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Problem area 
The tough competition between gas 
turbine manufacturers dictates a 
drastic reduction in both 
development time and cost for all 
engine programs. An important step 
is the use of digital simulation 
technology to reduce the number of 
hardware tests required. However, 
new engine programmes usually 
involve the co-operation of several 
partners, where each partner is 
responsible for an engine’s 
subsystem. Each manufacturer has 
its own simulation methodology as 
well as commercial or in-house 
simulation tools. This makes it 

difficult to integrate different 
simulation modules in a single 
engine model and/or compare 
simulation results. The challenge in 
the new programmes is to apply 
distributed digital simulation 
technology to overcome the 
increasing complexity of 
collaborative digital simulations 
while reducing development time 
and cost, and achieving better 
results. 
 
Description of work 
In the integrated project VIVACE 
(Value Improvement through a 
Virtual Aeronautical Collaborative 
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Enterprise), a flexible and 
extensible object-oriented common 
simulation environment PROOSIS 
(PRopulsion Object Oriented 
SImulation Software) is developed 
which supports all kinds of engine 
simulations as well as generic 
system simulation (e.g. control, 
thermal, hydraulic, etc.). It aims to 
provide shared standards, 
methodologies, and advanced 
capabilities not yet commonly 
available in performance 
departments of European gas 
turbine manufacturers such as 
multi-disciplinary, multi-fidelity 
and distributed simulations. It will 
improve technical communication 
capabilities between partners as 
well as the many different 
disciplines involved in gas turbine 
engine research and development 
programs.  
This paper describes the integration 
of the advanced methods of 
component zooming and distributed 
computing in PROOSIS. Three 
approaches for integrating zooming 
in an engine model are 

demonstrated using a 1-D 
compressor stage stacking method. 
With respect to distributed 
computing, the paper describes the 
implementation of a distributed 
scenario, in which part of an engine 
simulation containing a 1-D 
compressor component is done on a 
different partner’s site, using web 
services technology. 
 
Results and conclusions 
The demonstrations described in the 
paper prove that the common 
simulation environment’s 
architecture is adaptable enough to 
integrate different modeling 
methods, and as such its potential to 
fulfill its role as a shared simulation 
environment in Europe, while 
contributing to reductions of 
development time and cost. 
 
Applicability 
The advanced methods of the 
common simulation environment 
enable European gas turbine 
manufacturers to collaborate in new 
engine programs.
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Abstract 

This paper describes the integration of advanced methods such as component zooming and 
distributed computing, in an object-oriented simulation environment dedicated to gas turbine 
engine performance modelling. 
A 1-D compressor stage stacking method is used to demonstrate three approaches for 
integrating numerical zooming in an engine model. In the first approach a 1-D compressor 
model produces a compressor map that is then used in the engine model in place of the default 
one. In the second approach the results of the 1-D analysis are passed to the 0-D component 
through appropriate 'zooming' scalars. In the final approach the 1-D compressor component 
directly replaces the 0-D one in the engine model. 
Distributed computing is realized using Web Services technology. The implementation steps for 
a distributed scenario are presented. The standalone compressor stage stacking method, in the 
form of a shared library, is placed in a remote site and can be accessed over the internet through 
a Web Service Operation (server side). An engine simulation is set up containing a 1-D 
compressor component which acts as the client for the Web Service operation.  
Future development of the tool’s advanced capabilities is finally discussed. 
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INTRODUCTION 

The tough competition between gas turbine manufacturers dictates a drastic reduction in both 
development time and cost for all new engine programs. This results in multi-partner, co-
operative projects where each partner is responsible for an engine’s subsystem. Furthermore, 
the industry increasingly relies on the use of computer simulation technology to reduce the 
number of hardware tests required. Traditionally, individual partners have their own 
simulation methodology as well as simulation tools (commercial or in-house) which make it 
difficult to integrate different simulation modules in a single engine model and/or compare 
simulation results. Some of these different simulation tools are presented in [1]. 
Consequently, each partner builds and maintains its own engine model resulting in effort 
duplication and hence significant waste of resources and increasing the scope for error in the 
data transfer due to the lack of common modelling and simulation standards. 

From these observations, it is clear that a common simulation environment providing shared 
standards and methodologies will greatly improve technical communication capabilities 
between partners as well as the many different disciplines involved in gas turbine engine 
research and development programs. For these reasons, within the integrated project 
VIVACE (Value Improvement through a Virtual Aeronautical Collaborative Enterprise) [2], 
a consortium of European universities, research institutes and corporate companies is 
developing PROOSIS1 (PRopulsion Object Oriented SImulation Software), a flexible and 
extensible object-oriented simulation environment. US engine manufacturers have already 
developed such a tool (NPSS, [3, 4]) but this is generally not available to the European 
industry. The main aim of PROOSIS is to perform all kinds of engine simulations as well as 
generic system simulation (e.g. control, thermal, hydraulic, etc.). It features an advanced 
graphical user interface allowing for modular model building using either the standard or any 
custom library of engine components. It is capable of both steady and transient simulations 
as well as customer deck generation. Different calculation types (design, off-design, test 
analysis, optimisation, etc) can be performed. The tool is also required to provide advanced 
capabilities such as multi-disciplinary, multi-fidelity and distributed simulations. These 
capabilities are not yet commonly available in performance departments of European gas 
turbine manufacturers. 

