
UNCLASSIFIED

Executive summary

UNCLASSIFIED

This report is based on a presentation held at the ASME Turbo Expo 2007: Power for
Land, Sea and Air, Montreal (Canada), 14-17 May 2007.

Report no.
NLR-TP-2007-513

Author(s)
A. Alexiou
E.H. Baalbergen
O. Kogenhop
K. Mathioudakis
P. Arendsen

Report classification
UNCLASSIFIED

Date
July 2007

Knowledge area(s)
Aerospace Collaborative
Engineering & Design
Computational Mechanics &
Simulation Technology
Computational Physics &
Theoretical Aerodynamics

Descriptor(s)
simulation
distributed computing
web services
gas turbines

Nationaal Lucht- en Ruimtevaartlaboratorium

National Aerospace Laboratory NLR

Advanced Capabilities for Gas Turbine Engine Performance
Simulations

Problem area
The tough competition between gas
turbine manufacturers dictates a
drastic reduction in both
development time and cost for all
engine programs. An important step
is the use of digital simulation
technology to reduce the number of
hardware tests required. However,
new engine programmes usually
involve the co-operation of several
partners, where each partner is
responsible for an engine’s
subsystem. Each manufacturer has
its own simulation methodology as
well as commercial or in-house
simulation tools. This makes it

difficult to integrate different
simulation modules in a single
engine model and/or compare
simulation results. The challenge in
the new programmes is to apply
distributed digital simulation
technology to overcome the
increasing complexity of
collaborative digital simulations
while reducing development time
and cost, and achieving better
results.

Description of work
In the integrated project VIVACE
(Value Improvement through a
Virtual Aeronautical Collaborative

UNCLASSIFIED

UNCLASSIFIED

Advanced Capabilities for Gas Turbine Engine Performance Simulations

Nationaal Lucht- en Ruimtevaartlaboratorium, National Aerospace Laboratory NLR

Anthony Fokkerweg 2, 1059 CM Amsterdam,
P.O. Box 90502, 1006 BM Amsterdam, The Netherlands
Telephone +31 20 511 31 13, Fax +31 20 511 32 10, Web site: www.nlr.nl

Enterprise), a flexible and
extensible object-oriented common
simulation environment PROOSIS
(PRopulsion Object Oriented
SImulation Software) is developed
which supports all kinds of engine
simulations as well as generic
system simulation (e.g. control,
thermal, hydraulic, etc.). It aims to
provide shared standards,
methodologies, and advanced
capabilities not yet commonly
available in performance
departments of European gas
turbine manufacturers such as
multi-disciplinary, multi-fidelity
and distributed simulations. It will
improve technical communication
capabilities between partners as
well as the many different
disciplines involved in gas turbine
engine research and development
programs.
This paper describes the integration
of the advanced methods of
component zooming and distributed
computing in PROOSIS. Three
approaches for integrating zooming
in an engine model are

demonstrated using a 1-D
compressor stage stacking method.
With respect to distributed
computing, the paper describes the
implementation of a distributed
scenario, in which part of an engine
simulation containing a 1-D
compressor component is done on a
different partner’s site, using web
services technology.

Results and conclusions
The demonstrations described in the
paper prove that the common
simulation environment’s
architecture is adaptable enough to
integrate different modeling
methods, and as such its potential to
fulfill its role as a shared simulation
environment in Europe, while
contributing to reductions of
development time and cost.

Applicability
The advanced methods of the
common simulation environment
enable European gas turbine
manufacturers to collaborate in new
engine programs.

Nationaal Lucht- en Ruimtevaartlaboratorium
National Aerospace Laboratory NLR

NLR-TP-2007-513

Advanced Capabilities for Gas Turbine Engine
Performance Simulations

A. Alexiou1, E.H. Baalbergen, O. Kogenhop, K. Mathioudakis1

and P. Arendsen

1 National Technical University of Athens, Greece

This report is based on a presentation held at the ASME Turbo Expo 2007: Power for Land, Sea and Air,
Montreal (Canada), 14-17 May 2007.

The contents of this report may be cited on condition that full credit is given to NLR and the authors.

This publication has been refereed by the Advisory Committee AEROSPACE VEHICLES.

Customer NLR
Contractnummer ----
Owner NLR and National Technical University of Athens (Greece)
Division Aerospace Vehicles
Distribution Unlimited
Classification of title Unclassified
 September 2007
Approved by:

Author

Reviewer Managing department

NLR-TP-2007-513

3

Abstract

This paper describes the integration of advanced methods such as component zooming and
distributed computing, in an object-oriented simulation environment dedicated to gas turbine
engine performance modelling.
A 1-D compressor stage stacking method is used to demonstrate three approaches for
integrating numerical zooming in an engine model. In the first approach a 1-D compressor
model produces a compressor map that is then used in the engine model in place of the default
one. In the second approach the results of the 1-D analysis are passed to the 0-D component
through appropriate 'zooming' scalars. In the final approach the 1-D compressor component
directly replaces the 0-D one in the engine model.
Distributed computing is realized using Web Services technology. The implementation steps for
a distributed scenario are presented. The standalone compressor stage stacking method, in the
form of a shared library, is placed in a remote site and can be accessed over the internet through
a Web Service Operation (server side). An engine simulation is set up containing a 1-D
compressor component which acts as the client for the Web Service operation.
Future development of the tool’s advanced capabilities is finally discussed.

NLR-TP-2007-513

4

Contents

INTRODUCTION 5

PROOSIS OVERVIEW 5

COMPONENT ZOOMING 8

DISTRIBUTED SIMULATIONS 12

SUMMARY and CONCLUSION 19

ACKNOWLEDGEMENTS 20

REFERENCES 20

NLR-TP-2007-513

5

INTRODUCTION

The tough competition between gas turbine manufacturers dictates a drastic reduction in both
development time and cost for all new engine programs. This results in multi-partner, co-
operative projects where each partner is responsible for an engine’s subsystem. Furthermore,
the industry increasingly relies on the use of computer simulation technology to reduce the
number of hardware tests required. Traditionally, individual partners have their own
simulation methodology as well as simulation tools (commercial or in-house) which make it
difficult to integrate different simulation modules in a single engine model and/or compare
simulation results. Some of these different simulation tools are presented in [1].
Consequently, each partner builds and maintains its own engine model resulting in effort
duplication and hence significant waste of resources and increasing the scope for error in the
data transfer due to the lack of common modelling and simulation standards.

