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Abstract— We study the problem of estimating small 

reachability probabilities for large scale stochastic hybrid 
processes through Sequential Monte Carlo (SMC) simulation. 
Recently, [Cerou et al., 2002, 2005]] developed an SMC approach 
for diffusion processes, and referred to the resulting SMC 
algorithm as an Interacting Particle System (IPS). In 
[Krystul&Blom, 2004, 2005] it was shown that this IPS approach 
works very well for a diffusion example, but has its limits when 
applied to a switching diffusion with large differences in discrete 
state (mode) probabilities or with rare mode switching. In order 
to cope with these problems, in [Krystul&Blom, 2004, 2005, 2006] 
the IPS approach has been extended to Hybrid IPS (HIPS) 
versions. Unfortunately, these HIPS versions may need 
impractically many particles when the space of the discrete state 
component is very large. Such situation typically occurs when the 
stochastic process considered is highly distributed and 
incorporates many local discrete valued switching processes. 
Then the vector of local discrete valued components has a state 
space the size of which is exponentially large. The aim of the 
current work is formulate the estimation of extremely small rare 
event probabilities in stochastic hybrid systems with a large state 
space for the discrete valued process component into one of a 
hierarchical estimation process, and to use this for the derivation 
of a Hierarchical HIPS version. The effectiveness of the approach 
is illustrated for evaluating the risk of collision between two 
aircraft in a scenario of the future. 
 

Index Terms— Air transportation, Collision processes, Monte 
Carlo methods, Risk analysis, Safety, Sequential estimation, 
Stochastic systems 
 

I. INTRODUCTION 

 
The aim of the current paper is to study the problem of 
estimating small reachability probabilities for large scale 
stochastic hybrid processes through Sequential Monte Carlo 
(SMC) simulation. In particular, we are interested in 
estimating of collision risk in free flight by addressing this 
within the framework of stochastic hybrid systems. For 
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applications to other safety critical industries, e.g. nuclear, 
chemical, such approach has been well developed (e.g. Labeau 
et al., 2000) within the class of Piecewise Deterministic 
Markov processes (Davis, 1984, 1993). For risk evaluation of 
air traffic operations, however it is needed to include 
Brownian motion in the models to represent the effect of 
random wind disturbances on aircraft trajectories. This is 
supported by the class of generalized stochastic hybrid 
systems (Pola et al., 2003). 
 
This paper considers the problem of estimating the probability 
that a generalized stochastic hybrid system reaches a particular 
small sub-set of the state space and within some time horizon. 
Numerical analysis of such reachability problems is known to 
be demanding. An alternative is to accomplish this by Monte 
Carlo simulation. The advantage of Monte Carlo (MC) 
methods for reachability probability estimation is that they do 
not require specific assumptions on the system under 
consideration. However, obtaining accurate estimates of rare 

event probabilities, say about 910− per flying hour requires to 

simulate at least 1110  flying hours, which is very time 

consuming.  
In order to assess collision risk of free flight operation, the 

idea is to perform many Monte Carlo simulations with a 
model of the free flight operation and, while doing so, to 
estimate the collision risk by counting the number of collisions 
and divide this by the number of simulated flight hours. 
Though this idea is simple, to make it work in practice we 
need an effective way of speeding up the Monte Carlo 
simulation. This paper describes the way we are doing this by 
extending the Interacting Particle System (IPS) approach of 
Cérou et al. (2002, 2005) to collision risk assessment for a 
strong Markov process model of AMFF operations. 
 
 Recently [Cerou et al., 2002, 2005] developed a sequential 
MC algorithm for estimating such small reachability 
probabilities of strong Markov processes within some 
guaranteed level of precision. The key idea behind this 
approach is to express the small probability to be estimated as 
the product of a certain number of larger probabilities, which 
can be efficiently estimated by the Monte Carlo approach. 
This can be achieved by introducing sets of intermediate states 
that are visited one set after the other, in an ordered sequence, 
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before reaching the final set of states of interest. The 
reachability probability of interest is then given by the product 
of the conditional probabilities of reaching a set of 
intermediate states given that the previous set of intermediate 
states have been reached. Each conditional probability is 
estimated by simulating in parallel several copies of the 
system, i.e. each copy is considered as a particle following the 
trajectory generated through the system dynamics. To 
guarantee the precision, the MC simulated process must have 
the strong Markov property.  
 
The paper is organized as follows. Section II formulates the 
problem considered. Section III develops a factorization of the 
risk. Section IV characterizes each of the risk factors. Section 
V uses this to develop the sequential MC simulation approach. 
Section VI applies this approach towards estimating the 
collision risk of demanding free flight scenario. Section VII 
draws conclusions. 

