 
are more effective in promoting students’ abilities to use CVS then implicit instructional ap-
proaches. Moreover, implicit approaches only seem to have a positive effect on students’ 
CVS abilities if they are implemented over an extended period of time (ten weeks or more). 
These findings could potentially provide important information for teaching that seeks to 
promote students’ knowledge and abilities of SI. However, as CVS is only one out of many 
important facets of SI, findings from the studies on CVS cannot be generalized to other abili-
ties of SI without further evidence. 

Research reported in this paper utilizes paper-pencil and video based data sources to investi-
gate the effect of an explicit and an implicit instructional approach on students’ learning of 
three key facets of SI (formulating scientific questions and hypotheses, planning scientific 
investigations, evaluating and interpreting data). The research questions are:  

1. What effect does explicit and implicit instruction have on promoting students’ 
knowledge and abilities of SI?  

2. What impact does students’ prior SI knowledge and their subject-matter knowledge 
have on the effect of explicit / implicit instruction? 

 

DESIGN AND METHODS 
Participants 
The classroom-based intervention was conducted at the end of 2013 in one German upper 
secondary school and consisted of three stages: Pre-test, intervention, post-test. The partici-
pants (N = 204) were 16-17 year old students (65.2% female) from twelve 11th grade classes. 
The twelve classes were divided into six treatment and six control groups. In order to ensure 
comparability between the classes assigned to the treatment and control group, students’ sub-
ject-matter knowledge, SI knowledge, cognitive abilities, interest in physics, and self-concept 
were gathered (cf. Table 2). Results of independent t-tests showed that differences between 
means of the treatment and the control group are small and not statistically significant for all 
investigated variables (significance level p <.05). Therefore, it is assumed that both groups are 
similar and can thus be compared.  

Intervention 
The intervention comprised three units at a weekly basis (Table 1); the units lasted 45 or 90 
minutes. Students worked in small groups of two or three with classmates of their own choice. 
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All tasks and information were written down in order to minimize student-teacher interaction 
so that classes and student groups can be compared. The units for the treatment and control 
classes (Table 1) comprise the same physics content and use the same hands-on experiments, 
but differ with respect to their focus on SI: The units for the treatment classes explicitly ad-
dress SI, for instance, by providing concepts (“Change only one variable at a time”) or 
prompting students to apply these concepts in inquiry tasks (“Formulate a scientific questions 
that can be answered with this experiment”). Instruction for the control classes contains only 
implicitly aspects of SI, for example, by stating a scientific question at the beginning of an 
experiment or by following the control of variables strategy in experimental instructions. In 
contrast to the explicit instruction, the implicit instruction did not prompt students to reflect 
upon, for instance, the structure or the nature of the questions, the way the experiments were 
pre-designed for them, or why data had to be plotted in a particular way. In order to control 
for duration, the units for the control classes expand slightly on the science content (e.g., more 
calculation). 

Table 1 
Content of the three learning units for treatment and control classes 
 Physic content Treatment focus Control focus Duration 

Unit I Pressure in  
fluids 

Formulating scien-
tific questions and 

hypotheses 

Model of hydrostatic pres-
sure, calculation of hydro-

static pressure, etc. 

~45 
minutes 

Unit II 
Free fall and 
aerodynamic 

drag 

Planning scientific 
investigations 

Parameters influencing av-
erage speed during a fall, 

existence of terminal speed, 
etc. 

~90 
minutes 

Unit III 
Trajectory of 

projectiles and 
ballistic curves 

Analyzing and inter-
preting data  

Parameters influencing the 
maximum height and width 
of throws, trajectories with 

and without drag, etc. 

~90 
minutes 

 

Data Sources 
The study presented in this paper uses two different data sources to investigate students’ 
learning of SI abilities: paper-pencil data and video data. 

Paper-pencil data were collected utilizing a pre-post-test design. Before and after the inter-
vention, students’ knowledge of SI was assessed with a paper-pencil test. In addition, a sub-
ject-matter knowledge test and three short tests and questionnaires on cognitive abilities, in-
terest in physics, and self-concept were administered to the students prior to the intervention. 
The quality of each instrument was evaluated using Rasch measurement techniques (cf. 
Boone, Staver & Yale, 2014). Statistical and psychometric indices suggest good instrument 
function and reliability (Table 2). 
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Table 2 
Overview of instruments employed in the study and their psychometric indices 
 Inquiry 

Knowledge1 
Subject-Matter 

Knowledge2 
Cognitive 
Abilities3 

Interest in 
Physics4 

Self-
Concept5 

Used in Pre-test, 
Post-test Pre-test Pre-test Pre-test Pre-test 

Duration  35 minutes 25 minutes 8 minutes 5 minutes 5 minutes 

min. Outfit 
MNSQ 0.71 0.71 0.53 0.65 0.64 

max. Outfit 
MNSQ 1.16 1.16 1.48 1.72 1.87 

Person 
Reliability 

.81 .74 .80 .83 .95 

Item  
Reliability 

.97 .98 .94 .98 .97 

Notes. The instruments used are described in the following references listed below. 
1: Vorholzer, von Aufschnaiter, and Kirschner (2016) 
2: Alonzo and Steedle (2009); Hestens, Wells, and Swackhammer (1992) 
3: Heller and Perleth (2000) 
4: Hoffmann, Häußler, and Haft-Peters (1997) 
5: Jerusalem and Satow (1999) 
 

Video data were collected from approximately fifty percent of the students in both treatment 
and control group during all sessions of the intervention (Figure 1). In each of the 12 classes 
three to four groups of two to three students were recorded. The groups were selected solely 
depending on whether they had given their consent to being recorded. 

  

Figure 1. Screenshots from the video data recorded during the intervention. 
 

RESULTS OF THE PRE-POST-COMPARISON AND DISCUSSION 
Pre- and post-test SI measures from treatment and control groups were investigated using re-
peated-measures ANOVA. Results reveal that both the treatment and the control group im-
proved significantly from pre- to post-test (treatment group: F(1, 64) = 56.36, p < .001, con-
trol group: F(1, 64) = 23.10, p < .001). However, the difference between pre- and post-test SI 
knowledge measures is significantly higher for the treatment than for the control group  
(F(1, 128) = 9.46, p = .003, η² = .069; Figure 2). These results suggest that explicit and im-
plicit instruction can foster students’ knowledge and abilities of SI, but explicit instruction is 
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substantially more effective. On the one hand, our results increase the generalizability of pre-
vious findings on the effect of explicit instruction on students’ learning of CVS (Chen & 
Klahr, 1999, Lazonder & Egberink, 2011; Ross, 1988), as we have shown that those findings 
also apply to three key abilities of SI. On the other hand, our results seem to contradict previ-
ous findings on the ineffectiveness of implicit instruction, as we observed a significant in-
crease of students’ knowledge and abilities of SI in the control group as well. 

 
Figure 2. Mean SI measure of treatment and control group in pre- and post-test. 
 

Results from linear regressions analyses reveal that neither students’ subject-matter 
knowledge nor their prior SI knowledge is a meaningful predictor for the pre- to post differ-
ence in their SI knowledge measure (all β-values < 0.2 and not significant at a level of p < 
0.05; Figure 3). These findings suggest that both instructional approaches are equally benefi-
cial for all students, regardless of any differences in their subject-matter knowledge and their 
prior knowledge of SI. These findings also demonstrate that it is possible to promote students’ 
knowledge and abilities of SI equally, despite differences in their prior knowledge. 

  
Figure 3. Crossplot of students’ pre-test SI measures (left, horizontal axis) respectively sub-
ject-matter measure (right, horizontal axis) and their learning gains (pre to post) in SI abilities 
(vertical axis). 
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Overall, the results differ in two ways from typical outcomes of research on students’ 
knowledge and abilities of SI: (1) The implicit instruction has a significant positive effect 
which is contrary to results gained with the CVS (e.g. Chen & Klahr, 1999). (2) Prior subject 
matter and prior SI knowledge do not have a noticeable effect on students’ learning of SI. A 
potential explanation for these differences lies in the design and the organization of the inter-
vention, particularly in the implementation of the implicit and the explicit instruction. Chen 
and Klahr, for instance, used only probe questions in the implicit condition, e.g., “Why did 
you set up the comparison this way?“ (Chen & Klahr, 1999, p. 1106). However, if students do 
not at least have an intuitive understanding of concepts about planning investigations, such 
probes are not likely to promote learning. In contrast, in our implementation of an implicit 
approach the SI concepts targeted in the explicit instruction were also used to design research 
questions or experimental tasks in the implicit instruction. So even though these concepts 
were not mentioned explicitly, the students were given multiple opportunities to discover 
them from the patterns of the instruction. Given variety of implementations of implicit in-
structional approaches (cf. Alfieri et al., 2011), it seems beneficial for future studies to further 
investigate similarities and differences between the effect of different implicit instructional 
approaches on students’ learning of SI. 

OUTLOOK – ANALYSIS OF VIDEO DATA 
The main method of studies contrasting explicit and implicit instruction is using paper-pencil-
based data sources, which do not offer much information on how knowledge and abilities of 
SI are developed during learning in these settings. Here, the use of video analysis techniques 
holds great potential, as these techniques can provide valuable insights into learning processes 
(e.g., Janik & Seidel, 2009). With regard to our study, analyzing the video data collected dur-
ing the intervention could, for instance, a) be used to follow up on the abovementioned as-
sumption about students discovering SI concepts in patterns of our implicit instruction or b) 
help to explore which characteristics of the intervention led to the observed non-significant 
impact of prior knowledge on students’ learning of SI.  

In order to analyse the video data collected during the intervention, a system of categories has 
been developed (Figure 4). The categories are, in part, derived from studies on students’ pro-
cesses of concept formation while working on physics tasks (von Aufschnaiter & Rogge, 
2010) and aim to assess students’ activities as well as how students develop and employ 
knowledge and abilities of SI while working on the explicit and implicit instruction. 

 
Figure 4. Preliminary coding scheme for the assessment of students’ activities and concept 
formation 

Strand 1 Learning science: Conceptual understanding

155



 

A first analysis of the video data demonstrates that both groups work on the instruction inten-
sively and mainly come to appropriate results and conclusions. Even though off task activities 
seem to be rare, the students spend a noticeable amount of time on organizational issues (for 
instance, setting up an experiment). Moreover, preliminary findings suggest that difference 
found regarding the effectiveness of explicit and implicit instruction cannot solely be ex-
plained by differences in students’ activities. These preliminary findings support our intention 
to investigate more thoroughly students’ learning processes while working on the explicit / 
implicit instruction. 

NOTES 
1. It has to be noted that the NRC uses the term “scientific practices” instead of “scientific 
inquiry” in order to “better specify what is meant by inquiry in science and the range of cog-
nitive, social, and physical practices that it requires” (NRC, 2012, p. 30). However, since re-
search presented in this paper does not focus on the whole range of practices outlined by the 
NRC, we decided to stay with the term “scientific inquiry”. 
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Abstract: A major goal of education in geography and its neighbouring disciplines (e.g. 

physics, biology) is to enhance systems thinking, which is important to deal with present and 

future challenges. Various ways to help achieving this goal have been proposed. The paper 

wants to show the potential of geographical models to help pupils to improve their systems 

thinking skills. In general, models can be categorised e.g. based on their function, such as 

visualisation and knowledge acquisition (Schubert 2013) or on the version used, e.g. hands-on 

and computer model. Based on the definition of geographic system competency and 

dimensions of system understanding drawn from the works of Viehrig et al. (in press), 

Rempfler & Uphues (2012), and Rieß et al. (2015), this paper will then focus on interrelations 

between model function and system understanding dimensions using concrete examples. 

Overall, based on practical experiences in using various models in geography education from 

primary school to university, hands-on, manipulable models seem especially suitable to 

enhancing pupils’ systems thinking, as they not only show the structure or function of objects, 

but also reveal dynamics in the processes – which is necessary for higher competency levels. 

Moreover, model characteristics will be discussed. We are deriving preliminary design criteria 

for models, inter alia specific to enhancing systems thinking. Examples are the reduction of 

systems to their key parameters without causing misconceptions or the instruction explicitly 

pointing the pupils’ attention to the parameters and the interactions between them. Despite the 

fact that system understanding has been a main goal of science education for a long time, 

there are only few empirical studies examining how and to what extent models help reaching 

this goal. The paper will conclude with first results of on-going studies testing the influence of 

model use on pupils’ pre-concepts and systems thinking skills. 

Keywords: (geographical) models in science education, systems thinking, design criteria 

INTRODUCTION 

Addressing present and future challenges requires for instance system understanding, 

creativity and constructiveness. Geography provides an important contribution to preparing 

children and adolescents for these challenges. Two of geography’s key concepts are the view 

of the earth as human-environment-system and the analysis of interdependencies, with 

enhancing systems thinking being the major goal of geography education (DGfG 2012). 

Moreover, systems thinking is also one of the key goals in subjects such as physics or biology 

(KMK 2004, 2005). The purpose of this paper is to show the potential of geographical models 

to help achieving this goal. 
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The nature of models 

According to Wirth (1979) models represent partial aspects of reality (relevant to a specific 

problem) as a simplified system and depict coherencies and processes. Thus, they support 

pupils in finding sophisticated and meaningful categories, which help them to figure out 

complex dynamics (Hoffmann et al. 2012). Birkenhauer (1997) recommends the use of 

models for supporting the comprehension of and reflection on spatial problems as well as the 

evaluation of possible solutions for the purpose of spatial decision-making and responsibility. 

A variety of possibilities to categorise models exists. For example, Schubert (2013) 

categorises geographical models regarding (1) form of representation (concrete, abstract), (2) 

function (visualisation, way of knowledge acquisition, result of cognitive processes), and (3) 

type (structural model, functional model, process model). Another possible categorisation is 

regarding the model version: (a) two-dimensional, (b) three-dimensional (“hands-on”) and (3) 

computer simulation. Using the example of soil erosion that means for instance (a) a soil 

erosion map, (b) a hands-on soil erosion model (e.g. a sandbox), and (c) a soil erosion 

simulation, e.g. with the aid of the USLE (universal soil loss equation).  

The nature of geographic system competency 

According to Viehrig et al. (in press) geographic system competency has been defined as 

“[…] the cognitive achievement dispositions […] that are necessary to analyze, comprehend 

geographic systems in specific context and act adequately towards them”. Different models of 

geographic system competency have been published: 

In the theoretical model, Viehrig et al. (in press) distinguish three dimensions of geographic 

system competency: (1) ‘comprehend and analyze systems’, (2) ‘evaluating possibilities to act 

towards systems’, and (3) ‘spatial thinking’ – in each case with three competency levels with 

increasing complexity. However, not all three dimensions have been shown empirically and 

not all levels could be confirmed. Specifically, the second dimension could not be shown, 

with the remaining two dimensions being separate in one study and constituting a single 

dimension in another study. 

In comparison, Rempfler & Uphues’ (2012) theoretical model distinguishes the three 

dimensions (1) ‘system organisation’, (2) ‘system behaviour’, and (3) ‘system adequate 

intention to act’. Based on empirical results, their model was condensed to the two 

dimensions ‘system organisation and behaviour’, and ‘system adequate intention to act’ 

(Mehren et al. 2015). Due to the high importance of the spatial component in geography 

education we combine Viehrig et al’s dimensions (1) and (3) with Rempfler & Uphues’ 

dimension (3) as shown in Table 1.  

Based on the relevance of systemic model reflection presented by Rieß et al. 2015 in their 

theoretical system competency model, we add their dimension ‘Evaluation of systemic 

models and of model application results’, because this aspect seems not to be represented 

adequately in either of the above-mentioned models of systems thinking (see Table 1). This 

combined model with a total of four dimensions has not yet been tested empirically, but 

serves as a framework to explore possible links between systems thinking and model use on a 

theoretical level. 

Models and geographical systems thinking – a promising symbiosis? 

Based on Wiktorin (2013) the strong points of geographical models are (1) the visualisation of 

spatial issues, (2) the narrowing of complex system links to crucial features, and (3) the 
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opportunities to structure knowledge, respectively formulate clear principles. These aspects 

could also help pupils to improve their system competency. 

Table 1 presents possible relationships between model function and system understanding 

using (geographical) models. According to anecdotal experience with manifold geographical 

models, hands-on model manipulation seems to offer pupils the most opportunities to enhance 

system thinking. These models not only show the structure or function of objects (see models 

for “visualisation”), but also reveal dynamics (e.g. stocks & flows, feedbacks, non-linear 

coherencies) in the processes – which is necessary for higher competency levels in 

geographical systems thinking.  

Table 1. Concept of interrelations between model function and system competency 

dimension. 

GEOGRAPHICAL 

MODEL SERVES… 

MODEL FUNCTION  (cf. Schubert 2013) 

Visualisation 

(e.g. demonstration 

by teacher) 

Way of knowledge 

acquisition  

(e.g. inquiry-based or 

problem-oriented 

experiments by pupils) 

Result of cognitive 

process  

(e.g. self-construction 

of models by pupils at 

the end of a learning 

unit) 

D
IM
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N

S
IO

N
S
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F

 G
E

O
G

R
A

P
H

IC
 S

Y
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T
E

M
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O
M

P
E

T
E

N
C

Y
 

Comprehend 

and analyse 

systems  

(cf. Viehrig et al., 

in press) 

… to illustrate the 

geographical 

process 

… as basis for pupils’ 

manipulation to find out 

system parameters and 

their 

relationships/dependencies/ 

feedback effects 

… as reflection and 

consolidation of the 

pupils’ understanding 

of the geographical 

process 

System adequate 

intention to act  

(cf. Rempfler & 

Uphues, 2012; 

Mehren et al. 2015) 

… to illustrate the 

consequences of 

different human 

actions 

… as basis for pupils’ 

manipulation to find out 

effective/sustainable 

human actions  

… as reflection and 

consolidation of the 

pupils’ understanding 

of the consequences 

of different human 

actions 

Spatial thinking  

(cf. Viehrig et al., 

in press) 

… to illustrate the 

variations between 

different spatial 

areas 

… as basis for pupils’ 

manipulation to find out 

the spatial distribution of 

effects of the geographical 

process on different parts 

of an area 

… as reflection and 

consolidation of the 

pupils’ understanding 

of the variations 

between different 

spatial areas 

Evaluation of 

systemic models 

and of model 

application 

results  

(cf. Rieß et al., 

2015) 

… to illustrate the 

challenges 

regarding 

transferability to 

reality and/or 

validity of the 

model’s principles 

and assumptions 

… as basis for pupils’ 

manipulation to find out 

the challenges regarding 

transferability to reality 

and/or validity of the 

model principles and 

assumptions 

… as reflection and 

consolidation of the 

pupils’ understanding 

of the challenges 

regarding 

transferability to 

reality and/or validity 

of the model 

principles and 

assumptions 
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CASE STUDIES 

Different geographical models developed at the Department of Geography, Heidelberg 

University of Education, visualize spatial processes and allow for their manipulation to 

analyze cause-effect-relationships. Here, we exemplarily present four models, which represent 

spatial processes in the hydrosphere, biosphere, pedosphere, and atmosphere as well as in 

their overlapping areas. The models are developed for different samples ranging from primary 

school pupils to university students.  

Hydrosphere: A dam model (water reservoir) for primary school pupils 

The dam model (see Figure 1) is - apart from the height - a true-to-scale model of the 

Sylvenstein lake in Bavaria, Germany (Northern Alps). The lake is used to regulate the water 

level in the lower section of one of the streams, as well as to produce energy in a 

hydroelectric power station. The model shows the area before the building of a dam. Three 

streams flow in their original meandering bed. Different positive and negative effects of 

damming one or more streams in the alpine area can be demonstrated in the model. Pupils can 

test different locations of the dam, examining the effects of the change in water level such as 

flooded grasslands or villages. Showing them the actual position of the dam, the pupils can 

also see which areas got flooded in reality, including the little village represented by the dark 

gray house on the right in Figure 1. Using old articles from newspapers or interviews with 

citizens that had to leave their home, pupils can delve further into this topic.  

 

Figure 1. Dam model, water flooding in low-lying areas (own photograph). 

The model emulates real surface topography. It allows pupils to examine the relationship 

between water inflow, dam structure, dam position and water level. Other influencing factors 

like water infiltration, evaporation or riverbank erosion are neglected to avoid overloading the 

primary school children. Taking into account possible negative effects on nature and 

population pupils can search for the best position for the dam by comparing different options 

and their consequences on population and environment, thus showing if they understood the 

interrelations between the parameters involved. 
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The model could enhance systems thinking as the pupils learn about the effects of damming 

water, e.g. for the production of energy, and understand impacts on the landscape as a part of 

the human-environment-system, e.g. the relationship between damming the water and its 

(un)intended effects on nature or settlement areas. 

Biosphere: A windfall model (forest) for middle school pupils 

The windfall model (see Figure 2) is a functional model of a landscape area of a mountain 

range demonstrating storm damages in forests. Different wind speeds can be simulated by 

using an electric fan. In this way it is possible to show how much wind speed is necessary to 

bring different tree species (like spruce, beech and oak) to fall – simulated by using spring 

hinges with different tension. In this context increasing storm or strong wind events due to 

climate change are discussed (see Brandt et al. 2015, Volz et al. in press). The pupils can 

analyse the relationships between landscape (relief), forest structure, windfall endangered tree 

species, different root types and other factors – e.g. by generating and testing their own 

hypotheses. This can help them in acquiring knowledge about the system parameters 

represented in the model as well as their relationship, thus developing systems thinking skills. 

 

Figure 2. Windfall model (forest), wind direction parallel to ridge (own photograph). 

In addition, the windfall model can be used to learn about avoiding storm damages in forests 

by different methods. The pupils are able to manipulate the model to identify the most 

effective measure (or the most effective combination of different measures such as planting a 

mixed forest with tiered edge) to prevent storm damages. While the main goal is to develop 

the pupils’ comprehension of appropriate protecting measures against storm damages, they 

can also find out how and why storm damages vary in different mountain areas, recognising 

the relief as one of the major influencing factor.  

However, to avoid misconceptions, the models limitations need to be discussed, which also 

helps pupils to evaluate the transferability between model and reality. Specifically, the model 

does not allow for simulation of variations in bedrock or tree ages which have a significant 

impact on windfall in reality. 
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Pedosphere: A soil erosion model (farmland) for senior high school pupils 

The soil erosion models (see Figure 3) represent hillside fields during rainfall. They are made 

of plastic and perspex boxes and allow for adjusting surface inclination, precipitation 

characteristics (amount, drop size, duration), soil type, land cover, cultivation methods and 

other influencing factors. Surface runoff or the amount of eroded sediment is quantifiable 

with measuring cups respectively scales. 

 

Figure 3. Soil erosion model, land cover reducing soil erosion compared to wasteland 

(own photograph). 

The synoptic examination of natural and anthropogenic factors and their complex effects and 

interactions is a key component of the pupils’ inquiry-based experiments (see Brockmüller & 

Jungkunst 2015). By comparing several model runs, pupils test their hypotheses about soil 

erosion. For example, the influences of changing climate conditions or the effects of 

anthropogenic interferences on erosion quantity and adaption capabilities can be investigated. 

Discussing appropriate adaption strategies integrates ecological, economic and social aspects 

of climate change in the context of sustainability and encourages individual decision-making 

and responsibility (see Brockmüller et al. 2015, 2016). Finally, a thorough model reflection 

allows the identification of discrepancies between model and reality (e.g. detailed slope 

topography) as well as the determination of the model’s strengths (e.g. time-independence) 

and weaknesses (e.g. distortion by box boundaries). 

Thus, pupils’ systems thinking is planned to be enhanced in multiple ways in terms of the four 

dimensions of the competence (see also Table 1). The pupils (1) identify as many as possible 

influencing factors on soil erosion, (2) test, quantify and compare their effects in experiments, 

(3) find sustainable protection strategies taking both positive and negative impacts on man 

and nature into account, and (4) evaluate the transferability between model and reality. 
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Atmosphere: An airstream model for university students 

The airstream model (see Figure 4) is a modification of a model for the demonstration of the 

thermohaline circulation: higher pressure leads to ascending, lower pressure to descending 

processes. The model is suitable especially for the demonstration of sea and land breezes, 

visualizing thermally induced rising air and compensation currents between high and low 

pressure areas by means of smoke. Thus, causes and effects of regional wind systems are 

illustrated. Model limits are that neither airstream velocity nor relative differences in air 

pressure are of measurable quantity.  

 

Figure 4. Airstream model, enabling thermally, dynamically or orographically induced 

airstreams to drive propeller (own photograph). 

The model can be used in a problem-based approach. One task might be to produce an air 

current at a specific position of the model and into a specific direction, visualized by the 

smoke. Even more complex is the additional consideration of a certain daytime.  

Furthermore, by means of a vacuum cleaner, dynamically induced air currents can be 

generated. Combined with an air tube, suction or pump effects due to divergence or 

convergence (as reason for dynamically induced high or low pressure areas and the resulting 

ascending or descending airstreams) can be visualized. In addition, orographically enforced 

ascent of air masses can also be illustrated (see Volz & Siegmund 2015). 

Thermally induced, dynamically induced and orographically enforced airstreams may appear 

to be the same process but have disparate causes. Since the model allows for the simulation of 

all three causes, it can help to enhance students’ systems thinking in this area. 

FIRST RESULTS OF A COMPARATIVE STUDY ON DIFFERENT 

MODEL APPROACHES 

To what extent and how do different versions of models help to enhance pupils’ geographical 

systems thinking? Taking the example of soil erosion, both sandbox-model and computer 

simulation allow for model manipulation, but differ in the degree of abstractness. An on-

going study (PhD research Brockmüller) investigates which model version helps pupils to 
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improve geographical systems thinking most effectively. Differences in systems thinking 

between three groups of pupils working with different model versions are compared. During 

the intervention, the pupils record, analyse and evaluate the complex influencing factors on 

soil erosion by means of 

(1) hands-on experiments (based on irrigated reference soil boxes - as shown in Figure 3), 

(2) abstract computer simulations (based on mathematical soil loss equations), and 

(3) a combination of both approaches. 

Pre-post comparison is meant to show which approach helps pupils to understand selected 

aspects of geographical systems most effectively and whether that is dependent on learning 

style. The developed test contains 12 items which are assigned to four different dimensions of 

system competency such as (a) declarative/conceptual system knowledge, (b) ability of 

system modelling, (c) ability of using system modelling for problem solving, (d) evaluating 

system modelling results (Bräutigam 2014, Rieß et al. 2015). 

A pilot study with n=78 showed the following results: First item analysis (EFA in R) indicates 

two factors/principal axes, second analysis (CFA in R) confirms one factor with eight items 

concerning specific content related system thinking (Cronbachs α of 0,73) and another factor 

with four items concerning general theoretical systems thinking (Cronbachs α of 0,69). The 

group-comparison by means of a one-way analysis of variance (Tucey HSD test in SPSS) 

reveals the following first results: In both pre- and post-test there are no significant group 

differences between groups (1), (2) and (3). Due to a very low effect size of η² = 0.023 a 

higher number of test participants is needed to reveal possible differences. 

 

Figure 5: Mean differences between pre- and post-test. 

The within-group comparison of pre- and post-test means (via T-test in SPSS) shows 

significant improvement for all three test groups (computer simulation, erosion model and 

combination) regarding the total amount of all test items. A separate analysis of the items of 

factor 1, specific content related systems thinking, and of factor 2, general theoretical systems 

thinking, shows significant mean differences only for the factor 1-items (see Figure 5). Figure 

5 also shows that group 3 (combination) has both the best pre-score mean and the largest pre-

post-test difference.  

As an interim conclusion, both soil erosion models and computer simulations seem suitable 

for the content related enhancement of systems thinking skills. All three test groups were able 

to benefit significantly from the intervention. The “combined group”, which used hands-on 

erosion models as well as computer simulations, achieved the best overall result however 

there are not as yet significant differences identifiable. 
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DESIGN CRITERIA FOR TEACHING WITH GEOGRAPHICAL 

MODELS 

Certain “tools” (e.g. flow diagrams, concept maps, behaviour over time graphs, etc.) are 

stated to help pupils and students to understand systems (e.g. Frischknecht-Tobler et al. 2008, 

Ossimitz 2000). In our view, manipulable geographical models are an additional tool that 

could help pupils to improve their systems thinking skills. Based on literature and a range of 

practical experiences in using widely varied models in geography education from primary 

school to university, we have derived preliminary design criteria. These can be divided into 

(1) general model criteria and (2) criteria specific to enhancing systems thinking, and need to 

be tested empirically (see Table 2). 

Table 2. Design criteria of geographical models. 