From these observations, it is clear that a common simulation environment providing shared
standards and methodologies will greatly improve technical communication capabilities
between partners as well as the many different disciplines involved in gas turbine engine
research and development programs. For these reasons, within the integrated project
VIVACE (Value Improvement through a Virtual Aeronautical Collaborative Enterprise) [2],
a consortium of European universities, research institutes and corporate companies is
developing PROOSIS1 (PRopulsion Object Oriented SImulation Software), a flexible and
extensible object-oriented simulation environment. US engine manufacturers have already
developed such a tool (NPSS, [3, 4]) but this is generally not available to the European
industry. The main aim of PROOSIS is to perform all kinds of engine simulations as well as
generic system simulation (e.g. control, thermal, hydraulic, etc.). It features an advanced
graphical user interface allowing for modular model building using either the standard or any
custom library of engine components. It is capable of both steady and transient simulations
as well as customer deck generation. Different calculation types (design, off-design, test
analysis, optimisation, etc) can be performed. The tool is also required to provide advanced
capabilities such as multi-disciplinary, multi-fidelity and distributed simulations. These
capabilities are not yet commonly available in performance departments of European gas
turbine manufacturers.

The integration of such capabilities in PROOSIS, namely component ‘zooming’ and
distributed simulations, is the subject of this paper. Different zooming implementations are
described using a 1-D compressor stage stacking analysis code as the higher fidelity
representation of compressor performance (compared to a conventional map). Distributed
simulations are demonstrated by executing remotely the same code. Hence, for
understanding the framework in which the advanced capabilities are implemented, a general
overview of PROOSIS and a brief description of the 1-D code are firstly presented.

PROOSIS OVERVIEW

PROOSIS is a standalone, multi-platform, object-oriented simulation environment. It shares
the philosophy of the commercial simulation tool described in [5, 6]. It uses a high-level
object-oriented language (EL), for modelling engine systems. EL offers all the benefits of

1 In Greek, PROOSIS (ΠΡΟΩΣΙΣ) means propulsion.

NLR-TP-2007-513

6

this type of programming: encapsulation, inheritance, aggregation, abstraction,
polymorphism, etc. The most important concept in EL is the Component (equivalent to a
class in C++); it contains a mathematical description of the corresponding real-world engine
component. Components communicate with each other through their ports. Ports define the
set of variables to be interchanged between connected components. Components and ports
are stored in a library.

PROOSIS comes with a Standard Library of engine components and ports. Their modelling
is based primarily on the work of Walsh and Fletcher [7] and respects the international
standards [8-11] with regards to nomenclature, interface, object oriented environment and
standard performance methodology. However, the use of the standard library is not
compulsory and the user can build custom components and/or libraries. Components from
different libraries can be combined in constructing a model as long as connected components
share the same communication interface (e.g. ports). Figure 1 shows the tool’s graphical user
interface for all the different phases of model building and running.

A model, be it a single component, a sub-assembly or a complete engine, can be constructed
graphically by ‘drag-and-drop’ icons from one or more library palettes to the schematic
window.

The model’s mathematical description (called a Partition) is set with the help of wizards.
Built-in mathematical algorithms process the equations symbolically, resolve high index
problems, solve algebraic loops, suggest boundary conditions and finally sort the equations
for efficient calculation. The simulation tool allows for non-causal modelling; the order and
form of equations does not matter.

Different simulation cases (Experiments) can be performed for a Partition. Within the
Experiment window (Fig. 1) and using the object-oriented language EL, one can initialise
variables, set the values of boundary condition variables and component data, run single and
multiple steady state simulations, integrate the model over time (transient operation) and
generate reports (write results to file or screen). With the help of internal (EL) or external (C,
C++, FORTRAN) functions it is possible to create very complicated simulations (e.g. multi-
point design, optimisation, test analysis, etc.). Experiments can run either in batch mode or
graphically.

Currently, many of the partners involved in the development of PROOSIS have successfully
‘translated’ engine models from their own simulation tools to PROOSIS in order to suggest
improvements at both kernel and interface levels, report any weaknesses or bugs and get
used to this new simulation philosophy. The official release of PROOSIS is scheduled for
2008.

NLR-TP-2007-513

7

libraries

palette

Output
Window

Engine Diagram
(schematic view)

Experiment EL file
(Simulation View)

Experiment Results
(Simulation View)

Component EL file
(Code View)

Figure 1: PROOSIS interface

Compressor Stage Stacking
The overall performance of a multi-stage axial compressor depends on the performance of its
constituent stages. The performance of a single stage can be represented by its non-
dimensional characteristic curves Φ-Ψ, Φ-η where Φ is flow coefficient, Ψ is pressure
coefficient and η is efficiency. At any given operating point, knowledge of these curves
along with flow area, mean radius and stage exit angle allows the calculation of individual
stage exit properties (static and total pressure and temperature, velocity, etc). By ‘stacking’
the stages together the overall compressor performance is evaluated.

The particular model used here is a modified version of the one described in [12]. The code
is written in FORTRAN and compiled as a static library (LIB). There is a main subroutine
that accepts as input the stage geometry and characteristics, the compressor inlet conditions
and information regarding bleeds. The output consists of compressor overall pressure ratio,
mass flow and isentropic efficiency, for a user specified number of points along the speed
line (between stall and choke mass flow values), corresponding to the specified compressor
rotational speed. Then in PROOSIS this subroutine is declared as an external FORTRAN
function with the corresponding arguments. An alternative approach is to create a C++
wrapper for the FORTRAN subroutine and then declare it in PROOSIS as a public method
of an external class with the same arguments. Although this adds an extra step, the final
outcome is in-line with object-oriented modelling; one can declare an object of this class and
use its methods. The latter approach is used for demonstrating distributed simulations where
a slightly different version of the stage stacking code (in the form of a shared DLL) is used
in which, for the same inputs, the output is simply the compressor overall pressure ratio and
isentropic efficiency, for the specified compressor inlet mass flow and rotational speed. The
former approach is used for studying different zooming methods as described in the
following.