 

II. MONTE CARLO SIMULATION OF COLLISION RISK 

 
Throughout this and the next sections, all stochastic 

processes are defined on a complete stochastic basis (Ω, F, IF, 
P, T) with (Ω, F, P) a complete probability space, and IF is an 
increasing sequence of sub-σ-algebra’s on the positive time 

line T=IR+, i.e. IF { }FFJ (, ),T∈∆
,tt , J containing all P-null 

sets of F and FFFJ ⊂⊂⊂ ts  for every s < t. 

 
We assume that air traffic operations are represented by a 
generalised stochastic hybrid process { , }t tx θ  which satisfies 

the strong Markov property [Bujorianu & Lygeros, 2005]. For 
an N-aircraft free flight traffic scenario the stochastic hybrid 
process { , }t tx θ  consists of components 

0 1  Col{ , , , }N
t t t tx x x x∆ …  and 0 1  Col{ , , , }N

t t t tθ θ θ θ∆ … , i
tx  

assumes values from IRin , and i
tθ  assumes values from a 

finite set ( iM ). 

Physically, { , }i i
t tx θ , 1, ,i N= … , is the hybrid state process 

related to the i-th aircraft, and 0 0{ , }t tx θ  is the non-aircraft 

related hybrid state process. The process { , }t tx θ  is nR M× -

valued with 
0

N

i
i

n n
=

=∑  and 
0

N

i
i

M M
=

= ⊗ . 

In order to model collisions between aircraft, we introduce 
mappings from the Euclidean valued process  { }tx  into the 

relative position and velocity between a pair of two aircraft 

( )ji, . The relative horizontal position is obtained through the 

mapping ( )ij
ty x , the relative horizontal velocity is obtained 

through the mapping ( )ij
tv x . The relative vertical position is 

obtained through the mapping ( )ij
tz x , and vertical rate of 

climb/descent is obtained through the mapping ( )ij
tr x . The 

relation between these position and velocity mappings satisfies 
the following two equations: 

( ) ( )ij ij
t tdy x v x dt=  (1) 

( ) ( )ij ij
t tdz x r x dt=  (2) 

A collision between aircraft (i,j) means that the process 

{ ( ), ( )}ij ij
t ty x z x  hits the boundary of an area where the 

distance between aircraft i and j is smaller than their physical 
size. Under the assumption that the length of an aircraft equals 
the width of an aircraft, and that the volume of an aircraft is 
represented by a cylinder the orientation of which does not 
change in time, then aircraft (i,j ) have zero separation if 

ij
tx D∈  with: 

{ ; ( ) ( ) / 2  AND 

                                 ( ) ( ) / 2},     

ij n ij
i j

ij
i j

D x y x l l

z x s s i j

= ∈ ≤ +

≤ + ≠

R

 (3) 

where jl and js  are length and height of aircraft j. For 

simplicity, we assume that all aircraft have the same size, by 
which (3) becomes: 

{ ; ( )   AND  ( ) },  ij n ij ijD x y x l z x s i j= ∈ ≤ ≤ ≠R  (4) 

Although all aircraft have the same size, notice that in (4), 
ijD  still depends of (i,j). If tx  hits ijD  at time ijτ , then we 

say a collision event between aircraft (i,j) occurs at moment 
ijτ , i.e. 

inf{ 0;  },                   ij ij
tt x D i jτ = > ∈ ≠  (5) 

The first moment iτ  of collision with any of the other 
aircraft, i.e. 

inf{ } inf{ 0;  } inf{ 0;  }i ij ij i
t t

j i j i
t x D t x Dτ τ

≠ ≠
= = > ∈ = > ∈  (6) 

with i ij

j i

D D
≠

=∪  

From this moment iτ  on, we assume that the differential 

equations for{ , }i i
t tx θ  stop evolving.  

An unbiased estimation procedure of the risk would be to 
simulate many times aircraft i amidst other aircraft over a 
period of length T and count all cases in which the realization 

of the moment iτ  is smaller than T. An estimator for the 
collision risk of aircraft i per unit T  of time then is the fraction 
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of simulations for which iτ  < T. 

III.  RISK FACTORIZATION USING MULTIPLE CONFLICT LEVELS 

 
Cérou et al. (2002) have developed a novel way of speeding 

up Monte Carlo simulation to estimate the probability that an 
n
R -valued strong Markov process tx  hits a given “small”  

subset D ∈ n
R  within a given time period (0,T). This 

method essentially consists of taking advantage of an 

appropriately nested sequence of closed subsets of n
R : 

1 1m mD D D … D−= ⊂ ⊂ ⊂ , and then start simulation from 

outside 1D , and subsequently simulate from 1D  to 2D , from 

2D  to 3D  , …, and finally from 1mD −  to mD . In order to 

apply this approach to the free flight operational concept 
considered we identified the following approach in defining a 
sequence of nested subsets. 