The integration of such capabilities in PROOSIS, namely component ‘zooming’ and 
distributed simulations, is the subject of this paper. Different zooming implementations are 
described using a 1-D compressor stage stacking analysis code as the higher fidelity 
representation of compressor performance (compared to a conventional map). Distributed 
simulations are demonstrated by executing remotely the same code. Hence, for 
understanding the framework in which the advanced capabilities are implemented, a general 
overview of PROOSIS and a brief description of the 1-D code are firstly presented.  

 
 

PROOSIS OVERVIEW 

PROOSIS is a standalone, multi-platform, object-oriented simulation environment. It shares 
the philosophy of the commercial simulation tool described in [5, 6]. It uses a high-level 
object-oriented language (EL), for modelling engine systems. EL offers all the benefits of 
                                                      
1 In Greek, PROOSIS (ΠΡΟΩΣΙΣ) means propulsion. 
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this type of programming: encapsulation, inheritance, aggregation, abstraction, 
polymorphism, etc. The most important concept in EL is the Component (equivalent to a 
class in C++); it contains a mathematical description of the corresponding real-world engine 
component. Components communicate with each other through their ports. Ports define the 
set of variables to be interchanged between connected components. Components and ports 
are stored in a library. 

PROOSIS comes with a Standard Library of engine components and ports. Their modelling 
is based primarily on the work of Walsh and Fletcher [7] and respects the international 
standards [8-11] with regards to nomenclature, interface, object oriented environment and 
standard performance methodology. However, the use of the standard library is not 
compulsory and the user can build custom components and/or libraries. Components from 
different libraries can be combined in constructing a model as long as connected components 
share the same communication interface (e.g. ports). Figure 1 shows the tool’s graphical user 
interface for all the different phases of model building and running. 

A model, be it a single component, a sub-assembly or a complete engine, can be constructed 
graphically by ‘drag-and-drop’ icons from one or more library palettes to the schematic 
window.  

The model’s mathematical description (called a Partition) is set with the help of wizards. 
Built-in mathematical algorithms process the equations symbolically, resolve high index 
problems, solve algebraic loops, suggest boundary conditions and finally sort the equations 
for efficient calculation. The simulation tool allows for non-causal modelling; the order and 
form of equations does not matter. 

Different simulation cases (Experiments) can be performed for a Partition. Within the 
Experiment window (Fig. 1) and using the object-oriented language EL, one can initialise 
variables, set the values of boundary condition variables and component data, run single and 
multiple steady state simulations, integrate the model over time (transient operation) and 
generate reports (write results to file or screen). With the help of internal (EL) or external (C, 
C++, FORTRAN) functions it is possible to create very complicated simulations (e.g. multi-
point design, optimisation, test analysis, etc.). Experiments can run either in batch mode or 
graphically. 

Currently, many of the partners involved in the development of PROOSIS have successfully 
‘translated’ engine models from their own simulation tools to PROOSIS in order to suggest 
improvements at both kernel and interface levels, report any weaknesses or bugs and get 
used to this new simulation philosophy. The official release of PROOSIS is scheduled for 
2008. 

 

 

 

 



 

NLR-TP-2007-513 

7 

libraries

palette

Output 
Window

Engine Diagram
(schematic view)

Experiment EL file
(Simulation View)

Experiment Results
(Simulation View)

Component EL file
(Code View)  

Figure 1: PROOSIS interface 

 

Compressor Stage Stacking 
The overall performance of a multi-stage axial compressor depends on the performance of its 
constituent stages. The performance of a single stage can be represented by its non-
dimensional characteristic curves Φ-Ψ, Φ-η where Φ is flow coefficient, Ψ is pressure 
coefficient and η is efficiency. At any given operating point, knowledge of these curves 
along with flow area, mean radius and stage exit angle allows the calculation of individual 
stage exit properties (static and total pressure and temperature, velocity, etc). By ‘stacking’ 
the stages together the overall compressor performance is evaluated.  

The particular model used here is a modified version of the one described in [12]. The code 
is written in FORTRAN and compiled as a static library (LIB). There is a main subroutine 
that accepts as input the stage geometry and characteristics, the compressor inlet conditions 
and information regarding bleeds. The output consists of compressor overall pressure ratio, 
mass flow and isentropic efficiency, for a user specified number of points along the speed 
line (between stall and choke mass flow values), corresponding to the specified compressor 
rotational speed. Then in PROOSIS this subroutine is declared as an external FORTRAN 
function with the corresponding arguments. An alternative approach is to create a C++ 
wrapper for the FORTRAN subroutine and then declare it in PROOSIS as a public method 
of an external class with the same arguments. Although this adds an extra step, the final 
outcome is in-line with object-oriented modelling; one can declare an object of this class and 
use its methods. The latter approach is used for demonstrating distributed simulations where 
a slightly different version of the stage stacking code (in the form of a shared DLL) is used 
in which, for the same inputs, the output is simply the compressor overall pressure ratio and 
isentropic efficiency, for the specified compressor inlet mass flow and rotational speed. The 
former approach is used for studying different zooming methods as described in the 
following. 
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COMPONENT ZOOMING 