PROPOSED DESIGN CRITERIA OF (GEOGRAPHICAL) MODELS 

Category (1) General model criteria (2) Specific model criteria for enhancing 

systems thinking 

(a) Model 

construction 

 Transportability 

 Affordable, easy to acquire and re-

usable models/model components 

 Ease of cleaning and putting away 

the model 

 Versatility 

 Size as small as possible, as big as 

necessary 

 Little or no possibilities for pupils to 

get hurt 

 No distractions 

 Stable and repairable 

 Manipulation of individual system 

parameters, independently from each 

other 

 Simulation of sudden events and 

feedback loops 

 Possibility to compare the results of 

different model runs 

 Differences quantifiable if possible 

 Close to reality/abstract models allow 

for inductive/deductive reasoning 

 Models represent human-environment 

relationships if relevant 

(b) Model 

application 

 Visibility of relevant processes 

 Not contributing to misconceptions 

 As few “didactic tricks” (such as 

battery drive, etc.) as possible, as 

hidden as possible 

 Age appropriate reduction of systems 

to their key parameters without causing 

misconceptions 

 All substantial system components, 

processes and relationships are 

included 

 Model is possibly causing cognitive 

conflicts 

 Problem-based application of the 

model possible 

(c) Model 

instruction 

 Target group adequacy (e.g. 

opportunities of dealing with 

diversity) 

 Clear instruction 

 Safety regulations 

 Instruction explicitly pointing the 

pupils’ attention to the parameters and 

the interactions between them 

 Instruction focuses on the distinction of 

natural and anthropogenic influencing 

factors and on the effects of different 

interferences if relevant 

 Enables both scaffolded and free 

exploration 

 Discussion about pupils’ concepts is 

encouraged 
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PERSPECTIVE 

Despite the advanced state of research concerning models (see e.g. Upmeier zu Belzen & 

Krüger 2010 for biology education) and the fact that system understanding has been a main 

goal of geography education for a long time, there are only few empirical studies examining 

in what way or to what extent models help reaching this goal. Our paper discusses some 

facets of the potential of geographical models to enhance systems thinking based on various 

projects that are underway at the Heidelberg University of Education, but more research is 

needed. 
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Abstract: Theory of Relativity (Special and General) is one of the most influential theories of 
the 20th century and has changed the way we view the world. It is part of many undergraduate 
curriculums and it is often suggested that it should be integrated into an upper secondary 
curriculum. Special Theory of Relativity combines time and space whereas General Theory of 
Relativity describes gravity as a geometric property of spacetime. As it describes abstract 
phenomena, students encounter several difficulties understanding its basic principles and 
consequences. In this paper, we present the research that we conducted in order to detect the 
aforementioned difficulties. This research constitutes a part of a more general study 
concerning the integration of Special and General Relativity into an upper secondary and 
undergraduate curriculum. The sample consisted of 45 non-major physics undergraduate 
students. The purpose of our study was to determine and categorize the difficulties students 
face when they study the principles of the Theory of Relativity and its consequences. The 
results of our research indicate that student face many obstacles when trying to interpret 
phenomena described by the Relativity and confuse Special and General Relativity principles.  
These results dictate us to create an educational approach that tackle the difficulties found.    
 
Keywords: Special Relativity, General Relativity, students' difficulties, qualitative study 
 
 
 
INTRODUCTION 
Theory of Relativity is one of the most influential theories of the 20th century that change the 
way we view the physical world. It is part of many undergraduate curriculums and it is often 
suggested that it should be integrated into an upper secondary curriculum (Arriassecq & 
Greca, 2010; Villani & Arruda, 1998).  The failure of experiments to detect any motion of 
ether led to Einstein’s two basic postulates of Special Relativity and their consequences 
(relativity of simultaneity, time dilation and length contraction). While Special theory of 
Relativity is primarily concerned with inertial frames of reference, accelerated frames of 
reference and gravity are treated in General Relativity, as table 1 presents. Relativity has, also, 
many applications with GPS being one of the most known among them. As the phenomena 
Relativity describes can be characterized as abstract, researching students’ difficulties in 
understanding these phenomena is of great interest for the educational community.  
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Table 1.  
The Theory of Relativity 
 

Theory of Relativity 
Special Relativity General Relativity 
Basic Postulates Basic Postulate 

Invariance of Physical Laws Principle of Equivalence 
Invariance of the speed of light  

Applications Applications 
Relativity of Simultaneity Bending of light 

Time Dilation Modification of time by gravitational fields 
Length Contraction  

 
 
Reasons why we should teach relativity and conduct research on how best 
to include it in current curriculum 
 
Relativity constitutes a revolutionary & influential Theory, it is part of many undergraduate 
curriculums and many researchers and educators suggest that it should be integrated into an 
upper secondary curriculum. It is part of our cultural heritage and describes as well as 
interprets abstract phenomena. Moreover, it provokes students’ excitement and develops 
abstract way of thinking. So, researching students’ difficulties in understanding these 
phenomena is of great interest for the educational community. 
 
LITERATURE REVIEW 

Defining the term “Difficulties in understanding”  

According to Centeno (1988) difficulty is something that constrains students’ understanding 
of a given subject. Some of students’ ideas correctly interpret particular phenomena, but fail 
to do so in other phenomena (more general most of the time). According to Brousseau (1983) 
, difficulty is knowledge, not necessarily lack of it. In addition to this, students often ignore 
the existence of a wrong knowledge and as a result they find it difficult to replace it with the 
scientifically correct one.  
 
Educational Research in Relativity 

There is a small number of studies concerning the difficulties students face when they study 
the Theory of Relativity (Pitts,Venville, Blair & Zadnik, 2014) the results of which are 
summarized in the following points:  
a) Students find it difficult to define and thus describe a Frame of Reference and they believe 

in the existence of a privileged observer (Arriasecq I. & Greca M.I. 2010; Scherr et al 
2001; Panse et al 1994 ;Ramadas et al 1996; Villani & Pacca, 1987).  

b) Many students predict the progress of a physical phenomenon, without using the principle 
of relativity. Moreover, they cannot apply the invariance of the speed of light (Pietrocola & 
Zylbersztajn,1999; Scherr et al 2001;Dimitriadi & Halkia, 2012).  

c) Students cannot perceive that two simultaneous events in a particular Frame of Reference 
are not necessarily simultaneous relative to another Inertial Frame of Reference. What is 
more, they hold the view that time is absolute and that both time dilation and length 
contraction constitute a distortion of the reality (Scherr 2007, Scherr et al 2001; Hewson 
1982 , Posner et al 1982).  
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d) Students use Special Relativity postulates so as to interpret phenomena of General 
Relativity (Bandyopadhyay,A., Kumar, A., 2010). 

 
RESEARCH QUESTION 
 
Aiming to contribute to the aforementioned literature we designed our research and developed 
our research question.  
 
“Which are non-major physics students’ difficulties in understanding the basic principles of 
the Theory of Relativity and its consequences after standard instruction?” 
 
METHOD 
 
In order to measure the difficulties, we constructed a questionnaire that included open ended 
questions and was based on the existing literature. In addition to questionnaire (Figure 1), we 
conducted interviews so as to go deeper and get a better picture of students' difficulties. The 
research was conducted in two phases:  
In the first phase we conducted a pilot study with 10 non major physics undergraduate 
students as our sample. Our tool was a questionnaire that included open ended questions and 
was revised by 2 experts in physics and 2 experts in educational research.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Research Design – Qualitative Approach 

 
The next phase included the main study with a sample of 45 non major physics undergraduate 
students of the Pedagogical Department at the University of Athens. As our main tool we used 
the aforementioned questionnaire that that was amended so as to incorporate students' 
feedback from the pilot study. In addition to this questionnaire we conducted interviews with 
10 students so as to get a deeper understanding of their difficulties and test our assumptions. 
Finally, aiming to assure the reliability of our study, we had 2 transcribers to analyze the data 
collected.  
Students that comprised the sample of our main study attended a series of lessons, the 
structure of which is shown at Table 2. 
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Table 2.   
Regular Instruction Scheme 
 
 

Lesson Unit Instructional Time Interval 
Kinematics & Dynamics Review 2 x 45 min. 

Inertial Frame of References 2 x 45 min. 
Basic Principles of the Special Theory of 

Relativity 2 x 45 min. 

Relativity of Simultaneity, Time Dilation, 
Length Contraction 3 x 45 min. 

Principle of Equivalence 2 x 45 min. 
Bending of light 45 min. 

Modification of time by gravitational 
fields 45 min. 

 
The aforementioned Instructional Scheme is based on the newly introduced Greek 
Curriculum. 
Our tools examined the following thematic units:  
a) Principle of Relativity, b) Invariance of the speed of light, c) Relativity of Simultaneity, d) 
Time Dilation, e) Length Contraction, f) Principle of Equivalence,    h) Bending of light and i) 
Modification of time by gravitational fields.  
After analyzing the data collected using qualitative approaches, we categorized our findings 
based on the above mentioned thematic units. 
   
RESULTS 
 

Einstein’s Principle of Relativity - invariance of physical laws   
 

Some students (40%) found it difficult to perceive the equivalence between motionless and 
uniform motion. They said that phenomena (either electromagnetic or mechanical) can 
progress differently for different observers. For instance, they believe that an object moving at 
a constant speed relative to an observer O can accelerate or decelerate relative to a different 
inertial observer O΄.  
 
Invariance of the speed of light 
 

Many students (66,7%) stated correctly the invariance of the speed of light, but they failed to 
apply it in problems in which the speed of light was demanded. Instead they used the Galilean 
velocity addition formula.  
 
Relativity of Simultaneity  
 

Some students (24,4%) considered that two events that are simultaneous for an observer, must 
be simultaneous for any other inertial observer.  
“Since the 2 explosions occur simultaneously for observer A, they are simultaneous for any 
other inertial observer”. 
 
Time Dilation 
 

A common view among students (77,7%) was that time is absolute and unaffected by the 
inertial observer relative to whom it is measured. 
“Time is what it is, it can’t change”. 
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Length Contraction 
  

Students (15,5%) held the view that length is the object’s inherent characteristic, thus it 
cannot change. They, also, related the object’s length to its mass. They said that as mass 
cannot differentiate, nor can its dimensions.  
“Since mass don’t change, length stays the same”  
Even though some students (71,1%) predicted correctly the length contraction, the reasons 
they projected were wrong.  The contraction was attributed to the high speed. 
“The spaceship is moving so fast that it seems smaller”  
Finally, some students (55,5%) while predicting correctly the length contraction,  they said 
that this contraction occurs in every direction of the object’s motion 
“…the object’s length has been shortened, as it moves at x axis; likewise, there would be a 
length contraction if the object moved at y axis”  
 
Shift in the inertial observer 
 

Students (44,4%) found it difficult to extract correct conclusions when the inertial observer, to 
whom a relativistic phenomenon takes place, changes. Many students replied correctly when 
the phenomenon they examined took place at a Frame of Reference that is motionless relative 
to the observer. Yet, when the phenomenon took place at a Frame of Reference that moved 
uniformly relative to the observer, wrong answers rose sharply  
 
Boundaries between classical Mechanics and Relativity 
 

A prevailed view among students (73,3%) was that Relativity deals with phenomena that 
occur at relativistic speeds or due to large amounts of mass. 
“Theory of relativity concerns phenomena that take place only at speeds near the speed of 
light”. 
 
Principle of Equivalence 
 

While applying correctly the Principle of Equivalence outside a gravitational field, students 
(64,4%) failed to do the same in areas inside a gravitational field. 
“If I accelerate a box towards the earth at amount equal to g, the people inside the box will 
feel doubled acceleration. We should accelerate the box by g at the opposite direction so that 
they can feel zero gravity”. 
 
Bending of light 
   

Classical Physics was deeply rooted into students’ mind (57,7%). There were cases where 
they changed a correct answer due to the aforementioned obstacle.  
“Light can’t follow a curved path. The right lines are those that I haven’t erased”(Figure 2).  
Moreover, bending of light was being attributed to the existence of an invisible mirror 
(51,1%). 
“There should be a mirror so as to make the light to curve”  
  
 
 
 
 
 
 
 
Figure 2. Student’s drawing concerning the bending of light 

Light Source → 

Planet 
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Modification of time by gravitational fields 
 

There was a confusion between General and Special Relativity regarding the rate of time flow 
inside a gravitational field (37,8%). 
“Since a satellite has a velocity at this height, there is a time dilation; is there any possibility 
to have a time modification due to both theories?”  
 
 
DISCUSSION 
 
Returning to our research question, we found that non-major physics students encounter 
various difficulties after regular instructional series. In general, most of our findings go along 
with the corresponding findings of the international literature. More specifically, students find 
it difficult to understand the invariance of physical laws confirming the results of Pietrocola & 
Zylbersztajn (1999). Moreover, students use the Galilean velocity addition formula so as to 
answer question regarding the invariance of the speed of light ignoring the invariance of the 
speed of light (Scherr et al 2001). As far as the consequences of Special Relativity are 
concerned, students face several difficulties understanding them. For instance, students stated 
that two events that are simultaneous for an observer must be simultaneous for any other 
inertial observer (Scherr et al 2001). Furthermore, students project the idea that time and 
space are absolute and unaffected by the inertial observer (Dimitriadi & Halkia, 2012; Posner 
et al 1982). An interesting aspect of our findings is that, the contraction was attributed to the 
high speed and even though some students predicted correctly the length contraction, they 
said that this contraction occurs in every direction of the object’s motion. What is more, 
students found it difficult to extract correct conclusions when the inertial observer, to whom a 
relativistic phenomenon takes place, changes. Our research has, also, unveiled difficulties 
concerning the General Relativity. Students fail to apply correctly the principle of equivalence 
inside a gravitational field and attributed the bending of light to the existence of an invisible 
mirror. Moreover, among students there was confusion between General and Special 
Relativity regarding the rate of time flow inside a gravitational field. Finally, one finding that 
should be underlined is the view that Relativity deals with phenomena that occur at relativistic 
speeds or due to large amounts of mass constraining students understanding regarding the 
boundaries between classical Mechanics and Relativity. The aforementioned findings of our 
research combined with the relevant international literature should be taken into account when 
a country’s educational committee intends to build a curriculum that includes topics from the 
Relativity. Acknowledging students’ difficulties in understanding the basic elements of the 
theory of relativity, leads to the construction of an effective educational approach. 
An interesting expand of our study would be the application of our tool to students coming 
from the upper secondary education, as well as from physics departments.  
To conclude, an educational approach should be created aiming to cope with the difficulties 
found. Our proposal, which will be our next step, is an educational approach using interactive 
dynamic simulations in order to visualize relativistic phenomena that exists outside our 
everyday experience.  
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Abstract: Students’ perceptions of the nature of physics knowledge affect their understanding 

of physics and the relevancy they attribute to concepts and principles to explain phenomena 

and solve problems to make sense of the natural world. Conceptual understanding of 

mechanics and the basic Newtonian concepts provides the foundation on which more 

advanced physics and engineering courses are built. It is crucial that students develop 

sufficient conceptual understanding of physics concepts to enable them to explain daily events 

from a scientific point of view and implement physics knowledge as a coherent web of ideas 

which applies to all walks of life. However, research reports deficiencies in students’ 

conceptual understanding and ability to apply physics knowledge in unfamiliar contexts, even 

after tertiary education is completed. In this study we investigate the extent to which 

directions and planes of motion as different contexts in problem settings influence students’ 

reasoning on idealized theoretical linear motion, and the implications of such influence. A 

multiple-choice questionnaire consisting of isomorphic problem pairs with the same 

underlying principle but set in different contexts, was designed and was completed by 481 

university students in a first-year physics course on Newtonian mechanics. The questionnaire 

was followed by interviews with four randomly selected students. The results show that the 

direction and/or plane of motion affects the knowledge framework students invoke when they 

solve problems on idealized theoretical linear motion. The difficulty posed by conditions such 

as ‘in the absence of air resistance and friction is illuminated. This study provides insight into 

what students perceive as different contexts and also shows, for the first time, that the 

challenges posed by context can be used to effectively evaluate conceptual understanding of 

the net force–mass–acceleration relationship as defined in Newton’s second law of motion.    

Keywords: conceptual understanding, context, direction of motion 

INTRODUCTION AND PROBLEM STATEMENT 

Despite having a substantial body of empirical research on students’ conceptions, mechanics 

remains a difficult domain to teach and to learn (Duit, Schecker, Höttecke & Niedderer, 

2014). Students’ ability to generalize principles to various situations and develop a working 

knowledge of basic concepts in mechanics is an important goal in physics education. 

Conceptual understanding of and the ability to apply the basic Newtonian concepts in 

introductory mechanics courses is essential for laying the foundation for advanced physics 

and engineering courses (Hedge & Meera, 2012). Even though physics is based on only a few 

concepts many students fail to see physics knowledge as a coherent structure (Singh, 2007). 

Students’ misconceptions about the nature of science—e.g. the belief that science comprises 

of incontrovertible absolute truths as opposed to scientific knowledge that is subject to change 

and involves the invention of explanations, contribute to their difficulty to apply concepts and 

principles to explain phenomena and solve problems to make sense of the natural world 

(Ledermann & Ledermann, 2014). When students understand physics concepts, they are able 

to solve problems and, when they see physics knowledge as a coherent web of ideas which 

applies to all walks of life, they can predict and explain various phenomena scientifically 

(Muis & Gierus, 2014; Ogilvie, 2009). Despite the recognized importance of the development 
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of conceptual understanding, research in physics education shows that only few students are 

able to explain daily events from a scientific point of view, even after completing standard 

mechanics courses successfully.  

THEORETICAL FRAMEWORK 

Students’ epistemologies (i.e. their perceptions of the nature of science and the nature of 

physics knowledge in particular) may affect their understanding of physics (Duit et al., 2014; 

Hammer & Elby, 2003). Students’ epistemologies with such impact include the perceptions of 

physics as a set of disconnected facts and formulae, of formulae as expressions of 

interconnected concepts, and of physics learning as absorption of information (Lising & Elby, 

2005). While physicists use concepts and principles to explain phenomena and solve 

problems to make sense of the natural world, many students try to find correct answers by 

plugging numerical values into equations that they often do not conceptually understand 

(Hutchison & Hammer, 2010). Daily life similarities in the observable features of associated 

phenomena usually determine intuitive mental categories. Physicists instead look for physics 

principles shared by phenomena that students may regard as dissimilar (Goldstein & 

Sakamoto, 2003).  

 Students’ epistemic beliefs and alternative conceptions  

Every student in introductory physics has a system of beliefs about physics based on their 

everyday-life observations (reviews of students’ epistemologies and related research are 

found in Duit et al., 2014; Ledermann & Ledermann, 2014). Disagreement between these 

beliefs (experiential knowledge) and the formal scientific explanations often results in 

students’ distorted comprehension of physics concepts. These distortions are among the 

principle causes of students' failure to achieve understanding in science (two extensive 

reviews of this and related research are found in Driver and Erickson, 1983; Gilbert and 

Watts, 1983). For example, many students correctly answer that in free fall objects of 

different mass will fall at the same rate, but when they have to apply the same concept (i.e. 

free fall) for the objects projected upward, they are unable to do so correctly. Even when 

students believe that they are learning about the real world when they study physics, failing to 

connect physics to their daily lives may result in their perception that the physics concepts 

have little relevance to their personal experience (Von Aufschnaiter & Rogge, 2015).  

While physics phenomena are idealized, or cleaned of distracting factors when introduced to 

high school or undergraduate students, real-world phenomena are influenced by multiple and 

complex parameters which often require advanced mathematics for prediction or 

measurement of those phenomena (Duit et al., 2014). The high degree of mathematization, 

failure to specify what counts as explanations and the lack of clarification of what theoretical 

perspectives comprise, contribute to students’ perception that physics is difficult. Contextual 

or ‘everyday’ physics problems are almost always simplified by cleaning it of elements such 

as friction or air resistance. Although disregarding such real-world factors in physics 

problems allows the use of physics equations involving uncomplicated mathematics, without 

sufficient clarification, the idealized scientific concept conflicts with students’ experiential 

knowledge.  Students consequently believe that the underlying principle does not occur 

naturally in the everyday world, nor is it relevant to their daily lives (Gunstone, 1987). 

Evaluating conceptual understanding 

The reported context dependence of students’ epistemic beliefs, highlights the fundamental 

role that context plays in the physics learning process (Muis & Gierus, 2014; Gunstone & 

White, 1981). Students’ lack of conceptual coherence of physics and their poor performance 

on contextual problems indicate conventional instruction’s failure to identify or address 

ineffective tuition practices (Osborne, 2013; Von Aufschnaiter & Rogge, 2015). Such 
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findings of research shows the need to develop tools that differentiate between students’ 

conceptual knowledge and conceptual understanding (Rebello & Rebello, 2011).  

A way to evaluate concept development is to compare various similar situations (isomorphic 

situations) including situations in which students will likely fall back on their naïve 

knowledge while applying the same concept (Minstrell, 1982). Using isomorphic situations in 

research brings out the nature of student beliefs, reveals the existence of student 

misconceptions — or alternative conceptions — and clarifies the reasoning behind those 

misconceptions (Singh, 2007).   

Direction and plane of motion 

Information on the influence of the direction or plane of motion as separate contexts in 

student applications of kinematics concepts is limited. An extensive literature search found no 

research that statistically compared inclined plane motion, vertical motion in opposite 

directions and horizontal motion. Research on students’ applications of alternative 

conceptions of force–acceleration–motion relationships, however, revealed that the direction 

and plane of motion play a role in student reasoning (Palmer, 1997, 2001; Lemmer, 2013). 

Palmer (2001) reported on students’ perception that gravity acts on objects moving vertically 

downwards but not on objects projected vertically upwards. This supported his earlier report 

(1997) that students associate the direction of motion with the direction of the force. The 

earlier results (1997) indicated that the effect of a force opposing motion was applied more 

correctly in horizontal than in vertical motion. Lemmer (2013) presented evidence that 

student reasoning differed for motion in horizontal versus vertical downward plane, but were 

consistent for motion up and – down an inclined plane.    

We conducted this study to investigate the effect of direction and plane of motion as 

contextual factors on idealized everyday- and formal physics problems. We show how some 

difficulties regarding conceptual understanding and factors influencing students’ abilities to 

apply physics concepts in different contexts, can be implemented to enhance tuition.  

Research questions  

The main question this research attempted to answer was: To what extent are first-year 

university physics students able to apply formal conceptual reasoning to theoretical 

idealized situations set in different contexts? The following secondary questions were asked 

to obtain realistic, reliable and valid answers:  

(1) What information regarding students’ epistemological beliefs and conceptual 

understanding is revealed by the changes in the direction and plane of motion in physics 

problems? 

(2) How can the acquired information be implemented in tuition to develop formal 

conceptual understanding? 

METHOD 

Research design 

The chosen methodology was an explanatory sequential mixed-method design. The 

quantitative phase was completed by 418 students enrolled for first-year physics at a 

university in South Africa. The sample represented students from the calculus-based and non-

calculus-based physics modules, as well as both genders. The number of students enrolled for 

the different modules is presented in Table 1. For the qualitative phase of the study four 

randomly selected students were interviewed individually in semi-structured interviews.   
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Data collection and processing 

The research instrument for the quantitative phase was a multiple-choice questionnaire 

consisting of theoretical, idealized isomorphic problem pairs testing for the same underlying 

concept. The concept of free fall in idealized contexts — i.e. in the absence of air resistance 

and friction all objects have equal acceleration regardless of their mass — was the underlying 

concept in the questions on which this paper reports. The motion of two objects of unequal 

mass released at the same time and travelling the same distances, had to be considered.  The 

motion had to be compared either in terms of the time the objects took to reach their 

destination or in terms of their final or initial velocities.  The questionnaire comprised 21 

problems. The four example problems discussed in this paper were all set in a formal 

conceptual context, but with different planes or directions of motion (Refer to Table 2).  

Student responses to questions 1 and 2 —settings with which the students were most familiar 

— were compared to their responses to questions in which the direction or the plane of 

motion was changed.  The questionnaire was mostly self-complied with question 1 adapted 

from the Force Concept Inventory (Hestenes, Wells & Swackhamer, 1992) and question 4 

adapted from the The Energy and Momentum Concepts Survey (Singh & Rosengrant, 2003). 

All the problems had an option which indicated the alternative conception that heavy objects 

fall faster.  The percentages of correct as well as alternative answers are also presented in 

Table 2. 

 

The inferential statistics for the questionnaire were obtained by using SPSS Statistics Version 

22, Release 22.0.0.  Cronbach's Alpha and the mean inter-item correlation were calculated to 

indicate the reliability of the research instrument.  Two-way frequency tables of paired 

problems were used to determine the McNemar test statistic — effect size — and phi-

coefficient for the paired problems.  The results of the test statistics of the paired problems are 

presented in Table 3.  

 

Open-ended questions used during the interviews allowed verbal analysis, enabled the 

interviewer to probe the students for self-explanations.  The interviews were videotaped, 

transcribed and analysed for patterns and trends in the data.  

RESULTS 

The Cronbach’s Alpha and the mean inter-item correlations for the questionnaire were 0.726 

and 0.158 respectively, both indicating satisfactory degrees of reliability. 

The number of students and the modules they were enrolled for, are presented in Table 1 

below. 

Table 1.  Number of students in different physics courses 

Physics module N BEng BSc 

FSKS 111 calculus based 226 66 160 

FSKS 113 non-calculus based 255 1 254 

Total number: 481 67 414 

 

The four illustrative problems reported on in this paper are presented in Table 2.  The table 

shows the percentage of students who chose the correct answer of the two objects travelling 

the same time or having the same final/initial speed, as well as the percentage of students who 

selected the option that illustrated the alternative conception. 
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Table 2.  Reported questions and percentages of answers 

Two metal balls (blocks) are the same size but one weighs twice 

as much as the other.   

% 

correct 

% alt 

conception 

The balls are dropped from the roof of a single story building at 

the same instant in time. 

Question 1:  F  t Which ball will reach the ground first? 

 

 

84 

 

 

15 

Question 2:  F  v  

Which ball will reach the ground with the largest velocity? 

 

69 

 

25 

Question 3:   F v  

The balls are projected upwards from the ground to reach the roof 

of a single story building at the same time.   

How do their initial velocities relate? 

 

35 

 

52 

Question 4: F ↙ v 

The blocks slide down two identical frictionless slides of similar 

height. Which one has the larger speed at the bottom of the slide? 

 

29 

 

48 

Key: F= formal conceptual question;  = vertical downward motion; ↑ = vertical upward motion; ↙= motion on 

inclined plane; t= time; v= velocity/speed. 

 

Table 3. Test statistics of paired-questions 

Context Paired items  phi-coefficient   

F  t  : F  v 1; 2 0.35 0.517 

F  t  : F  v 1; 3 0.65 0.118 

F  t  : F ↙ v 1; 4 0.72 0.192 

F  v : F  v 2; 3 0.48 0.132 

F  v  : F ↙ v 2; 4 0.58 0.192 

F  v : F ↙ v 3; 4 0.10 0.222 

 

DISCUSSION OF RESULTS 

Students’ epistemic beliefs and alternative conceptions  

The percentages of students’ selections of the different options are consistent with former 

research reporting the persistence of alternative (experiential) conceptions (Duit et al., 2014, 

Ledermann & Ledermann, 2014) in particular that heavy objects fall faster. For the three 

questions compared to question 1, a decline in the percentage of the correct answer concurred 

with an increase in the percentage of the alternative conception. This inverse relation can 

realistically be attributed to the difficulty students have in accepting the Newtonian principle 

for objects in free fall, namely acceleration equating net force/mass ratio. This attribution is 

founded on information obtained during the interviews that most students were uncertain 

whether the magnitude of the force of gravity or the gravitational acceleration was equal for 
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all falling objects. All the interviewed students expressed the opinion at some time, that the 

force of gravity exerted by the earth was equal for all objects.   

Simplification 

Physics thinking originates from reconstructing certain aspects under theoretical perspective 

(Duit et al., 2014). However, the large effect sizes present evidence that students found it 

significantly difficult to apply formal reasoning to problems without friction and the absence 

of air resistance, set in upward and inclined motion. Most students did not see disregarding 

friction or air resistance as simplification of the problems. The remark “It is confusing if 

friction and air resistance have to be ignored” summed up the general belief.  

Effect of direction and plane of motion  

The large effect sizes (w = 0.72 for questions 1 and 4, and w = 0.58for questions 2 and 4) 

confirm that students used different knowledge frameworks to answer questions about vertical 

downward motion and motion on an inclined plane regardless of the physics variable that was 

considered. These effect sizes illuminate that the students’ epistemological beliefs affect their 

conceptual understanding. From the effect sizes it is clear that motion on inclined planes 

revealed lack of conceptual understanding more than did motion in upward direction.   

