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Problem area 

The L2-gap metric is a central component of the nu-gap metric. The latter 
represents a good measure of the distance between systems in a closed-
loop setting. For two Linear Time-Invariant (LTI) plants P1 and P2, the nu-
gap is expressed as dn(P1,P2). There are two main aspects related to the 
nu-gap metric. The first one is the so called Winding Number Condition 
(WNC), which is associated with the Nyquist diagram, and for which an 
efficient computational method already exists. If this WNC does not hold 
then dn(P1,P2)=1, whereas if it does hold then we have dn(P1,P2) = 
dL2(P1,P2), with dL2(P1,P2) the L2-gap metric returning a scalar in 
the [0–1] range. The purpose of this paper is to first present a novel 
method to compute the dL2(P1,P2) gap. We show that the computation of 
this dL2(P1,P2) gap is in fact a convex problem, that can easily be 
expressed as Linear Matrix Inequalities (LMIs). Next, we show that this 
result can be used for model order reduction, within a Bilinear Matrix 
Inequalities (BMIs) framework. 

Description of work 

We demonstrate that the computation of the dL2(P1,P2) gap, i.e. the 
analysis problem, is in fact a convex problem. Our method consists in 
expressing the dL2(P1,P2) gap as Linear Matrix Inequalities (LMIs) —
subsequently formulated as a Semi-Definite Programs (SDP)—for which 
there are several powerful numerical solutions The dL2(P1,P2) gap is 
computed on the full frequency axis and results in an infinite number 
of LMIs, emanating from the frequency-dependent structure. 
Subsequently, through the use of the Kalman-Yakubovich-Popov (KYP) 
Lemma, we remove this frequency dependence, and hence obtain an 
optimization problem of finite dimension. Our method does not 
introduce any approximations or sub-optimalities, and applies equally 
well to Single-Input Single-Output (SISO) or Multiple-Input Multiple-
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Output (MIMO) systems. Next we show that this result can be used for 
model (or controller) order reduction. The resulting synthesis problem is 
non-convex, but can be dealt within a Bilinear Matrix Inequalities (BMIs) 
framework. We illustrate the practicality of the proposed method on 
several numerical examples. 

Results and conclusions 

With regard to the dL2(P1,P2) gap metric, between tow LTI plants, we 
present a convex approach to solve the analysis side of the problem. We 
believe that this result may be seen as definitive. On the other hand, 
with regard to the synthesis side of the problem (i.e. model order 
reduction), we present what we believe to be a useful approach which, 
however, does come with some liabilities, namely the optimization is 
based upon BMIs. These BMIs have been solved using a simple, iterative, 
nonlinear search, in spirit reminiscent of D-K iteration synthesis.  
Analogously to D-K iteration convergence—for which convergence 
towards a global optimum, or even a local one, is not guaranteed—our 
proposed model order reduction algorithm does not inherit any 
convergence certificates, however in practice convergence has been 
achieved within 10 to 125 iterations. 

Applicability 

Compared to previous results, our model order reduction approach is 
not based upon frequency gridding, and since LMIs/BMIs intrinsically 
reflect constraints rather than optimality, our approach tends to offer 
more flexibility for combining several constraints during the synthesis 
process. 
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Model Order Reduction in the L2-Gap Metric

Skander Taamallah

Abstract— The L2-gap metric is a central compo-
nent of the nu-gap (i.e. ν-gap) metric. The latter
represents a good measure of the distance between
systems in a closed-loop setting. For two Linear
Time-Invariant (LTI) plants P1 and P2, the ν-gap is
expressed asδν (P1,P2). There are two main aspects
related to the ν-gap metric. The first one is the so-
called Winding Number Condition (WNC), which is
associated with the Nyquist diagram, and for which
an efficient computational method already exists. If
this WNC does not hold thenδν (P1,P2)= 1, whereas if
it does hold then we haveδν (P1,P2)≔ δL2

(P1,P2), with
δL2

(P1,P2) the L2-gap metric returning a scalar in
the [0–1] range. The purpose of this paper is to first
present a novel method to compute theδL2

(P1,P2)
gap. We show that the computation of thisδL2

(P1,P2)
gap is in fact a convex problem, that can easily
be expressed as Linear Matrix Inequalities (LMIs).
Next, we show that this result can be used for model
order reduction, within a Bilinear Matrix Inequalities
(BMIs) framework. We illustrate the practicality of
the proposed method on several numerical examples.