In the context of whole engine performance simulation, component zooming or variable 
complexity or multi-fidelity analysis refers to the execution of one (or more) higher order 
analysis code and the integration of its results back into the 0-D engine cycle. In this way, 
simulation accuracy increases as it is based on more detailed, physics based component 
characteristics compared to traditional component maps. Additionally, component design 
teams can rapidly evaluate the effects of their designs on the whole engine performance as 
well as the other components. The clear and multiple benefits of component zooming have 
been demonstrated in a number of recent publications [13-17], where different approaches to 
zooming have been implemented. One approach, referred to as ‘de-coupled’ zooming in 
[13], is to execute the higher fidelity code for a number of different operating conditions in 
order to produce a map (or ‘mini-map’ as in [14]) that can be subsequently used directly in 
the 0-D model. Another approach uses an iterative process between the high-fidelity 
component representation and the 0-D engine cycle model until an engine operating point is 
established [15]. This ‘semi-coupled’ approach uses scaling factors in the 0-D component to 
communicate the high-fidelity results back to the engine simulation [16]. Finally, [17] 
presents a ‘fully-coupled’ approach where an engine model can be constructed from mixed-
fidelity components. Depending on user’s needs, available resources and modelling 
philosophy, any of the three methods may be the more appropriate to implement, for a given 
simulation case. Hence the implementation of the three approaches in PROOSIS is described 
next. 

 

The Engine Model 

For demonstrating the different zooming implementations, a model of the single shaft 
version of an industrial gas turbine engine [18] has been created in PROOSIS using standard 
library components. Figure 2 shows the engine’s schematic diagram.  

For the 15-stage axial compressor, a smoothed BETA version of the map presented in [18] is 
used (available in GasTurb10 Map collection [19]). The turbine’s off-design performance is 
acquired by scaling the default PROOSIS turbine map. The model is validated against a 
proven simulation model created using an in-house simulation tool [20].  

 

 
Figure 2: Engine schematic in PROOSIS  

 

The ‘de-coupled’ Approach   

A 1-D compressor component is developed in EL that follows the architecture of the 
standard library in PROOSIS. The compressor hierarchy adopted is shown in Fig. 3. Hence, 
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abstract 1-D compressor Component has inherited ports to communicate with other 
components and can be used like any other component in a library to be arranged in a 
schematic (engine) diagram. Within the component there is a call to the external FORTRAN 
stage-stacking function. The function arguments consist of the compressor operating 
conditions, received through the component’s inlet ports, and the stages’ geometry and 
characteristics, specified by the user. For the engine model used herein, the stage geometry 
and characteristics derived in [21] are used. They employed the adaptive stage-stacking 
technique introduced by [12] to reproduce the map given in [18].   

GasInGasOut

GasTurbo

AbsCompressor

BETA map

Compressor#SasP

MFT map

Abstract component containing general interface 
& equations for standard library components

Abstract component containing general interface 
& equations for standard library turbo-components

Abstract component containing core 
compressor calculations 

AbsCompressor1D

Compressor1D#SasP

Abstract component calling 
stage-stacking function

User-specified No 
of bleed ports

User-specified No 
of bleed ports  

Figure 3: Compressor ‘Inheritance Tree’ 
 
For creating a 1-D map, an instance of the 1-D compressor is firstly created. This is simply 
achieved by placing the icon of the 1-D compressor in a schematic window and compiling it. 
A Partition (a PROOSIS equivalent to a configuration) is then specified with boundary 
conditions the component’s inlet port variables (total pressure & temperature, water-to-air 
ratio, rotational speed and either mass flow or pressure ratio). Finally, in an Experiment (a 
PROOSIS equivalent to a simulation case), a multi-point steady state calculation is defined 
where the rotational speed is varied, at ISO conditions. For each rotational speed, the stage-
stacking function provides the compressor overall pressure ratio, mass flow and isentropic 
efficiency for a user specified number of points between the stall and choke mass flow rate 
values. The results are written to a file in the form of a BETA map so that it can directly 
replace the 0-D one in the engine model. Thus the only change required in the original 
engine model is the name of the new compressor map file. The two maps are shown in Fig. 4 
as pressure ratio and isentropic efficiency versus mass flow rate for relative corrected speed 
values of 0.9, 0.95 and 1.0 (for lower than 0.9 values the geometry of the first 5 stages 
changes to ensure adequate surge margin).   
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Figure 4: Comparison of 0-D and 1-D Maps 

 
Figure 5 shows the percentage difference in heat rate at different loads at design speed when 
the 1-D map replaces the 0-D one in the engine model.  
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Figure 5: Effect of Compressor Zooming on Heat rate vs Load Characteristic 

 
In the de-coupled approach, apart from changing the compressor map file (a component 
attribute), the original model is used with the same schematic diagram, partition and 
experiment. From within a single experiment, the user can run consecutive simulations 
specifying a different compressor (or any other component) map each time and comparing 
the results. In fact, the final user may not even be aware that a higher fidelity analysis has 
been performed beforehand. 