 
Prior to a collision of aircraft i with aircraft j a sequence of 

conflicts ranging from long term to short term always 
happened. In order to incorporate this explicitly in the MC 
simulation, we formalize this sequence of conflict levels 

through a sequence of closed subsets of n
R : 

1 1
ij ij ij ij

m mD D D … D−= ⊂ ⊂ ⊂  with for k = 1,…, m: 

{ ; ( ) ( )  AND

 ( ) ( ) ,  for some },  

ij n ij ij
k k

ij ij
k k

D x y x v x d

z x r x h i j

= ∈ + ∆ ≤

+ ∆ ≤ ∆ ∈[0,Τ ] ≠

R
 (7) 

with kd , kh  and kT the parameters of the conflict definition 

at level k, and with md l= , mh s=  and 0mT = , and with 

1k kd d+ ≥ , 1k kh h+ ≥  and 1k kT T+ ≥ . If tx  hits ij
kD  at time 

ij
kτ , then we say the first level k conflict event between 

aircraft (i,j) occurs at moment ijkτ , i.e. 

inf{ 0;  }ij ij
k t kt x Dτ = > ∈  (8) 

Similarly as we did for reaching the collision level by 

aircraft i, we consider the first moment ikτ  that aircraft i 

reaches conflict level k with any of the other aircraft, i.e. 

inf{ } inf{ 0;  } inf{ 0;  }i ij ij i
k k t k t k

j i j i
t x D t x Dτ τ

≠ ≠
= = > ∈ = > ∈  (9) 

with i ij
k k

j i

D D
≠

∆
∪  

Following the approach of Cérou et al. (2002), next we 

define {0,1}-valued random variables { , 1,.., }i
k k mχ = as 

follows:  

1,   if   or 0

    0,   else

i i
k k T kχ τ= < =

=
 

By using this i
kχ  definition we can write the probability of 

collision of aircraft i with any of the other aircraft as a product 
of conditional probabilities of reaching the next conflict level 
given the current conflict level has been reached: 

1
1 1

1
1 1

( ) [ ] [ ] [ 1]

                ( )

m m
i i i i i
m m k k k

k k

m m
i i i
k k k

k k

T

T T

τ χ χ χ χ

τ τ γ

−
= =

−
= =

< = = = =

= < < =

∏ ∏

∏ ∏

P E E E

P

 (10) 

with 1( )i i i
k k kT Tγ τ τ −

∆
< <P  

With this, the problem can be seen as one to estimate the 

conditional probabilities i
kγ  in such a way that the product of 

these estimators is unbiased. Because of the multiplication of 

the various individual i
kγ  estimators, which depend on each 

other, in general such a product may be heavily biased. The 
key novelty of Cérou et al. (2002) was to show that such a 

product may be evaluated in an unbiased way when{ }tx  

makes part of a larger stochastic process that satisfies the 
strong Markov property. This approach is explained next.  

IV.  CHARACTERIZATION OF THE RISK FACTORS 

Let us denote 1nE M+′ = ×R , and let ε ′  be the Borel 

σ − algebra of E′ . For any B ε∈ ′ , ( )i
k Bπ  denotes the 

conditional probability of ( , )
k kk k x Bτ τξ τ θ

∆
, ∈  given 

1  for 1 .i
l l kχ = ≤ ≤  

Define (0 ) ii
kk

T D MD = , × × , 1k … m= , , . Then the 

estimation of the probability for kξ  to arrive at the k-th nested 

Borel set i
kD  is characterized through the following 

recursive sequence of transformations  
 

prediction conditioning
1( ) ( ) ( )i i i

k k k

i
k

pπ π

γ

− ⋅ → ⋅ → ⋅ ,

↓  

where ( )i
kp B  is the conditional probability of k Bξ ∈  given 

1  for 0 1.i
l l kχ = ≤ ≤ −  Because{ }t tx θ,  is a strong 

Markov process, { }kξ  is a Markov sequence, the prediction 

of which satisfies: 

1 1( ) ( ) ( ) for all
k k

i i
k kE

p B p B d Bξ ξ ξ π ξ ε
−| −′

= | ∈ ′∫       (11) 
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Next we characterize the conditional probability of reaching 
the next level: 

1

1

{ }

( )

[ 1]

1 ( )i
k

i i i
k k k

i i
k k

i
kDE

T T

p dξ

γ τ τ
χ χ

ξ

−

−

∈′

= < | <

= | =

= .∫

P

E  (12) 

And the conditioning satisfies:  

{ }

{ }

1 ( )
( ) for all

1 ( )

i
k

i
k

i
kDi B

k i
kDE

p d
B B

p d

ξ

ξ

ξ
π

ξ
ε

′

∈

∈′

= ∈ .
′

′∫
∫

 (13) 

With this, each of the m  terms i
kγ  in (10) is characterized 

as a solution of a sequence of “filtering” kind of equations 
(11)-(13). An important difference with “filtering” equations 
is however that (11)-(13) are ordinary integral equations, i.e. 
they have no stochastic term entering them.  