I. INTRODUCTION

Gap and graph metrics [1] have been known
to provide a measure of the separation between
open-loop systems, in terms of their closed-loop
behavior. The first attempt to introduce such
a metric, simply known as gap metric, was
formulated in [2], [3], whereas an efficient method
for computing it was presented in [4], with recent
works from a fairly general perspective proposed
in [5]. Other significant metrics have also been
investigated, such as (i) the T-gap metric [6],
(ii) the pointwise gap [7], and (iii) Vinnicombe’s
popular nu-gap (i.e.ν-gap) metric [8], [9]. Similar
to its predecessor gap metrics, theν-gap also
provides a means of quantifying feedback system

S. Taamallah is with the Netherlands Aerospace Centre
(NLR), Anthony Fokkerweg 2, 1059 CM, Amsterdam, The
Netherlands, email:staamall@nlr.nl.

stability and robustness, while being concurrently
less conservative and simpler to compute. Time-
varying and nonlinear extensions to both the gap
metric [10], [11], [12], [13] and theν-gap metric
[14], [15], [16] have also been researched, although
analytical computations of these metrics, in this
nonlinear setting, is generally difficult. Over the
years the use of these metrics has received much
attention. In particular, theν-gap was extensively
studied in the realm of system identification [17],
[18], [19], model order reduction [20], [21], [22],
[23], [24], [25], and robust control [26], [9].

If we consider two Linear Time-Invariant (LTI)
plants P1 and P2, each with dimensionn× m,
then the ν-gap is denoted byδν(P1,P2). There
are two main aspects related to theν-gap metric.
The first one is the so-calledWinding Number
Condition (WNC), which is associated with the
Nyquist diagram, and for which an efficient
computational method already exists. The WNC
is readily obtained by computing the number of
right-half-plane poles of a closed-loop transfer
function, involving the interconnection of plants
P1 andP2, see [8], [9]. If this WNC does not hold
thenδν (P1,P2) = 1, whereas if it does hold then we
haveδν(P1,P2)≔ δL2(P1,P2), with δL2(P1,P2) the
L2-gap metric returning a scalar in the [0–1] range.

The purpose of this paper is to first present
a novel method to compute theδL2(P1,P2) gap,
and then show how this result may be used for
model order reduction. We demonstrate that the
computation of theδL2(P1,P2) gap, i.e. the analysis
problem, is in fact a convex problem. Our method
consists in expressing theδL2(P1,P2) gap as Linear
Matrix Inequalities (LMIs) [27]—subsequently
formulated as a SDP [28]—for which there are
several powerful numerical solutions [29], [30].
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II. Preliminaries 

III. Computation of the δL2 (Ρ1,Ρ2) gap 
  

The δL2(P1,P2) gap is computed on the full
frequency axis and results in an infinite number
of LMIs, emanating from the frequency-dependent
structure. Subsequently, through the use of
the Kalman-Yakubovich-Popov (KYP) Lemma,
we remove this frequency dependence, and hence
obtain an optimization problem of finite dimension.
Our method does not introduce any approximations
or sub-optimalities, and applies equally well to
Single-Input Single-Output (SISO) or Multiple-
Input Multiple-Output (MIMO) systems.

Next we show that this result can be used for
model (or controller) order reduction. The resulting
synthesis problem is non-convex, but can be dealt
within a Bilinear Matrix Inequalities (BMIs)
framework. Compared to previous results, our
approach is not based upon frequency griding, and
since LMIs/BMIs intrinsically reflect constraints
rather than optimality, our approach tends to offer
more flexibility for combining several constraints
during the synthesis process.

The nomenclature is fairly standard.M∗ de-
notes the complex-conjugate transpose of a com-
plex matrix M. Matrix inequalities are considered
in the sense ofLöwner. Further λ (M) denotes
the zeros of the characteristic polynomial det(sI−
M) = 0. λ̄(M) is the maximum eigenvalue of
M. Next, L∞ is the Lebesguenormed space s.t.
‖G‖∞ ≔ esssup

ω∈R
σ̄(G( jω)) < ∞, with σ̄(G) the

largest singular value of matrixG(·). Similarly,
H∞ ⊂ L∞ is theHardy normed space s.t.‖G‖∞ ≔

sup
Re(s)>0

σ̄(G(s)). RL ∞ (resp.RH ∞) represent the

subspace of real rational Transfer Functions in
L∞ (resp. H∞). Finally I and 0 will be used to
denote the identity and null matrices respectively,
assuming appropriate sizes.