Finally, it should be noted that a dedicated component just calling the stage-stacking 
function and accepting as input the stage geometry and characteristics could also have been 
used instead of the 1-D compressor, for creating the map. Even a void component can be 
used with all the information entered at experiment level as explained in the next section. 
The 1-D compressor is developed for use in the fully-coupled zooming approach and so it 
makes sense to use it with this method too, as it is already available.  

 
The ‘semi-coupled’ Approach   

In this approach the original 0-D model is also used as is (same schematic and partition), but 
the zooming is performed at experiment level. The 1-D compressor component is not 
employed this time. Instead the stage stacking function is used directly in the experiment in a 
process shown schematically in Fig. 6. Zooming scalars on corrected mass flow rate and 
isentropic efficiency are incorporated in the 0-D compressor component. For a specified load 
and rotational speed (single-shaft industrial engine for electricity generation), the 0-D model 
converges to the required fuel flow rate value. The compressor inlet total pressure and 
temperature, pressure ratio and rotational speed are passed to the stage stacking function that 
evaluates the 1-D mass flow and isentropic efficiency for these conditions and based on the 
specified stage geometry and characteristics. Error terms are formed by comparing these 
values with the corresponding 0-D ones. The solver adjusts the component zooming scalars 
until these error terms are within a user specified tolerance. Figure 7 shows the variation of 
the scalars with external load for a relative corrected speed of 0.95.  
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Independent Variables
1. Corrected flow zooming scalar
2. Isentropic efficiency zooming scalar
3. Fuel flow rate

Objective Variables
1. Mass flow error
2. Isentropic efficiency error
3. Rotational speed

Intrinsic
Newton-Raphson

Function

Engine Model
All 0-D components

External 
Compressor Stage-Stacking 

Function

Compressor 0-D
rotational speed, pressure ratio

Inlet temperature & pressure

Compressor 1-D mass flow
Compressor 1-D efficiency

Stage geometry 
& characteristics

Specified load & 
Rotational speed

 
Figure 6: Zooming Scheme Implemented in Experiment  
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Figure 7: Variation of Zooming Scalars with Load  

 

Using this approach, a multi-point experiment can also be created for converting a complete 
0-D map to a higher fidelity one through the calculated scalars. Hence obtaining in one step 
(creating and using a 1-D map) the same result as in the two-step de-coupled approach (first 
create 1-D map and then use it).   

 
The ‘fully-coupled’ Approach   

In the PROOSIS palette of the standard library components there are icons for both 0-D 
compressor and its 1-D counterpart. The fully-coupled approach to zooming is realised by 
simply deleting from the engine schematic the 0-D compressor icon and inserting the 1-D 
one described earlier. After connecting its ports (same way as in Fig. 2) the schematic is 
compiled. It is now possible to create a Partition. In the all 0-D component version of the 
model there is a single boundary condition (the fuel flow rate), three algebraic variables (the 
compressor map auxiliary coordinate BETA, the turbine map axial coordinate and the engine 
inlet mass flow rate) and one dynamic variable (the shaft rotational speed). When the 1-D 
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compressor is used there is no BETA variable and the compressor pressure ratio is ‘flagged’ 
as an independent parameter. The solver then finds the value of pressure ratio for which the 
mass flow calculated from the stage-stacking function is equal to the compressor inlet flow. 
The rest of the partition is identical to the 0-D version. Using the fully-coupled approach, a 
simulation is performed for the design case, where there is no difference between the 0-D 
and 1-D compressor characteristics, but with a 1.5% inter-stage bleed for turbine cooling, 
taken from the 10th compressor stage. The same simulation case was also run for the 0-D 
compressor model (1.5% bleed flow, 10/15 work fraction). Table 1 shows the percentage 
difference in compressor performance and fuel flow rate between the two cases.  

 

Table 1: The Effect of Zooming 

PARAMETER % DIFFERENCE 
Fuel Flow Rate 0.289 
Compressor Inlet Flow 0.111 
Compressor Delivery Temperature 0.438 
Compressor Pressure Ratio 0.211 
Compressor Polytropic Efficiency -0.238 
Compressor Power 0.583 

 
This approach is more intuitive and direct as it does not require the generation of a 
compressor map like in the de-coupled approach or the creation of a complex experiment 
like in the semi-coupled approach. On the other hand it is heavier on computer resources as 
the high fidelity code is directly ‘embedded’ in the cycle calculations. For PROOSIS and for 
the stage-stacking code used in the calculations, this translates to an increase in simulation 
time by an order of magnitude, albeit a few seconds rather than fractions of a second as it is 
for example the case in the de-coupled approach (Intel Celeron 1.6 GHz, 512MB RAM, 
Windows XP based PC). 