 

The large effect size for questions 1 and 3 (w = 0.65) suggested that students did not apply the 

same principle for an object moving in opposite vertical directions This suggestion was 

confirmed by the reasons students gave for selecting their options during the interviews, e.g. 

“Up and downward motion are not the same. They are not subjected to the same principles”.  

The very small effect size of questions 3 and 4 (w = 0.10) confirmed that students’ responses 

to questions on vertical upward and inclined plane motion did not differ much, although the 

moderate phi coefficient ( = 0.222) indicates that the students did not relate the said 

questions in the way they did questions 1 and 2 ( = 0.517). These effect sizes provide 

evidence for the students’ intuitive (epistemological) beliefs that physics knowledge is not 

coherent but consists of loosely connected conceptions.   

 

Comparison between questions where not only the direction but also the physics variable 

differed, questions 1 and 3, demonstrated that the combination of changing both the direction 

of motion and the physics variable, resulted in a larger effect size than did changing only 

direction of motion with the same physics variable to be considered (question 2 and 3,  w = 

0.48). The effect size w = 0.35 for questions 1 and 2, illustrated the moderate effect that 

changing only the physics variable had on students’ responses, whereas the large phi 

coefficient for these two questions proves that similar knowledge frameworks were applied 

for questions concerning motion in the same direction.   

CONCLUSION 

We conclude by answering the research questions: 

(1) What information regarding students’ epistemological beliefs and conceptual 

understanding is revealed by the changes in the direction and plane of motion in physics 

problems? 

This study confirms research reporting that students’ epistemological beliefs regarding 

physics concept and phenomena are firmly rooted in their experiential knowledge and that it 

severely contradicts physics concepts (Duit et al., 2014). The negative influence of students’ 

epistemological beliefs on their ability to transfer conceptual knowledge to unfamiliar 

situations is shown by the changes in the direction of plane of motion. Our results identify 

students’ lack of understanding of how the complexity of natural phenomena is reduced by 

idealized theoretical perspectives, as a major factor contributing to their difficulty to apply 
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concepts and principles to explain phenomena and solve problems to make sense of the 

natural world (Duit et al., 2014; Ledermann & Ledermann, 2014). 

 

(2) How can the acquired information be implemented in tuition to develop formal 

conceptual understanding? 

The results of our study offer a technique that not only reveals students’ epistemological 

beliefs but also a surprisingly simple but effective way to determine whether students 

understand the concept of free fall, during tuition. By only reversing the direction of motion 

in questions commonly asked before instruction, existing alternative conceptions can be 

identified and addressed. Although students’ difficulties to develop conceptual understanding 

and apply their formal conceptual knowledge to unfamiliar situations had been recognized 

ever since initial research on physics education was published, no former studies illustrated 

how these difficulties can be applied to aid instruction.   

 

Finally, our study introduces a new approach: to reconsider the possibilities offered by 

documented difficulties in or limitations of instruction to develop conceptual understanding 

by turning them into guidelines for developing effective and relevant tuition tools. 
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Abstract: Conceptual change through conceptual conflicts in science education has been well 

documented. There is, however, little research done on conceptual change through conceptual 

conflict in terms of students’ facial expressions. The current proposal attempted to apply the 

decision tree methodology to examine the relationship between facial expressions and 

conceptual change when students were presented with different representations in a 

conceptual conflict scenario situation. We further propose a modified decision tree model, 

namely Tree-Forest Model (TF Model), to mine the overall information of the dataset of 

students’ facial micro-expression states (FMES). Based on the Tree-Forest Model, the current 

study was able to present the overall pattern of the dataset collected from 86 high school 

students. The results revealed that a student would be predicted to undergo conceptual change 

if his/her dominant expression in the first play of the video was “Surprised”, and the 

“Negative” expressions for the second or third play of the same video during the experiment. 

In contrast, when students’ dominant expression in the first play of the video was “Not 

Surprised”, “Surprised” in the first and second play of the video, or in the first and third play 

of the video, then we could predict that the students would not undergo conceptual change. In 

summary, using the Tree-Forest Model along with students’ micro-expression states can 

predict their conceptual change status in facing conceptual conflict scientific phenomenon. 

Keywords: Facial micro-expression, decision tree, conceptual conflict, surprise, Tree-Forest 

Model 

INTRODUCTION 

The current study stemmed from a larger research project regarding the relations between 

conceptual change through conceptual conflicts and facial micro-expression states (FMES) in 

a scientific scenario. From our previous studies (Chiu, Chou, Wu, & Liaw, 2014; Liaw, Chiu, 

& Chou, 2014) , we found that FMES changes were found when the majority of the students 

made incorrect predictions of the conceptual conflict phenomenon. Also, there was a low 

likelihood of conceptual change if there was a lack of FMES change. However, the likelihood 

of conceptual change doubled if the FMES change was observed. Furthermore, it was 

revealed that there existed a significant relationship between FMES changes and students’ 

macro-submicroscopic understandings. That is, those with FMES changes were more likely to 

provide accurate macroscopic explanations of the scientific phenomenon than those without 

FMES changes. Based upon these findings, we have gone one step further in the exploration 

of the possibility of utilizing the decision tree method in predicting students’ performance 

during learning processes. 

LITERATURE REVIEW 

It has been known that there are four preconditions for conceptual change, one of which is 

learner being dissatisfied with his/her existing conception (Posner, Strike, Hewson, & Gertzog, 

1982). Thus, conceptual conflicts have been proposed as a viable way to initiate the process of 

conceptual change. However, research has shown that there is no guarantee that students will 

experience the conceptual conflicts and achieve new conceptual understanding (e.g., Scott et 

al., 1992). Several researchers identified the characteristics of responses when facing 
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conceptual conflict scenario. For instance, Chinn and Brewer (1993, 1998) have eight 

different responses to anomalous data, namely, ignoring the data, rejecting the data, being 

uncertain about the validity of the data, excluding the data from the domain, holding the data 

in abeyance, reinterpreting the data, accepting the data and making peripheral changes to their 

erroneous intuitive understanding and its basis, and accepting the data and changing theory. 

Meanwhile, Merenluoto and Lehtinen (2004) argued that there are three different tracks that 

learners might take. These tracks are no-relevant perception track, illusion of understanding 

track, and experience of conflict track. From these studies, we argued that learners construct 

their knowledge through integrating new pieces of knowledge into existing knowledge 

framework via various channels and respond based upon one’s background knowledge of 

specific domain knowledge. 

Simultaneously, facial expressions are one of the most direct ways for people to express their 

thoughts. The study of Pekrun, Goetz, Titz, and Perry (2002) has shown that emotions are 

closely related to learning. Consequently, the current research project had combined learners’ 

FMES and conceptual change in order to better understand the learning of science. 

Therefore, the current study attempts to answer the following research questions: 

1. Can the decision tree model explain the relationship between facial micro-expression 

state changes and conceptual change when students are faced with different 

representations? 

2. Pursuant to the first research question, if relationships between facial expression 

change and conceptual change can be explained through the decision tree model, what 

is its criterion? 

METHODOLOGY 

The data was collected as part a larger research project with 86 high school student 

participants. The data collection process began with a pretest, after which students were given 

a teaching module designed based on the Predict-Observe-Explain-Visualize-Compare 

(details can be seen in Chiu et al., 2014; POEVC, modified from White & Gunstone, 1992) 

process. The topic of the scientific scenario was the relation among temperature, air pressure, 

and the boiling point of water. The module was consisted of a conceptual conflict inducing 

scientific demonstration video (i.e., placing an ice bag onto an inverted flask filled with 

just-boiled water, causing the water inside the flask to boil again, see Figure 1) that required 

the students to predict what would happen once the ice bag was placed and offer their 

explanations to their predictions before the result was shown. After the prediction and 

explanations were made, textual and animated instructions at the microscopic level were 

shown. A posttest then followed. Students’ facial reaction and their on-screen actions 

throughout the process were also recorded. 

 

Figure 1. The design of the boiling water experiment. 
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DATA ANALYSIS 

Students’ facial videos were analyzed by FaceReaderTM 6.0 (See Figure 2) based on Ekman’s 

(1970, 1993, 1999) six facial expressions and the neutral state. Each video frame was 

assigned a dominant FMES. Expressions were then grouped into three categories, positive, 

negative, and surprised for the sake of our own research interest. The current study was 

interested in the students’ FMES when they were presented with conceptual conflict inducing 

scientific demonstration video. A total of five segments were analyzed: Demonstration video 

segment 1, segment 2 (replay), segment 3 (slow motion replay), textual instruction and 

animated instruction. The dominant FMES of all the frames for the duration of these segments 

were then tallied. 

 

Figure 2. Example of student FMES change and FaceReader data. 
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Students were also categorized into conceptual change (CC) and non-conceptual change 

(NCC) groups based on their pre- and posttests. Then, data were analyzed through the 

application of the decision tree methodology. Decision tree is a data-mining technique often 

used for prediction (See Figure 3). A decision tree is consisted of nodes and leaves with each 

node a logical divergent point where a particular characteristic of the data would be tested and 

the data split accordingly. The leaves represent the expected values at the point. 

 

Figure 3. Basic structure of a decision tree. 

All decision trees are built through recursion. Decision trees are also not built upon various 

assumptions, such as normal distribution; collinearity or correlation between explanatory 

variables can also be ignored. 

The current study has adopted the Classification and Regression Trees (CART) (Breiman, 

Friedman, Stone, & Olshen, 1984) algorithm and built its decision trees using R (v. 3.0.2). 

Through the decision tree method, the current proposal would attempt to predict if students 

would undergo conceptual change based on their FMES data. 

RESULTS 

The current study collected a total of 86 students’ facial recognition data, out of which 30 

underwent conceptual change and 56 did not undergo conceptual change. Table 1 shows the 

distribution of students’ dominant facial expression frequency in the five experimental 

segments. Accordingly, other than the Textual Instruction segment, the proportions of students 

with negative expressions were higher in all the segments. The Textual Instruction segment 

was evenly split between negative expressions and surprised. In addition, students exhibiting 

positive expressions only appeared in Video Segment 1 and Video Segment 2. In Video 

Segment 3, Textual Instruction, and Animated Instruction, on the other hand, only negative 

expression and surprised were found as dominant expressions. 

Figure 4 shows dominant expression frequencies of students with and without conceptual 

change for the five segments examined. With regard to dominant expression distributions, 

negative expression was higher than surprised in all segments, except Textual Instruction. 

Moreover, there is no significant difference (p>.05) between the dominant expressions of 

students with and without conceptual change. On the other hand, the Textual Instruction 

segment was split between negative expression and surprised; for dominant expression 

distribution, there is also no significant difference (p>.05) between those with and without 

conceptual change. Lastly, students with positive expressions during Video Segment 1 or 

Video Segment 2 were found to have no conceptual change. 

In summary, it was found that during learning, the proportion of students with negative 

expression as their dominant expression was higher. This was followed by surprised. Positive 

expression was the least frequent dominant expression, and it was only found in Video 
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Segment 1 or Video Segment 2. Students exhibiting positive expressions were also found to 

be those with no conceptual change. 

Table 1. Frequency Distribution of Dominant Expressions for the five experimental 

video segments. 

Segment 

Dominant Exp. 

Video 

Segment 1 

Video 

Segment 2 

Video 

Segment 3 

Textual 

Instruction 

Animated 

Instruction 

Student % Student % Student % Student % Student % 

Neg. Expression 49 57 52 60 55 64 44 51 56 65 

Pos. Expression 6 7 1 1 0 0 0 0 0 0 

Surprised 31 36 33 38 31 36 42 49 30 35 

Note：Pos. Expression: Happy, Neg. Expression: Sad, Angry, Scared, Disgusted. 

 

 

Figure 4. Dominant expressions frequency distribution for conceptually changed and no 

conceptually changed students during the five experimental segments. 

Then, we took one step further and used R (version 3.0.2) to construct the Classification and 

Regression Trees (CART) (Breiman et al., 1984), with the dominant expressions in the chosen 

five segments set as the explanatory variable, to make predictions on students’ conceptual 

changes. The decision tree model is shown in Figure 5. 

Based on Figure 5, it became apparent that when students’ dominant expression was 

“Surprised” during the first video segment and “Negative” expressions during the third video 

segment, it could be predicted that students would fall under the conceptually change group 

(Among the seven students in the group, five underwent conceptual change, two had no 

conceptual change). Furthermore, when students’ dominant expressions were “Surprised” in 

both first and third video segments, then we could predict these students would end up in the 

no conceptual change category (Among the 17 students in the group, seven underwent 

conceptual change, ten had no conceptual change). Lastly, if the dominant expression in the 

first video segment was “Not Surprised”, then it could be predicted that the students would 

not undergo conceptual change (Among the 44 students in the group, 14 underwent 

conceptual change, 30 had no conceptual change). The average accurate prediction rate of this 

decision tree model is 66%. 
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Figure 5. Decision tree model. 

For research question 2, we have induced the rules from the 10,000 traditional decision tree 

models, and then developed a general model, Tree-Forest Model, to predict the status of 

students’ conceptual change (See Table 2). This Tree-Forest Model would modify the decision 

tree model and accordingly, the decision tree model in Figure 5 can be seen within this model. 

That is, the decision tree model was based on Rules 1, 2, and 3. Moreover, we can also see 

that Figure 5 did not include other information. For example, if students’ dominant expression 

in the first video segment is Surprised, and negative expressions for the second or third video 

segments, then it could be predicted that the student would undergo conceptual change (see 

Rule 3 & Rule 4 in Table 2). In contrast, if the student’s dominant expression in the first and 

second video segments, or in the first and third video segments, were Surprised, then it could 

be predicted that the students would not undergo conceptual change (see Rule 2 & Rule 5 in 

Table 2). In other words, this model could provide the predictive results of a single decision 

tree as well as the overall trend of the dataset at hand. 

Table 2 Tree-Forest Model (Partial) 

No. Rules Repeated % Predicted Result 

Rule 1 Video Segment 1 = Neg. Expression, Pos. Expression 96 NCC 

Rule 2 Video Segment 1 = Surprised, Video Segment 3 = Surprised 82 NCC 

Rule 3 Video Segment 1 = Surprised, Video Segment 3 = Neg. Expression 82 CC 

Rule 4 Video Segment 1 = Surprised, Video Segment 2 = Neg. Expression 14 CC 

Rule 5 Video Segment 1 = Surprised, Video Segment 2 = Surprised 14 NCC 

 

DISCUSSIONS AND CONCLUSIONS 

As stated above, conceptual conflict research has gained great attention from science 

education researchers for the past two decades. This study puts one more step further to show 

how students’ facial microexpression states provided profound information about their 

responses to counter intuitive scientific phenomenon via a systematic approach that has 

predictive power of students’ performance in science learning. We recognized the importance 

of facial expression of “surprise” as an indicator to differentiate students as either 

conceptually changed or no conceptual change in conceptual conflict scenarios. Such 

scenarios would act as a trigger for students’ surprised facial expression. It is our hypothesis 

that it is because these students possess sufficient prior knowledge about the relations among 

the three factors (temperature, air pressure, and the boiling point), that they were capable of 

recognizing the inconsistencies between their knowledge and the observed phenomenon. 

However, when the phenomenon was shown to the students repeatedly, then the emergence of 

negative facial expressions would be the indicator for conceptual change instead. As such, 

although exhibiting the surprise facial expression would not necessarily always signify 
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conceptual change, it can still provide relevant information to teachers so that they would be 

able to distinguish whether or not students were engaged in the activities and subsequently 

could achieve conceptual change. The findings of the current study are in line with other 

studies where facial expression or affective states were found to be related to learning (Chen 

et al., 2013; Craig, D'Mello, Witherspoon, & Graesser, 2008; Shen, Wang, & Shen, 2009). 

While humans’ complex facial expressions might correspond to their cognition, still very little 

is known about such correspondences. Consequently, much work remains ahead for educators 

to map out the intricate relations between facial expressions and cognition. 
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MULTIMODAL SCIENCE LEARNING: A HYBRID MODEL OF 

CONCEPTUAL CHANGE. 
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Abstract: Multimodal research proposes that knowledge and meaning are transmitted through 

a range of responses types including verbal and written language, drawings and gesture 

(Kress et al, 2001). This paper explores the application of this multimodal approach to 

conceptual change in science. The study focused on a qualitative analysis of the knowledge 

and ideas demonstrated by a small group of 11 year old children during practical science 

activities which focused on revealing and challenging ideas about floating and sinking. 

Results demonstrated that the children’s ideas could be developed using specifically designed 

conceptual challenge tasks and that they frequently employed a range of communication 

domains including gesture in order to discuss their ideas. The gestures that the children 

produced were fundamental to understanding the science concepts and ideas that the children 

already held. Interestingly the gestures also were able to reveal the way that the children’s 

ideas changed and developed throughout the course of the activities. The resulting changes in 

ideas were mapped using a timeline approach originally developed by Givry and Tiberghein 

(2012). The mapped timeline was subsequently related to popular models of conceptual 

change (Vosniadou & Brewer, 1987; diSessa, 1988, Karmiloff-Smith, 1992; Luffiego et al, 

1994) in order to explore their utility for explaining the data. Whilst all of the models 

appeared to explain some aspects of the changes, no model could successfully capture all 

elements; this led to the proposal of a hybrid model of conceptual change. The hybrid model 

builds on the work of Taber (2008) in order to demonstrate how changes can progress 

through different levels of representation prior as well as differences in cognitive structures. 

 

Keywords: Multimodality, conceptual change, gestures 

 

INTRODUCTION 

Research interest in children’s ideas in science has a long established history in science 

education research (as shown in Vosniadou, 2008). This research has historically adopted a 

constructivist approach in order to understand both the existing ideas that children have about 

science concepts and the way that these are changed following formal tuition (Driver et al, 

1994). This vast body of research has resulted in the development of a number of models of 
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conceptual change. A review of the different models revealed at least 12 that were popular in 

contemporary literature with the following four Vosniadou & Brewer (1987), diSessa (1988), 

Karmiloff-Smith (1992); Luffiego et al. (1994) being cited regularly in order to explain the 

cognitive processes that underpin learning. As shown in table 1 each of these models differs 

in its depth and scope and the science subject that is explored, for example Vosniadou and 

Brewer’s work (1987) explores astronomy concepts whilst diSessa’s work (1988) focuses on 

the development of ideas in physics. Notably the existing research also explores the changes 

in ideas using different participants groups. 

Table 1: Summary of the four models of conceptual change that were explored in this study. 

Model of 
Conceptual 
Change 

What is 
conceptual 
change? 

What 
changes? 

How does it 
occur? 

Evidence for 
Model 

What is 
prior 
knowledge? 

Vosniadou’s 
Weak / Radical 
Restructuring 
Approach 
(1987 onwards) 

A change in 
theory. 

A change in 
the mental 
models that 
are applied 
when 
answering 
questions 
(proposed to 
reflect 
changes in 
the 
underlying 
theory). 

Two 
processes of 
restructuring: 
Weak – 
addition of 
new relations 
within 
conceptual 
structures, 
organisation 
of knowledge 
into abstract 
relational 
schemata; 
Radical – a 
shift in the 
theory held. 

Studies 
exploring 
children’s 
acquisition of 
astronomy 
concepts, 
one study in 
physics and 
recent 
application to 
mathematics 
education. 

Obstacle 
because it 
can give rise 
to synthetic 
models or 
misconceptio
ns as well as 
vehicle for 
change. 

diSessa’s 
Knowledge in 
Pieces 
Approach 
(1988 onwards) 
 

The process 
that 
organises 
what is 
known into 
coherent 
theory 
structures. 

A change in 
the 
structuring 
and 
coordination 
of the 
information 
held. 

Changes in 
the relations 
between p-
prims, the 
development 
of 
overarching 
structures 
which 
coordinate 
the p-prims 
(co-
ordination 
classes and 
causal nets). 
There is a 
move from 
fragmentatio
n to 
coherency. 

College and 
undergraduat
e physics 
students. 
Recent 
application 
by Taber 
(2008) to 
chemistry. 

Foundation 
of 
disorganised 
knowledge. 

Karmiloff-Smith’ 
Representationa
l Re-description 
Model 
(1992) 

The re-
description of 
knowledge 
from implicit 
(tacit) and 
context 
bound to 
explicit and 

A change in 
the 
availability of 
knowledge 
across 
contexts. 

Initial 
knowledge is 
tacit and 
unavailable 
for verbal 
report both 
within the 
individual 

Studies with 
very young 
children 
investigating 
object 
permanence 
and basic 

Tacit 
procedural 
knowledge 
that forms 
the 
foundation of 
later 
learning. 
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context free, 
a change in 
coding 
format. 

and to 
others. 
The context 
bound 
procedural 
knowledge is 
represented 
through a 
four stage 
approach so 
that it is 
transformed 
to explicit 
knowledge 
that at the 
fourth level 
becomes 
available for 
verbal report. 

level physics 
concepts. 
Recent 
application 
by Phillips 
(2007) to the 
balance 
scale 
problem. 

Luffiego’s 
Systemic Model 
of Conceptual 
Change 
(1994) 
 

The self-
facilitated 
process of 
evolution in 
cognitive 
structures. 

A change in 
the structure 
and 
relationships 
of concepts 
contained in 
schema. 

Two 
processes of 
restructuring: 
Weak – the 
addition of 
new 
information, 
changes in 
the 
relationships 
between 
concepts and 
modification 
of schema; 
Radical – 
change in 
attractor 
concepts, 
formation of 
attractor 
subschema. 

Sharp & 
Kuerbis’ 
(2006) study 
of children’s 
development 
of astronomy 
concepts. 
Bloom’s 
(2001) study 
of the 
development 
of the 
concept of 
density. 

Foundation 
of conceptual 
change by 
acting as an 
attractor for 
incoming 
information. 

 

This limitation has often restricted the possibility for comparisons to be undertaken, which 

has previously been acknowledged as one of the weaknesses of this research field (diSessa, 

2006). This work aimed to specifically address this issue by exploring the application of the 

four models of conceptual change in order to explain the results draw from one group of 

participants.  

Recently explorations of multimodality and the way that children can use a range of 

responses including gestures to communicate their science ideas has led to the conclusion that 

research and indeed teachers need to attend more to other levels of communication as they 

contain important aspects of knowledge that may not be present in verbal response types 

(Kress et al, 2001; Goldin-Meadows, 2000; Crowder & Newman, 1993; Goldin-Meadows et 

al, 1993). This work has highlighted that children sometimes communicate ideas in gesture 

that are not available in any other response type (e.g. verbally). For example, Crowder and 

Newman’s study (1993) demonstrated that children gestures were used in three ways, on 

some occasions gestures were redundant and contained no information or explanations 
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relevant to the topic or the verbal response that children provided. In some cases children’s 

gestures contained conceptual information that supported the content of verbal responses. 

Finally, sometimes children used gestures that contained conceptual ideas that did not appear 

in speech and therefore offered a richer description of the ideas that children held. Similar 

findings were presented by Kress et al. (2001). In Kress’ work gestures were proposed to be 

an important aspect of communication, whilst Goldin-Meadows et al. (1993) proposed that 

gestures could be used to identify when knowledge was in transition. Taken as a whole the 

studies support the importance of exploring the underlying meaning contained in children’s 

gestures. The project detailed here aimed to address this new and evolving field by exploring 

children’s ideas about floating and sinking using a multimodal approach, specifically the 

work explored children verbal, written, drawing and gesture based responses elicited during 

practical science activities.  

Floating and sinking was investigated as this area of science represented some concepts that 

could be directly observed and the activities were concrete in nature in order to provide a 

potential platform where children may use gestures in support of their explanations. 

Furthermore this area of science had been subject to previous studies and allowed for 

comparisons to be made to previous frameworks of understanding identified in the literature 

(Inhelder & Piaget, 1958; Howe et al. 1990; Havu-Nuutien, 2005). 

 

METHOD 

This study focused on a 45 minutes block of activities undertaken with five 11 year old 

primary school children. The children were all being educated in a mainstream English 

primary school and worked together in a group to undertake a number of practical science 

activities exploring ideas about floating and sinking. The activities included discussions 

around what the children thought floating and sinking was, material sorting and 

experimentation in order to test ideas about what kind of materials would float. This was 

followed by a demonstration of upthrust force using an inflated balloon which was pushed 

down into the water and a discussion of the Archimedes story. The children’s ideas were 

continually probed during the activities using open-ended questions and a dialogic teaching 

approach. 

The activities were video recorded, transcribed in full in order to capture all levels of 

communication including gestures. The transcript was analysed thematically in order to 

reveal the different concepts that the children used throughout the course of the activities, the 

results were then mapped to a timeline using guidance from Givry and Tiberghein (2012). 

Givry and Tiberghein developed a timeline approach to mapping children’s ideas within a 

single teaching sequence, this approach aimed to capture the links made between concepts in 

order to propose the underlying networks of ideas that children were developing. In this 

current study the timeline approach was further developed in order to link examples of 

gestures with the children’s verbal responses thus providing a more holistic understanding of 

the concepts that were being communicated. Furthermore, this approach permitted the links 

between different concepts to be drawn out and comparisons to the models of conceptual 

change to be made. Points of change in ideas were annotated on the timeline and used in 

order to inform the subsequent analysis and discussion of findings. Specifically the analysis 

tracked the children’s use of key conceptual ideas which were expressed both verbally 

through gesture transmission. When the children used linking words such as ‘and’ the terms 

were connected in order to build the networks shown in figure 1. When the children changed 

their explanation or moved on this was annotated in the timeline. 

Strand 1 Learning science: Conceptual understanding

195



The study adopted appropriate ethical procedures in line with the university’s policies. All 

children’s names were changed to pseudonyms.   

 

RESULTS 

Figure 1: the timeline analysis developed from the activities that the children completed 

while exploring their ideas about floating and sinking.  

 

The results revealed that the children initially used a single concept in order to explain what 

they thought floating and sinking was (1 in Figure 1). This concept was associated with a 

related representational gesture that provided additional information not contained in their 

speech. Notably, Daniel’s gesture highlighted how he thought the object explored behaved in 

the water. This was interpreted as the object remaining stationary at the top of the water. It is 

proposed that the gesture and speech combined support the notion that the initial concepts of 

floating and sinking was related to the position of the object in the water. This single concept 

idea was extended to included additional information (2) and again was accompanied by a 

representational gesture which this time shows how Daniel thought a sinking object would 

behave. In this gesture Daniel represented a movement through the air in a downwards 

motion. In terms of change, this point in the activities could illustrate evidence of a weak 

form of conceptual change as the core concept (e.g. the location of the object in the water) 

remains central to the discussion, however, in addition the children also discussed the 

importance of the presence of air in the object.  

The evolution of the children’s ideas continued to adopt what could be perceived as a weak 

form of conceptual change supported by gestures that extended the meaning contained in 

speech (3, 4, and 5) but also revealing increasing levels of complexity. Notably as the 

discussions developed the children added properties to the object that they thought would 

help to decide whether or not it would float or sink, thus demonstrating that they perceived a 

number of object properties to be associated with these concepts. As the activities moved on 

the children began to associate the floating and sinking activity with a method for testing the 

weight of the object (6). This point marked a departure from the concepts previously used and 
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may provide evidence of knowledge fragmentation, e.g. that different ideas were being drawn 

into their discussion of the concepts. The children then returned to a discussion of object 

properties but this time with new ideas not previously represented (7). Specifically the 

children discussed the need for there to be balance in order for the object to float. The 

children had not previously used this idea and therefore it is proposed that this marks a point 

of departure from ideas discussed earlier. 

New concepts were introduced again (8, 9). Specifically the children introduced the notions 

of pressure (during which they began to sing “Under Pressure” a popular song in the UK) and 

the notion of water displacement. Whilst water displacement was discussed during the 

conceptual change activities the discussion of pressure was drawn from the children’s own 

ideas in order to explain what they thought the upthrust force was. It is proposed that this 

presented a new concept that the children had not previously associated with the concepts of 

floating and sinking.  

The timeline then appears to mark a point of more radical restructuring (10, 11).  Here, the 

children ceased discussing just the object properties and began to discuss how ‘water holds 

the object up’. This discussion revealed a new concept introduced during the conceptual 

challenge task but not discussed by the children before. Interestingly, there is also evidence of 

a change in the representational gesture that Daniel used when discussing floating. By 

comparing gestures (1-10), it is possible to see that he had changed the orientation of his hand 

from palm facing downward to palm facing upwards. This subtle but important change in 

gesture may be a non-verbal cue to the changes that have occurred in his ideas. Finally, the 

children now only discussed floating and sinking by applying a forces framework (11). The 

forces framework is distinctly different to the children’s earlier discussions and it contained 

ideas that had not been previously applied to the floating and sinking activities. It is proposed 

that this finding demonstrates a more scientific explanation of what floating and sinking are 

and thus may support the notion that the children’s ideas were more radically restructured 

with a new central concept now guiding their ideas. 