II. PRELIMINARIES

This section recalls first the KYP Lemma [31],
and subsequently introduces theν-gap metric.

Lemma 1:Let complex matricesA, B, and a
symmetric matrixΘ, of appropriate sizes, be given.

Supposeλ (A) ⊂ C−∪C+, then the following two
statements are equivalent.

(i) ∀ω ∈ R∪{∞}
[

( jω −A)−1B
I

]∗

Θ
[

( jω −A)−1B
I

]

< 0

(ii) There exists a matrixP = P∗, and a linear
matrix mapL(P), such that the following LMI
holds

L(P)+Θ < 0 with

L(P)≔

[

A B
I 0

]∗ [ 0 P
P 0

][

A B
I 0

]

Proof: See [31].

Remark 1:We have dealt here with the strict
version of the KYP lemma, i.e. strict inequalities,
since no controllability/stabilizability assumptions
become necessary.

Remark 2: If matricesA, B, andΘ are all real,
the equivalence still holds when restrictingP to be
real [32].

There exists several equivalent definitions of the
ν-gap metric. The one chosen in this paper is most
convenient for our purpose.

Definition 1: Theν-gap metric between two LTI
plants P1 and P2, having dimensionsn×m, with
P1,P2 ∈ RL ∞, is given by [8]

δν(P1,P2)≔

{

δL2(P1,P2) i f the WNC holds
1. else

(1)
with

δL2(P1,P2)≔ ‖(I+P2P
∗
2 )

−1/2(P2−P1)(I+P∗
1P1)

−1/2‖∞
(2)

andWNC the so-calledWinding Number Condition
associated with the Nyquist diagram, for which an
efficient computational method already exists. The
WNC is readily obtained by computing the number
of right-half-plane poles of a closed-loop transfer
function, involving the interconnection of plantsP1

andP2 [8], [9].

III. C OMPUTATION OF THEδL2(P1,P2) GAP

The purpose of this paper is to focus upon the
δL2(P1,P2) part, i.e. the metric returning a scalar
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A. Main result 

 
 
 
 
 
 
  

in the [0–1] range. Now from (2), by using the
definition of the‖ · ‖∞ norm, and after rearranging
terms, we obtain the following definition

Definition 2: The δL2(P1,P2) metric between
two LTI plantsP1 andP2, having dimensionsn×m,
with P1,P2 ∈ RL ∞, is given by

δL2(P1,P2)≔ sup
ω∈R

[

λ̄
(

(P2−P1)
∗(I +P2P∗

2 )
−1

(P2−P1)(I +P∗
1P1)

−1

)](1/2)

(3)
Through the use of [27], expression (3) can be

recast into an LMI.

Lemma 2:TheδL2(P1,P2) gap between two LTI
plants P1 and P2, having dimensionsn×m, with
P1,P2 ∈RL ∞, is given byδL2(P1,P2) = λ 1/2, with
λ computed as

minimize
ω∈R, 0<λ<1

λ subject to

(P2−P1)
∗(I +P2P∗

2 )
−1(P2−P1)< λ (I +P∗

1P1)
(4)

Proof: By expressing (3) as a maximum
eigenvalue problem in LMI form.

Next we transform (4) as follows.

Lemma 3:TheδL2(P1,P2) gap between two LTI
plants P1 and P2, having dimensionsn×m, with
P1,P2 ∈RL ∞, is given byδL2(P1,P2) = λ 1/2, with
λ computed as

minimize
ω∈R, 0<λ<1

λ subject to Ω∗∆Ω < 0 with

∆≔









0 1
2I 0 0

1
2I 0 0 0
0 0 −λ I 0
0 0 0 −λ I









Ω≔









(I +P2P∗
2 )

−1(P2−P1)
P2−P1

P1

I









(5)
Proof: By expanding the right-hand side of

(4), and noting that(I + P2P∗
2 )

−1 > 0, and by

regrouping terms as partitioned matrices we get (5).