NLR-TP-2007-513

8

COMPONENT ZOOMING

In the context of whole engine performance simulation, component zooming or variable
complexity or multi-fidelity analysis refers to the execution of one (or more) higher order
analysis code and the integration of its results back into the 0-D engine cycle. In this way,
simulation accuracy increases as it is based on more detailed, physics based component
characteristics compared to traditional component maps. Additionally, component design
teams can rapidly evaluate the effects of their designs on the whole engine performance as
well as the other components. The clear and multiple benefits of component zooming have
been demonstrated in a number of recent publications [13-17], where different approaches to
zooming have been implemented. One approach, referred to as ‘de-coupled’ zooming in
[13], is to execute the higher fidelity code for a number of different operating conditions in
order to produce a map (or ‘mini-map’ as in [14]) that can be subsequently used directly in
the 0-D model. Another approach uses an iterative process between the high-fidelity
component representation and the 0-D engine cycle model until an engine operating point is
established [15]. This ‘semi-coupled’ approach uses scaling factors in the 0-D component to
communicate the high-fidelity results back to the engine simulation [16]. Finally, [17]
presents a ‘fully-coupled’ approach where an engine model can be constructed from mixed-
fidelity components. Depending on user’s needs, available resources and modelling
philosophy, any of the three methods may be the more appropriate to implement, for a given
simulation case. Hence the implementation of the three approaches in PROOSIS is described
next.

The Engine Model

For demonstrating the different zooming implementations, a model of the single shaft
version of an industrial gas turbine engine [18] has been created in PROOSIS using standard
library components. Figure 2 shows the engine’s schematic diagram.

For the 15-stage axial compressor, a smoothed BETA version of the map presented in [18] is
used (available in GasTurb10 Map collection [19]). The turbine’s off-design performance is
acquired by scaling the default PROOSIS turbine map. The model is validated against a
proven simulation model created using an in-house simulation tool [20].

Figure 2: Engine schematic in PROOSIS

The ‘de-coupled’ Approach

A 1-D compressor component is developed in EL that follows the architecture of the
standard library in PROOSIS. The compressor hierarchy adopted is shown in Fig. 3. Hence,

NLR-TP-2007-513

9

abstract 1-D compressor Component has inherited ports to communicate with other
components and can be used like any other component in a library to be arranged in a
schematic (engine) diagram. Within the component there is a call to the external FORTRAN
stage-stacking function. The function arguments consist of the compressor operating
conditions, received through the component’s inlet ports, and the stages’ geometry and
characteristics, specified by the user. For the engine model used herein, the stage geometry
and characteristics derived in [21] are used. They employed the adaptive stage-stacking
technique introduced by [12] to reproduce the map given in [18].

GasInGasOut

GasTurbo

AbsCompressor

BETA map

Compressor#SasP

MFT map

Abstract component containing general interface
& equations for standard library components

Abstract component containing general interface
& equations for standard library turbo-components

Abstract component containing core
compressor calculations

AbsCompressor1D

Compressor1D#SasP

Abstract component calling
stage-stacking function

User-specified No
of bleed ports

User-specified No
of bleed ports

Figure 3: Compressor ‘Inheritance Tree’

For creating a 1-D map, an instance of the 1-D compressor is firstly created. This is simply
achieved by placing the icon of the 1-D compressor in a schematic window and compiling it.
A Partition (a PROOSIS equivalent to a configuration) is then specified with boundary
conditions the component’s inlet port variables (total pressure & temperature, water-to-air
ratio, rotational speed and either mass flow or pressure ratio). Finally, in an Experiment (a
PROOSIS equivalent to a simulation case), a multi-point steady state calculation is defined
where the rotational speed is varied, at ISO conditions. For each rotational speed, the stage-
stacking function provides the compressor overall pressure ratio, mass flow and isentropic
efficiency for a user specified number of points between the stall and choke mass flow rate
values. The results are written to a file in the form of a BETA map so that it can directly
replace the 0-D one in the engine model. Thus the only change required in the original
engine model is the name of the new compressor map file. The two maps are shown in Fig. 4
as pressure ratio and isentropic efficiency versus mass flow rate for relative corrected speed
values of 0.9, 0.95 and 1.0 (for lower than 0.9 values the geometry of the first 5 stages
changes to ensure adequate surge margin).

Mass Flow

Pr
es

su
re

 R
at

io

0-D
1-D

Design
Point

 Mass Flow

Is
en

tr
op

ic
 E

ffi
ci

en
cy

0-D
1-D

Figure 4: Comparison of 0-D and 1-D Maps

Figure 5 shows the percentage difference in heat rate at different loads at design speed when
the 1-D map replaces the 0-D one in the engine model.

NLR-TP-2007-513

10

-1.5

-1.1

-0.7

-0.3

0.1

0.5

Load

%
 d

iff
er

en
ce

 in
 H

ea
t R

at
e

Figure 5: Effect of Compressor Zooming on Heat rate vs Load Characteristic

In the de-coupled approach, apart from changing the compressor map file (a component
attribute), the original model is used with the same schematic diagram, partition and
experiment. From within a single experiment, the user can run consecutive simulations
specifying a different compressor (or any other component) map each time and comparing
the results. In fact, the final user may not even be aware that a higher fidelity analysis has
been performed beforehand.

Finally, it should be noted that a dedicated component just calling the stage-stacking
function and accepting as input the stage geometry and characteristics could also have been
used instead of the 1-D compressor, for creating the map. Even a void component can be
used with all the information entered at experiment level as explained in the next section.
The 1-D compressor is developed for use in the fully-coupled zooming approach and so it
makes sense to use it with this method too, as it is already available.

The ‘semi-coupled’ Approach

In this approach the original 0-D model is also used as is (same schematic and partition), but
the zooming is performed at experiment level. The 1-D compressor component is not
employed this time. Instead the stage stacking function is used directly in the experiment in a
process shown schematically in Fig. 6. Zooming scalars on corrected mass flow rate and
isentropic efficiency are incorporated in the 0-D compressor component. For a specified load
and rotational speed (single-shaft industrial engine for electricity generation), the 0-D model
converges to the required fuel flow rate value. The compressor inlet total pressure and
temperature, pressure ratio and rotational speed are passed to the stage stacking function that
evaluates the 1-D mass flow and isentropic efficiency for these conditions and based on the
specified stage geometry and characteristics. Error terms are formed by comparing these
values with the corresponding 0-D ones. The solver adjusts the component zooming scalars
until these error terms are within a user specified tolerance. Figure 7 shows the variation of
the scalars with external load for a relative corrected speed of 0.95.