 

DISCUSSION AND CONCLUSIONS 

The result drawn from this study appeared to suggest a hybrid model of conceptual change, 

which seems appropriate particularly if the initial mapping of ideas takes the basis of 

diSessa’s p-prims (1988). These new concepts are mapped in isolation to specific stimuli. 

Such stimuli may not always be available for verbal report and may therefore only be 

identifiable when analysing gesture alongside the verbal reports given. Thus Karmiloff-

Smith’s (1992) views are essential. Once further experience is gained, these p-prims begin to 

evolve using both weak and radical processes (Vosniadou & Brewer, 1987). Sometimes, for 

example, new information is merely added giving rise to weak changes. At other times, 

however, the new information forms the core of the concept and the existing p-prim becomes 

attached as a major component giving rise to more radical changes. As it is not always 

possible to predict the pattern of development in children’s ideas Luffiego et al’s model of 

conceptual change involving chaotic systems (1994) may explain this finding. 

Whilst the data discussed in this paper contains an analysis based on work with just five 

children it may be vulnerable to the criticism that this work would not be generalisable to 

other children or other concept areas. However, this work was embedded within a much 

larger project and the results are broadly similar across other groups of children within this 

age range, furthermore the broader study also explored children’s ideas about electricity. The 
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timeline analysis approach to mapping the evolution of children’s ideas during practical 

activities about electricity demonstrated some further support for the approach’s application. 

Taken as a whole the results support the notion that it is important to explore approaches to 

mapping ideas in this way in order to capture change and to capture elements of change that 

may be otherwise missed. However, this level of analysis was extremely time consuming and 

requires further replication in order to more strongly support its application. 

In conclusion, this work reveals that it is important to explore all aspects of children’s 

communication (including gesture) if we are to understand the ideas that they already have 

and the way that these change following tuition, furthermore it would appear that one single 

model of conceptual change does not account for the different layers of change that can be 

observed when ideas are explored more holistically and subsequent work should aim to 

explore the utility of the notion of hybridity as an explanation for conceptual change. 
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Abstract : Sustainable development requires critical thinking and scientific knowledge. Inquiry 
learning, promoted across Europe, could promote skills to help future citizens understand and 
take responsible informed decisions about long-term effects. Inquiry can be conceptualized as a 
process where student’s naïve explanatory models of biological phenomena are progressively 
refined, and where student’s understanding - initially vague ideas - are refined as students 
experiment or read about experiments into additional and more precise concepts and causal links 
guided by questions. Understanding the paths that this progression follows is crucial in designing 
learning environments, in assisting and guiding students and in assessment. It is often assumed 
that concepts are acquired linearly from “simple” to “complex”. Learning progression has also 
been proposed to be “roaming a landscape” rather than “climbing a ladder” (Zabel & 
Gropengiesser, 2011). However, determining diverse and unpredictable student conceptual paths 
is quite difficult and pre- / post-tests do not document the multiple steps students might follow. 
Furthermore, assessing students’ mental models is not directly possible, and generally relies on 
analysis of student productions. Here we propose a method for monitoring student progression 
that is based on extracting concepts and causal links expressed in successive students’ written 
productions and mapping them onto concept maps of institutionalized models (the models 
instruction is geared towards) for each version. In order to test the instrument, we will analyze 
one year of students’ productions in a shared writing space during inquiry. We argue that this 
method could inform inquiry guidance, help designing learning environments, and identify 
conceptual difficulties in student progression. Time sequence in which concepts / links appear 
(early or late) allows discussion of causes for late-appearing model items as i) difficulties in 
learning, ii) weaknesses of designs or iii) epistemic specificities of the knowledge structure in 
resources used by students. 

Keywords: conceptual paths, inquiry, student progression measure, concept mapping, visualizing 
conceptual change. 

 

INTRODUCTION 
A major aim of science teaching is developing skills to help future citizens understand and take 
responsible informed decisions about long-term effects to manage sustainable development, the 
focus of the ESERA 2015 conference. Inquiry learning has been promoted to develop both 
critical thinking and scientific knowledge. This contribution addresses one issue in guided 
inquiry learning: how to follow and assess student’s progress during the process of learning. 
Designing learning environments for inquiry with guidance during instruction requires insight 
into students’ conceptual progression. Monitoring student progression is quite difficult and pre- / 
post-tests cannot document the multiple conceptual steps students follow during their learning 
processes. 
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The goal of this research is to explore conceptual progression of students during the learning 
process, to analyze the paths - if any - it might follow, and discuss the sequence of conceptual 
progression in order to gain insight into learning difficulties, design limitations, or 
epistemological constraints. 
It is often assumed that concepts are acquired linearly, from “simple” to “complex”. Some 
research suggests that learning progression might well be “roaming a landscape” rather than 
“climbing a ladder” (Zabel & Gropengiesser, 2011). Determining such diverse and unpredictable 
conceptual paths is quite difficult, especially in long-term interventions. Documenting the 
multiple conceptual steps students might follow during their learning processes requires multiple 
points of data along the duration of learning progression that are not commonly available. 
The central questions in current biology research are explanations of underlying mechanisms 
(Morange, 2003). Scientific explanations are by essence models of phenomena (Tiberghien, 
1994). Natural phenomena can only be accessed in science by experiments, which are designed 
within models. Models, according to Martinand (1996) are i) hypothetical, ii) modifiable (with 
new data, progress of knowledge, new interpretations…), iii) relevant to a particular class of 
problems and iv) of limited validity (i.e. cannot be 100% “true”). Science teaching should guide 
students towards model-using skills for explaining or predicting phenomena, monitoring should 
focus on learning outcomes such as using a given model for prediction or explanation (Biggs, 
2003). 

Assessing student’s mental models of natural phenomena is not directly possible. We would like 
to stress that we do not present an assumption about what form these models might take within 
students’ minds, when we refer to understanding we refer to expressions of students’ 
understanding. More precisely, as we shall explain below, we analyze written data produced by 
students. 
Models to be learned and taught are defined by the school or other authorities and such choices 
will not be discussed here. We will refer to these particular models that instruction is aiming at as 
institutionalized models (Brousseau, 1998). This implies that there certainly are other models – 
some much more elaborate - than the one chosen in this particular curricular context. Indeed, a 
crucial idea here is that the particular model students should be capable of using is neither true 
nor false, it is appropriate for the problems addressed and can explain the data the students will 
be confronted to. So this institutionalized model is neither a model of student’s knowledge 
structure, nor a model of expert knowledge. This institutionalized model could be considered an 
ideal-type (Weber, 2009), an abstraction of some characteristics of the phenomenon, used for 
analysis purposes (ideal does not refer here to perfection). 
We propose using diagrammatic representations of institutional models as a method for 
visualizing traces of student progression. This methodological choice might suggest a rather 
cognitivistic view of student knowledge, but that does not reflect our view of understanding. We 
will discuss a method for monitoring student progression that is based on extracting concepts and 
causal links expressed in student’s successive written productions and mapping them onto 
concept maps for each version. Models can be expressed as concept maps (Novak & Cañas, 
2008), a powerful way of visualizing concepts (nodes) and their relations (causal links). Indeed, 
for this research, the institutionalized model was expressed as an ideal-typical concept map onto 
which model items (concepts and causal links) present in versions of students’ productions can be 
visualized. 
This method provides insight into progression of students’ understanding. It can visualize stages 
of progression in ways that allows comparison across years and different designs. 
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Our main research question is: I) How can we identify and model conceptual paths (if any) that 
students follow while investigating biology in an Inquiry Based Learning (IBL) design? This led 
to other sub-questions: IIa) Can this method reveal over years repeated time patterns for concepts, 
causal chains? On a semantic level: IIb) Can this method help identify conceptual difficulties in 
the learning landscape (such as conceptual obstacles or cognitive construals), weaknesses of 
designs or epistemic specificities of the knowledge structure in resources used by students?  

METHODS 
This research is part of a long-term design-based (Brown, 1992; Collins, Joseph, & Bielaczyc, 
2004) research study on inquiry learning being conducted since 2006 in advanced high school 
classes in Geneva, totaling nearly one hundred students so far. Each intervention lasted most of 
one school year, in a standard class, with standard time and assessment requirements; we believe 
it can be considered a real-world teaching situation. The curriculum covered molecular biology, 
genetics, and immunology. The learning design was inspired by a knowledge-building 
community of learners, was structured for cooperative learning and was scaffolded by a shared 
wiki in which students wrote their current understanding. They investigated answers to inquiry 
questions by experimenting and reading authentic resources. Early in the investigation process 
and close to the end, students presented their understanding to peers, leading to confrontation of 
knowledge, question redefinition. The student’s efforts resulted in a brochure critical for 
student’s preparation of important exams, making it a crucial document to them. An inquiry cycle 
lasted 3 to 4 weeks, after which the class addressed a new chapter. 

Data was collected from the wiki’s history recordings. Conceptual progression was traced by 
comparing all revisions of student text, i.e. multiple records of students’ productions in a shared 
writing space (wiki) supporting inquiry. Since the teacher is also one of the authors, using only 
data from written student productions minimizes possible biases. 

We plan to compare seven cohorts of students in the same learning design and to search for 
common patterns and epistemological components such as concept links and linear or multiple 
causalities. For this first exploratory methodological study, we selected one year (2006) and one 
student inquiry question: “How do the correct antibodies appear in response to a given pathogen 
called X” as it was explored by one group of 3-4 students that year during the investigation 
process (2-3 weeks). 

The coding procedure identifies presence and absence of nodes with respect to an ideal-type: We 
structured the model items (concepts and links) of the institutionalized model in the form of a 
concept map (Novak & Cañas, 2008) shown in Figure 1. This model was developed by three 
experienced biology teachers, compared to curriculum requirements and confronted to a large 
sample of student productions to confirm all concepts and links could be situated on that map. 
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Institutionalized model 

 
Figure 1. Methodological construct for visualizing traces of student productions in a wiki: 
the institutionalized model on which were mapped the progression of each group analyzed 
(see methods). 

We searched all 95 versions of students’ text for traces of model items (concepts and links). We 
coded presence or not of each model item by analyzing semantic units of student text for each 
version. Students’ text production grew during 3 weeks of investigation to reach 3820 words. 
Different possible wordings were accepted as long as semantic equivalence was found. Many 
revisions did not contain changes in terms of model items but other revisions such as language 
correction or text reorganizing. In the group analyzed, we found eight significant versions, giving 
insight into as many understanding steps of this particular group. 

Coding sheets were produced for each significant version; a sample is shown in Figure 2. When 
model items were largely present, but some discrepancy was noted, the discrepancy was indicated 
in a footnote. Model items that were insufficiently explicit were not considered present. Double 
coding was used to stabilize criteria until more than 90% agreement was reached, then simple 
coding was applied by the one of the researchers to all versions. 
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Sample coding sheet 

 
Figure 2. Sample coding sheet for one version (version 12, year 2006). Model items found in 
that version of student text were checked. Footnotes indicate concepts or links that were 
partially present and state discrepancies. 

A first analysis concerns presence of items: A count of model items is plotted against version 
numbers (see Figure 3). It was not found to be very informative with respect to monitoring 
students’ progression in model acquisition so other visualizing methods were sought. 

A second type of analysis visualizes partial model patterns that appeared in student productions 
over time: A map visualizes model items found in each significant version by highlighting them 
on a grayed-out map (cf. Figure 4). Concepts were visualized as dots and links as lines. 
A third type of analysis consolidates counts of model items across multiple versions to reveal 
time patterns. For each model item found we counted occurrences across all significant versions, 
producing a prevalence count for that concept or link. Since a model item never disappeared from 
student text, we considered this a good indicator of how early this item appeared in the 
progression. To produce the prevalence index, we then standardized these numbers to the total of 
versions for that year (item prevalence count / number of significant versions), and expressed on 
a percentage scale rounded to the closest integer attached to the item as a dark badge. The size of 
badges was chosen so that early appearing items got a large badge as in Figure 5. 
Together, these three visualization methods allow to investigate and analyze student progression 
from various angles. Firstly, this method analyzes the time sequence in which concepts / links 
appear (early or late). This opens possible discussion of causes for late-appearing model items as 
difficulties in learning, weaknesses of designs or epistemic specificities of the knowledge 
structure in resources used by students. 
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Second, this method can search for evidence of conceptual obstacles (Bachelard, 1947) that 
would render some concepts or links difficult to understand, we would expect them to appear 
later. Also Coley and Tanner (2015) propose that cognitive construals could explain many 
misunderstandings in learning biology. We would therefore expect concepts that go against 
finalism and animism such as clonal selection in our example of immunology to appear later. 

Third, this method can help searching for structuring concepts (Wiggins & McTighe, 2000) and 
threshold concepts that are often the points at which students experience difficulty (Meyer, Land, 
& Baillie, 2010): since their understanding is transformative (occasioning a significant shift in the 
perception of a subject), and helps understanding several other concepts, we would expect them 
to systematically appear later and precede the appearance of many other links and concepts. 
However, fascinating this perspective might be, pinpointing that specific moment of student 
conceptual progression would require very numerous productions by students that might be 
difficult to obtain in real-world situations. 

RESULTS 
A first visualization of concept and links count is shown in Figure 3. It gives some insight into 
student progression that confirms regular learner’s progression. It does not inform about possible 
paths that are the focus of this article, but implicitly reinforces the conception of student’s 
progression as a ladder-like path. We have elsewhere discussed more relevant measure of global 
learning achievement (epistemic complexity) that confirmed that adequate learning occurs in the 
design (Lombard & Schneider, 2013), however the independence of content which was the 
strength of that approach did not allow investigating conceptual progression trajectories we 
explore here. 

Concepts and links count vs. version number (year 2006)

 
Figure 3. Concepts and links count vs. version number (year 2006). This visualization shows 
the need for more informative visualization. 

A second type of analysis looks at successive versions of student’s text during inquiry. By 
mapping nodes and links onto the institutionalized model, we gain insight into steps and paths of 
learners understanding. Figure 4 shows all the significant intermediary steps of the progression 
for one group. 

The most striking - and surprising - result is that we did not find connected paths in student 
productions. We definitely did not find a ladder, nor a roaming trail: model items appeared in a 
sort of mosaic manner, gaps in causal chains closing here and there in no understandable pattern. 
“Path” does not even seem an appropriate term: we might speak of kangaroo jumps completing 
causal chains in small mosaic steps. Causality patterns appear first as numerous short sequences 
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and progressively are connected. Simple linear and short causal chains are linked to include 
multiple causalities forming a complex model as shown in latest images of Figure 4. 
Only late in the investigation were causal chains fully linked. In fact, some remained incomplete 
even at the end of inquiry in the year analyzed here (2006). In other words, students did not show 
evidence of having fully achieved the learning goals. We are studying other years and 
preliminary results show it was fully attained only for one year (2015).  

Concepts and links present in successive versions of student productions (2006) 

 
Figure 4. All significant versions along the learning process of one student group. Concepts 
figured as dots, links as lines (mapped against the grayed-out concept map of the 
institutionalized model, see methods). 

A third type of analysis shows which concepts links appeared early or late as can be seen in 
Figure 5. Indeed some local causal chains (e.g. B cell activation to produce antibodies) were 
expressed very early in the investigation process and others were completed later, towards the 
end of the training sequence (e.g. negative clonal selection of auto-reactive clones, MHC class-II 
presentation of antigen fragments).  
Preliminary analysis (after ESERA conference) of 6 other years suggests that this happened 
repeatedly: some late-appearing and some early-appearing model items can be identified in each 
group. This opens the possibility of basing the discussion of student difficulties with complex 
biology models on explicit data. In other words, we suggest that these visualizations allow 
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analyzing what concepts might be difficult for students, or how we could improve a pedagogical 
design. 

Prevalence index (2006) 

 

Figure 5. Prevalence index computed for all versions (2006) reveals early and late 
appearing concepts / links. Prevalence index 0 indicates model items that student did not 
expressed at all that specific year. 
DISCUSSION AND CONCLUSIONS 
First, our results confirm that important – and rarely available - insight into conceptual 
development during inquiry can be produced by this method. Results of this exploratory study 
show i) a non-linear conceptual progression and ii) a messy, incoherent progression (or a 
coherence that eludes us). Preliminary multi-year comparison suggests this method can reveal iii) 
differences in progression both over years and between groups, and iv) common patterns 
distinguishing early and late-appearing concepts or links. 
Our data suggests - at least in the context of this study - that learning is an iterative, messy, 
difficult to predict process, without clear beginning or end, nor identifiable path. Progress appears 
to happen by refining and linking small bits of knowledge in mosaic fashion. One might be 
tempted to draw a parallel between this iterative messy unpredictable process of learning and the 
process of science (Abd-El-Khalick, 2011; Giordan, 1994, Latour & Gille, 2001). 

Being able to know that (non-linear) progression is happening, and that there are common 
patterns offer opportunities to better understand how conceptual understanding develops or does 
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not. This allows enhancing teacher guidance and informing the design of better learning 
environments. 
Firstly, these results argue for including instructional design elements that reveal to students 
incoherencies in their models (as expressed in activities) and design elements that help them fill 
in gaps in causal chains. Also, these results highlight the potential of designs built around 
interactively improving a conceptual artifact (Bereiter, 2002; Scardamalia & Bereiter, 2006) to 
develop scientific understanding. 

The data presented here along time in Figure 4 and Figure 5 shows that some model items form 
local causal chains early in the investigation process and others are completed much later, 
towards the end of the inquiry sequence. 
Second we explore why some of the most crucial concepts do not appear until late or not at all 
(prevalence index 0) for year 2006 (e.g. simultaneous double activation of B cells by specific 
binding of antigen and T4 cells presenting the same specific epitope, negative clonal selection 
producing B-cell clones reactive against a near infinity of antigens except self and the 
presentation of antigen fragments by class II MHC proteins). 

Third, looking again at which concepts / links appear early or late, we searched for evidence of 
conceptual obstacles (Bachelard, 1947) that would render some concepts or links difficult to 
understand. Coley and Tanner (2015) propose that cognitive construals could explain many 
misunderstandings in learning biology. We would therefore expect concepts that go against those 
construals to appear later. It could be argued in this light that clonal selection goes against a 
finalistic and animistic view of explanation and that would explain the late appearance of these 
model items and low prevalence index on Figure 5. Other late appearing concepts could be 
discussed similarly. 

This method could be used over many years to search for stronger evidence of such late 
appearing concepts. Some preliminary results suggest this is the case. 

Finally, we explored if this method could help reveal threshold concepts (Meyer, et al., 2010) 
since their understanding opens the door to understanding several other concepts. We would 
expect them to appear later and systematically precede the appearance of a group of links and 
concepts. We have not been able to demonstrate this clearly without over-interpreting. 

Our results stress the importance of highlighting inconsistencies and gaps in the causal chain of 
students’ explanations of phenomena and of organizing activities to fill them and lead students 
toward effective predictive and explanatory models. The relevance to modern biology seen as 
explanations – causal links – underpins this analysis, in particular in the perspective of 
conceptual change, student model confrontations, and teacher training. 
Within its limits, our data suggests that science learning of complex phenomena is a non-linear 
process in which learners iteratively construct or transform a model. The implications for 
education are important: We could speculate, that in learning situations where learning is 
organized in linear process, only those students that are capable of processing iteratively what is 
presented - during instruction itself or while revising - learn efficiently. This would imply that 
only students with good self regulation of their learning processes benefit from linear designs 
such as lectures, some very linearly guided lab work or even some form of inquiry that requires 
students to follow a given path. This view of learning as iterative idea improvement is supported 
by much research in the knowledge building community: e.g. Scardamalia & Bereiter (2006). 
However, the relevance of our results -produced in an inquiry design designed around iterations 
of knowledge building - is a matter open to discussion and needs further research. 
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This interpretation might be seen as challenged by centuries of successful learning in teaching 
formats such as ex-cathedra courses that appear to be linear. We speculate that good learners 
have the skills to perform alone (during the course or revisions) these conceptual iterations in 
order to develop coherent usable models. We could define “deep learning” as capacity of using a 
given institutionalized model (Jungck, 2011) for prediction or explanation, not just repeating a 
given description of the model (also referred to as mastery goals rather than performance goals 
(Darnon, Muller, Schrager, Pannuzzo, & Butera, 2006)). The need for repeated iterations to attain 
such goals is also well highlighted by some literature: to organize learning as a knowledge 
improvement process (Scardamalia & Bereiter, 2006). 

On a more practical side, this method could inform how we design for i) student awareness of 
conceptual gaps, ii) student drive towards knowledge improvement (completing causal chains), 
iii) focus on the model items of the model iv) how we structure iterations for that progression. 
Our second research sub-question was about the factors that might orient student’s conceptual 
development. We mentioned the design (including teacher attitude, rules, assignments, etc.) 
cognitive constraints that might hinder or facilitate some type of explanations, "cognitive 
construals" (Coley & Tanner, 2015) and the resources students use – in which the 
epistemological structure of the conceptual field is embedded. We have suggested elsewhere 
(Lombard, 2012) that there might there be some sort of conceptual centripetal force in the 
resources and scientific paradigm of the field driving student progression towards some concepts 
and links that are central in our current understanding of immunology. While the sequence of 
model items appearance that this method reveals has offered some insight, methodological 
difficulties have till now prevented us from dissecting these factors orienting student progression. 
We have to leave this fascinating field of exploration open. 

Whatever the causes, the repeated late appearance of some causal chains has implications on 
pedagogical design and guidance. The late – but systematic - appearance of the most important 
concepts (structuring concepts) opens venues of research: what design features or epistemic 
structure of the knowledge body can contribute to guide student progression towards these 
concepts? This could be useful in very different pedagogies. In a direct instruction view, for 
example, this method offers critical data to inform how we organize learning advancing from 
concepts we have found to be early-appearing towards late - probably difficult - concepts that are 
more fundamental. Indeed teachers’ perception of difficulties does not always reflect difficulties 
students encounter – especially about recent scientific advances (Yarden, Norris, & Phillips, 
2015). 

Overall potential for educational methods could include i) developing designs around a 
conceptual map of the model for institutionalizing ii) organize discussion of learning objectives 
by policy makers or teachers iii) identifying learning difficulties to prepare activities, questions, 
resources for helping students overcome these conceptual hurdles in completing causal chains iv) 
guidance during activities by visualizing the conceptual: field teachers might track conceptual 
progression and understanding gaps in order to raise questions, offer resources, at the appropriate 
time. 
However establishing a conceptual map takes time and is likely to be seen as too demanding by 
many teachers and opens again a discussion on sharing designs within teacher communities. It 
could be argued that the need to define clear learning objectives takes time anyway. 

The presented framework has some limits. One limit of time-related analysis of student 
productions is that students only write in the wiki when required to do so for an assignment such 
as presentation to peers or assessment of the page, etc. So written production probably lags 
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behind the understanding progress; students may have acquired concepts or links but only write 
them some time later, possibly at the same time as other concepts that became easy to understand 
by passing this conceptual threshold. Writing might reveal previous progression in conceptual 
spaces and but not the exact time of the transition, and limits interpretation of time sequences. 
Another fundamental limitation stems from our coding and data analysis method: analysis of text 
by searching for a given set of model items cannot reveal other concepts that might be present in 
student texts. It also presents the results in a more cognitivist manner than we would have liked. 
It doesn’t show to which extent the learners were capable of using that model to explain or 
predict phenomena. We have discussed elsewhere (Lombard, 2012) evidence showing that they 
did so. However we would like to argue that the unusual detail in conceptual progression and 
long-term comparison revealed by this method seem worth this limitation. 

The scope of our analysis is also limited by the small sample and the single investigation design 
in which they were established. While it is tempting to think that these results have a broader 
scope, it is probably reasonable to consider them as exploratory and we are currently developing 
this research into this data set for other years and other subject questions. It would be interesting 
to explore it in other settings and with larger samples. A challenge will be to get this type of 
relevant traces of conceptual learner progress in other learning designs than wiki-supported IBL. 
With the increase in technology supported learning this will probably become easier. 
With data accumulating we hope to find ways to dissect the i) effects of learner difficulties such 
as cognitive construals, ii) weaknesses of designs or iii) epistemic specificities of the knowledge 
structure in experiments and resources used by students. 
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EFFECT OF PEER DISCUSSIONS, AS PART OF FORMATIVE 
ASSESSMENT, ON LEARNING OF PHYSICS CONCEPTS 
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Laboratory for Solid State Physics, ETH Zurich, 8093 Zurich, Switzerland 
 

Abstract: We developed a model of formative assessment and applied it to concept leaning in 
Physics at Swiss high schools. To study the effect of formative assessment we recruited 30 
teachers and divided them into three groups with at least 10 classes each. The groups formed 
are the experimental group with the formative assessment approach and two control groups. 
The first control group just applied tradition teaching without any instructional restrictions. 
The second control group was introduced to account for the effect of frequent testing. This 
group solved all the tests of the formative assessment group but not in the formative 
assessment approach. The goal of this work is to identify elements of our formative 
assessment approach, which promote learning of physics concepts. The major differences 
between solving concept questions as test questions or as clicker questions are peer 
discussions and classroom discussions. Therefore we compare in this study the formative 
assessment group to the frequent testing group. To estimate students’ concept knowledge 
before and after the teaching sequence we developed a kinematics concept test, which we 
used as pre- and post-test. The topic taught during the teaching sequence was kinematics for 
which we have identified seven concepts. Our analysis revealed that after peer discussions the 
formative assessment group outperforms the two control groups in the post-test with respect 
to all seven concepts.           
Keywords: formative assessment, peer instruction, peer discussion, clicker questions, concept 
learning  
 

INTRODUCTION 
In their seminal paper Paul Black and Dylan Wiliam (Black & Wiliam, 2009) defined five key 
strategies of formative assessment. We have used these strategies to develop a model of 
formative assessment, which can be used in classroom teaching. Our approach (Wagner & 
Vaterlaus, 2012) encompasses four different tools (see Figure 1). First, classroom activities 
(1) were designed in order make student concept knowledge visible and to elicit student 
learning. The activities consisted of two clicker sessions with 15 concept questions each. The 
procedure, of applying clicker question to students, was mainly borrowed from peer 
instruction suggested by Eric Mazur (Mazur, 1997). Second, we developed a monitoring tool 
(2) where students monitor their learning progress. The monitoring tool contains diagrams 
with the temporal evolution of students’ concept knowledge based on the self-assessment of 
clicker questions. Due to the fact that peer discussions are central to clicker questions students 
are used in these discussions as instructional resources. In the middle of the teaching sequence 
a lesson was dedicated to the diagnostic tool (3). Although students and teachers already get 
feedback during clicker sessions we thought that an independent, more detailed and individual 
feedback from an independent source might be necessary. Thus, the diagnostic tool not only 
analyses concept knowledge of students but also misconceptions, which still might be present. 
The students can also compare the results from the diagnostic tool to the learning progress 
recorded with the monitoring tool to verify the validity of their self-assessment. The feedback 
of the diagnostic tool for the teacher contains the average performance of the class.  He has no 
information about the individual feedback to the students. The application of the diagnostic 
tool always has to be followed by a reflective lesson (4). Due to the detailed feedback from 
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the diagnostic tool students must get the opportunity to work on their deficits and to catch up. 
The teacher uses the information from the diagnostic tool to prepare this lesson. He or she 
offers students different learning activities based on the analysis of the diagnostic tool. 
Students then have to choose from the learning material the concepts they would like to work 
on. We think that the choice now students have shifts the responsibility of learning to a 
certain degree to the students’ side.  

 
Figure 1. Model of formative assessment using four different tools 1. Classroom activities (clicker sessions), 
which elicit evidence of student learning. 2. Monitoring tool to record students’ learning progress. 3. Diagnostic 
tool (DT) to give students a detailed individual feedback about their concept knowledge and their 
misconceptions. The diagnostic tool could also be used to estimate the pre-knowledge. 4. Reflective lesson 
where students have the opportunity to catch up. 

The Study 
Since the development of the force concept inventory (Hestenes, Wells, & Swackhammer, 
1992) the shortage of conceptual knowledge in physics has been stated in many countries 
(Hake, 1998) including Switzerland. Thus we devised a project to foster concept knowledge 
using our model of formative assessment. The topic for the implementation was kinematics. 
We recruited 30 teachers from Swiss high schools for the project. They were randomly 
assigned to the experimental group and the two control groups. All teachers received a half-
day information how to do the tests and to process the results. Teachers from the formative 
assessment group had an additional half-day in order to learn how to conduct clicker sessions 
and to plan a reflective lesson for which they received additional teaching material. However, 
they were also encouraged to develop their own material to adjust teaching to the needs of the 
students.  