Now we express (5) in a form amenable to the
KYP Lemma.

Lemma 4:TheδL2(P1,P2) gap between two LTI
plants P1 and P2, having dimensionsn×m, with
P1,P2 ∈RL ∞, is given byδL2(P1,P2) = λ 1/2, with
λ computed as

minimize
ω∈R, 0<λ<1

λ subject to
[

(sI−AΨ)
−1BΨ

I

]∗

Θ
[

(sI−AΨ)
−1BΨ

I

]

< 0,

with s= jω

Ψ≔
[

AΨ BΨ
CΨ DΨ

]

=





(I +P2P∗
2 )

−1(P2−P1)
P2−P1

P1





Θ≔
[

CΨ DΨ
0 I

]∗

∆
[

CΨ DΨ
0 I

]

and∆ from Lemma 3
(6)

Proof: First by construction we have

Ω =

[

Ψ
I

]

. Next, in the optimization prob-

lem of Lemma 3, substituteΩ∗∆Ω < 0, with
[

Ψ
I

]∗

∆
[

Ψ
I

]

< 0, then replaceΨ by CΨ(sI−

AΨ)
−1BΨ +DΨ, and expand and regroup terms.

A. Main result

The optimization problem of Lemma 4 involves
an infinite number of LMIs, emanating from the
frequency-dependent structure (i.e. onω). The
goal is now to remove this frequency dependence,
and hence obtain an optimization problem of finite
dimension.

Theorem 1:Let two LTI plants P1 and P2,
having dimensionsn× m, with P1,P2 ∈ RL ∞,
be given. Let their respective realization be

P1 ≔

[

A1 B1

C1 D1

]

, P2 ≔

[

A2 B2

C2 D2

]

, then the

δL2(P1,P2) gap between two plantsP1 and P2 is
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IV. Synthesis problem: model order reduction 
  
given byδL2(P1,P2) = λ 1/2, with λ computed as

minimize
P=P∗, 0<λ<1

λ subject to
[

A∗
ΨP+PAΨ PBΨ

B∗
ΨP 0

]

+Θ < 0

with Θ as given in Lemma 4, and further

(7)

Ψ≔





Z4

Z1

P1



=

















AZ4 0 0 BZ4

0 AZ1 0 BZ1

0 0 A1 B1

CZ4 0 0 DZ4

0 CZ1 0 DZ1

0 0 C1 D1

















Z4≔

[

AZ4 BZ4

CZ4 DZ4

]

= Z3Z1

=





AZ3 BZ3CZ1 BZ3DZ1

0 AZ1 BZ1

CZ3 DZ3CZ1 DZ3DZ1





Z3≔

[

AZ3 BZ3

CZ3 DZ3

]

= Z−1
2

=

[

AZ2 −BZ2D
−1
Z2

CZ2 −BZ2D−1
Z2

D−1
Z2

CZ2 D−1
Z2

]

Z2≔

[

AZ2 BZ2

CZ2 DZ2

]

= I +P2P∗
2

=





A2 B2B∗
2 B2D∗

2
0 −A∗

2 −C∗
2

C2 D2B∗
2 I +D2D∗

2





Z1≔

[

AZ1 BZ1

CZ1 DZ1

]

= P2−P1

=





A2 0 B2

0 A1 B1

C2 −C1 D2−D1





Proof: From (6), it is a straightforward appli-
cation of the KYP Lemma (see Lemma 1).

IV. SYNTHESIS PROBLEM: MODEL ORDER

REDUCTION

We consider here a model order reduction
problem in which the approximation error,
between two LTI plantsP1 and P2, is quantified
using the δL2(P1,P2) gap metric. We suppose
that P2 is given, with the aim of findingP1 such
that δL2(P1,P2) is either minimized, or such that

δL2(P1,P2) < β , with 0 < β < 1 a given bound.
From (7), we see that this optimization problem
is non-convex, due to various cross-product terms
(e.g. A∗

1P, C∗
1D1) and quadratic terms (e.g.C∗

1C1),
in the decision variables. Hence, we simplify
the original problem by having only matrices
P, A1, and B1 as decision variables (i.e.C1 and
D1 are fixed). Next, from (7), we see that, for a
fixed Lyapunov functionP, the problem becomes
affine in the unknownA1 and B1 matrices, thus
bi-convex. The following algorithm summaries the
procedure for a reduced-order approximation in
the δL2(P1,P2) gap metric.