NLR-TP-2007-513

11

Independent Variables
1. Corrected flow zooming scalar
2. Isentropic efficiency zooming scalar
3. Fuel flow rate

Objective Variables
1. Mass flow error
2. Isentropic efficiency error
3. Rotational speed

Intrinsic
Newton-Raphson

Function

Engine Model
All 0-D components

External
Compressor Stage-Stacking

Function

Compressor 0-D
rotational speed, pressure ratio

Inlet temperature & pressure

Compressor 1-D mass flow
Compressor 1-D efficiency

Stage geometry
& characteristics

Specified load &
Rotational speed

Figure 6: Zooming Scheme Implemented in Experiment

0.988

0.992

0.996

1

1.004

1.008

1.012

Load

Sc
al

ar

Corrected Mass Flow

Isentropic Efficiency

Figure 7: Variation of Zooming Scalars with Load

Using this approach, a multi-point experiment can also be created for converting a complete
0-D map to a higher fidelity one through the calculated scalars. Hence obtaining in one step
(creating and using a 1-D map) the same result as in the two-step de-coupled approach (first
create 1-D map and then use it).

The ‘fully-coupled’ Approach

In the PROOSIS palette of the standard library components there are icons for both 0-D
compressor and its 1-D counterpart. The fully-coupled approach to zooming is realised by
simply deleting from the engine schematic the 0-D compressor icon and inserting the 1-D
one described earlier. After connecting its ports (same way as in Fig. 2) the schematic is
compiled. It is now possible to create a Partition. In the all 0-D component version of the
model there is a single boundary condition (the fuel flow rate), three algebraic variables (the
compressor map auxiliary coordinate BETA, the turbine map axial coordinate and the engine
inlet mass flow rate) and one dynamic variable (the shaft rotational speed). When the 1-D

NLR-TP-2007-513

12

compressor is used there is no BETA variable and the compressor pressure ratio is ‘flagged’
as an independent parameter. The solver then finds the value of pressure ratio for which the
mass flow calculated from the stage-stacking function is equal to the compressor inlet flow.
The rest of the partition is identical to the 0-D version. Using the fully-coupled approach, a
simulation is performed for the design case, where there is no difference between the 0-D
and 1-D compressor characteristics, but with a 1.5% inter-stage bleed for turbine cooling,
taken from the 10th compressor stage. The same simulation case was also run for the 0-D
compressor model (1.5% bleed flow, 10/15 work fraction). Table 1 shows the percentage
difference in compressor performance and fuel flow rate between the two cases.

Table 1: The Effect of Zooming

PARAMETER % DIFFERENCE
Fuel Flow Rate 0.289
Compressor Inlet Flow 0.111
Compressor Delivery Temperature 0.438
Compressor Pressure Ratio 0.211
Compressor Polytropic Efficiency -0.238
Compressor Power 0.583

This approach is more intuitive and direct as it does not require the generation of a
compressor map like in the de-coupled approach or the creation of a complex experiment
like in the semi-coupled approach. On the other hand it is heavier on computer resources as
the high fidelity code is directly ‘embedded’ in the cycle calculations. For PROOSIS and for
the stage-stacking code used in the calculations, this translates to an increase in simulation
time by an order of magnitude, albeit a few seconds rather than fractions of a second as it is
for example the case in the de-coupled approach (Intel Celeron 1.6 GHz, 512MB RAM,
Windows XP based PC).

DISTRIBUTED SIMULATIONS

Distributed simulation refers to technologies “that enable a simulation program to execute on
a computing system containing multiple processors, such as personal computers,
interconnected by a communication network” [22, 23]. Distributed simulation technology
facilitates integrated simulation on multiple sites, enabling engine subsystem simulations to
interact with each other in a controlled way. Not only does it enable possibly geographically
dispersed engineers to efficiently collaborate in modelling, it also obsoletes the need to
reinstall subsystem models at a single site, and hence suppresses costs for extra hardware,
software, verification, maintenance. Subsystem models may be developed, verified,
maintained, and deployed for use in the integrated simulation at an engineer’s own site.
There is no need to recreate the subsystem’s context, including resources such as databases
and sometimes expensive software tools accessed from the model, at a different site. An
engineer may modify or replace a submodel, as long as its interface to the integrated
simulation remains unaffected. Distributed simulation techniques also support the protection

NLR-TP-2007-513

13

of model ownership. It enables a party to allow other parties to use a model, usually in a
restricted form, in a particular setting and with a predefined subset of model parameters,
without granting direct access to the underlying data and software implementing the model.
In addition, distributed simulation may lead to reduction of simulation time, through
distribution of the computational load over several computers, e.g., using Grid technology
[24]. Distributed simulation also supports scale up of the model; a model may grow with
respect to size and complexity irrespective of the capability of the underlying computing
infrastructure. Moreover, distributed simulation gives rise to reuse of submodels in different
integrated simulations.

Implementing Distributed Simulations

Distributed applications are supported through middleware (software that connects
applications), usually in an operating-system independent way. Today, different technologies
are available to accomplish a distributed application, depending on the required situation and
operational context. Widely known technologies are:

 CORBA. The Common Object Request Broker Architecture (CORBA) created and
controlled by the Object Management Group, a consortium aiming at setting standards
for distributed object-oriented systems. CORBA provides applications with platform and
location transparency for sharing objects across a network of computers. The objects are
well-defined in terms of attributes and methods, using an interface definition language
(IDL). CORBA defines application programming interfaces, communication protocols,
and object/service information models to support the interoperation of heterogeneous
applications written in various languages on various platforms. Through the years,
several commercial as well as free implementations became available, called object
request brokers (ORBs). For example, JacORB is a freely available ORB for Java.
CORBA defined the Internet Inter-Orb Protocol (IIOP) to enable the several ORBs to
interoperate, hence allowing different applications realised using different ORBs to
interoperate. IIOP is an implementation of the General Inter-ORB Protocol (GIOP) for
the TCP/IP protocol which is the basis for Internet. CORBA has often been used in
aerospace industry to accomplish distributed applications, e.g. NASA’s Numerical
Propulsion System Simulation (NPSS) [25, 26]. However, since achieving a proper level
of security is difficult in CORBA, CORBA seems mainly used for distributed
applications within local company networks. Despite its use in several industrial
distributed applications, CORBA is loosing its popularity. Important reasons are its
complexity, its slow and weak response to the rapidly growing Web developments and
demands, its high run-time costs (for commercial ORBs), the difficulty in achieving the
appropriate level of security, and its lack of a proper versioning enabling commercial
software based on CORBA to ensure backwards compatibility [27]. Also, Microsoft
never supported CORBA.