As mentioned above the traditional teaching group received only a list of the content. It was 
in their responsibility how to distribute the content among the 14 lectures, which were at their 
disposal. We asked them to teach the material in the way they are used to. In contrast to this 
traditional teaching group (TT-group) the formative assessment group (FA-group) had only 
10 lectures for the regular teaching. In addition, they had to conduct two clicker sessions (2 
lessons), a diagnostic test (1 lesson) and a reflective lesson (1 lesson). We expected that the 
deeper conceptual knowledge would compensate for the diminished time on solving 
conventional problems. Finally the second control group, the frequent testing group (FT-
group), had approximately two lessons less than the TT-group. Students from the FT-group 
solved the clicker questions at the computer, for which in the average only half a lesson was 
used (2 x ½ lesson). Teachers of the FT-group were asked not to discuss the problems with 
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the students. However, if a student asked the teacher after the session for an explanation of a 
problem they were allowed to answer the question. The FT-group also did the diagnostic test 
(1lesson) but the reflective lesson was missing. Thus the extra test time sums up to about two 
lessons. Finally, all three groups finished the teaching phase with a conventional test during 
the 15th lesson. The design of the study is presented in Figure 2. 
 

 
Figure 2. Design of the Study. Teachers were randomly assigned to the traditional teaching group (TT-group), 
the frequent-testing group (FT-group) and the formative assessment group (FA-group). All teachers were 
basically free to design their instructions except for compulsory tests and the reflective lesson indicated. The 
diagnostic tool (DT) is followed by the reflective lesson and the teaching sequence is completed by a 
conventional test.  

We have identified seven concepts for the content covered in kinematics. These are  

1. Velocity as rate. 
2. Velocity as one-dimensional vector. 
3. Velocity as two-dimensional vector. 
4. Area under the v,t-curve as displacement. 
5. Acceleration as rate. 
6. Acceleration as one dimensional vector 
7. Area under the a,t-curve as velocity change. 

 

In the FA-group as well as in the FT-group concepts 1, 2 and 4 were taught during the first 
four lessons since they were included in the first clicker session. Lessons 6 and 7 were 
reserved for concept 3. Thus the diagnostic test provided feedback for the students about 
concepts 1 to 4 and the corresponding misconceptions. In lesson nine the reflective lesson 
takes place followed by 4 lessons, which discuss concepts five to seven about acceleration. 
Lesson 14 is reserved for the second clicker session testing for concept 3, 5, 6 and 7. 

We have developed a kinematics concept test in order to assess concept knowledge of 
students. It consists of 54 multiple-choice questions, which cover the physics concepts 
defined below. The test was validated in the usual way (Lichtenberger, Wagner, & Vaterlaus, 
2015) and used as pre-, post- and follow up test.  
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The major results of our study are that first the FA-group outperforms the two control groups 
with respect to concept knowledge and second the performance of the three groups 
considering the conventional test doesn’t reveal any significant difference (Lichtenberger et 
al., 2015). In this work we follow the question why does the FA-group show higher 
conceptual knowledge than the control groups? It seems to be clear that the traditional 
teaching group performs worst on conceptual problems since they were not trained in 
answering this type of questions. The fittest group answering clicker questions is the frequent 
testing group. As already mentioned clicker sessions consist of 15 questions. Since students 
from the FT-group solved these questions on the computer, with an immediate feedback if 
their answer is right or wrong, the time to solve all 15 problems was about 20 – 25 min. 
However, due to the procedure of conducting clicker questions in the FA-group, which 
includes peer discussions, the time of the lesson lasted only for 6-12 problems in the FA-
group. From this point of view on might be tempted to assume that the FT-group performs 
best on conceptual tests. As mentioned above our data revealed a different picture, namely 
that the FA-group performs best on the conceptual test, this not only on the post-test but also 
on the normalized gain (Lichtenberger et al., 2015). 
 

METHODS 
In general formative assessment can assume many different forms including on the fly 
feedback. However, in particular the latter is difficult to control since all teachers in Swiss 
high schools do it by some means or other. Thus, in our project we restricted ourselves to a 
single method, which we called clicker session. It is just a sequence of multiple-choice 
concept questions administrated to the students using a well-defined procedure. The goal of 
these questions is that students have to apply the concepts to problems presented in different 
contexts. The distractors should provide space for small group peer discussions. From that 
point of view the clicker problems are quite different form the kinematics test questions since 
their distractors have to be directly linked either to a concept or a single misconception. The 
answer of a clicker question might involve several concepts at the same time. However, it was 
always possible to assign a major concept to the question. The assignment of concepts to 
questions was verified by several experts.  

The success of clicker questions in teaching at the college level has been shown by many 
research groups. C. Crouch and E. Mazur (Crouch & Mazur, 2001) analyzed data from 10 
years and observed in calculus and algebra based courses a significant increase in conceptual 
knowledge. Moreover, they also find that an increase in solving quantitative problems. Smith 
and coworkers (Smith et al., 2009) also report a successful application of peer instruction. 
They show convincingly that the increase of concept knowledge through peer discussion can 
be assigned to real learning. 
 

Clicker Sessions 
The procedure used to administrate the questions to the students follows the ideas of Peer 
Instruction (Mazur, 1997). Peer instruction can be implemented in different configurations, 
which all are nicely summarized in a review by Vickrey et al. (Vickrey, Rosploch, 
Rahmanian, Pilarz, & Stains, 2015). In our case the implementation can be divided into three 
well-defined phases (see Figure 3). Having presented the MC-question via a projector all 
students answered the question individually. They protocol their choice in their monitoring 
tool. Moreover, they also have to assign a concept to the question. If students would have to 
justify their answer they would use this concept in their argumentation. This silent phase is 
finished when the students have sent the answer to the receiver using their clicker device. 
After the first phase a histogram of the answers is presented to the students. It serves as a 
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delimiter of the silent, individual phase and the discussion phase. It also should motivate 
students to reflect about their first answers. The second phase opens the question to groups of 
three. Students discuss the problem in order to convince each other using the concept selected 
in the previous phase. The answers are collected for the second time and the data is again 
presented in a histogram. This marks the end of the second phase. During the last phase the 
question is discussed in class. One possibility is to ask one of the groups to share their results 
of the discussion with the class and to explain the solution using one of the given concepts. 
However, it is also interesting to discuss in class why some of the distractor are not possible. 
Moreover, the teacher should be able to use spontaneously additional examples or variations 
of the given problem for further clarification. 

In order to control whether this clicker sessions are conducted properly we sent to all lessons 
university students (mainly psychology majors) to monitor the sessions. For all questions they 
recorded the time for the individual and the group answer as well as for the classroom 
discussion phase. In additions two groups of each session were recorded using a microphone. 
Thus we got a good impression, what was going on in these classes. We haven’t yet looked at 
the data but they will be used in further analysis. However they would have been a good 
resource if anything went wrong with the experimental group.  
 

 
Figure 3. Procedure of a clicker question. The clicker question is divided in three different phases: an 
individual phase, where students answer the question individually, a peer discussion phase, where the problem is 
discussed in groups of three students and classroom discussion phase, where the teacher discusses the problem 
with the students. 

Teachers from the formative assessment group used the clicker system from Turning Point to 
conduct the clicker sessions. The students got an individual clicker device where the number 
of the clicker was uniquely linked to the student’s code. Thus, we can track student’s 
performance (individual and group answers) during a clicker session. All answers were 
recorded and stored in an excel file, which the teacher had to send us.  
This triple, individual answer, small group discussion and sharing the ideas with the whole 
class, seems to be a very general method in order to apply formative assessment successfully. 
In 2008 Yue Yin et al. (Yin et al., 2008) reported of a formative assessment approach applied 
to middle school pupils in the framework of embedded formative assessment (FAST). The 
goal was to improve conceptual change in a sinking and floating teaching sequence. However 
the authors do not observe a positive effect of formative assessment on conceptual change. In 
contrast, a few years later and also in a smaller study when Yin et al. (Yin, Tomita, & 

Time	

Peer	instruc-on	phase	Silent	phase	

Students	solve	problem	
individually	
(assignment	of	a		
concept)	

Presenta-on	of	
the	Ques-on	
(Mul-ple-Choice)	

Discussion	about	
-	Solu-on	
-	Explana-on	(concept)	

Classroom	discussion		
about	the	solu-on	
and	the	concept	

1.	Vo-ng	

Histogram	

2.	Vo-ng	

Histogram	

Individual	answers	
Group	answers	

Strand 1 Learning science: Conceptual understanding

216



Shavelson, 2014) used the threefold approach a significant increase of conceptual change was 
observed.  
In order not to slow down artificially the clicker sessions the teacher were furnished with a set 
of rules how to move on after the first vote. For example, if 90% of the answers were correct 
after the first vote it doesn’t make sense to organize a group discussion and a second vote. In 
this case teachers were advised to skip the peer discussion phase and move directly to the 
classroom discussion. The set of rules is given in Table 1. 
Table 1. Rules for conducting clicker sessions. The first column shows the result of the first vote and the 
second column presents how the teacher should react and continue. 

 
 
For the students of the frequent testing group we have set up a survey using the lime survey 
program on one of our servers. All clicker questions were then adapted to the system and 
programmed accordingly. Students only had to chose an answer and not one of the concepts. 
They also didn’t have the list of concepts. Having chosen an answer, students got a feed back 
if the answer was right or wrong. If the answer was wrong, the correct answer was 
highlighted. With the help of the feedback we expect that some students develop strategies to 
solve this type of problems, moreover some students will also attain a certain degree of 
concept knowledge by combining the feedback with the content of the teaching lessons. 
 

RESULTS 
In this paper we compare the results of students where clicker questions were either posed 
using the formative assessment approach (FA-group) or solved at the computer (FT-group). 
The goal is to draw conclusions about the effectiveness of clicker questions with or without 
formative assessment on learning of concepts in physics.  

The first Clicker session took place after four lessons and included concepts 1, 2 and 4. Some 
classes of the FA-group only worked on six of the 15 problems during the clicker session. The 
problems are distributed among the concepts so that all three concepts are covered by two 
questions within the first six questions. Thus, concept knowledge was estimated from the first 
6 questions of the session. Although the FT-group solved all 15 questions we have considered 
also for the FT-group only the first six question for reasons of comparison.  

The results of the first clicker session of the FA-group and the FT group are shown in Figure 
4. Comparing the percentage of correct answers for the three concepts of the FT-group with 
the answers of the FA-group one can recognize that the values for the individual answer of the 
FA-group is in the range of the values of the FT-group. We conclude that in the teaching 

Percentage		
of	correct	
answers	

Con/nua/on	

<	10	 -	one	wrong	distractor	selected	by	a	majority:	
						teacher	tells	the	students	that	this	answer	is	wrong	and	that		
						they	should	discuss,	which	of	the	other	answers	might	be	correct.	
-	wrong	answers	are	distributed	equally	among	the	distractors:	
						Teacher	tells	the	students	what	the	correct	answer	is	that	
						they	should	discuss	what	concept	fits	to	this	answer.	

10	-	30	 Depending	on	the	actual	impression	of	the	teacher,	he	decides	
whether	it	might	be	worth	to	organize	the	peer	discussion.	

30	-	70	 best	range	for	a	peer	discussion	

70	-	90	 Depending	on	the	actual	impression	of	the	teacher,	he	decides	
whether	it	might	be	worth	to	organize	the	peer	discussion.	

>	90	 Skip	the	peer	discussion	and	move	on	to	the	classroom	discussion	
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phase before the clicker session there was no special focus on the development of conceptual 
knowledge in the FA-group. We are going to further study this issue since we have all the 
teaching materials and the teacher protocols of the lessons.  
 

 
Figure 4. Results of clicker session 1. The bar graph shows the percentage of correct answer versus concept 
number of the first six question of the clicker session (two questions per concept). The first, second and third bar 
of each concept corresponds to the answers of the FT-group (173 students), the individual answer of the FA-
group and the group-answer of the FA-group (154 students).  

However, if we compare the result of the group-answer of the FA-group with the individual 
answer and the answer of the FT-group then we observe a marked increase for concepts 1 and 
4 and a minor augmentation of concept 2. The latter might be due to the fact that concept 2 is 
easier for the students to understand than the others. What we see here is a saturation effect. 
Often there was no peer discussion for concept 2 questions and therefore no group-discussion 
took place due to our recommendations given in Table 1. In these cases we took the group 
answer equal to the individual answer.  

There might be two explanations for the increased level of the group answer compared to the 
level individual answer. First, lower ability students of the group just adopt the answer of the 
best student in the group. In this case no learning occurs and in concept test student from the 
FA-group would perform equally as students from the FT-group, since the results were 
comparable for the individual answer. In contrast, if during the peer instruction phase and the 
classroom discussion phase real learning takes place the students of the FA-group is expected 
to perform better in a concept test.  
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Figure 5. The diagnostic test (Diagnostic Tool) and the post-test were used to probe the effectiveness of the 
formative assessment approach. In clicker session 1 and clicker session 2 of the FA-group (thick circles) the 
FA-approach was used, while the FT-group solved the clicker questions at the computer. 

In order to review the effectiveness of the first clicker session within our formative 
assessment approach we used the diagnostic test. It was applied to the students after having 
taught concept three and thus comprises concepts one to four. Questions of the diagnostic test 
are similar to questions of the kinematics concept test. The test is composed of 33 questions 
and solved at the computer. The results are shown in Figure 6. 
 

 
Figure 6. Results of the diagnostic test. Regarding concepts 1, 2 and 4 the FA-group (199 students) 
outperforms the FT-group (167 students). The p-levels for concepts 1, 2, and 4 are 0.028, 0.014 and 0.074, 
respectively. For concept 3, which was taught after the first clicker sessions, no significant difference between 
the performance of the FA- and the FT-group was found. 

For the three concepts, which were included in the first clicker session the FA-group 
outperforms the FT-group. We used ANOVA to estimate the significance. For concept 1, 2 
and 4 the p-values are 0.028, 0.014 and 0.074, respectively. Since the performance of the two 
groups are equal in the pre-test, we assign the increased knowledge of the FA-group 
compared with the FT-group to the peer discussions and the classroom discussions where 
students are used as instructional resources. The exception is concept three where the two 
groups cannot be distinguished anymore. Our explanation for this fact is, that concept three 
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was taught after the clicker session so that no discussions about this concept have taken place. 
Of course, it was interesting to see how concepts three evolves further during the 
experimental phase.  
In order to verify the hypothesis that peer discussions might be essential for learning Physics’ 
concepts we started to investigate the second clicker session. It examines concepts 3, 5, 6 and 
7. Again, the FT-group solved the problems at the computer with a short feedback about the 
correctness of the answer. In the FA-group we used our formative assessment approach. The 
results of clicker session two are displayed in Figure 7. Teachers from the FA-group were 
able to discuss six to twelve questions with the students. In order to have as many students as 
possible in the analysis we used the first seven questions to analyze concept knowledge. 
Concepts 3, 5 and 6 are covered by two questions whereas concept 7 is represented by only 
one question. We have estimated the concept knowledge of the FT-group once with the first 
seven questions and once with all 15 questions. There was almost no difference. Therefore we 
assume that the analysis of the first seven questions is a good estimate of the concept 
knowledge. Due to the condition that at least seven questions had to be discussed we lost 
several classes and the number of students of the FA-group was reduced to 98.  

 

 
Figure 7. Results of clicker session 2. The bar graph shows the percentage of correct answer versus concept 
number of the first seven question of the clicker session 2. The first bar of each concept represents the FT-group 
(196 students) whereas the second and third bar is from the individual and from the group answers of the FA-
group (98 students). 

Despite the reduction of the sample size we obtained quite similar results as for clicker 
session one. Except for concept 6 the individual answers of the FA-group and the answers of 
the FT-group reach similar values. Our second observation was that the levels of the group-
answer (FA-group) is always higher than the answer levels of the FT-group. Although the 
differences for concepts 6 and 7 are not statistically significant the tendency is clearly 
recognizable. The last observation that the level of the group-answer is always higher than the 
level of the individual answers of the FA-group holds for all four concepts.  
In order to check whether this increase in the group-answer of the FA-group is due to real 
learning or not we compare the FT-group to the FA-group in a separated and independent test. 
As shown in Figure 5 we used the kinematic concept test as control. The results are presented 
in Figure 8. 

0	

0.2	

0.4	

0.6	

0.8	

1	

Concept	1	 Concept	2	 Concept	3	 Concept	4	 Concept	5	 Concept	6	 Concept	7	

Co
nc
ep

t	K
no

w
le
dg
e	
[%

]	

FT	

FA-indiv	

FA-group	

Strand 1 Learning science: Conceptual understanding

220



 
Figure 8. Results of the post kinematic concept test. In all seven concepts the FA-group (191 students) 
outperform the FT-group (194 students). The statistical significance given by the p-values are 0.0118, 0.0006, 
0.0001, 0.0005, 0.0038, 0.0000, 0.0014 for concepts 1, 2, 3, 4, 5, 6 and 7, respectively 

In all seven concepts the FA-group now prevails. The statistical significance determined by 
ANOVA is given by the p-values 0.0118, 0.0006, 0.0001, 0.0005, 0.0038, 0.0000, 0.0014 for 
concepts 1, 2, 3, 4, 5, 6 and 7, respectively. We remember that in the diagnostic test (Figure 5) 
the concept knowledge for concept three of the FA-group and the FT-group were similar. 
However, after clicker session two, which includes questions about concept three, the results 
of the FA-group in the post-test are now significantly higher than that of the FT-group (Figure 
8).  

 

DISCUSSION 
We have developed a model of formative assessment and applied it to concept learning in 
Swiss high schools in Physics.  The model consists of four different elements, first classroom 
activities, which are designed to learn Physics concepts and which elicit evidence of student 
learning, second, a monitoring tool where students protocol their progress, third, a diagnostic 
tool in order to give feedback to the students about their actual knowledge and to the teacher 
about the performance of the class and fourth, a reflective lesson where students have the 
opportunity to work on their deficits.  

This formative assessment approach was administrated in Swiss high schools to learn 
concepts in kinematics (see Table 1). We recruited 30 teachers and divided them into three 
groups, the experimental (FA-) group using the full model of formative assessment, a 
traditional teaching (TT-) group as control group to evaluate the overall learning gain and a 
second control group the frequent testing  (FT-) to estimate the effect of solving the same set 
of problems but not in the formative assessment approach. As presented in Figure 8 the FA-
group outperforms the FT-group regarding all concepts taught during the teaching phase.  
In this paper we asked the question why this is the case. Due to the fact that several tools are 
involved in our formative assessment approach all of them might contribute to the success of 
the experiment. One question arises first, namely, are the questions of the clicker sessions 
effective or not. Therefore we compared the results of the formative assessment group to the 
results of the frequent testing group. We observe that the individual answer of the FA-group is 
in the range of the result of the FT-group. Our interpretation is that the teachers of both 
groups prepared their teaching material in a similar way, mainly as before maybe with a few 
adjustments to the new schedule. Therefore we believe that a better design of the teaching 
material focusing on the application of the concepts would lead even to a better result. 
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However, since we have collected all teaching material and teaching protocols we are going to 
investigate this question further.  

A step up of concept knowledge of the FA-group can be observed after the peer discussions in 
both clicker sessions. Whether this increase is just artificial or if it reflects real learning is 
another issue we intended to investigate. Since the FA-group and the FT-group had the same 
initial average values for all concepts (data not shown) the increase in conceptual knowledge 
has to be explained by the teaching phase between the pre- and the post-test. The increase 
from the individual answer to the group answer in the FA-group is quite drastic. We believe 
that this increase has two contributions: first, some students indeed learn how to apply and to 
work with these concepts from the discussions and second some students adopt the answer of 
the best student in the group if they are not sure about their own argumentation. However, the 
part of students who really learn the concepts is big enough that it becomes statistically 
significant. This is shown in the diagnostic test (Figure 6) as well as in the kinematic concept 
test (Figure 8). 

Concept three is a special concept regarding its position in the time course. It is not included 
in the first clicker session (Figure 4). It is taught after clicker session one and becomes part of 
the diagnostic test where the performance of the FA-group and the FT-group revealed no 
difference (Figure 6). We assume that the equal performance of the two groups can be 
explained by the fact that no peer discussion about concept three has taken place before the 
diagnostic test. If we compare the individual answer of the FA-group with the level of the FT-
group in the second clicker session we see that FA-group already outperforms the FT-group. 
This sudden increase might be explained by the reflective lesson, which had followed the 
diagnostic test. There, students with a low knowledge of concept three had the opportunity to 
work on it. Thus the increase in concept knowledge at least of concept one to four might not 
be exclusively assigned to peer discussions since it includes other elements of our formative 
assessment approach. Moreover, the monitoring tool not only asks for the correct answer but 
also for the concept associated with that question. Therefore, students really had to deal with 
the concepts behind the problems. They also should learn that each problem can be solved by 
applying physics concepts properly. 
In order to rebut the argument that the program of the FA-group was teaching to the test and 
that it is obvious that this group would outperform the TT-group we introduced the FT-group. 
Students from this group solved the same tests as the FA-group so that the differences are due 
to the formative assessment approach. Moreover, the FT-group solved all 15 questions of the 
clicker sessions whereas the FA-group solved only about eight in the average. The difference 
is that in the FT-group no peer discussions and no classroom discussions took place saving a 
large amount of time this way. Teachers from the FT-group were allowed to answer all 
questions from the students about the clicker questions, however it was not allowed to use 
them as instructional tool. Thus, one might conclude, that not the number of questions is 
relevant for learning but rather how the questions are applied to the students. In addition and 
as mentioned above the questions from the diagnostic test and the kinematic concept test are 
quite different from the clicker questions due to their different purpose. The clicker questions 
are designed in such a way that they provide space for discussions. In contrast, the questions 
of the diagnostic test and kinematic concept test focus on the unique assignment of the correct 
answers to a single concept and the distractors to a single misconception. Thus the 
construction of the questions is in most cases quite different.  
In summary, we have presented a model of formative assessment and how it can be applied to 
concept learning in Physics. Our data revealed that indeed students learn concepts better in 
the framework of our formative assessment approach compared to traditional teaching and to 
frequent testing. One might argue that this result is obvious since the FA-group focuses on 
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concept learning and disregards solving conventional problems. However, we also have 
controlled this variable and developed a conventional test with exclusively conventional, 
numerical problems. The interesting result was that all three groups performed equally on this 
test. This would be in line with our assumption that teachers of the FA-group did not really 
focus on concept learning during instructions. Concept learning mainly took place during the 
clicker sessions. Nevertheless it is remarkable that there is no difference in the conventional 
test between the groups since the FA-group had four lessons less for the same material as the 
TT-group (Figure 2). We think that the acquired concept knowledge helps students from the 
FA-group to transfer their knowledge to new problems. In this way they can compensate for 
the missing routine they have compared to students from the TT-group in solving 
conventional problems.  
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Abstract: Researches in the teaching of Evolution indicate the association between origin and 

diversity of life and religious explanation. However, when students were encouraged to 

observe, record and analyze what they saw, there was no mention of religious explanation. In 

this work, we investigated: how far students would be committed to religious beliefs to 

explain the natural phenomena? For this, we identified and analyzed the social representations 

of students of the ninth year of elementary school and the third year of high school on the 

appearance of the first living being and the planet Earth about 4 billion years ago. The 

students belonged to a public school in the state of Rio de Janeiro, Brazil, with the absence of 

an infrastructure (laboratories, educational teaching resources and teachers) and located in a 

social context where churches, especially evangelical, had strong social and doctrinal action 

of the search context. The methodology used was the analysis of the Collective Subject 

Discourse (CSD). The speeches revealed that when asked about the phenomenon of life, the 

religious creationist explanations (the creation of Adam and Eve) were the most remembered. 

However, when asked about the conditions of the planet Earth about 4 billion years ago, that 

is, a world “without life”, they remembered more about scientific explanations of evolution 

and the lack of technological artifacts that are present in today's world (“Electricity, homes, 

work, etc.”). The present results suggest that, in the absence of religious references to natural 

phenomena, religious beliefs are not expressed. The results of this study allow us to highlight 

the importance of this scenario and the exercises for the students to practice science. In other 

words: when students learn through scientific procedures, such as observation, recording and 

analysis of phenomena, religious explanations are less expressed. 

 

Keywords: science education; theory of evolution; social representations. 

 

INTRODUCTION 

Researches in the evolution’s teaching (Costa et al. (2011), Rice & Kaya (2012) and Vieira & 

Falcão (2014)) indicated that the idea of the divine creation of species or "intelligent design" 

explanations are used to replace the "chance" concept in the evolutionary process.  

Analysis of these results brings an issue facing teachers: the association between origin and 

diversity of life and religious explanation, which idea of an omnipotent creator would pervade 

in the Western World. However, when students were encouraged to observe, record and 

analyze what they saw, there was no mention of religious explanations (Nehm & Reilly 

(2007), Stears (2012) and Vieira & Falcão (2013)). This observation led to the question: to 

what extent students would be committed to religious beliefs to explain the natural 

phenomena? By two issues, we investigated the social representations of two groups of 

students in relation to two phenomena: one that clearly included the life (usual as an object of 

religious proselytism), and another one that did not include any reference usually mentioned 

by religious texts, like Earth would be about 4 billion years ago. The questions were: "How do 

you think the first living being appeared on planet Earth?" And “How do you think  Earth was 

4 billion years ago?” 
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Two groups of students surveyed were enrolled at the end of the first cycle (ninth year of 

elementary school) and second cycle (third year of high school) of Basic Education. These 

students belonged to a public school in the Rio de Janeiro state, Brazil, with absence of 

infrastructure (laboratories, educational teaching resources and teachers) and located in a 

social context where there were churches, especially evangelical, with a strong social and 

doctrinal action. 

 

METHOD 

Social representations are knowledge built and shared in a community, that is, opinions, 

positions, views and beliefs of a particular group on a particular topic (Moscovici, 2003). For 

the social representations analysis, we used the Collective Subject Discourse (CSD) proposed 

by Lefèvre & Lefèvre (2003). The CSD technique aims to summarize the testimony, revealing 

the social representations of the subjects of the group. In the first step, the key expressions are 

identified (KE) of each statement. In the second step, similar KE are grouped around the 

central idea (CI) that unifies. From this, the KE are articulated as a speech-synthesis and CI 

names this speech. There may be different KE similar groups, so the construction of more 

than a speech-synthesis is possible and the same subject can participate in more than a speech. 

The set of synthetic discourses expressed the social representation of the group investigated. 

RESULTS 

The religious profile (Table 1) and the collective discourse were exposed in the tables bellow. 

On the question "How do you think the first living being appeared on planet Earth?" (Table 

2), there were found the following Central-Ideas: CSD1-Creationism; CSD2- Evolutionism; 

CSD3- Compatibility and CSD4- Doubt. In relation to the question "How do you think 

Earth was 4 billion years ago?" (Table 3), it there were found the following Central-Ideas: 

CSD1- Technology and Society; CSD2- Doubt; CSD3- Evolutionism and CSD4- 

Creationism. We surveyed 44 students in ninth year of elementary school and 40 students in 

third year of high school. At the moment of the research, the both students class had studied 

evolution relative topics as well diversity of living beings (in ninth year of elementary school) 

and evolution of species (in third year of high school).  

Table 1. Religious profile of the students. 

Grade  N  Do not believe in 

God 

Believe in God 

without religion 

Evangelical  Catholic 

Ninth year of 

elementary 

school 

44  1(2%)  18 (41%)  16 (36%)  9 (20%)  

Third year of 

high school 

40  4 (10%)  9 (22%)  16(40%)  11 (27%)  

Total  84 5 27 32 20 

 

Table 2. How do you think that the first living being appeared on planet Earth? 

 Elementary school High school 

Central- Idea Ninth year Third year 

CSD1-

Creationism 

“What I know is that God created. 

It was through the hands of God, 

who created the world and all 

living beings. (...) I just have faith 

in God and believe that he created 

everything. God created Adam and 

then Eve. I do not think, I'm sure it 

“I do not think it was through Big 

Bang or monkeys, but of someone 

who created every detail. It came 

from an unbelievable manner, using 

the (...) words spoken by God. All 

creation and inspiration of God. God 

created all things. Through the dust, 
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was God who created the first 

living being”. 

N= 17 (51%) 

animals and plants were the first to 

exist on earth. It was through the 

mud. Also, the way that came to us 

was the story of Adam and Eve how 

the first humans who over there”. 

N=15 (43%) 

CSD2-

Evolutionism 

“I think there were animals. First 

the monkey, after all living beings. 

By bacteria. From a cell over the 

years on Earth. I think it came 

from the phenomena of nature. 