 

 

DISTRIBUTED SIMULATIONS 

Distributed simulation refers to technologies “that enable a simulation program to execute on 
a computing system containing multiple processors, such as personal computers, 
interconnected by a communication network” [22, 23]. Distributed simulation technology 
facilitates integrated simulation on multiple sites, enabling engine subsystem simulations to 
interact with each other in a controlled way. Not only does it enable possibly geographically 
dispersed engineers to efficiently collaborate in modelling, it also obsoletes the need to 
reinstall subsystem models at a single site, and hence suppresses costs for extra hardware, 
software, verification, maintenance. Subsystem models may be developed, verified, 
maintained, and deployed for use in the integrated simulation at an engineer’s own site. 
There is no need to recreate the subsystem’s context, including resources such as databases 
and sometimes expensive software tools accessed from the model, at a different site. An 
engineer may modify or replace a submodel, as long as its interface to the integrated 
simulation remains unaffected. Distributed simulation techniques also support the protection 
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of model ownership. It enables a party to allow other parties to use a model, usually in a 
restricted form, in a particular setting and with a predefined subset of model parameters, 
without granting direct access to the underlying data and software implementing the model. 
In addition, distributed simulation may lead to reduction of simulation time, through 
distribution of the computational load over several computers, e.g., using Grid technology 
[24]. Distributed simulation also supports scale up of the model; a model may grow with 
respect to size and complexity irrespective of the capability of the underlying computing 
infrastructure. Moreover, distributed simulation gives rise to reuse of submodels in different 
integrated simulations. 

 
Implementing Distributed Simulations 

Distributed applications are supported through middleware (software that connects 
applications), usually in an operating-system independent way. Today, different technologies 
are available to accomplish a distributed application, depending on the required situation and 
operational context. Widely known technologies are: 

 CORBA. The Common Object Request Broker Architecture (CORBA) created and 
controlled by the Object Management Group, a consortium aiming at setting standards 
for distributed object-oriented systems. CORBA provides applications with platform and 
location transparency for sharing objects across a network of computers. The objects are 
well-defined in terms of attributes and methods, using an interface definition language 
(IDL). CORBA defines application programming interfaces, communication protocols, 
and object/service information models to support the interoperation of heterogeneous 
applications written in various languages on various platforms. Through the years, 
several commercial as well as free implementations became available, called object 
request brokers (ORBs). For example, JacORB is a freely available ORB for Java. 
CORBA defined the Internet Inter-Orb Protocol (IIOP) to enable the several ORBs to 
interoperate, hence allowing different applications realised using different ORBs to 
interoperate. IIOP is an implementation of the General Inter-ORB Protocol (GIOP) for 
the TCP/IP protocol which is the basis for Internet. CORBA has often been used in 
aerospace industry to accomplish distributed applications, e.g. NASA’s Numerical 
Propulsion System Simulation (NPSS) [25, 26]. However, since achieving a proper level 
of security is difficult in CORBA, CORBA seems mainly used for distributed 
applications within local company networks. Despite its use in several industrial 
distributed applications, CORBA is loosing its popularity. Important reasons are its 
complexity, its slow and weak response to the rapidly growing Web developments and 
demands, its high run-time costs (for commercial ORBs), the difficulty in achieving the 
appropriate level of security, and its lack of a proper versioning enabling commercial 
software based on CORBA to ensure backwards compatibility [27]. Also, Microsoft 
never supported CORBA. 

 DCOM. The Distributed Component Object Model (DCOM) is Microsoft’s technology 
enabling distributing software components across a computer network to communicate 
with each other. It was built on Microsoft’s Component Object Model (COM) 
introduced in 1993, enabling programming language-independent interprocess 
communication and dynamic object creation. DCOM was a major competitor of 
CORBA. Since DCOM is very powerful and is considered to provide “too” much 
functionality, it raises security problems. Over the years, hackers discovered their way 
around in DCOM, and exploited and abused the plethora of possibilities to gain illegal 
access to systems. Like CORBA, DCOM was not able to catch up with the Web 
developments, thereby failing to provide a secure distributed environment over Internet 
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firewalls and containing unknown and insecure systems. DCOM has been deprecated in 
favour of Microsoft’s .NET framework. 

 Java RMI. The Java Remote Method Invocation (RMI) is a Java application 
programming interface for invoking an object’s methods. Java RMI is Java specific. 
Nowadays, Java RMI is also considered to be an intermediate solution, being obscured 
by Web Services. The Object Management Group established the standard RMI-IIOP 
(RMI over IIOP), to simplify the development of CORBA applications while preserving 
the popular RMI style of programming. 

 XML and SOAP. Developments and further standardisation by the World-Wide Web 
Consortium (W3C, [28]) resulted in the definition of the Extensible Markup Language 
(XML) for describing different kinds of data. XML facilitates the exchange and sharing 
of data across different, heterogeneous, usually Internet-connected systems. In addition, 
the Simple Object Access Protocol (SOAP) – originating from Microsoft as an object 
access protocol – was adopted and further maintained by the W3C as protocol for 
exchanging XML-based messages, using the HyperText Transfer Protocol (HTTP), over 
a computer network. XML and SOAP are known to be much slower than binary 
protocols used in, e.g., CORBA and RMI. However, their possibilities to construct 
secure distributed and web-based applications in wide-area set ups possibly involving 
Internet firewalls, and the present support for deploying the two standards, make XML 
and SOAP far more popular. 