 DCOM. The Distributed Component Object Model (DCOM) is Microsoft’s technology
enabling distributing software components across a computer network to communicate
with each other. It was built on Microsoft’s Component Object Model (COM)
introduced in 1993, enabling programming language-independent interprocess
communication and dynamic object creation. DCOM was a major competitor of
CORBA. Since DCOM is very powerful and is considered to provide “too” much
functionality, it raises security problems. Over the years, hackers discovered their way
around in DCOM, and exploited and abused the plethora of possibilities to gain illegal
access to systems. Like CORBA, DCOM was not able to catch up with the Web
developments, thereby failing to provide a secure distributed environment over Internet

NLR-TP-2007-513

14

firewalls and containing unknown and insecure systems. DCOM has been deprecated in
favour of Microsoft’s .NET framework.

 Java RMI. The Java Remote Method Invocation (RMI) is a Java application
programming interface for invoking an object’s methods. Java RMI is Java specific.
Nowadays, Java RMI is also considered to be an intermediate solution, being obscured
by Web Services. The Object Management Group established the standard RMI-IIOP
(RMI over IIOP), to simplify the development of CORBA applications while preserving
the popular RMI style of programming.

 XML and SOAP. Developments and further standardisation by the World-Wide Web
Consortium (W3C, [28]) resulted in the definition of the Extensible Markup Language
(XML) for describing different kinds of data. XML facilitates the exchange and sharing
of data across different, heterogeneous, usually Internet-connected systems. In addition,
the Simple Object Access Protocol (SOAP) – originating from Microsoft as an object
access protocol – was adopted and further maintained by the W3C as protocol for
exchanging XML-based messages, using the HyperText Transfer Protocol (HTTP), over
a computer network. XML and SOAP are known to be much slower than binary
protocols used in, e.g., CORBA and RMI. However, their possibilities to construct
secure distributed and web-based applications in wide-area set ups possibly involving
Internet firewalls, and the present support for deploying the two standards, make XML
and SOAP far more popular.

 Web Services. Today, World Wide Web technology is used more often for
communication between applications and, consequently, for accomplishing distributed
computing and simulations. Based on lessons from the past, and developments and
demands with respect to the Web, the W3C established Web Services. This technology
provides software applications with programmatic interfaces, enabling interoperability
between different applications running on different platforms and in different
frameworks. Web Services facilitate the combination of software and services from
different companies to form integrated services. Web Services use open standards and
protocols, such as SOAP and XML. In the Web Service approach, the interface
(Application Programming Interface, API) of a service, including details of its bindings
to specific protocols, is well-defined in terms of a Web Service Definition Language
(WSDL) description, in XML-format. The WSDL description enables clients to interact
with the service. Web Services also define service “broker” technology. Service
providers may register services with a service broker. Service requesters may use the
service broker to find a particular service and retrieve the service’s WSDL description in
order to subsequently invoke the operations implemented by the service. Web Services
are commonly used to implement a distributed system in the style of a Service Oriented
Architecture (SOA) [29]. This software architecture defines the use of individual,
loosely-coupled services on a computer network to support the implementation of an
integrated software system comprising the services. The computational resources from a
network, including the applications, are available as independent services that are
accessible without knowledge of the services’ actual implementation and underlying
platforms. Support for the application of Web Services is emerging. For example, the
Java development environment NetBeans enables software developers to have a first
Web Service implementation for their application operational quickly. Also, Microsoft’s
.NET supports Web Services. Although Web Services seem promising, critics state that
Web Services still are too complex for the software developers, and that the
performance is poor compared to RMI, CORBA, and DCOM, resulting from the use of
the text-based XML. The complexity will certainly be reduced in the next years, with
the advance of standards and tools based on Web Services technology. The performance
issue is addressed in the on-going developments in the areas of XML and W3C’s

NLR-TP-2007-513

15

Message Transmission Optimization Mechanism (MTOM). Web Services technology –
supported by initiatives to further reduce its alleged complexity – is expected to become
a standard for enabling organizations to share data and services with customers and
business partners. For example, eBay, Google, and Amazon provide a Web Services
based interface (or actually a client library to facilitate the Web Services access) to their
services.

In order to establish distributed simulations to run across company boundaries while
achieving a proper level of security, and to use standard and platform independent
technology, the choice was made to use Web Services technology for carrying out
distributed simulations in Proosis. Web Services technology is also successfully used in
VIVACE for development of a workflow management framework across company borders,
over the Internet. It is foreseen that entire workflows will be included in distributed
simulations as well.

Prototype Development

A prototype was developed to demonstrate the feasibility of calling the compressor stage
stacking function remotely, using Web Services technology. The actual stacking function is
developed by, and is proprietary code of, NTUA. The function is written in Fortran and
available to NTUA users as a shared library, or Dynamically Linked Library (DLL) on
Windows. The function is made available for use by simulations in Proosis by integrating the
DLL into Proosis as a so-called customer library (also called component or class), which is
the mechanism to extend PROOSIS with customer-written (C++) software in engine
simulations. The library is, and may be, only locally available at NTUA. However, although
the DLL may not be installed elsewhere, the function may be used in simulations running
outside NTUA and accessed over the Internet. A mechanism to accomplish this remote
usage is provided through the notion of PROOSIS Web Component, enabling libraries to be
shared among PROOSIS simulations without the need to distribute the code of the libraries.
A prototype PROOSIS Web Component is created for the stacking function. It is
implemented as a PROOSIS customer library that can act as a client for a Web Service
operation. For the server side, the Web Service operation is developed that gives access to
the actual stacking function. It uses a plug-in mechanism which makes it easy to replace the
shared library with another shared library (with the same external interface) containing a
different implementation. The shared library can even be replaced while the Web Service is
active. A future target is to develop a specific, but reusable external PROOSIS library that
can easily be extended to remotely call any function via Web Services technology.