The first living being was when 

the planet Earth began to cool and 

emerge of oxygen, then came the 

species such as plants, animals, 

humans, etc”. 

N=8 (24%) 

“Chance, between substances and 

molecules. I believe that it was a 

lengthy process in harmonious union 

of elements of nature. I believe that 

came about through the Big Bang 

theory. With the chemical reactions 

generated by the effects of climate 

and comets. Organic matter and 

meteors coming and fused with 

substances of our planet. It was rich 

in asteroids and comets that roamed 

the planet immediately after cooling 

the Earth. Through microscopic 

beings, tiny as viruses and bacteria, 

over time, have been evolving and 

improving until they become larger 

species (...). Arose from those factors 

necessary for the existence of life as 

water and sunlight to give bacteria 

that multiplied making more 

complex beings. For some genetic 

thing I can not explain. Through the 

monkey. Maybe the dinosaurs. The 

first human being alive came about 

through experience”. 

N=17 (48%) 

CSD3- 

Compatibility 

“I believe that the first living being 

was the monkey and then Adam”. 

 N=2 (6%) 

“God. He created everything from 

the Big Bang. God made a lightning 

strike which had certain elements put 

by God to generate the first life”. 

 N=1 (3%) 

CSD 4- 

 Doubt 

“I do not know. This type of 

question, I am not sure at all”. 

N=6 (18%) 

“I do not know”. 

 N= 2 (6%) 

 

Table 3. How do you think that Earth was for 4 billion years ago? 

 Elementary school High school 

Central- 

Idea 

Ninth year Third year 

CSD1- 

Technology 

and Society 

“I think we did not have any kind of 

education, school, and health. People 

who caught plant and made his own 

medicine, etc. There was no kind of 

technology. I think the earth was 

dominated by people from the 

medieval century and by those who 

“Unlike today because there was 

no technology that exists today. 

(...) Old, dry, different clothes. 

Time, different hair, different 

ways of being. There was not 

anything neither than today's 

technology. It was quite different. 
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wrote the bible. I think there were 

romans among others. (...) And for 

me, also, a thousand times better that 

the animals led the planet and not the 

man. I think it was lagging behind 

today as technology, electricity, 

homes, work, etc. Years of horrible 

caves, without light, without anything 

to have fun without technology”. 

N=10 (32%) 

Everything from the humans to 

the animals. I believe that the way 

of life of human and species were 

unique to the present day, without 

form and void”. 

N= 4 (15%) 

CSD 2- 

Doubt 

“I do not know, I have no idea, I do 

not think about it. (...) I have no idea 

what it was like we were all up as we 

are, but well evolved”. 

N=7 (22%) 

“I do not know. I have no idea”. 

 N= 4 (15%) 

CSD3-

Evolutionism 

“For me, I think there were only 

animals that were quite different, 

rocks, few species of life and water, 

there were no humans. I think it was a 

very hot place with many volcanoes. 

An empty place with many species of 

plants, forest, a forest with no life. (...) 

There were rivers, oceans. But it did 

not have much water and the other 

half was just some land. With 

dinosaurs and active volcanoes and 

therefore it did not have much life and 

vegetation. I think there was some 

land, Walloon, etc. and more animals 

than today”. 

N= 14 (45%) 

“I think the species were still 

being formed. The very earth's 

crust would otherwise be a single 

continent, Pangea. In fact, there 

are many other animals. (...) There 

were species that today there are 

more like dinosaurs. In my theory, 

the dinosaurs had dominated most 

of the Earth with little space for 

mammals. I think it was the 

dinosaurs, where humans could 

not live. Over the years and time, 

Earth was developing gradually 

these species were extinct. Full 

tree, a more natural environment. 

An empty planet, with just bizarre 

beings. Period Pre - carbon, 

uninhabitable for some forms of 

life due ace substances that were 

in the water and soil. Deserted, 

only with animals, water, etc. 

Rich in oxygen, water, animals 

and plenty of deserts and forest. 

Based on what I've read, I think 

the Earth was covered by a dark 

smoke (CO2) with huge trees and 

giant animals. It was a grotesque 

planet where there was little 

diversity, few living beings. 

Uninhabitable atmosphere where 

there was the heated water and 

stains on Earth”. 

N=17 (65%) 

CSD4-

Creationism 

Unexpressed speech “The earth was without form and 

void and darkness was upon the 

face of the deep, but the spirit of 

God moved upon the face of the 
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waters (Genesis 1: 2)”. 

 N= 1 (4%) 

 

 

DISCUSSION AND CONCLUSIONS 

How do you think that the first living being appeared on planet Earth? The CSD 1-

Creationism, greater adherence, is characterized by quotations from Christian scriptures 

associated with the origin of life. Example: “God created Adam and then Eve”. The CSD 2- 

Evolutionism is characterized by the quote of terms associated with scientific explanations for 

the origin of life and evolution of living beings. Example: “From a cell”. The CSD3- 

Compatibility is characterized by the attempt of the students to articulate the idea of divine 

creation with the scientific explanations. Example: “God. He created everything from the Big 

Bang”. Note that there was more use of terms and scientific explanations among high school 

students. The CSD 1- Creationism in high school group, students reported scientific terms to 

reject the evolution. Example: “I do not think it was through Big Bang or monkeys”. Among 

this group, the CSD2- Evolutionism had better adherence (48%). On Primary Schools, this 

speech had adherence of 24%. 

How do you think Earth was 4 billion years ago? The CSD3-Evolutionism, greater 

adhesion, is characterized by the citation of terms associated with scientific explanations. 

Example: “active volcanoes”. The CSD 4- Creationism, lower adhesion, is characterized by 

quotations from Christian scriptures. Example: “(...) the spirit of God moved upon the face of 

the waters”. The CSD1-Technology and society is characterized by the importance given to 

the absence of technological artifacts and lifestyles of today's society. Example: “Electricity, 

homes, work, etc”. The CSD1-Technology and society reflects the reality of young students of 

both groups heavily involved with the technologies of modern life, such as mobile phones, 

tablets, TV and intensely stimulated by information, images and different forms of 

entertainment.  

The results analysis indicates that when asked about the origin of the first living being, 

students remembered most religious explanations. Example: “God, who created the world and 

all living beings”. These explanations were presented constantly by pastors and priests and 

also by family via biblical texts (Genesis). 

When asked about the conditions of the planet Earth in 4 billion years ago, that is, a world 

“without life”, students hardly expressed religious explanations. Students remembered more 

scientific explanations and lack of technological artifacts that are present in today's world. 

Examples: “many volcanoes” (CSD3-Evolutionism); “(...) with nothing to play without 

technology” (CSD1-Technology and Society). The creationism (CSD 4) was very low 

membership, just a high school student joined and made the use of biblical quotation “(...) the 

spirit of God moved upon the face of the waters (Genesis 1: 2).” 

The results suggest that in the absence of related terms used in religious proselytism to 

exemplify natural phenomena (eg, creation of life, living beings, man and  woman), that 

would have been objects of divine action, religious explanation are not expressed. In the case 

of the planet Earth in 4 billion years ago, religious beliefs were hardly remembered or applied 

for the construction of speeches, suggesting that religious influence among students has 

limits.  

Usually, in the classroom, the evolution and origin of life are shown speculatively. In this 

context, science does not stand out or is not expressed and religion is easily remembered. The 

present results allow us to highlight the importance of the school environment that effectively 

includes spaces close to the scientific activities of contexts and to promote among students, 

the practice of science. This research reinforces other studies, which suggests that when 
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students learn through the exercise of procedures such as observation, registration and 

analysis of phenomena, religious explanations are less expressed. 
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Abstract: In the context of a road accident prevention program for students aged 16-18, 

conducted by the state police of North Rhine-Westphalia in Germany, a physics lecture was 

developed to change students' beliefs about road safety. The lecture consisted of different work 

assignments (computer simulation as well as pencil and paper worksheets) for small groups of 

students, all about various physical aspects of road traffic. This lecture was evaluated in a Pre-

Post-Design, just before the prevention program, two weeks later and three months later. The 

results showed that a significant change in students' beliefs in a desired direction occurred. 

Keywords:  Physics education, road safety, accident prevention, authentic context, authentic 

assessment 

 

INTRODUCTION 

An important part of the german curriculum is for students to acquire several competencies 

(MSW, 2013). The areas are content knowledge, nature of science, communication and 

evaluation. In the area of communication competencies, this includes discussions in the 

classroom, interacting with data and the presentation of ideas. Evaluation competencies are 

judgement capability with regard to social demands, rational decision-making and to find their 

own opinion and defend it. 

Also, to further emphasize the real-world meaning of the subject of physics, an authentic context 

is seen as very desirable, this is also true internationally (Chang & Chiu, 2005; Duit & 

Wodzinski, 2010; Kortland, 2007). Chang and Chiu state that authentic assessments can work “to 

cultivate students' abilities such that they can apply them to the real world beyond school“ (p. 

119, Chang & Chiu, 2005). 

One of the many possibilities of using scientific knowledge to evaluate real-world problems is to 

evaluate driving habits and road safety from a scientific point-of-view: For example, the energy 

of a moving car or the shortest possible stopping distance can be calculated (Bresges, 2007; 

Bresges, 2011a; Busse, 2006; Duit, Häußler & Prenzel, 2002; Westphal, 1995). Physics of road 

traffic is also used as an example by the ministry of the education: In the area of communication 

competencies “analysis of traffic situations” and “discussing of behavior in road traffic” are given 

as examples, in the area of evaluation competencies “judging behavior in road traffic” or 

“changing own opinion about behavior in road traffic” are used as examples (MSW, 2013). 

In the context of traffic accident prevention and interested in changing common beliefs about 

road safety, a stage show for high schools was established by the ministry of the interior of the 
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state of Northrhine-Westphalia, as described by Weber and Bresges (2012). Earlier evaluations 

by Hackenfort (2013) and Bresges (2011b) (also described by Hackenfort, Bresges, Weber & 

Hofmann, 2015) showed that an educational follow-up to this stage show would be beneficial. 

Hackenfort used a three-part questionnaire to evaluate the impact of the stage show and found it 

lacking in a few instances, especially areas of subject knowledge. Bresges evaluated the process 

of the implementation of this stage show and reported a high number high school teachers who 

wanted to have am more thorough follow-up to the stage show. 

A physics lecture (as one of four different lectures) was designed to use the messages of the stage 

show (drive safely, don't drink and drive, etc.) as an authentic context. The goal was to use this 

context to see if the students change their beliefs and reevaluate their own driving habits. The 

design of this lecture and the accompanying evaluation will be covered below. Other lectures 

were designed for various teacher, as previously described by Weber & Bresges (2012, 2014). 

DESIGN OF LECTURE 

The lecture was designed to give the students the opportunity to evaluate driving habits with their 

scientific knowledge. For this reason, the lecture consisted of two parts: First, learning about the 

physics of road traffic, and second, evaluation of a real traffic accident report (provided by the 

police). The work sheets were developed after informal discussions with high school teachers and 

discussions with other experts in the field of physics didactics. The contents were chosen to 

correspond with the curricula of the state of North Rhine-Westphalia (MSW, 2013). 

The students were first divided in small groups. Then every group was assigned three worksheets 

in a random order. Each worksheet aimed to introduce one aspect of the physics of road traffic: 

The first worksheet was called “Forces in Road Traffic”. The students had to calculate the 

acceleration of a suddenly stopping car (as in a car crash) and deduce from that the force, which a 

body would experience and find an equivalent mass in normal earth gravitation (e.g. “laying 300 

kg of stones on a human body”). After that they had to calculate the force of various cars (all 

depicted on cards, see figure 1) and their energy after accelerating a certain distance.  

 

Figure 1. Example of cards (in german) 

The second worksheet was called “Thinking distance, braking distance and stopping distance – 

velocities in road traffic”. The students had various problems to solve, they calculated thinking 

distances for concentrated and distracted drivers as well as the stopping distance for an 
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intoxicated driver. The last problem was to calculate braking time and distance from a known 

deceleration rate and velocity. 

The third worksheet was called “Stopping distance and collision speed”. The students used a 

computer simulation called “Mechanik und Verkehr” (example screenshot in figure 2) to test 

their own assumptions about collision speeds (“If I am 20 km/h faster and normally would have 

stopped just before an object, which collision speed do I have?”). Also they test different cars to 

see how small the impact of better brakes or faster reaction time can be if the velocity exceeds the 

safe amount. 

 

 

 

 

 

 

 

 

 

Figure 2. Computer Simulation “Mechanik und Verkehr” 

After the three worksheets a traffic accident report is given out to all groups. The students have to 

analyze the described accident and find the reasons for this accident. To do that they have to use 

the knowledge they got from the physics worksheet. They also have to draft various ideas to 

prevent the accident, for all in the accident involved parties. After that a discussion with all 

students is conducted where the students present their analysis of the accident and should come to 

a verdict, which of the involved parties is responsible for the accident. This verdict has to be 

based on a scientifically grounded argument.  

EVALUATION 

Test design and data analysis 

The lecture was implemented in four schools. In every school the stage show of the Crash Kurs 

was performed right before the lecture. To evaluate the impact of the lecture, a questionnaire was 

given out to the students right before the stage show, two weeks after the lecture was conducted 

and three months later.  

The questionnaire consisted of four parts: 

 9 Sociodemographic questions (e.g. age, gender) 

 12 Questions about emotional, cognitive and behavioural attitudes (marked with „E“) 
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 32 Questions about threat assessment (marked with „G“) 

 14 Questions about the physics of road traffic (marked with „W“) 

 

Figure 3. Study design 

The questionnaire was modeled after the aforementioned impact evaluation of the stage show 

(without educational follow-up). By comparing the results of this previous impact evaluation and 

the described study it should be possible to see if there is an impact of the educational follow-up, 

i.e. changing the beliefs of the students more deeply. For that reason, the all items used in this 

study were also used in the impact evaluation (Hackenfort, 2013).  

Most of the questions were answerable with a rating scale, with different scales: 

- The rating scale for the attitude questions were drawn from a previous study (Holte, 1996) 

and used a 4-point scale. 

- The rating scale for the threat assessment questions were modeled after Hackenfort (2007) 

and used a 6-point scale. 

- The physics questions were drawn from Busse (2006) and used a multiple choice test 

Hackenfort (2013) used a pause of three months between Pre- and Post-II-Test, reasoning that 

this is long enough to see a lasting effect. To better compare the two studies, this time period was 

used again.  

After the first survey with three schools (209 students), the findings suggested that the students 

drew appropriate conclusions from the accident prevention point of view. In the field of the 

physics of road traffic the improvement in subject knowledge was negligible. So for a second 

survey, improvements were made in the worksheets. This was done in accordance with the ideas 

of Design-based Research (2003). The improvements were minor, e.g. connected values were 

identically colored and more appropriate values were chosen for a few of the assignments. Also, 

some explanations were slightly extended. 
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The subjects of both surveys were chosen randomly from all available schools in the state. Within 

participating schools, all students who attended the Crash Kurs NRW were subjected to both 

lecture and questionnaires.  

The study followed a “within-subjects”-design, so only the answers of students who participated 

in all three questionnaires were analyzed. To minimize the risk of false positives in the ANOVA 

(see Sedlmeier & Renkewitz, 2013) the effect size was calculated first. For an effect size 

(Cohen’s d, Cohen, 1992) smaller than 0.2, no test of significance was performed. The results of 

the ANOVA were only deemed significant if p is smaller than 0.05. A post-hoc-analysis also 

determined that all significant differences had a power greater than 0.8. 

 

Figure 4. Evaluation design 

One problem was, that quite a few students participated only at one or two dates, not on all of 

them. Normally, this missing data would prompt a case-deletion. According to Sedlmeier & 

Renkewitz (2013), this is a suboptimal strategy, especially for data not missing completely 

random. The Little-Test (Little, 1988) was used to determine this. The results of the Little-Test 

suggested that the missing cases should be simulated with an imputation method. The EM-

Algorithm was chosen as this imputation method; it generates the missing values by creating 

mathematical models for the whole data set. A more in-depth explanation for this algorithm is 

detailed by Dempster, Laird and Rubin (1977). For even better comparison, the data was 

analyzed both with and without the simulated cases. As noted by Weber (2015), the difference is 

not that big, it mostly underlines the following results. For that reason, this second evaluation is 

omitted here.  

Test results 

For all 68 questions, results were calculated, using the aforementioned methods. The following 

examples should give an insight in the current findings. For all questions only the difference in 

the long-term survey (from Pre- to Post-II-Test) were interesting, the short-term effect was 

always bigger, for the study, long-lasting effects were deemed more important to estimate the 

long-term change in students’ belief.  

In Figure 5, the accident probability (as estimated by the students) for drivers in general is shown, 

in this case from the first survey (“1” was a low accident probability, “6” a high one). The 

students were asked to assess this probability for various traffic situations (G1-G8) as part of the 
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questions about threat assessment (see above). The figure shows, that after the educational follow 

up a significantly higher estimate of accident probability (significance marked by *) for the 

situation G5, “driving like you always do”, with a Cohen's d of 0.3 (found in parentheses) can be 

found. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Estimated accident probability 

In Figure 6, two significant changes in the student’s estimation about their personal ability (again, 

“1” means low ability and “6” means a high one) to prevent an accident can be found. The first 

one is in the situation G3 (“under the influence of a little amount of alcohol”), with a Cohen's d of 

0.39 and the second one in situation G6 (“at night on a trunk road with a speed of 140 km/h”), 

with a Cohen's d of 0.27.  

 

 

 

 

 

 

 

 

 

 

Figure 6. Estimated ability to prevent an accident 

Strand 1 Learning science: Conceptual understanding

235



 

 

In Figure 7, answers to questions about subject knowledge (marked with “W”) from the second 

survey are shown. To answer the questions W2.1 and W2.2 correctly, the students had to 

understand that doubling the velocity of a car means quadrupling the braking distance. The 

students give significantly higher answers, with a Cohen's d of 0.45, resp. 0.28. 

 

Figure 7. Various questions about physics 

Almost every significant change was a change in the intended direction (except G.6.1 in Figure 

6), the students reevaluate their personal beliefs about road safety and change them, they also 

change their understand of road physics. In the following table, which depicts every significant 

change in both surveys, such (beneficial) changes are marked green and changes which were 

significant, but in an unintended direction, were marked red (the questions are marked with “E”, 

“G” and “W”, see above). 

Table 1. Table of all significant changes 

As can be seen in table 1, there are a lot of “green” changes in the first survey. This is, from an 

accident prevention point of view, a good thing. The changes in the answers to physics subject 

Question Schools 1-3 School 4  Question Schools 1-3 School 4 

E2 0,19 0,33  G_6_1 0,27 0,21 

E4 0,20 0,20  G_6_3 0,10 0,48 

E7 0,04 0,39  G_7_2 0,02 0,32 

E9 0,23 0,06  G_8_4 0,21 0,26 

G_2_3 0,01 0,40  W_2_1 0,19 0,45 

G_2_4 0,27 0,22  W_2_2 0,07 0,28 

G_3_1 0,39 0,05  W_4_2 0,20 0,15 

G_5_3 0,30 0,31  W_5_c 0,19 0,56 

G_5_4 0,13 0,44     
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questions (marked “W”) are very small or even negative. That prompted the afore mentioned 

change in the worksheets (see above). As can be seen in the table, the changes in the physics 

questions are much stronger and significant. At the same time, a lot of the other changes either 

have a smaller effect size or even point in an unintended direction. 

To understand this and before a comparison to the results of Hackenfort (2013) could be drawn 

the sociodemgraphic data was examined further. This revealed a difference in age distribution 

and driving experience between the two surveys. 

 

Figure 8. Age distribution in first (left side) and second (right side) survey 

 

Table 2. Driving experience 

 

 

 

As can be seen in Figure 8 and Table 2, the students in the first survey were on average 1-2 years 

older and 70% either had a driver’s license or were in the process of getting one.  

Driving experience 

(first survey) # 

Relative 

number 

No drivers license 63 30.1 % 

Getting formal drivers 

education 63 30.1 % 

Obtained in 2012 7 3.3 % 

Obtained in 2013 31 14.8 % 

Obtained in 2014 45 21.5 % 

Driving experience 

(second survey) # 

Relative 

number 

No drivers license 59 90.8 % 

Getting formal drivers 

education 6 9.2 % 
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CONCLUSION 

Firstly, a comparison with the results of Hackenfort (2013) (also presented in Hackenfort et al., 

2015), shows that the changes in the first survey are more pronounced. Considering that the state 

police uses the same stage show this leads to the conclusion that the educational follow-up has a 

stronger impact than the stage show alone. 

This is an important conclusion as it leads to a broader application of physics lessons outside of 

schools, which is what the core curricula of the ministry of education (MSW, 2013) tries to 

promote. Also the questions about attitudes and threat assessment were selected to give an insight 

in a possible improvement of competencies in the areas of communication and evaluation 

(Weber, 2015). The positive change in the students’ answers suggests that this lecture is not 

something extracurricular, but that it fits in the normal school curriculum. 

Secondly, the second survey demonstrates that this impact can be a lot less pronounced in certain 

situations. In this case, the students received an improved version of the worksheet (which shows 

in their answers to the physics subject questions) but especially in the area of threat assessment 

the students seem to change in an unintended way. This could stem from either a change in the 

stage show or the worksheet. The stage show has a remarkably stable impact (Hackenfort, 2013) 

and all changes in the worksheet were not in an area which could yield such a change. This leads 

to the conclusion that the students in the second study were a little bit too young and 

unexperienced. As the afore mentioned authors (Bresges, 2007; Bresges, 2011a; Busse, 2006; 

Duit, Häußler & Prenzel, 2002; Westphal, 1995), who all promoted road traffic as an authentic 

context, made no mention about the age of students, this is a concern. Authentic context is an 

important part of modern physics education, so every authentic context should be chosen 

carefully. For that reason, it seems only prudent to thoroughly investigate this particular context 

for its feasibility in school lessons. 

Further research should also focus on the ability of this physics lesson to change student’s 

abilities to think about road safety without the context of the police stage show. Also, it would be 

interesting if the last part of the lesson were a news report and not a police report. Especially as 

news reports are often written in a more unclear way than police reports. Equally interesting 

would be to see if physics lessons like this are only important for german high schools or if there 

is an opportunity to implement this in more european countries. 
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Abstract: The biological theory of evolution (ToE) is fundamental knowledge for 
understanding modern biology. That is why it is important that it is taught from an early age 
to avoid misconceptions. Biological evolution is taught in various school levels worldwide 
but, it is complex knowledge. This topic, by the nature of its knowledge, is particularly 
exposed to confrontations with the ideas belonging to the public domain and beliefs 
influenced by cultural factors. In this communication, we analyse the place of the ToE in the 
French curriculum and we test the relationship between secondary school pupils and the 
knowledge “Evolution”. In France, the idea of evolution of living species is introduced in the 
curriculum using the idea of unity and diversity of living things and the phylogenetic 
classification. It is explicitly approached toward the end of compulsory lower secondary 
school. A written questionnaire submitted to secondary school pupils (K6 to K9) enables us to 
study their conceptions about the evolution of the living species. The study shows that 
secondary school pupils have knowledge about biological evolution but it reveals a mixed 
conception between “Pro-évolutionnist” and “Trans-mutationist” conceptions. The “trans-
mutationist” conceptions are still very present in K9 students to explain the mechanisms of 
evolution. This conception constitutes a real obstacle to learn the ToE because it totally 
excludes the idea of randomness. This can be a major obstacle to the acquisition of real 
evolutionary thought. This research calls to explore the effect of introducing the idea of 
randomness earlier in school. 
Key-words: compulsory school - biological evolution – pupils’ conceptions 

 

INTRODUCTION 
Teaching the evolution of living species is today at the heart of many studies from primary 
school to university (Carette et al., 2013; Coquidé & Tirard, 2009; Gobert, 2014). This can be 
explained by its fundamental importance in modern biology that pushed toward new ways of 
thinking biology for the last two hundred years, and showed many developments more 
recently with the development of molecular biology. It is also a controversial topic when it 
comes to religious beliefs. Many countries face strong anti-evolutionary movements and 
creationists lobbying (Committee on revising Sciences and Creationism, 2008; Holliman & 
Allagier, 2006). In some cases, these beliefs even become obstacles to learning this concept 
(Basel et al., 2014; Foster, 2012; Reiss, 2014). As a consequence, it is also a delicate object of 
teaching. It is complex and involves another way of thinking science. Moreover, strong 
beliefs held by students may impede their learning of the evolution of life. The aim of this 
research is to explore the evolution of students’ conceptions throughout lower secondary 
school in France. It follows a study done in French primary schools (Jégou-Mairone, 2011). 

Students’ evolution acceptance 
The difficulty for students to accept evolutionary ideas has been shown to be either directly 
linked to the intrinsic conceptual difficulty of the theory of evolution, or linked to non-
scientific ideas (Aroua, Coquidé & Abbès, 2013). The first type of difficulties is intrinsic 
conceptual difficulties of the theory of evolution. It concerns the dynamic of the evolutionary 
model and the related mechanisms, in particular, natural selection, complicated by its 
historical nature (van Dijk & Reydon, 2010; Smith, 2010), or the specific enquiry process of 
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historical sciences (Aroua, 2006). The second type is linked to no scientific ideas. In other 
words, students' beliefs have been shown to be influenced by cultural or sociocultural factors 
that may not be compatible with evolutionary science (Hanley, Bennett & Ratcliffe, 2014; 
Yasri & Mancy, 2014). 

Conceptions of primary and high school students 
The baseline of this research is to consider what students know about evolution at the end of 
primary school and where secondary school takes them. There are few studies concerning 
primary school children and their idea about evolution (Jégou-Mairone, 2011; Campos & Sà-
Pinto, 2013). Jégou-Mairone (2011) underlines the fact that, despite the difficult nature of the 
topic, the majority of young children tested in France accept the idea of evolution. 
Furthermore, they have effective knowledge on some facts of evolution, in particular, 
concerning emblematic figures such as dinosaurs, mammoths or humans. This idea of 
evolution is mainly expressed in the form of “creation + evolution”. In this case, children 
build a mixed conception where they consider first a “creation of species” and then an 
evolution of these species. This idea becomes predominant in schools where religious 
education at home is also very present. Therefore, the study highlights the strong influence of 
extra-scholar institutions, in that case, the family, on children's answers. Very often they 
mention God to justify their choice, although creationist ideas are rarely found. The 
dominance of a model of the type “creation + evolution” stresses the need for children to 
develop their own understanding taking the form of a compromise between both institutions 
around them (family and school). 
The studies concerning high school students in France show that students have several 
conceptions. Fortin (1993) reveals four types of student’s conceptions: a ‘creationist’ 
conception implying a divine intervention on the species, a ‘no-evolutionary’ conception 
which can be approach to the form ‘creation+evolution’ mentioned above, a ‘transmutationist’ 
conception which considers that mutations always have a positive consequence on a species 
and a ‘pro-evolutionary’ conception close to the actual theory. 

Evolution in French curriculum 
It is important to remind that the French context is characterized by a strong dominance of 
secular values involving the absence of religion in public education. This leads to an 
orientation of teaching evolution related to its relationship to knowledge and trying to address 
the misconceptions that might be associated to that knowledge. 
The main characteristic of French curriculum about evolution is its entry focusing on the unity 
and diversity of living species and the classification of living things. In primary school, 
children approach the idea of species by discovering the diversity of living things and to 
identify objective criteria to sort them (MEN, 2008). The idea of evolution appears in 
secondary school in K6 with the use of the phylogenetic classification to highlight the 
evolutionary history and the relationship between organisms (MEN, 2008). The introduction 
in K6 is then enriched in K7 through the study of fossils species in order to reinforce the idea 
of biodiversity and prepare an understanding of the theory of evolution. The teaching of 
evolution really becomes explicit in K9 at the end of lower secondary school (also the end of 
common compulsory education in France) with a focus on the understanding of the link 
between the classification and evolution, the construction of unique tree to represent evolution 
across the geological times, and the random changes of the mechanisms of evolution. 
From this context, we keep the idea that children in primary school have some knowledge 
about evolution. However, it can be noted firstly that they often have to merge divergent 
discourses between family institutions and school institutions, and secondly that evolution 
mechanisms are only lately addressed explicitly throughout compulsory education in France. 
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In this communication we address the following research question: what are students’ changes 
of conceptions regarding the theory of evolution throughout secondary school in France? 