 Web Services. Today, World Wide Web technology is used more often for 
communication between applications and, consequently, for accomplishing distributed 
computing and simulations. Based on lessons from the past, and developments and 
demands with respect to the Web, the W3C established Web Services. This technology 
provides software applications with programmatic interfaces, enabling interoperability 
between different applications running on different platforms and in different 
frameworks. Web Services facilitate the combination of software and services from 
different companies to form integrated services. Web Services use open standards and 
protocols, such as SOAP and XML. In the Web Service approach, the interface 
(Application Programming Interface, API) of a service, including details of its bindings 
to specific protocols, is well-defined in terms of a Web Service Definition Language 
(WSDL) description, in XML-format. The WSDL description enables clients to interact 
with the service. Web Services also define service “broker” technology. Service 
providers may register services with a service broker. Service requesters may use the 
service broker to find a particular service and retrieve the service’s WSDL description in 
order to subsequently invoke the operations implemented by the service. Web Services 
are commonly used to implement a distributed system in the style of a Service Oriented 
Architecture (SOA) [29]. This software architecture defines the use of individual, 
loosely-coupled services on a computer network to support the implementation of an 
integrated software system comprising the services. The computational resources from a 
network, including the applications, are available as independent services that are 
accessible without knowledge of the services’ actual implementation and underlying 
platforms. Support for the application of Web Services is emerging. For example, the 
Java development environment NetBeans enables software developers to have a first 
Web Service implementation for their application operational quickly. Also, Microsoft’s 
.NET supports Web Services. Although Web Services seem promising, critics state that 
Web Services still are too complex for the software developers, and that the 
performance is poor compared to RMI, CORBA, and DCOM, resulting from the use of 
the text-based XML. The complexity will certainly be reduced in the next years, with 
the advance of standards and tools based on Web Services technology. The performance 
issue is addressed in the on-going developments in the areas of XML and W3C’s 
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Message Transmission Optimization Mechanism (MTOM). Web Services technology – 
supported by initiatives to further reduce its alleged complexity – is expected to become 
a standard for enabling organizations to share data and services with customers and 
business partners. For example, eBay, Google, and Amazon provide a Web Services 
based interface (or actually a client library to facilitate the Web Services access) to their 
services. 

 

In order to establish distributed simulations to run across company boundaries while 
achieving a proper level of security, and to use standard and platform independent 
technology, the choice was made to use Web Services technology for carrying out 
distributed simulations in Proosis.  Web Services technology is also successfully used in 
VIVACE for development of a workflow management framework across company borders, 
over the Internet. It is foreseen that entire workflows will be included in distributed 
simulations as well. 

 

Prototype Development 

A prototype was developed to demonstrate the feasibility of calling the compressor stage 
stacking function remotely, using Web Services technology. The actual stacking function is 
developed by, and is proprietary code of, NTUA. The function is written in Fortran and 
available to NTUA users as a shared library, or Dynamically Linked Library (DLL) on 
Windows. The function is made available for use by simulations in Proosis by integrating the 
DLL into Proosis as a so-called customer library (also called component or class), which is 
the mechanism to extend PROOSIS with customer-written (C++) software in engine 
simulations. The library is, and may be, only locally available at NTUA. However, although 
the DLL may not be installed elsewhere, the function may be used in simulations running 
outside NTUA and accessed over the Internet.  A mechanism to accomplish this remote 
usage is provided through the notion of PROOSIS Web Component, enabling libraries to be 
shared among PROOSIS simulations without the need to distribute the code of the libraries. 
A prototype PROOSIS Web Component is created for the stacking function. It is 
implemented as a PROOSIS customer library that can act as a client for a Web Service 
operation. For the server side, the Web Service operation is developed that gives access to 
the actual stacking function. It uses a plug-in mechanism which makes it easy to replace the 
shared library with another shared library (with the same external interface) containing a 
different implementation. The shared library can even be replaced while the Web Service is 
active. A future target is to develop a specific, but reusable external PROOSIS library that 
can easily be extended to remotely call any function via Web Services technology. 

Figure 8 gives a schematic view of the test environment that is used to test the created 
prototype. The PROOSIS simulation is run mainly at NLR. However, the shared library 
containing the stacking function is replaced by the PROOSIS Web Component (PROOSIS 
plug-in WebComponent.lib), which accesses the actual stacking function via a Web Service 
operation. The server at NTUA provides the stacking function via a Web Service operation 
that redirects the call from the PROOSIS Web Component to the original shared library. 

To accomplish the set up as depicted in Fig. 8, we must take into account that PROOSIS 
only supports customer libraries developed in C++ and FORTRAN. However, the Web 
Services software is written in Java, since nowadays Web Services implementations (server 
engines, tools, code generators) are mainly supported for the Java platform. Support for C++ 
(e.g., Apache Axis) is yet limited. But the language incompatibility is not a problem since 
Java provides support for calling C++ functions from Java, and vice versa, through the Java 
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Native Interface (JNI). Also, the stacking function is implemented as a FORTRAN function, 
which again is not a problem since it can easily be used from C++ code. Potentially this 
overhead may cause calculation times to be larger when comparing these timings with local 
instantiations of the stage stacking function. 
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Figure 8: Compressor Zooming via Remote Web Service Invocation between NLR and 

NTUA 
 

Application of Web Services technology, thereby taking the programming language 
constraints into account, resulted in an implementation of the prototype existing of 5 layers: 

1. PROOSIS custom library containing code that interacts with Java through JNI (C++). 
This layer serves as plug-in for the remote use of the stacking function in the PROOSIS 
simulation. 