Figure 8 gives a schematic view of the test environment that is used to test the created
prototype. The PROOSIS simulation is run mainly at NLR. However, the shared library
containing the stacking function is replaced by the PROOSIS Web Component (PROOSIS
plug-in WebComponent.lib), which accesses the actual stacking function via a Web Service
operation. The server at NTUA provides the stacking function via a Web Service operation
that redirects the call from the PROOSIS Web Component to the original shared library.

To accomplish the set up as depicted in Fig. 8, we must take into account that PROOSIS
only supports customer libraries developed in C++ and FORTRAN. However, the Web
Services software is written in Java, since nowadays Web Services implementations (server
engines, tools, code generators) are mainly supported for the Java platform. Support for C++
(e.g., Apache Axis) is yet limited. But the language incompatibility is not a problem since
Java provides support for calling C++ functions from Java, and vice versa, through the Java

NLR-TP-2007-513

16

Native Interface (JNI). Also, the stacking function is implemented as a FORTRAN function,
which again is not a problem since it can easily be used from C++ code. Potentially this
overhead may cause calculation times to be larger when comparing these timings with local
instantiations of the stage stacking function.

Internet

Application Server

PROOSIS
Web Service
Operation

Stage-Stacking
Function

Server @ NTUA

PROOSIS

Client @ NLR

PROOSIS
Web

Component

Internet

Application Server

PROOSIS
Web Service
Operation

Stage-Stacking
Function

Server @ NTUA

Application Server

PROOSIS
Web Service
Operation

Stage-Stacking
Function

Application Server

PROOSIS
Web Service
Operation

Application Server

PROOSIS
Web Service
Operation

Stage-Stacking
Function

Server @ NTUA

PROOSIS

Client @ NLR

PROOSIS
Web

Component

PROOSISPROOSIS

Client @ NLR

PROOSIS
Web

Component

PROOSIS
Web

Component

Figure 8: Compressor Zooming via Remote Web Service Invocation between NLR and

NTUA

Application of Web Services technology, thereby taking the programming language
constraints into account, resulted in an implementation of the prototype existing of 5 layers:

1. PROOSIS custom library containing code that interacts with Java through JNI (C++).
This layer serves as plug-in for the remote use of the stacking function in the PROOSIS
simulation.

2. Web Service client implementation (Java). This layer comprises the Java modules that
enable layer 1 to call the stacking function remotely as a Web Service operation.

3. PROOSIS Web Service Component implementation that interacts with C++ through JNI
(Java). This layer provides the Web Service operation for calling the stacking function.
It receives a request for the stacking function from the Internet, and passes the call to
layer 4.

4. Intermediate code that calls the FORTRAN implementation (C++). This layer acts as the
glue between the Java code on the one hand, and FORTRAN code compiled into a DLL
on the other hand.

5. Actual implementation of stacking function (StgStk) in FORTRAN. This function has
20 parameters in total, including arrays and 3 output parameters. For the prototype, its
interface is used as the reference interface through all layers; no generic useable
interface is used.

A schematic overview of the layered structure is displayed in Fig. 9, including the
programming language in which each layer is implemented. The numbers next to the layer
represent the 5 layers above. Note that the JNI layer is not numbered as a separate layer,
since JNI is not part of the implementation; it is an API that is by default provided with the
standard Java distribution (J2SE).

The tools and development environments used for the implementation of the prototype are
listed in the Appendix.

NLR-TP-2007-513

17

PROOSIS Custom Library
(C++)

Web Service Client
(Java)

JNI

PROOSIS Web Service
Component (Java)

JNI

Intermediate Code
(C++)

Stage-Stacking Function
(FORTRAN)SOAP over

internet

SOAP over
internet

1

2

3

4

5

Client Side (NLR) Server Side (NTUA)

Figure 9: Layered structure of prototype (5 layers)

The prototype was used successfully for distributed engine simulations, with the PROOSIS
engine simulation running at NLR premises (the Netherlands) and the stacking function
being installed and used at NTUA (Greece). A 'live' public demonstration of a distributed
simulation using the prototype was also performed during VIVACE Forum-2 [2]. Figure 10
shows the PROOSIS simulation on the left (client) and the execution of the stage stacking
function at the remote location on the right (the server). A typical calculation using the de-
coupled zooming approach for obtaining a set of operating points (69 points, representing the
upper part of a compressor map) takes approximately 40s using a high speed internet
connection compared to 4s when it is ran in a similar but local experiment (without the Web
Services/Java layer in Fig. 9). This prototype has demonstrated the feasibility of using Web
Services technology in distributed simulations using PROOSIS, enabling companies to
collaborate in the engineering activities.

Figure 10: Distributed Simulation in PROOSIS

NLR

NTUA

NLR-TP-2007-513

18

Future Developments

The prototype is still under development and some recommendations for future work are
presented in this section. For each recommendation, the advantages and disadvantages will
be given if applicable.

Design of a more generic (re-usable) interface
In the current prototype, one particular function (i.e., the stacking function) was put available
as a Web Service operation. Currently, the Web Service contains one component, with one
operation named after the function. This Web Service operation expects the same input
arguments as the original function. If this Web Service component needs to provide more
operations, the existing framework has to be extended for each operation to be added. This
means that a function/method/operation mapping has to be created in all 5 layers described.
Hence, the software developer has to know the details about each layer and needs to have the
complete software environment to rebuild the framework when a new function is added.

It is worthwhile to design an interface that can be reused by multiple function
implementations. This means that the Web Service component does not contain specific
operations anymore, but a single generic operation. The arguments of this operation then
need to be very generic, so that it can easily be reused. The implementation near the front-
end (layer 4) and back-end (layer 2) then needs to be modified to adapt the generic interface
to the specific interface (of, e.g., the stacking function).

The advantage of this method is that not all layers need to be modified for each new
operation that is added. The software developer only needs to write the code to convert the
generic interface to the specific interface, and therefore he does not need to have the
complete development environment.