METHOD 
This study used a paper-and-pencil questionnaire with 13 questions (multiple choices 
questions and open questions). Figure 1 presents two examples of questions: an example of 
multiple choices questions (n°9), and an example of open question (n°12). The questions are 
derived from a previous work of Jégou-Mairone (2011) focusing in primary school level and 
therefore the validity of the questionnaire has been tested in that context. The questions test 
knowledge that can be grouped in 3 categories: (1) effective knowledge related to extinct 
animals, (2) effective knowledge related to existing animals or humans (such as question 12 
presented in Figure1), (3) understanding of evolution mechanisms (such as question 9 
presented in Figure1).  

 Figure 1: two examples of questions. 

It was given to 71 lower secondary school students (K6 to K9) from the same secondary 
school. The school was selected because teachers were voluntary to participate and it was 
considered an exemplary case, in the sense that children attending the school have results in 
national examination that are in the national average. All the children from a same class 
answered the questionnaire with no specific selection of the children.   
Our analyses are based on the conceptions proposed by Fortin (1993). These conceptions 
allowed us to define four categories of analyses presented in Table 1 with their main 
characteristics and examples of students’ answers. As such, students’ answers were 
considered creationist when a divine origin of species was used to explain the evolution of 
species, and when they expressed no change in time of any species. A second category, 
referred to as intelligent design, was identified when children speak about a transformation of 
species over time, after a creation by god. A third category of trans-mutationist conceptions 
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was identified. It regroups ideas where a common origin of living things is expressed, with 
ideas of metamorphosis or progress. Such ideas therefore exclude the contribution of any 
random mutation in the process of evolution. Finally, children’s ideas were characterized as 
pro-evolutionists when they spoke about a common origin of living things, as well as an 
extinction of species and offered as a cause, random mutations and natural selection. 

Table 1. Links between characteristics of conceptions and pupils’ wording. 

Conception Characteristics Examples of students’ answers 
(translated from French) 

Creationist 

 

Divine origin of species 
No relation between living 
things 
No change 

God created man separately than 
animals and no change has occurred 
since. All living things are today 
exactly as they were when they were 
created. 
The first animals were the same as 
today. 

Intelligent Design  
 

Divine origin of living things 
and transformation of species 
over time 

God created the first humans and 
animals. Since then, they have 
evolved to become as they are today. 

Trans-Mutationist 

 
 

Common origin of living 
things 
No extinction of species 
Metamorphosis - Progress 
Primary role of the 
environment 

The monkeys developed to become 
real men. 

Pro-evolutionist 
 

 

Common origin of living 
things 
Extinction of species 
Cause: random mutation 
Natural Selection; second role 
of the environment 

Humans, monkeys and all living 
things are the result of a long 
evolution. 

Taking as an example the multiple choices question presented in Figure 1 (question 12), the 
answers were analyzed in the following way:  at the question « with what sentence(s) do you 
agree?”, when children answer, “Humans, monkeys and all living things are the results of a 
long evolution”, we count their answer in the category ‘pro-evolutionist’. When they answer, 
“God created humans and animals and no evolution has happened since. All living things 
today are exactly how they were when they were created”, we count their answer in the 
category ‘creationist’. And when they answer “God created the first humans and animals. 
Since then, they have undergone transformation; they evolved to become what they are 
today.”, we count their answer in the category ‘intelligent design’. 

RESULTS	

First, we counted, for each of the questions, pupils' percentage for every category of 
conceptions. Table 2 presents the percentage of answers for each category of ideas. We 
choose to present here only the results for K6 and K9 and not in all levels. This choice was 
made because it is only for these levels that a significant difference can be observed. A Mann-
Whitney’s test was used to test the significance using the ade4 package within the R software. 
The results first highlight that globally; students have mixed conceptions between 'pro-
evolutionist' and 'trans-mutationist' with few students showing creationist and intelligent 
design conceptions. We can therefore consider that a majority of students within the classes 
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tested accept the idea of evolution. There is also a significant difference between K6 students’ 
conceptions and K9 students’ conceptions. The 'creationist' conception decreases with 
students' age, and 'pro-evolutionist' conception increases. Furthermore, K6 students' 
conceptions, mainly ‘trans-mutationist’, evolve in K9 toward 'pro-evolutionist' conceptions 
(Table 2). 

Table 2. Percentages of different conceptions among K6 and K9 pupils 

 

Pro-
Evolutionist 

Trans-
Mutationist 

Intelligent 
design Creationist 

K6 34%* 41%* 5% 21%* 

K9 51%* 42% 0% 6%* 

* Mann-Whitney’s test 

Secondly, we distinguished percentages of pupil’s conceptions for each of the three categories 
of questions: (1) effective knowledge related to extinct animals, (2) effective knowledge 
related to existing animals or humans, (3) understanding of evolution mechanisms. We chose 
to present these results for each of the conceptions possible. Figure 2 presents the percentage 
of students’ conceptions categorized ‘pro-evolutionist’ according to the three categories of 
questions (questions over extinct species, existing species or evolution mechanisms). Figure 3 
presents the percentage of students’ conceptions categorized ‘trans-mutationist’. We chose to 
present only this conceptions because others conceptions were weakly represented. This 
detailed analysis of answers shows that the difference in conceptions between K6 and K9 
depends on the category of questions. Knowledge about the evolution of extinct species seams 
stable from primary school (Jégou-Mairone, 2011). In the first diagram of the Figure 2, we 
can see that the majority of pupils has a ‘pro-evolutionist’ conception when they speak about 
extinct species, as for example dinosaur or mammoths. However, the idea of evolution of 
existing species seems only accepted at the end of lower secondary school. Also, in the 
second diagram of the Figure 2, we can see that the majority of K9 pupils has a ‘pro-
evolutionist’ conception when they speak about existing species, as for example giraffe, 
unlike K6 pupils. We also note that at the end of compulsory school in France (K9), a 
majority of students do not reach the stage pro-evolutionary with regard to the understanding 
of explanatory mechanisms of evolution (Figure 2) and stay in a ‘trans-mutationist’ 
conception (Figure 3). 

 
Figure 2: Percentages of ‘pro-evolutionist’ conceptions depending on the category of 
questions. 
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Figure 3: Percentages of ‘trans-mutationist’ conceptions depending on the category of 
questions. 

DISCUSSION 
This preliminary study aims to identify students’ conceptions of secondary education (K6 to 
K9) in order to consider the impact of school curricula during compulsory education. 
Jégou-Mairone (2011) showed that students leave primary school with knowledge on some 
facts of evolution. This study confirms this position by revealing mixed conceptions accepting 
the idea of evolution with some nuances. It is accepted by K6 pupils especially for extinct 
species and more difficult in the case of existing species. This difficulty seems overcome at 
the end of lower secondary school. There is an evolution of students’ conceptions mainly in 
K9. Since K9 correspond to the end of common compulsory education in France, we observed 
that a majority of students in the sample tested leave compulsory education accepting 
evolution. 
However, despite the teaching of evolution throughout lower secondary school, K9 students 
still have great difficulties in understanding the explanatory mechanisms of evolution. The 
majority of students tested has trans-mutationist conceptions, which means that they accept 
the idea of evolution, but see it as a metamorphoses of species under a stress due to the 
environment. This result joins the works of Van Dijk & Reydon (2010) and Smith (2010). 
This trans-mutationist conception constitutes a real obstacle to learning the theory of 
evolution. Our study raises questions about the causes of the persistence of this conception. 
Since Darwin (1859), the theory of evolution evolved towards a synthetic stage. At present, 
the synthetic theory of evolution leans essentially on the fact that genetic mutations are 
random. The notion of fate appears then as being a key element of this new theory (Merlin, 
2011). Our first interpretation of that result is that students stay in a ‘trans-mutationist’ 
position because they might not take into account the contribution of randomness and in 
particular the contingency to explain the mechanisms of evolution of species. The TM 
conception totally excludes the idea of randomness and can be a major obstacle to the 
acquisition of real evolutionary thought. This research opens the way to explore the effect of 
introducing the idea of randomness earlier in school. 
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Abstract: The theory of evolution is a unifying and central theory to biology. However, 

several difficulties are identified by research in science education. In this research, we aimed 

at exploring aspects of students’ conceptual difficulties concerning the theory of evolution 

from a new perspective: the academy. Thus, we studied aspects related to controversies and 

consensus on the evolutionary theory among a group of biology research professors of a 

federal university in Rio de Janeiro so that these aspects could provide elements for 

understanding the difficulties encountered by students in secondary education. The group of 

professors are engaged in research and teaching at the undergraduate and graduate levels. The 

Collective Subject Discourse methodology, which is based on the theory of Social 

Representations, was used for data analysis. The Social Representation of the group revealed 

the existence of two distinct scientific discourses on the theory of evolution: Darwinian and 

neo-Darwinian discourses. Although these discourses reveal the influence of the subjects’ 

research activities, the propagation of these two different views on the theory of evolution 

(Darwinian and neo-Darwinian) may be associated with difficulties students find in secondary 

school. The research revealed that in the context of teacher education, the university can be 

one of the roots of the problems in the teaching of evolutionary theory in secondary schools. 

Keywords: theory of evolution, research professors, Social Representations.  

 

INTRODUCTION  

The theory of evolution is considered the central theme in modern biology since it gives 

meaning and articulates different contents and areas of this science. Explanatory contributions 

from various fields made the evolutionary theory, under neo-Darwinian basis, an empirical 

fact under any criteria. However, in the educational field its teaching still 

challenges educators. 

Researches in secondary education point to problems of various orders in the teaching of the 

theory of evolution. Difficulties related to evolutionary concepts; the presence of 

assumptions, such as religious beliefs that compete with evolutionary explanations; teaching 

materials, curriculum and flaws in teacher training have been identified as obstacles to seizing 

the evolutionary content. 

One of the most frequent problems identified in the literature is students’ difficulties 

regarding the structuring concepts of the theory of evolution (Richards, 2008). The concept of 

natural selection, central to evolutionary theory, has revealed difficulties in its understanding, 

since it requires the articulation of a set of ideas, such as "descent with modification", 

"differential reproduction" and "variability". Natural selection has also been seen as “abstract” 

by students who question its "lack of purpose", as well as lack of empirical data (Abrantes & 

Almeida, 2006; Anderson et al., 2002). "Evolution", "adaptation" and "competition" have also 

revealed difficulties as they are associated with different meanings. "Evolution" is close to the 

sense of "purpose" and "improvement" and may even mean "awareness" of the species 

involved in the evolutionary process. "Adaptation" can be misunderstood as an individual 

process of an organism and "competition" would be a violent behavior (Tidon & Lewontin, 
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2004). "Theory" has been understood as something speculative and temporary in a pejorative 

sense (Branch & Mead, 2008; Cunningham & Wescott, 2009). 

Due to this setting, the present research investigated aspects of the theory of evolution that 

could be seen as especially challenging in the educational context: difficulties related to the 

structuring concepts of the theory of evolution.  Would scientific concepts be in fact very 

difficult? Or would they be too complex or include specific difficulties, such as scientific 

controversies, which may hinder understanding for both teachers and secondary school 

students? 

To better understand this issue, we investigated the perceptions of a group of biology research 

professors regarding the theory of evolution, specially controversies and consensus, that could 

provide subsidies for a better understanding of secondary students’ problems concerning 

evolutionary theory. These professors constitute a link between the scientific production, 

undergraduate biology education and teacher training and could contribute to elucidate the 

difficulties encountered in the teaching of the theory of evolution. 

METHOD 

For this study, we selected three questions: 1. In your own words, how would you summarize 

the “basics” of the theory of evolution?; 2- What are the controversies of the theory of 

evolution and how do you see them?; and 3- What is the consensus regarding the theory of 

evolution?  

Individual interviews were held with 17 research professors of the Genetics and Ecology 

Departments of a federal university in Rio de Janeiro. All of them have contact with 

evolutionary assumptions in their research lines and work with both undergraduate and 

graduate students.  

The theory of Social Representations (SR) (Moscovici, 2003) was used as theoretical 

reference. We chose to work on this theory in order to capture, as much as possible, the 

diversity of opinions related to the investigated content. One might expect that only the 

scientific concepts related to the topic permeate the educational activities at different levels of 

education: basic, undergraduate, graduate and laboratories. However, controversial 

assessments on specific concepts of the theory of evolution, such as randomness and pace of 

selective processes of differentiation, are also found in the specialized literature, which may 

contribute to different personal views of research professors.  

We are interested in identifying and characterizing more complete views of contents that are 

possibly included in these professors’ convictions  and not only in checking the presence of 

scientific content. Since these professors may emphasize certain aspects or scientific concepts 

related to evolutionary theory, this direction is recommended. 

The qualitative-quantitative methodology of Collective Subject Discourse (CSD) (Lefèvre & 

Lefèvre, 2003) was used for data analysis.  The CSD allows us to capture the representations 

of the subjects that embrace and profess belief systems, values and actions in a typical social 

context. In order to establish the common ground group explanations, we asked professors to 

speak freely about the “basics” of the theory of evolution, exposing their opinions about its 

controversies and consensus. The CSD was built from the individual statements. The key 

expressions of all investigated subjects were grouped according to the common elements that 

they possessed and formed one or more synthetic discourses. Each CSD is appointed by a 

central idea. In the CSD, the responses of the subjects are faithfully reproduced and built in 

the first person singular since they express the collective sharing of the group on a specific 

topic.  

RESULTS 
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This section presents the collective discourses that were expressed and constructed for the 

three questions explored in this study. Next to each central idea, which nominates the CSD, 

we present the number of professors (n) and percentage (%) of adherence to each discourse, 

serving as an element to support data interpretation. The sum of the percentages obtained 

from CSD is greater than 100%. This indicates that the CSD are not mutually exclusive 

because the same interviewee can adhere to more than one central idea. The CSD was edited 

for a better organization of this paper. 

Question1 - In your own words, how would you summarize the “basics” of 

the theory of evolution?  

Figure 1 shows that four discourses were formed.  

1. The theory of evolution is presented with epistemological references - references to the 

origin, structure, status, validity and usefulness of the knowledge produced by evolutionary 

theory are presented in this discourse.  

2. Classic Darwinian Discourse - the theory of evolution is explained from scientific facts that 

support the central Darwinian mechanism: natural selection.  

3. Neoclassic discourse - the theory of evolution is defined based on neo-Darwinism: natural 

selection, genetic and ecological mechanisms.  

4. Discourse of the distinction between 'development' and 'progress' - answers that emphasize 

the common misconception of evolution meaning progress. 

1- The theory of evolution is presented with epistemological references. (n = 9 / 53%) 

It is a theory that seeks to explain why what we call biodiversity today, the multiplicity of 

forms of life, their similarities and differences. The theory of evolution explains how 

changes occur at all levels (...)The theory is much more than that: I would say that is a theory 

created in the 19th century that in essence is equal to current theory. It is a guide to interpret 

all biological data. It is the only theory with great explanatory power originated in biology. 

(...) Evolution is not a theory, it is the fact that things change. It is a forwarding of ideas. 

2- Classic Darwinian Discourse. (n=8 / 47%) 

The theory of evolution based on Darwin: evolution by descent and differential reproduction. 

All living things share a common ancestor and are getting differentiated. I would say it is the 

descent with modification: many hereditary characteristics that have different impact on the 

characteristics of organisms. (...) It is adaptation, survival of the fittest. A simple definition is 

the process of transformation by natural selection. 

3- Neoclassic discourse. (n=6 / 35%) 

The theory of evolution is a theory that explains the changes at a morphological and 

biochemical level of organisms from genetics. (...) The basic idea is that you have change in 

gene frequency (…) It has other processes: genetic drift, founder effect, random (...) 

mutation (...) The theory of evolution I basically split on a tripod: heredity, mutation and 

natural selection. (...) 

4- Discourse of the distinction between 'development' and 'progress'. (n=3 / 18%) 

Evolution has nothing to do with progress. (...) The theory of evolution is a theory of change, 

and not a theory of progress on a large scale. (...)  

Figure 1- CSD to the question “In your own words, how would you summarize the 

“basics” of the theory of evolution?” 
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Question II - What are the controversial issues of the theory of evolution 

and how do you see them? 

Figure 2 shows that three discourses were formed: 

1. Controversies are part of daily academic practices and are related to aspects of evolutionary 

mechanisms and events – this discourse refers to time, pace and the relative importance of 

mechanisms and evolutionary events. It emphasizes topics that are still being discussed and 

reviewed by the scientific community. 

2. There are no controversies regarding the theory but a lack of epistemological knowledge - 

controversies arise from peers’ epistemological ignorance. 

3. Controversies come from religions - controversies are outside academy. 

1- Controversies are part of daily academic practices and are related to aspects of 

evolutionary mechanisms and events. (n=11 / 53%) 

I think perhaps the point that is most at issue is the time in which evolution occurs. The time 

it takes natural selection to act. The rhythm. The relative importance of evolutionary events 

for evolution as a whole. We have issues where in certain species, forces are involved or not: 

if it is genetic drift or if it is natural selection. I think that these points are too specific. (...) 

One point that is very controversial is speciation. (...) The question of random. I think things 

are going very well. (...) Currently we discuss the influence of epigenetics (...) This is under 

discussion. 

2- There are not controversies regarding the theory but a lack of epistemological 

knowledge. (n=6 / 35%) 

I do not see controversial points in the theory of evolution. These are details within the scope 

of general theory. For me if we had a less scientistic attitude would be less harmful to 

science. (...) It is natural to have divergent views in science. (...) There is a lack of evidence 

for evolution: this is a limitation. Not that it invalidates, but makes room for extrapolations. I 

think the most contentious issue is the ability to test it. It's a circular thought, tautological. 

3- Controversies come from religions. (n=5 / 29%) 

It has thousands of disputes (outside academy). I can cite the origin of life, human evolution. 

Creationists are inventing pseudo controversies. One of these points is the punctuated 

equilibrium. It involves innocence and bad faith on the part of creationists when they try to 

invalidate the theory. I think among biologists there aren’t many controversies. But these 

new trends show that the evolutionary process is more complex, and this is exploited by 

creationists to criticize the theory. (...) 

Figure 2- CSD from the question “What are the controversial issues of the theory of 

evolution and how do you see them?” 

Question III - What is the consensus regarding the theory of evolution? 

Figure 3 shows that three discourses were formed: 

1. Natural selection is a consensus – natural selection is still seen as a consensus in the theory 

of evolution. 

2. The theory of evolution is a consensus although there are questions about the influences 

and dynamics of genetics - this speech highlights the importance of the theory of evolution to 

biology; however, it makes restrictions to a tendency towards privileging the Genetics area. 

3. Genetic mechanisms are a consensus - this is a very specific discourse related to the 

experience of teachers in the Genetics area. 
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1- Natural selection is a consensus. (n=8 / 47%)  

The idea of natural selection is a consensus. The general hypothesis that there is a variation 

and these variations are selected within an environment of living beings what causes  an 

increase in survival chances. (...) The leading role of the environment: the environment 

acting on the selection is a consensus. (...) Natural selection, the survival of the fittest and 

the fact that natural selection is constantly changing are complete consensus. 

2- The theory of evolution is a consensus although there are questions about the 

influences and dynamics of genetics. (n=10 / 59%)  

The theory of evolution as a whole is a consensus. (...) The speciation, i.e. also the central 

mechanism "that species evolve" is very well structured. The importance of the theory of 

evolution itself. (...) The fact that a unifying theory. (...) Some people have spoken of 

epigenetic inheritance etc. as if it were a change in theory. (...) Geneticists took over the 

theory and it sacrificed the contribution of developmental biology. Huge phenotypic 

plasticity is ignored, for example, by geneticists. (...) The evolutionary theory, in short, was 

very “geneticized” (...). 

3- Genetic mechanisms are a consensus. (n=6 / 35%)  

The genetic basis of the theory is a consensus: the incorporation of heredity through 

population genetics, the understanding of gene biochemically, gene regulation, genetic drift 

and genetic determinism. The mitochondria and chloroplasts were bacteria, the question of 

speciation: these things are well accepted. It has many well-founded things, because 

evolution is central to biology. 

Figure 3- CSD from the question “What are the consensus regarding the theory of 

evolution?” 

DISCUSSION AND CONCLUSIONS 

As Figure 1 shows the CSD to the question about the “basics” of the theory of evolution 

revealed the group’s common epistemological concerns, but they also showed a Darwinian 

and a neo-Darwinian view of evolution. Although the group shares common epistemological 

concerns, the Darwinian and neo-Darwinian CSD are mutually exclusive because professors 

adhered to either scientific discourse. As part of the methodology, the professors participated 

in a seminar. The group recognized themselves in all the results, but stressed that the neo-

Darwinian discourse was the most correct one. The expression of two scientific discourses 

would have been a consequence of different everyday scientific activity that emphasizes, for 

some, more Darwinian aspects or neo-Darwinian, to others.  

The group realized that these speeches were produced at a first moment of spontaneity and 

that they are interchangeable. But it could mean that genetic explanations are not always 

being taught integrated to evolution, as this explanation is strongly associated with a Neo-

Darwinian approach. A survey conducted with these professors’ students revealed that 

evolutionary theory was represented by students in a similar way to those of their professors 

(Mannarino & Falcão, 2011). 

Secondary school teachers are trained at the university and it is not difficult to wonder 

whether this oscillation around the integration of genetic explanations could impact future 

educational performance. It is also noteworthy that the Darwinian speech was the scientific 

discourse which had greater adherence among university students, while the Darwinian 

approach has found much more adherence with secondary school students (Valença & Falcão, 

2012). 
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As Figure 2 and Figure 3 shows as for the controversy and consensus of the theory of 

evolution, the professors showed the perception that there is no controversy related to 

evolutionary theory.  They also agree that questioning specific phenomena that have been 

discussed by scientists is a consequence of daily scientific activity, which allows the 

coexistence of competing hypotheses in search for further data and explanations for natural 

phenomena. But, it is important to mention that some aspects related to genetic mechanisms, 

such as the contradictory importance or periodicity of evolution mechanisms, were mentioned 

by the group as possible controversies because there are some current academic discussions 

related to them.   

The group revealed the consensus of natural selection and genetic explanations confirming the 

proposed analysis of the discourse on the "basics" of evolutionary theory: without ruling out 

issues highlighted by the Darwinian approach, neo-Darwinism is the basis of evolutionary 

theory. There is also the recognition that the neo Darwinian approach is the most complete 

description of biological evolution processes because it integrates the set of genetic 

explanations. 

However, there are specific aspects of biological evolution whose explanations do not need 

genetic information for understanding. This explains the two discourses encountered among 

the professors: Darwinian and neo-Darwinian. This finding reveals the contingency of 

scientific activities that were surrounding them at the moment. This data is relevant for our 

research because it offers elements to frame some educational difficulties already detected: 

students’ difficulties with the conceptual basis of the theory of evolution. Considering that 

genetics is a strong empirical basis for the theory of evolution, our results suggest that some 

theoretical gaps could be minimized with the integration of genetic phenomena to 

evolutionary explanations. 

In short, the Social Representations of the group revealed two discourses on the 'basics' of the 

theory of evolution (Darwinian and neo-Darwinian), and highlighted the role of genetics in 

evolutionary theory. If at first we sought to relate possible controversies within the theoretical 

basis of evolutionary theory to the difficulties of their conceptual understanding among 

secondary school students, we found what we call ‘false controversy’ caused by bias related 

to academic work, which possibly leads to difficulties in understanding aspects of the theory 

of evolution.  In other words, influenced by the contingencies of their research activities, 

professors valued (or not) genetic mechanisms in evolutionary explanations and this fact is 

reflected in their classroom discourse. The effect of partial or incomplete views can produce 

theoretical gaps that only hinder the understanding of the theory of evolution.  

These results suggest that expanded research on the teaching of the theory of evolution with 

different groups of research professors in other universities could help establish associations 

with the problems encountered in secondary education and expand the understanding of 

difficulties related to this essential theme in the biology curriculum. The source of difficulties 

of secondary school students regarding their understanding of the theory of evolution also has 

roots in the university, that is, in the context of teacher education. 
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Abstract: Molecular modeling is employed in the field of Computational Chemistry for 
decades. In teaching, the use of computers notably helps the development of 
visuospatial abilities as part of a system of perception of symbols that are typical of a 
field of Science.  We consider that the interaction of students with molecular modeling 
can lead to the building of dynamic tridimensional mental models, producing a richer 
conceptualization of the chemical phenomena and imbuing the students with specific 
competences and the ability of higher order thinking. Our research took as 
epistemological referential the ideas of Larry Laudan, upon which we build up our 
theoretical referential choice as it connects scientific development to the growing 
capacity to solve problems. The theoretical referential that was used in our research is 
unheard before within the field of Chemical Education, the Cognitive Networks 
Mediation Theory (CNMT). The methodological referential built also was unheard of 
and starts with the epistemology of tacit knowledge of Michael Polanyi. The 
methodology able to reveal it has the main objective to identify and comprehend the 
depictive gesture of the students (non verbal speech) by means of gesture analysis. 
Therefore, we developed a variation of the Think Aloud technique, that we hereby name 
Report Aloud, and which consists in making the student report his reasoning process 
when he was facing the challenge of the resolution of the proposed problem. The verbal 
speech was also analyzed by Speech Analysis. Our main research result so far shows 
that the use of molecular modeling allows the student to acquire a dynamic view of the 
transformations processes in molecules, helping in the consolidation of visuospatial 
abilities and allowing the students the building of a more integrated understanding of 
chemical concepts around the energy concept that, usually, are historically treated as 
distinct. 
 
Keywords: Chemical Education, Molecular Modeling, Cognitive Networks Mediation 
Theory, Computer-Based Learning, Extracerebral Cognition. 
 

INTRODUCTION 
This paper aims to describe the main results of our doctoral research that seeks to 
understand what the contributions of molecular modeling, as viewed as an extracerebral 
processing tool for learning chemistry concepts. The term molecular modeling may be 
understood as part of the chemistry that is "research of molecular structures and 
properties using computational chemistry and graphical visualization techniques, to 
provide a reasonable three-dimensional representation under a given set of 
circumstances" (IUPAC, 1997). 
The literature in the Chemistry Education field created the consensus that some 
chemistry topics are difficult to understand by students. Many concepts of chemistry 
require a cognitive joint construction of symbolic representation and microscopic 
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domains (Wu, Krajcik & Soloway, 2001). The study of chemical concepts from model 
building has been widely advocated by researchers at the Chemistry Teaching area, as 
opposed to "settle" curriculum, in which the contents are deposited without proper 
consistency (Gilbert, 2004). Therefore, the teaching of science from approaches that use 
models and modeling facilitates learning and developing scientific reasoning (JUSTI, 
2009).  
Many students still have difficulties in developing visuospatial skills, so important to 
the evolution of chemical reasoning (Wu & Shah, 2004). The use of models and 
modeling helps develop visuospatial skills. The role of these abilities have been 
reported in a consistent range of data demonstrating these skills to be the starting point 
for construction of three dimensional imagery. 

Invariably, when we try to understand the functioning of a particular object or system, 
we need to create in our brain a similar representation to the object of study and think of 
a model that explains its operation, with specific rules. The next step is to imagine that 
working model and, finally, comparing the results imagined with reality (Moreira, 
1996). Therefore, we can say we are doing a mental simulation (Monaghan & Clement, 
1999) when we have the ability to mentally imagine a model in operation. 

The term mental simulation is little explored in the literature of Chemistry Teaching 
area. However, the results of our study indicate that the moment at which a student 
interacts with a computational simulation of molecular modeling, it builds a mental 
representation analogous to the computational simulation. With that, it advances to 
build a mental model capable of explaining the operation of the simulation and starts to 
imagine in your mind this model in operation. From that moment, the student is 
conducting a mental simulation that endows greater ability to solve chemical problems. 
Specifically in relation to molecular modeling, we believe that the student create a 
mental simulation when mentally models the behavior of a given chemical system, be it 
an atom or a molecule. The results of our research indicate that this ability to "perform" 
a mental simulation gives the student a greater ability to solve chemical problems such 
that: a) unresolved problems become problems solved b) solved problems become better 
resolved. 
Given this scenario, and with the conviction of the potential of molecular modeling as a 
teaching tool, we seek to develop theoretical and methodological frameworks that allow 
us to study how students learn chemistry concepts when using the molecular modeling 
to solve chemical problems. 
 

THEORETICAL-EPISTEMOLOGICAL REFERENCE 
Among the rationalists and those who attribute a more social approach to the 
construction of scientific thought, we decided to choose Larry Laudan, linking the 
scientific development of the growing problem-solving skills, as an Epistemological 
Referential, since problem solving is the basis of our educational activities with 
molecular modeling. Furthermore, we use as a theoretical basis a unique reference for 
the field of chemistry teaching, CNMT – Cognitive Networks Mediation Theory (Souza 
et al., 2012). The most interesting premise of CNMT for our research is that the brain 
seeks external instruments able to complete its natural limitations of information 
processing. This mediation process results in the acquisition of a representational 
competence arising from the construction of new representations and drivers, greatly 
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increasing the ability to process information in the brain. The CNMT is easily 
associated with Laudan’s epistemology of problem solving (Laudan, 2011), which 
categorizes scientific problems as unresolved (previously), solved or anomalous. 