Proposition 1 (Model order reduction):
Given a user-defined boundε > 0, and a nominal

LTI plant P2 ≔

[

A2 B2

C2 D2

]

, of order k, having

dimensionn×m, with P2 ∈ RL ∞, then a reduced-

order LTI plant P1 ≔

[

A1 B1

C1 D1

]

can be con-

structed, of orderl (l < k), having dimensionn×m,
with P1 ∈ RL ∞, such thatδL2(P1,P2) is approxi-
mately minimized, in the following way
(A) Fix order l of plant P1 (l is user-defined)
(B) Obtain an initial value forA1, B1, andC1

(C) SetD1 = D2

(D) OptimizeA1 andB1 using the following step-
wise method

(a) In LMI (7), fix A1 andB1

(b) Setλmin = 0 andλmax= 1

(1) Setλ = (λmin+λmax)/2
(2) In LMI (7) solve for P
(3) If optimization is feasible

set λmax= λ , otherwiseλmin = λ
(4) Repeat from (1) until|λmax−λmin| ≤ ε

(c) ComputeδL2(P1,P2) = λ 1/2

(d) RetrieveP, and in LMI (7), fix P
(e) Setλmin = 0 andλmax= 1

(i) Set λ = (λmin+λmax)/2
(ii) In LMI (7) solve for A1 andB1

(iii) If optimization is feasible
setλmax= λ , otherwiseλmin = λ

(iv) Repeat from (i)
until |λmax−λmin| ≤ ε

(f) ComputeδL2(P1,P2) = λ 1/2
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V. Numerical experiments 

VI. Conclusion 
  

(g) RetrieveA1 andB1
(h) Repeat from (a) until δL2(P1,P2)

convergence, or maximum iteration
reached

Remark 3:This algorithm is only a heuristic for
which convergence towards a global optimum, or
even a local optimum, is not guaranteed1. This said,
in practice, convergence has been achieved within
10 to 125 iterations.

V. NUMERICAL EXPERIMENTS

For the analysis problem, the purpose is to com-
pute δL2(P1,P2), for known LTI plantsP1 and P2,
using the SDP optimization from Theorem 1, and
compare the results to the values obtained from the
MATLAB function gapmetric2. We consider here
four examples, for which the state-space data, for
P1 and P2, are given in Appendix A. The results
for δL2(P1,P2) are reported in Table I. We see that
both approaches compute gap values3 which are
very close to each other, i.e. the absolute deviations
are below 10-6 (highest deviation seen on example
3). From a computational cost viewpoint, we see
from Table II that the cost for the SDP method is
only 2.1 to 2.3 times higher. The results presented
in Table II are based upon MATLAB runs on a
legacy computer hardware.
For the model order reduction synthesis problem,
we illustrate the practicality of algorithm 1 on two
numerical examples, also given in Appendix A. In
Example 5 and 6, LTI plantP2 has order 3 and
5 respectively.P2 will be approximated by a LTI
plant P1 having order 1 and 2 respectively. Plant
P1init represents the initialP1 values for algorithm 1,
whereas plantP1opt represents the optimized plant
computed by algorithm 1. For the case of example
6, P1init has been obtained after balancing and
Hankel-norm model reduction4 [34]. For example

1In algorithm 1 the bisection onλ allows for better control
of algorithm convergence (e.g. through the choice of boundε).

2The MATLAB function gapmetricreturns two outputs, the
second one is theν-gap metric.

3All LMI problems are solved in a MATLABR© environment
using YALMIP [33] together with the SeDuMi solver [30].

4Using the modred MATLAB function, together with the
Truncatemethod which tends to produce better approximations
in the frequency domain.