A disadvantage may be that the interface adaptations (from generic to specific and back)
introduce additional overhead and delays in the communication.

Reduction of overhead caused by conversions and data transfers
The introduction of Java between the PROOSIS custom library and the actual
implementation causes overhead in development time and run-time, due to data conversions
and data transfers between platforms when invoking a remote function via a Web Service.
Run-time overhead appears with each remote call of the function, which usually requires
transfer of data within the machine (i.e. memory copy) or over the network in between
machines. Overhead in development time occurs because all the data transfers have to be
coded manually for each layer. Tools such JAX-RPC and JACE provide mechanisms to
simplify these data transfers, but they do not automate the data transfers themselves. They
lack the knowledge to identify the parameter mappings between the layers. The overhead,
however, might be reduced by using a pure C++ development environment, such as the C++
implementation of the Axis Web Service engine.

The advantage is less overhead in data conversions between Java and C++.

The disadvantage is that C++ support for Web Services (using Axis) is still in the beta phase,
and is not guaranteed to work stable. Also, the support for Web Services in the Java platform
is more common nowadays. Another reason to choose for the Java platform is being able to
integrate with the “Collaboration HUB” that is being developed in another work package in
the VIVACE project. The communication layers of the HUB are based on Java. In
supplement to the design of a more generic interface, this workflow management framework

NLR-TP-2007-513

19

can also be re-used for the purpose of calling a remote function instead of a remote
workflow.

Reduction of overhead in DLL loading and unloading

The current prototype calculations through Web Services cause overhead for loading the
dynamically called calculation procedure (loading DLLs containing the functions). A more
advanced implementation should load the DLLs once. When all operating points have been
calculated a finalising procedure should take care of disposing loaded DLLs and functions.

Multi-user and security
As in practice several engineers from different parties are involved in distributed
simulations, the issues of multi-user access and security must be addressed. The current
prototype is not designed to be used by multiple users at the same time. Its behaviour is
unpredictable when multiple users would invoke the Web Service operation at the same
time.

The aspect of security is not addressed in the current prototype, mainly because it was not
yet required. Presently, the input and output variables are transferred unencrypted over the
internet. Also, anybody who knows the URL of the Web Service can invoke its operation.
There is no login mechanism implemented. Security in Web Services can be achieved by
using Web Services Security specification (WS-Security). WS-Security includes SOAP
Message Security and Username Token Profile. SOAP Message Security guarantees
encryption of the transferred data. Username Token Profile guarantees the authentication of
the user. The WS-Security specification is defined by OASIS [30]. WS-Security is also
supported by the JBoss application server; see Appendix. Various security aspects are also
studied in VIVACE project.

SUMMARY and CONCLUSION

An object-oriented environment for gas turbine engine performance simulations is being
developed to facilitate communication between European partners in cooperative engine
projects. It is required to be user-friendly for creating, running, managing and sharing engine
models using either the standard or custom libraries of engine components. It must also
provide capabilities that are not yet commonly available in European performance
departments such as multi-disciplinary, multi-fidelity and distributed simulations. The
feasibility of performing such simulations with this tool is demonstrated in this paper.

Using a 1-D compressor stage stacking code as an example, different implementations for
integrating high fidelity component analysis in overall engine simulations are presented. The
tool’s flexible and extensible architecture gives the user the freedom to select the most
suitable approach for a particular simulation case. The model of an industrial gas turbine
engine is used to exemplify the benefits of this type of analysis.

The stage stacking code is also used to demonstrate distributed simulations. A prototype of a
Web Component has been created and successfully tested that remotely invokes the code
from an engine simulation, via the internet, using Web Services technology. The reasons for

NLR-TP-2007-513

20

selecting this technology, the steps taken and the tools used in realising the prototype are
presented in detail while future improvements to it are discussed.

These demonstrations prove that the tool’s architecture is adaptable enough to integrate
different modelling methods and its potential to fulfil its role as a shared simulation
environment in Europe.

ACKNOWLEDGEMENTS
The work described in this paper has been carried out as part of the Integrated Project
VIVACE (AIP3-CT-2003-502917) and financial support of the European Union
Commission is gratefully acknowledged. The authors would like also to express their thanks
to the partners involved in Work Package 2.4 of VIVACE for development of the PROOSIS
simulation. The contribution of Bert Schultheiss, Jacco van Weert, Michiel Jansen, N.
Aretakis, I. Roumeliotis and Ph. Kamboukos in parts of the work is greatly appreciated.

REFERENCES

1. NATO Research and Technology Organisation, 2006, “Performance Prediction and
Simulation of Gas Turbine Engine Operation for Aircraft, Marine, Vehicular, and Power
Generation”, RTO-TR-AVT-036.

2. http://www.vivaceproject.com/
3. Lytle, J.K., 2001, “The Numerical Propulsion System Simulation: An Advanced

Engineering Tool for Airbreathing Engines”, ISABE 2001-1216.
4. Follen, G.J., 2002, “An Object-Oriented Extensible Architecture for Affordable

Aerospace Propulsion Systems”, RTO-MP-089.
5. Alexiou, A. and Mathioudakis, K., 2005, “Development of Gas Turbine Performance

Models Using a Generic Simulation Tool”, ASME Paper No. GT-2005-68678.
6. Alexiou, A. and Mathioudakis, K., 2006, “Gas Turbine Engine Performance Model

Applications Using an Object-Oriented Simulation Tool”, ASME Paper No. GT-2006-
90339.

7. Walsh, P.P. and Fletcher, P., 2004, Gas Turbine Performance, 2nd Edition, Blackwell
Science, Oxford.

8. SAE AS681-H, “Gas Turbine Engine Steady State and Transient Performance
Presentation for Digital Computer Programs”.

9. SAE AS755-C, “Aircraft Propulsion System Performance Station Designation and
Nomenclature”.

10. SAE ARP4868, “Application Programming Interface Requirements for the Presentation
of Gas Turbine Engine Performance on Digital Computers”.

11. SAE ARP5571, “Gas Turbine Engine Performance Presentation and Nomenclature for
Digital Computers Using Object-Oriented Programming”.

12. Mathioudakis, K. and Stamatis, A., 1994, “Compressor Fault Identification from Overall
Performance Data Based on Adaptive Stage Stacking”, , J. of Engineering for Gas
Turbines and Power, 116(1), pp. 156-164.