2. Web Service client implementation (Java). This layer comprises the Java modules that 
enable layer 1 to call the stacking function remotely as a Web Service operation. 

3. PROOSIS Web Service Component implementation that interacts with C++ through JNI 
(Java). This layer provides the Web Service operation for calling the stacking function. 
It receives a request for the stacking function from the Internet, and passes the call to 
layer 4.  

4. Intermediate code that calls the FORTRAN implementation (C++). This layer acts as the 
glue between the Java code on the one hand, and FORTRAN code compiled into a DLL 
on the other hand. 

5. Actual implementation of stacking function (StgStk) in FORTRAN. This function has 
20 parameters in total, including arrays and 3 output parameters. For the prototype, its 
interface is used as the reference interface through all layers; no generic useable 
interface is used. 

 
A schematic overview of the layered structure is displayed in Fig. 9, including the 
programming language in which each layer is implemented. The numbers next to the layer 
represent the 5 layers above. Note that the JNI layer is not numbered as a separate layer, 
since JNI is not part of the implementation; it is an API that is by default provided with the 
standard Java distribution (J2SE).  

The tools and development environments used for the implementation of the prototype are 
listed in the Appendix. 
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Figure 9: Layered structure of prototype (5 layers) 

 
The prototype was used successfully for distributed engine simulations, with the PROOSIS 
engine simulation running at NLR premises (the Netherlands) and the stacking function 
being installed and used at NTUA (Greece). A 'live' public demonstration of a distributed 
simulation using the prototype was also performed during VIVACE Forum-2 [2]. Figure 10 
shows the PROOSIS simulation on the left (client) and the execution of the stage stacking 
function at the remote location on the right (the server). A typical calculation using the de-
coupled zooming approach for obtaining a set of operating points (69 points, representing the 
upper part of a compressor map)  takes approximately 40s using a high speed internet 
connection compared to 4s when it is ran in a similar but local experiment (without the Web 
Services/Java layer in Fig. 9). This prototype has demonstrated the feasibility of using Web 
Services technology in distributed simulations using PROOSIS, enabling companies to 
collaborate in the engineering activities. 

 

 
Figure 10: Distributed Simulation in PROOSIS 
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Future Developments 

The prototype is still under development and some recommendations for future work are 
presented in this section. For each recommendation, the advantages and disadvantages will 
be given if applicable. 

 
Design of a more generic (re-usable) interface 
In the current prototype, one particular function (i.e., the stacking function) was put available 
as a Web Service operation. Currently, the Web Service contains one component, with one 
operation named after the function. This Web Service operation expects the same input 
arguments as the original function. If this Web Service component needs to provide more 
operations, the existing framework has to be extended for each operation to be added. This 
means that a function/method/operation mapping has to be created in all 5 layers described. 
Hence, the software developer has to know the details about each layer and needs to have the 
complete software environment to rebuild the framework when a new function is added. 

It is worthwhile to design an interface that can be reused by multiple function 
implementations. This means that the Web Service component does not contain specific 
operations anymore, but a single generic operation. The arguments of this operation then 
need to be very generic, so that it can easily be reused. The implementation near the front-
end (layer 4) and back-end (layer 2) then needs to be modified to adapt the generic interface 
to the specific interface (of, e.g., the stacking function). 

The advantage of this method is that not all layers need to be modified for each new 
operation that is added. The software developer only needs to write the code to convert the 
generic interface to the specific interface, and therefore he does not need to have the 
complete development environment. 

A disadvantage may be that the interface adaptations (from generic to specific and back) 
introduce additional overhead and delays in the communication. 

 
Reduction of overhead caused by conversions and data transfers 
The introduction of Java between the PROOSIS custom library and the actual 
implementation causes overhead in development time and run-time, due to data conversions 
and data transfers between platforms when invoking a remote function via a Web Service. 
Run-time overhead appears with each remote call of the function, which usually requires 
transfer of data within the machine (i.e. memory copy) or over the network in between 
machines. Overhead in development time occurs because all the data transfers have to be 
coded manually for each layer. Tools such JAX-RPC and JACE provide mechanisms to 
simplify these data transfers, but they do not automate the data transfers themselves. They 
lack the knowledge to identify the parameter mappings between the layers. The overhead, 
however, might be reduced by using a pure C++ development environment, such as the C++ 
implementation of the Axis Web Service engine. 

The advantage is less overhead in data conversions between Java and C++. 

The disadvantage is that C++ support for Web Services (using Axis) is still in the beta phase, 
and is not guaranteed to work stable. Also, the support for Web Services in the Java platform 
is more common nowadays. Another reason to choose for the Java platform is being able to 
integrate with the “Collaboration HUB” that is being developed in another work package in 
the VIVACE project. The communication layers of the HUB are based on Java. In 
supplement to the design of a more generic interface, this workflow management framework 
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can also be re-used for the purpose of calling a remote function instead of a remote 
workflow. 