TABLE I

COMPUTATION OF δL2(P1,P2) AND COMPARISON WITH THE

MATLAB FUNCTIONgapmetric

MATLAB Our SDP method
gapmetric from Theorem 1

Example 1 0.972806214684513 0.972806213500936
Example 2 0.699486720564277 0.699486721039127
Example 3 0.543879042696287 0.543879961800073
Example 4 0.852097793847522 0.852097793541100

TABLE II

COMPARISON OF THE COMPUTATIONAL COSTS(IN SECONDS)

WITH THE MATLAB FUNCTIONgapmetric

MATLAB Our SDP method
gapmetric from Theorem 1

Example 1 1.053 2.361
Example 2 0.998 2.100
Example 3 0.976 2.227
Example 4 1.011 2.311

5 and 6, the results forδL2(P1,P2), before and after
the optimization of algorithm 1, are reported in
Table III (with ε = 0.001). We see that algorithm 1
provides a substantial decrease in theδL2(P1,P2)
gap metric. Further, closed-loop step responses,
under negative unity feedback, for plantP2, and
for plant P1 (before and after the optimization of
algorithm 1), are visualized in Fig. 1 and Fig. 2.
In particular, we see that the reduced-order model
produced by the Hankel-norm is closed-loop unsta-
ble, whereas our method produces a reduced-order
approximation which is closed-loop stable.

VI. CONCLUSION

With regard to theδL2(P1,P2) gap metric, be-
tween tow LTI plants, we have presented a convex
approach (Theorem 1 In Section III-A) to solve the
analysis side of the problem. We believe that this
result may be seen as definitive. On the other hand,
with regard to the synthesis side of the problem

TABLE III

MODEL ORDER REDUCTION

δL2(P1init ,P2) δL2(P1opt,P2) Nr. of iterations
in algorithm 1

Example 5 0.8200 0.5655 125
Example 6 0.4035 0.1523 75
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  (i.e. model order reduction), we have presented
what we believe to be a useful approach which,
however, does come with some liabilities, namely
the optimization is based upon BMIs. These BMIs
have been solved using a simple, iterative, nonlin-
ear search, in spirit reminiscent of D-K iteration
synthesis [35]. Analogously to D-K iteration con-
vergence—for which convergence towards a global
optimum, or even a local one, is not guaranteed
[36]—our proposed model order reduction algo-
rithm does not inherit any convergence certificates,
however in practice convergence has been achieved
within 10 to 125 iterations.
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Fig. 1. Model order reduction: example 5 (closed-loop step
response under negative unity feedback)
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APPENDIX A:DATA FOR THE NUMERICAL

EXPERIMENTS

Example 1: 3rd order, SISO systems

P1 =









1 3 4 2.5
1 −2 0 3
1 2 3 −1
2 −2 1 −2









P2 =









1.5 3.5 4.5 2
1 −2.5 0.5 3
1 2.5 2.5 −1.5
2 −1.5 1.5 −1.5









Example 2: 2nd order, MISO systems (2 inputs,
1 output)

P1=





1 1.5 2 1
1 −1 −1 1
1 1 0.5 1



 P2 =





1.5 3 2 1
1 −2 −1 1.5
1 0.5 0.5 1





Example 3: 2nd order, MIMO systems (2 inputs,
2 outputs)

P1 =









−1 −0.15 −2.5 −1
−1 −1 −2 3
1 6 0.5 0

2.5 −3 0 0.5









P2 =









−1 −0.15 −3 −1
−1 −1.5 −3 3
2 1 0.25 0
2 −2 0.25 0.5









Example 4: 3rd order, MIMO systems (2 inputs,
3 outputs)

P1 =

















1 3 4 −2.5 −1
1 −2 0 −1 3
1 2 3 3 4
1 6 6 0.5 0

2.5 −3 1 0 0.5
2 3 4 2 3

















P2 =

















1.5 3 4 −2.5 −1
1 −2.5 0 −2 3
1 2 3 3 4
1 4 6 0.25 0
2 −3 1 0 0.5
2 3 3 2.5 3

















Example 5: order reduction for P2 =
10

(s+1)(0.075s+1)2

P1init =

[

−1 1
1 0

]

P1opt =

[

−0.0037 3.60
1 0

]

Example 6: order reduction for P2 =
s+2

(0.0025s+1)2(0.1s+1)(0.05s2−1)

P1init =





4.4721 0 −1.0015
0 −0.0373 0.1868

−9.7650 0.1868 0





P1opt =





3.9175 −41.6932 −0.1406
−0.9514 −18.8116 0.5550
−9.7650 0.1868 0
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