In addition to the epistemological framework of Laudan, which underlies the choice of 
the theoretical framework, we also consider important to present the epistemology of 
Michael Polanyi (Polanyi, 1958) to underpin our methodological choice. Polanyi brings 
up the concept of tacit knowledge, implicit and inherent to each subject. And the 
implicit knowledge of our focus of attention, the construction of Polanyi are important 
in order to justify the methodology of gestural analysis as the main tool to uncover this 
implicit knowledge. Depictive gestures that we normally do when we are explaining 
how to solve a problem, as a rule, reveal the implicit knowledge used in solving the 
problem. Figure 1 shows a schematic of the theoretical and epistemological frameworks 
used.  

 
Figure 1: Theoretical and epistemological framework of the scheme used in the research. 

 

CNMT, as a theory, built a set of concepts that draws our attention to the "external 
mechanisms of mediation" and "internal mechanisms of mediation" - bringing a 
different perspective when it comes to consider the so-called extra-brain cognition. In 
fact, the starting point of the construction of these concepts is the fact that the usage of 
electronic devices is made possible by a mediation process. So, it is natural to infer that 
these devices become external mediation mechanisms and that internal mechanisms are 
built by the subject over time and with the need to acquire new skills for the use of these 
devices. 
These internal mechanisms are what make possible the use of external mechanisms and 
are called by the author of CNMT drivers, weaving an analogy to computing itself to an 
approach based on computer-brain metaphor of cognitive psychology (Bruner, 1983): 
It is reasonable to assume that the internal mechanisms mediating function by producing a shell, 
or a 'virtual machine' that 'mirror' or 'represents' the external mechanism. This is a process 
necessary for establishing an interface between the brain and brain extra mechanism, but also 
allows, to some extent, a "emulation" at least part of external mechanisms in question. It 
follows, therefore, a partial internalization of external mechanisms, which helps explain why the 
skills remain increased even when external mechanisms are absent. (Souza, 2004, p. 81-82) 
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Vasconcelos and Oliveira (2012) made a categorization of the different mental 
representations, which highlight the similar mental representations, which are linked to 
concrete images and are called analogous or imagistic to be similar to the objects we 
perceive in our daily lives. These are imagistic mental representations we have special 
interest in this research, because these representations translate tacit knowledge of 
students.  
Reading the context of our research under the CNMT referential, when students are in 
extra cerebral mediation process with a computer simulation of molecular modeling, 
imagistic mental representations analogous to the simulation of content are created in 
the cognitive structure of students. The creation of these representations occurs from the 
process of acquisition of specific drivers. Some of them are necessary for the student to 
interact with the external mechanism, comprising its functioning. But there are other 
drivers that are formed in this process from the time the student may understand the 
operation of the simulation and begins to interact with its scientific content so that new 
knowledge is acquired. The identification of these drivers is the objectives of our 
research. 
 

METHODOLOGY 
The research methodology, also unprecedented for the area, was built performing four 
separate experiments: two pilot trials and two definitive experiments. For such, the 
starting point was the combination of the epistemology of tacit knowledge of Polanyi 
(Polanyi, 1958) with the gesture analysis (Clement & Stephens, 2010; Monaghan & 
Clement, 1999), for unraveling the non-verbal speech of students; and the discursive 
analysis (Galiazzi & Moraes, 2011), to evaluate these verbal speech. Tacit knowledge is 
the fundamental basis of analysis, along with explicit knowledge student speech during 
the interviews. For this article, we shall use data from two definitive experiments. 

When faced with a problem-solving activity, the student will evoke a set of previous 
knowledge, and many of these are tacit. The analysis of tacit knowledge, which is 
presented as mental images, is not realized if it is not transformed into explicit. Thus, 
tacit knowledge is transformed into explicit by specific elements, direct and indirect, of 
student speech, especially in the form of descriptive gestures. 
The methodology thus constructed is framed in Figure 2. 
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Figure 2: Description of the methodological procedures. 

 

Upon finishing the molecular modeling activity, where students construct and perform 
the simulations, each student must make an assessment on the level of convergence 
between the modeling result and the mental modeling previously made to the 
simulation, performing reflection on the possible differences.  
The Report Aloud protocol, developed by us for this research differs from Think Aloud 
protocol only when the researcher seeks to understand the students' reasoning process to 
solve problems. While the Think Aloud method exploits the thought processes of 
students in the act of solving the problem, the Report Aloud method does after the 
student has already solved the problem. Thus, there isn’t interference of the researcher 
in the student's own thinking process. 
 

RESULTS  
After conducting two pilot tests and two definitive, we chose to present in this paper the 
most representative result arising from each of the definitive and unprecedented 
experiments to the area. The first definitive experiment was carried out with six 
graduate students in chemistry and had the following methodological sequence: pre-
modelling individual test; modeling; post-modelling individual test and interview. The 
pre- and post-modeling tests had thirteen questions that addressed the content of the 
simulations, namely: molecular geometry, molecular polarity and dipole moment, 
conformational analysis; organic reactions (nucleophilic substitution of second order 
and Diels-Alder). 

From the first definitive experiment, we bring the concept of dynamic vision of the 
transformations, as shown in Figure 3, below. 
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Figure 3: Results of research arising from the first definitive experiment.  

 

In general, we may say that the use of molecular modeling software allowed students to 
gain a more dynamic view of the transformation processes present in the molecules that: 
a) helped in the consolidation of visuospatial abilities of students and b) gave the 
opportunity for students to build a more integrated view of concepts that, as a rule, are 
treated separately. That enchainment creates the conditions so that the student may 
develop higher-order thinking processes (Kaberman & Dori, 2007). 
Figure 4 shows a sequence of depictive gestures performed by the students in the 
interviews.  
 

 
Figure 4: Descriptive gestures involving nucleophilic substitution reaction mechanism of the second 

order (SN2). 

 

Descriptive gestures present in Figure 4 were made by students in both definitive 
experiments to explain how students solve a chemical problem associated with the 
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classic SN2 reaction mechanism in which there is inversion of configuration of the 
hydrogens of the methyl chloride caused the replacement of the ion chloride for the 
bromide ion in the molecule. We stress that the first definitive experiment was 
performed with undergraduate and the second high school students. In both cases the 
depictive gestures in this interview were the same. 

This research result was very striking, because high school students reported in their 
pre-test to have no idea how the mechanism of this reaction occurred, especially the 
inversion of configuration. Upon completion of the simulation of molecular modeling, 
all managed to mentally simulate the steps of the mechanism, building the dynamic 
vision of transformation and thereby developing higher-order thought processes. In the 
interview, we clearly see that there was imagistic gaps in the students that were 
somewhat completed by the usage of the molecular modelling software, allowing them 
to make use of the concept of energy in an integrated manner. 

From the second final experiment, we bring an important contribution on the concept of 
learning as outlined in Figure 5. The second definitive experiment included six students 
of a technical course in chemistry and had the following methodological steps: pre-
modelling individual test; pre-modeling interview; modeling; post-modelling individual 
test; post-modelling interview. The tests contained nine questions that addressed 
theoretical aspects of chemical concepts used in the simulations. The contents addressed 
were: molecular geometry, molecular polarity and dipole moment, conformational 
analysis; organic reactions of SN2 type. 

 
Figure 5: Results of research arising from the second definitive experiment. 

 

All along the path in this study, we observed that, in the extent that the molecular 
modeling is used as a teaching tool, students create multiple representations and begin 
to transit between these multiple mental representations about the same object or 
phenomenon according to the need or convenience. 

The use of multiple representations endows students with a broader theoretical tools and 
representational competence whose direct consequence is a better problem-solving 
capacity. When a student solves a scientific problem that was, to him, considered 
anomalous, as it was not possible to be solved with the knowledge that he had, he is 
then regarded as a solved problem from the competence gain acquired by molecular 
modeling tools. Even problems that were considered as solved, in some cases, were 
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viewed as better resolved from an information processing gain afforded by interaction 
with molecular modeling, as shown in Figure 6.  
In this example, we bring answers of two students from the second definitive 
experiment, the student could not answer the pre-test modeling to a question requesting 
an explanation of the mechanism of the SN2 reaction. After performing molecular 
modeling, the student could solve the problem in the post-modeling test, which ceased 
to be anomalous to be a solved problem. The second student presented in the pre-test , a 
poor and wrong representation of the geometry of the carbon tetrachloride molecule, 
whereas in the post-test test, we identified a substantial representational and conceptual 
improvement.  
For the student, the problem in the pre-test modeling was resolved. However, after 
performing the simulation of molecular modeling on the representations of the 
molecular geometry, the student clearly improves its theoretical tools and starts to solve 
the problem with representational and conceptual gain, as it changes the geometry to the 
correct octahedral grouping and draws a representation of connections out of the plane. 
 

GENERAL CONSIDERATIONS 
Mental images are fundamental to the understanding of the phenomena studied, as we 
believe it is not possible to solve problems without the student building mental images. 
They are the starting point, that allow students to construct a dynamic vision of the 
transformations. This dynamic vision of the molecular transformation process seems to 
lie mainly in the dynamic view of the chemical transformations, in filling in imagistic 
"gaps" - particularly with regard to the transition states and their relation to existing 
images - and the integrated use of the concept of molecular energy. 

 

 
Figure 6: Comparison of problem solving between the pre-test and post-modeling modeling. 
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These factors allow the student to construct mental simulations of chemical 
transformations and model these transformations. Moreover, students cognitively 
recognize that molecular modeling is the tool of choice for the investigation of chemical 
processes unknown to them. 
From this point, the student may begin to realize, for example, that there is a close 
relationship between the structure of matter, its properties and energy. With proper 
guidance, the student is able to start building integrated concept of energy and think in 
terms of molecular modeling, developing high order thinking skills. 
After long immersion in the search results and the theoretical constructs of 
epistemology of problem solving of Laudan and CNMT de Souza, we may define that 
learning is a competence gain through the acquisition of new representations and 
drivers, in the direction of a greater capacity for problem solving. 
Both problems already considered resolved, as unresolved problems; both simple 
problems, as the more complex problems. In this case, the student tends to adopt this 
new concept to realize that it is more effective in solving problems. This fact, to 
Laudan, is one of the landmarks of scientific progress and, for us, one of the landmarks 
in science learning. 
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Abstract: The handling of data in scientific laboratory work and in the learning of science 

always also involves the consideration of the data’s limited precision. Yet, both school 

curricula and teaching practice often neglect the explicit reflection on it, even though 

experimental work is seen as a fundamental part of teaching science. Secondly, teaching 

practice mainly refers to the traditional frequentist approach of error analysis that holds a 

considerable amount of mathematical inconsistencies. The modern recommendation of the 

ISO-Guide to the Expression of Uncertainty in Measurement (GUM), offers an alternative 

approach that is founded on a probabilistic, Bayesian informed interpretation of measurement. 

It represent the information gained from measurement in terms of probability density 

functions (pdfs) over an interval of values that can reasonable be attributed to the measurand. 

Values for the best representative and for the width of the interval can be derived to 

characterize the distribution. Over the past ten years considerable approaches have been 

developed for the teaching of measurement uncertainty with respect to GUM for both 

university and secondary education (e. g. Buffler 2008, Heinicke 2012, Hellwig 2013). To 

support a holistic understanding of the nature of measurement data and uncertainty and the 

propagation of uncertainty, however, we found that it is necessary to illustrate how the 

intervals or pdfs of the input quantities actually form the width and shape of the resulting 

distribution for the quantity under consideration. Based on our studies that assessed both 

students’ understanding of data evaluation as well as their ability use probability 

representations, we developed a software that graphically transfers pdfs of input quantities via 

a given equation into a pdf for the desired quantity. The software was tested with both 

university students as well as secondary graders. The software and results of the testing will 

be presented. 

Keywords: measurement uncertainty, error, probability, introductory laboratory, data 

evaluation 

INTRODUCTION 
Taking readings and evaluating data in the science laboratory will always include a 

consideration of uncertainty, i.e. the limitations to the reliability of data. Unfortunately, error 

discussion or error analysis is commonly received as a time-consuming and dispensable 

effort with respect to the knowledge gain it offers. On the contrary, a consideration of the 

error (or uncertainty) of data indeed holds valuable information about the measuring process 

and the result obtained and would have to play a role in any experimental decision during the 

process of measuring. Taking different experimental situations into account, Figure 1 shows 

that uncertainty has to be taken into account for any of the required decisions: If a reference 

value is given (as it commonly is the case in introductory laboratory courses) only a 

consideration of the results’ uncertainty will enable the observer if the result obtained and the 

target value are in agreement. The same is true, when two different groups compare their 

results as pure point-like numerical values cannot be compared without reference to some 

measure of tolerance. Further, uncertainty decides about the number of adequate numerical 
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figures when noting a result or indicates if a repetition of measurement would offer valuable 

information. 

 

The consideration of uncertainty however, reaches far beyond the laboratory. In our day-to-

day lives we are surrounded by data that demand interpretation but that usually do not come 

with information about their reliability. Scientific literacy here denotes a competence needed 

for a critical participation on society‘s issues.  

Thus, the handling of data in scientific laboratory work and in the learning of science always 

also involves the consideration of the data’s limited precision – explicitly or implicitly. 

Traditionally, this limited precision is called error and its handling error calculation. Yet, the 

traditional frequentist approach to error analysis holds a considerable amount of mathematical 

inconsistencies and experimental loopholes (Heinicke 2012). Different studies over the last 

three decades (e.g. Seré and Larcher (1993), Lubben and Millar (1996), Buffler et al. (2001), 

Garratt et al. (2000)) have offered valuable insight into the concepts of students concerning 

the handling of measurement data and uncertainty and their resulting struggle with the 

traditional approach. They have informed a number of new approaches to the introductory 

laboratory to help students overcome some major difficulties concerning their understanding 

of the mathematical methods involved. In consequence, considerable approaches have been 

developed lately for the teaching of measurement uncertainty for both university and 

Figure 1. Experimental situations where a decision has to be made that requires the 

consideration of uncertainty. 

Figure 2. Examples of data in our day-to-day lives that demand a consideration and 

interpretation of their uncertainty. 
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secondary education (e. g. Buffler 2008, Heinicke 2012, Hellwig 2013) that implement an 

alternative approach to data handling in terms of the ISO-Guide to the Expression of 

Uncertainty in Measurement (GUM). 

The GUM was published in 1993 as an alternative to the traditional approach by the JCGM. 

While it has found its way into applications of scientific research and technology it is still 

largely unknown in science teaching both at school and university level. In contrast to 

traditonal error analysis, the GUM’s approach is founded on a probabilistic, Bayesian 

informed interpretation of measurement and the nature of measurement data and represent 

information gained from measurement in terms of probability density functions (pdfs) over an 

interval of values that can reasonable be attributed to the measurand. Values for the best 

representative and for the width of the interval can be derived to characterize the distribution 

of possible values. For example, the gravity acceleration g can be established by measuring 

both length l and the periodic time T of a pendulum. Supposedly, T is measured a number of 

times and the datas’ distribution can best be represented by a probability density function 

(pdf) as shown in the first example in Figure 3. The length l of the pendulum may have been 

measured once and its result represented in terms of a triangular distribution as shown in the 

second example of Figure 3. Quantities like the best value or its uncertainty can be derived 

from the pdfs by reaching an agreement about the best representative and a standardized 

measure for its uncertainty (e.g. taking the mean or mode and a standard uncertainty to a level 

of confidence of e.g. 68%). 

Likewise, a study on the correspondence between the reasoning on and reasoning in action 

showed, how the theoretical reasoning about data evaluation and error handling in many cases 

differs significantly from the actual performance of students when it comes to real laboratory 

exercises (Heinicke & Riess 2012, see also Coelho & Séré 1998 and Kanari & Millar 2004). 

This corresponds to the finding, that prior instruction into data evaluation is commonly done 

theoretically on simplified examples and constructed data sets. Approaches to overcome this 

gap have been discussed in (Heinicke & Riess 2012). 

We subsequently found, that another gap exists in the handling of measurement data and 

uncertainty of the approaches mentioned above. It occures because it is not only the quantities 

P(T) 

T 

P(l) 

l 

Figure 3. Examples of probability density functions to model informations about a 

certain measurand. Here: Information about periodical time T after several 

measurements and length of the pendulum l after measuring once with a meterstick. 
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that were measured directly, that need to be represented in terms of pdfs. In order to establish 

a holistic concept, also a resulting quantity calculated from those needs to be represented in 

the same manner. Until now and in the absence of supporting formats, all concepts named 

above calculate final results, e.g. the gravity acceleration g from T and l, and their 

uncertainties by transferring the pdfs of the input quantities into the values of best 

representative and uncertainty that can be computed into the respective values for g. The 

result for g is thus established in terms of a best value and a measure for its uncertainty, 

consequently loosing the information about the width and shape of g’s pdf. Thus, the clarity 

of the understanding of a measurement result in terms of an interval of possible values in 

these approaches is limited.  

METHOD 
In our approach and research we therefore tackle both problems: The gap between 

experimental measurement and theoretical data evaluation and the inconsistency in the usage 

of pdfs. Based on the studies described above as well as assessments of students 

understanding how to draw und interpret graphical representations of probability and pdfs, we 

developed a software to support data evaluation in the immediate experimental context 

following the approach of GUM. The software allows both the immediate representation and 

propagation of data in the experimental context as well as a clear convolution of pdfs of the 

input quantities to a pdf of the quantity under consideration. The approach clearly differs from 

traditional error calculation or common evaluation routines in the introductory year laboratory 

as Figure 4 shows. The first quadrant shows a point-value approach where only numerical 

values of the input quantities  determine the result of the quantity under consideration. The 

second depicts common traditional error calculation using e.g. error propagation to determine 

the width of an error-interval using error-intervals of the input quantities. Thirdly, all 

available information about the input quantities is displayed in terms of adequate pdfs. The 

GUM then offers guidelines how to reduce each pdf to a standardized interval in order to 

calculate an interval for the resulting quantity using similar calculation routines than before in 

the uncertainty propagation. The fourth example represents the way discussed in this paper. 

The software that we developed folds the obtained pdfs of the input quantities using their 

scientific interrelation and through a Monte Carlo process produces a resulting pdf for the 

quantity under consideration (see also Figure 5 for an example: determination of g with a 

pendulum). 

Figure 4. Comparison of different approaches to error handling: traditional point-value 

approach, interval-approach e.g. using error propagation, pdf-approach reducing 

information to atsandardized intervals and pdf-approach faolding all information into 

a pdf for the quantity under consideration. 
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The software we designed was thereby based both on the GUM as well as on previous 

empirical studies. More than 250 first year students in physics laboratories and about 100 

secondary students aged 14-16 years were assessed for their views on the handling of data in 

written probes based on an instrument by Buffler et al. (2001). Another 50 secondary and 25 

university students were also assessed in another written probe for their ability to interpret and 

draw graphical representations of probability. The software is currently undergoing the first 

testing in the physics introductory laboratory at the university of Munster, Germany (students 

N=15). The free software is currently only available in a German version under the address 

of: gumcertainty.de. The tested and optimized software in both German and English will 

presumably be available in a free online version by summer 2016. 

RESULTS AND CONCLUSIONS 
The developed software mainly aims at an application at upper secondary and university 

level. Currently it is being tested in the introductory laboratory at the University of Muenster.  

 

 

 

Figure 5. screenshot of the software folding pdfs of the input quantities to a resulting pdf 

of the quantity of consideration. 

Figure 6. Example for a pdf drawn by 

a 8th grade student to depict the level 

of confidence to throw a coin a 

certain distande on a table. 

Figure 7: Example of a pdfdrwan by 

another 8th grade student to model a 

gven situation of a repeated 

throwing of the coin. 
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First tests on the developed software also indicate that the software indeed supports the 

students’ understanding of both intervals as a representation of a measurement’s result as well 

as the propagation of the input quantities’ intervals or pdfs into a coherent information about 

the final quantity under consideration. A pre-post interview study is yet to be evaluated, 

however first responses of students show a high preference for this approach over traditional 

error calculation and a better performance in understanding the nature of measurement, 

measurement data, uncertainty and the evaluation procedures involved. Thus, our work 

provides an example for an alternative approach to data handling and evaluation following the 

GUM guidelines that aims at the intuitive understanding of students of probability and its 

graphical representation. Beyond the usage on upper secondary and university level we also 

started to investigate the potential of the approach in lower secondary grades. An assessment 

on the students’ understanding of graphical representations of probability showed a high 

ability and reasonable intuitive understanding of the matter (see also Petrosino, Lehrer & 

Schauble 2003). According to our study even younger students (8th grade) were already able 

to draw and modify pdfs on their own as well as interpret those that were given.  

For this study a day-to-day life context was chosen where the students were asked to transfer 

the given information or their own ideas into a two-dimensional graphical representation 

displaying both values that could reasonably be attributed to the quantity under consideration 

as well as a representation of the corresponding level of confidence they could attribute to 

each. The previous results indicate that modern error calculation based on the probabilistic 

approach of GUM and the visualization represented by the software can be used for learners 

both at school as well as university level. 
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Abstract: In Croatian schools, the complex photosynthesis concept is presented several times 

during primary and secondary school, each time with more details. In the present study, we 

aimed to investigate how the students’ understanding of the basic photosynthesis concepts 

increases during the schooling period, and is it enhanced by gradual introduction of new 

contents. The present study was conducted on 269 students from 6 schools and 35 students 

preparing to be biology teachers. To test the students’ conceptual understanding, we 

implemented a question about the trends of O2 and CO2 concentrations during the night. It 

was expected that the question would lead students to a correct explanation of photosynthesis. 

However, students of all age groups gave mainly incomplete explanations. The best result was 

achieved by youngest participants (aged 11, who relied on the freshly acquired and well 

trained, but reproductive knowledge. The answers of older students (aged 15, 17 and 22) 

included more detail about the light-dependent and light-independent reactions, suggesting 

that they developed misconceptions (e.g., a belief that “oxygen is produced in Calvin cycle 

during the night” and that “CO2 converts to O2”). Students’ explanations indicate the 

consistency of their understanding of photosynthesis, which does not change with gradual 

introduction of new contents as they get older. The observed misunderstandings could be 

associated to the cumulative introduction of the complex theoretical contents withoutresearch-

based learning. As well, the misconceptions could point to inadequate time dedicated to 

establishing connections between students’ pre-conceptions and novel information. Our 

research results might be a strong argument supporting the upcoming change in the Croatian 

national curriculum. 

Keywords: photosynthesis, conceptual understanding, age groups 

 

INTRODUCTION 

The process of photosynthesis contains many interrelated conceptual components so it causes 

students’ conceptual understanding difficulties (Özay & Öztas, 2003). If the teaching is 

merely reduced to description of processes and denomination of terms and concepts, it results 

in poor knowledge retention and formation/retention of misconceptions throughout the 

education (Canal, 1999). In Croatia, photosynthesis is taught several times during formal 

education. Considering the modest success of Croatian students regarding the acquisition and 

retention of the overall biological knowledge (Garašić et al., 2012), the aim of this research 

was to determine if there is a progress in understanding of photosynthesis. As students’ 

overall knowledge grows with school age (Magntorn, 2007), it can be assumed that the 

expansion of learning would improve their conceptual understanding. 

METHODS 

The present article includes the analysis results for only one of five questions used to examine 

the basic concepts of photosynthesis. The question deals with changes of the amount of 

oxygen and carbon dioxide around the plant during the night (Figure 1). After filling the 

conceptual table, students should have added an explanation for their table answers.   
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Figure 1. The question posed to students of all age groups. 

The question (Figure 1) was posed to 4 age groups of students, who were, at that time, 

learning about photosynthesis. The 4 groups represented  students at different stages of the 

learning process – first group consisted of the  11-year-old students, second of the 15-year-

olds, third of the 17-year-olds, whereas fourth group consisted of university students aged 22. 

The sample of the 11-, 15- and 17-year-olds was composed of 269 students attending 6 

different schools. The sample of the university students was comprised of 35 students 

preparing to be biology teachers.  

Each observed lesson followed the content framework presented in textbooks, by applying 

teacher-centred approach based on conversation, narration and figure demonstration. The 

exam, containing our test-question was conducted three days after learning about 

photosynthesis.  

In following analyses, student's explanations were coded according to the criterion of 

contextual appropriateness to the relevant biological meaning, in order to categorize students’ 

answers. For the statistical analysis, we used Spearman’s rho (ρ) to establish the extent to 

which both parts of the question (i.e., table answers and their explanations) were consistent 

and correct, and the non-parametric Mann-Whitney U-test to compare the success of the 

individual age groups.   

RESULTS 

For the first part of test-question (O2 is reduced, CO2 increases), significantly more correct 

answers originated from the 11-year-olds than from the older students (Figure 2). The overall 

correlation coefficient (ρ = 0.604) between the accuracy of the answers given within the table 

and their explanations indicates that the consistency within the students’ answers is moderate 

and it does not change with the students’ age (Figure 3). In older age groups, incorrect 

answers prevailed (70%), and the percentage of correct answers was equal among 15- and 17-

year-olds. The consistency of the students’ answers did not change with adding new contents 

(Figure 3). 40% of students successfully filled the conceptual table, but only a half of them 

gave the correct explanation (Figure 4). By answering the table, students aged 11 showed 

significant difference compared to older students (Figure 5). 
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Figure 2. Students’ answers according to age groups. 

 

 

Figure 3. Consistency of student responses. 
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Figure 4. Conceptual understanding based on both parts of the question. 
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Figure 5. Students' conceptual understanding of the plant’s impact to gas ratio during the 

night.  

To identify the answer structure, syntax and diversity used in the students’ explanations, we 

carried out a detailed code-based analysis of the students’ answers (Figure 6). Most 

explanations were lacking a biological sense or they offered definitions of biological terms, 

but were mismatched and interpreted/linked wrongly. The members of all age groups equally 

often offered the photosynthesis definition, but without linking it with the posed question and 

applying it to a specific case, respectively.  In comparison to other age groups, students aged 

15 most often offered misinterpretations such as “CO2 is consumed in respiration” or “CO2 is 

converted into O2”. In general, all groups of students equally often gave incomplete 

interpretations of photosynthesis focusing only on one aspect of the process (e.g., breathing or 

absence of light). The responses of older students also encounter idea: “Calvin cycle (or 

reactions in the dark) releases oxygen; it happens at night”. The explanations of university 

students were not significantly different from the explanations of high school students, 

although they used more complex terminology (Figure 6). 
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Figure 6. Analysis of incomplete and incorrect explanations.  

DISCUSSION AND CONCLUSIONS 

From the earliest learning stages, students often keep the misconception that plants 

photosynthesize during the day and respire at night. The learning cycle at the students’ age of 

11 is focused on distinction between the plant respiration and assimilation of CO2, which 

likely explains their better performance. Since the older students demonstrate the same 

misconception again, success at age 11 can be explained as only reproductive knowledge.  

At the age of 15, students are taught more details about photosynthesis, but it likely confuses 

the students and causes the misconception that the secondary reactions of photosynthesis 

occur at night. Moreover, as the students state that the Calvin cycle produces oxygen (at 

night), it could be suggested that they mix up the terms and reactions of Calvin cycle and 

cellular respiration (which was taught previously). This misconception is likely kept among 

older students.  

We suggest that the observed results and student misconceptions are due to the extensive 

content of the Croatian textbooks and the prevailingly passive teaching modes, in which 
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students are not actively involved in teaching-learning nodes and are not encouraged to think 

(Banilower et al., 2008). Another important effect is most likely the short time invested into 

the comprehension of complex concepts as well as learning without students’ reflections 

(Koba & Tweed, 2009). 

At the age of 17, the details on Calvin cycle, including names of participating enzymes and 

coenzymes, are taught. However, to students these processes still remain abstract and distant 

from their experiences (Russell et al., 2004). By focusing attention on numerous novel names 

and data, they probably lose sight of the “big picture”.  

After all, a question of curricular efficacy arises when it appears that students after so much 

learning are not able to adopt and apply the basic concepts? In this respect, teachers should 

modify their teaching approach: identify possible misconceptions (Näs, 2010), apply 

experiential learning and provide students enough time to build their own and 

complete/organized concept system. In that sense, it would be efficient to create concept maps 

and problem solving tasks (Köse, 2008).  

The results of the present analysis indicate significant problems in understanding the concepts 

of photosynthesis, which should be an important sign to teachers, and particularly to 

curriculum and textbook authors to determine facts and details really necessary to understand 

the process of photosynthesis. 
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