 

Reduction of overhead in DLL loading and unloading 

The current prototype calculations through Web Services cause overhead for loading the 
dynamically called calculation procedure (loading DLLs containing the functions). A more 
advanced implementation should load the DLLs once. When all operating points have been 
calculated a finalising procedure should take care of disposing loaded DLLs and functions. 

 
Multi-user and security 
As in practice several engineers from different parties are involved in distributed 
simulations, the issues of multi-user access and security must be addressed. The current 
prototype is not designed to be used by multiple users at the same time. Its behaviour is 
unpredictable when multiple users would invoke the Web Service operation at the same 
time. 

The aspect of security is not addressed in the current prototype, mainly because it was not 
yet required. Presently, the input and output variables are transferred unencrypted over the 
internet. Also, anybody who knows the URL of the Web Service can invoke its operation. 
There is no login mechanism implemented. Security in Web Services can be achieved by 
using Web Services Security specification (WS-Security). WS-Security includes SOAP 
Message Security and Username Token Profile. SOAP Message Security guarantees 
encryption of the transferred data. Username Token Profile guarantees the authentication of 
the user. The WS-Security specification is defined by OASIS [30]. WS-Security is also 
supported by the JBoss application server; see Appendix. Various security aspects are also 
studied in VIVACE project. 
 

 

SUMMARY and CONCLUSION 

An object-oriented environment for gas turbine engine performance simulations is being 
developed to facilitate communication between European partners in cooperative engine 
projects. It is required to be user-friendly for creating, running, managing and sharing engine 
models using either the standard or custom libraries of engine components. It must also 
provide capabilities that are not yet commonly available in European performance 
departments such as multi-disciplinary, multi-fidelity and distributed simulations. The 
feasibility of performing such simulations with this tool is demonstrated in this paper.  

Using a 1-D compressor stage stacking code as an example, different implementations for 
integrating high fidelity component analysis in overall engine simulations are presented. The 
tool’s flexible and extensible architecture gives the user the freedom to select the most 
suitable approach for a particular simulation case. The model of an industrial gas turbine 
engine is used to exemplify the benefits of this type of analysis. 

The stage stacking code is also used to demonstrate distributed simulations. A prototype of a 
Web Component has been created and successfully tested that remotely invokes the code 
from an engine simulation, via the internet, using Web Services technology. The reasons for 
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selecting this technology, the steps taken and the tools used in realising the prototype are 
presented in detail while future improvements to it are discussed. 

These demonstrations prove that the tool’s architecture is adaptable enough to integrate 
different modelling methods and its potential to fulfil its role as a shared simulation 
environment in Europe. 
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APPENDIX 

The following tools and development environments were used for the implementation of the 
prototype: 

– NetBeans 5.0, by default provided with the Java 5.0 software development kit (SDK), 
for Java development. It supports Web Services development. In particular, it facilitates 
interactive declaration of Web Service operations, which is the starting point for the 
generation of code implementing the Web Services component. NetBeans was used for 
layers 2 and 3.  

– Microsoft Visual Studio C++ 6.0 for C++ development. It was used for layers 1 and 4. 



 

NLR-TP-2007-513 

22 

– JBoss application server. An application server is a (software) server program in a 
computer network dedicated to running certain software applications. These applications 
(in our case, the stacking function) can be made available using Web Services. In this 
case, the application server plays the role of so-called Web Service End Point which 
enables deployment of Web Service operations. JBoss is widely used for deploying 
JAVA applications and is provided under the LGPL (open source) license and is 
therefore free to use. JBoss is used as Web Service End Point, which manages layer 3 at 
run time. 

– JAX-RPC is applied to generate the Web Services code in Java, based on declarations of 
Web Service operations. It is supported by NetBeans and compatible with JBoss, and is 
still more robust than its successor JAX-WS. JAX-RPC is used in the implementation of 
layers 2 and 3, to generate a WSDL definition, code skeletons and stubs, both client and 
server side, enabling the client to invoke the stacking function as a Web Service 
operation, and enabling the server (including JBoss) to handle the Web Service 
operation and direct it to the actual stacking function. 

– JACE is used as tool to bridge the gap between Java and C++. As mentioned before, the 
Java Native Interface (JNI) enables to connect C++ and Java code. However, JNI is a 
rather complex API and requires a lot of manual coding to transfer Java values to and 
from the stacking function (with about 20 arguments). JACE is a JNI-based collection of 
C++ and Java libraries that facilitate the integration of C++ and Java code. JACE is used 
to implement the call of Java code of layer 2 from layer 1 on the client side, and the call 
of C++ code of layer 4 from layer 3. 

– No specific tools were required for calling FORTRAN code (layer 5) from the C++ code 
(layer 4). This only requires a C-style function declaration on the C++ side that makes it 
easy to call the stacking function as if it were a C function. Care must be taken that 
FORTRAN passes all function arguments by reference, and hence that all parameters in 
the C function must be pointers. Also, because the stacking function is available from a 
DLL on a Windows system, the stacking function must be used via a function pointer 
that needs to be assigned runtime and the standard calling convention of Win32 API 
functions must be used (__stdcall directive).  
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