13. Melloni, L., Kotsiopoulos, P., Jackson, A., Pachidis, V. and Pilidis, P., 2006, “Military
Engine Response to Compressor Inlet Stratified Pressure Distortion by an Integrated
CFD Analysis”, ASME Paper No. GT-2006-90805.

NLR-TP-2007-513

21

14. Turner, M.G., Reed, J. A., Ryder, R. and Veres, J.P., 2004, “Multi-Fidelity Simulation
of a Turbofan Engine with Results Zoomed into Mini-Maps for a Zero-D Cycle
Simulation”, ASME Paper No. GT-2004-53956.

15. Pachidis, V., Pilidis, P., Talhouarn, F., Kalfas, A. and Templalexis, I., 2006, “A Fully
Integrated Approach to Component Zooming using Computational Fluid Dynamics”, J.
of Engineering for Gas Turbines and Power, 128(3), pp. 579-584.

16. Follen, G. and auBuchon, M., 2000, “Numerical Zooming between a NPSS Engine
System Simulation and a 1-Dimensional High Pressure Analysis Code”, NASA/TM-
2000-209913.

17. Hall, E.J., 2000, “Modular Multi-Fidelity Simulation Methodology for Multiple Spool
Turbofan Engines”, NASA High Performance Computing and Communications
Computational Aerosciences Workshop, NASA Ames Research Centre.

18. Carchedi, F. and Wood, G.R., 1982, “Design and Development of a 12:1 Pressure Ratio
Compressor for the Ruston 6-MW Gas Turbine”, ASME Paper No. 82-GT-20.

19. Smooth C product information on http://www.gasturb.de.
20. Stamatis A., Mathioudakis K., Papailiou K., 1990, “Adaptive Simulation of Gas Turbine

Performance”, J. of Engineering for Gas Turbines and Power, 112, pp. 168-175
21. Tsalavoutas, A., Stamatis, A. and Mathioudakis, K. and 1994, “Derivation of

Compressor Stage Characteristics, for Accurate Overall Performance Map prediction “,
ASME Paper No. 94-GT-372.

22. Fujimoto, R.M., 2000, Parallel and Distributed Simulation Systems, John Wiley and
Sons, Inc., New York, USA.

23. Boer, C.A., 2005, “Distributed Simulation in Industry”, PhD Thesis, Erasmus
University, Rotterdam.

24. Foster, I. and Kesselman, C., 1998, “The Globus Project: A Status Report”, Proceedings
of the Heterogeneous Computing Workshop, IEEE Computer Society Press, pp.4-18.

25. Lopez, I., Follen, G.J., Gutierrez, R., Foster, I., Ginsburg, B., Larsson, O., Martin, S.,
Tuecke, S. and Woodford, D., 2000, “NPSS on NASA's Information Power Grid: Using
CORBA and Globus to Coordinate Multidisciplinary”, Aeroscience Applications.
NASA/TM-2000-209956.

26. Zheng, D., Follen, G.J., Pavlik, W.R., Kim, C.M., Liu, X., Blaser, T.M. and Lopez, I.,
2001, “Web-Based Distributed Simulation of Aeronautical Propulsion System”,
NASA/TM-2001-210818.

27. Henning, M., 2006, “The Rise and Fall of CORBA”, in: Component Technologies, 4(5)
28. http://www.w3.org
29. OASIS, 2006, “Reference Model for Service Oriented Architecture 1.0”
30. http://www.oasis-open.org/specs/index.php#wssv1.0

APPENDIX

The following tools and development environments were used for the implementation of the
prototype:

– NetBeans 5.0, by default provided with the Java 5.0 software development kit (SDK),
for Java development. It supports Web Services development. In particular, it facilitates
interactive declaration of Web Service operations, which is the starting point for the
generation of code implementing the Web Services component. NetBeans was used for
layers 2 and 3.

– Microsoft Visual Studio C++ 6.0 for C++ development. It was used for layers 1 and 4.

NLR-TP-2007-513

22

– JBoss application server. An application server is a (software) server program in a
computer network dedicated to running certain software applications. These applications
(in our case, the stacking function) can be made available using Web Services. In this
case, the application server plays the role of so-called Web Service End Point which
enables deployment of Web Service operations. JBoss is widely used for deploying
JAVA applications and is provided under the LGPL (open source) license and is
therefore free to use. JBoss is used as Web Service End Point, which manages layer 3 at
run time.

– JAX-RPC is applied to generate the Web Services code in Java, based on declarations of
Web Service operations. It is supported by NetBeans and compatible with JBoss, and is
still more robust than its successor JAX-WS. JAX-RPC is used in the implementation of
layers 2 and 3, to generate a WSDL definition, code skeletons and stubs, both client and
server side, enabling the client to invoke the stacking function as a Web Service
operation, and enabling the server (including JBoss) to handle the Web Service
operation and direct it to the actual stacking function.

– JACE is used as tool to bridge the gap between Java and C++. As mentioned before, the
Java Native Interface (JNI) enables to connect C++ and Java code. However, JNI is a
rather complex API and requires a lot of manual coding to transfer Java values to and
from the stacking function (with about 20 arguments). JACE is a JNI-based collection of
C++ and Java libraries that facilitate the integration of C++ and Java code. JACE is used
to implement the call of Java code of layer 2 from layer 1 on the client side, and the call
of C++ code of layer 4 from layer 3.

– No specific tools were required for calling FORTRAN code (layer 5) from the C++ code
(layer 4). This only requires a C-style function declaration on the C++ side that makes it
easy to call the stacking function as if it were a C function. Care must be taken that
FORTRAN passes all function arguments by reference, and hence that all parameters in
the C function must be pointers. Also, because the stacking function is available from a
DLL on a Windows system, the stacking function must be used via a function pointer
that needs to be assigned runtime and the standard calling convention of Win32 API
functions must be used (__stdcall directive).

	INTRODUCTION 5
	PROOSIS OVERVIEW 5
	COMPONENT ZOOMING 8
	DISTRIBUTED SIMULATIONS 12
	SUMMARY and CONCLUSION 19
	ACKNOWLEDGEMENTS 20
	REFERENCES 20