V. INTERACTING PARTICLE SYSTEM BASED RISK ESTIMATION 

Based on this theory, an advanced Interacting Particle 
System (IPS) simulation algorithm is explained next for a 
multi aircraft scenario the operation of which is based on the 
AMFF operational concept [KleinObbink, 2003]. The 
transformations (11)-(13) lead to the IPS algorithm to estimate 

( )m Tτ <P . By pN

kγ ,  pN

kp  and pN

kπ  we denote the 

numerical approximations of kγ ,  kp  and kπ  respectively (to 

simplify expressions we drop index i ). When simulating from 

1kD −  to kD , a fraction pN

kγ of the Monte Carlo simulated 

trajectories only will reach kD  within the time period (0,T).  

In [Krystul & Blom, 2005, 2006] two versions of IPS 

algorithm are presented. In these two versions pN  particles 

are used per each mode Mθ ∈  in total pN N×  particles, 

here | |N M=  is the number of elements in M . The 

resampling  in these algorithms is done separately for each  

θ -mode (i.e. stratified sampling with strata corresponding to 

θ -modes).  If N  is big then the algorithm becomes 
inefficient and slow, since a huge number of particles must be 
treated. In this section we present a version of IPS algorithm 
which aims to handle this problem. The idea is to introduce 

new “aggregated” mode process { }tκ :  

( ) ( ( )),   ,t tF t Rκ ω θ ω += ∈  

Where :F M Mκ→  and | | | |M Mκ < . An element 

Mκκ ∈  corresponds to a set of θ -modes: 1( )F Mκ− ⊂ . 

In our new algorithm the resampling is done conditionally on 
κ -modes, (i.e. stratified sampling with strata corresponding 
to κ -modes). 

By ( )tϕ κ  we will denote an approximation of κ -mode 

probability ( )h
t

p
κ

κ
ɶ

 (i.e. total weight of particles in κ -mode) 

and 
0

0( ) ( )hp
κ

ϕ κ κ=
ɶ

. By , 1( ( ))N
ij i jxλ =Λ =  we denote the 

infinitesimal switching rate matrix of the discrete valued 

component { }tθ . The particle is defined as a triplet 

( )x θ ω, , , [0 1]ω ∈ , , nx∈R  and θ ∈M . The first 

component of x  counts the time. 
 
Advanced IPS Step 0. Initial setup  
• Choose an appropriate nested sequence of closed subsets 

jD , ( 1 )j … m= , , , of 1n−
R  such that 

1 1m mD D D … D−= ⊂ ⊂ ⊂ , and define 

(0, )k kT DD × ×≜ M , 1k … m= , , .  

• Choose a small 0ε >  and compute  

1 ,
1

max ( )
N

ij
i N

j
x

j i

r xλ ε
= , =

∈ ≠

= | | + .∑
…
�
R

 

• Choose a discretization step 
T

h
J

= . 

Advanced IPS Step 1. Initial sampling; 0k = .   

• At time 0t =  we start with a set of pN  particles for 

each mode 1{ }Se … eκκ ∈ = , ,M :  

0 0 0 1{ } pNi i i
ixκ κ κ

κθ ω κ, , ,
=, , , ∈ ,M  

where 0
iκθ ,  are independently drawn from 

00
( )pθ κ κ| ⋅ | , 

1
0

i nxκ , −∈R  are independently drawn from 

0 0 0( )i
X

p κ
θ θ ,
| ⋅ |  with the first component of 0

ixκ ,  equal to 

zero, and the initial weights satisfy 

0

0

( )
1  i

p
p

p
i … N

N
κκ

κ

κ
ω κ, = , = , , , ∈ .M  

• Then  

0 0
0 0 { }

1

( ) ( )

( )

p

p
i i

N
N i

x
k i

n

B B

B

κ κ
κ

θπ θ ω δ θ

θ

, ,
,

,
=

, = , ,

∈ , ∈

∑∑

R MB

 

and  

0 1pNγ = .   

 
Iteration: for 1k … m= , ,  over step 2 (prediction) and step 3 

(assessment)  
 

Advanced IPS Step 2. Prediction: 1
pN

kπ −  →  pN

kp ;  

Start with empty sets kSκ , ,κκ ∈M  to store kD  arrived 

particles. 
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For 1j … J= , , , with 
T

h
J

=  and 1
ˆ

j kt T h j−:= + ⋅   

 
Substep 2.j.a (Interaction based κ  resampling for each 
particle):  

Do for each particle in { }1 1 1ˆ ˆ ˆj j j

i i i

t t t
xη η ηθ ω

− − −

, , ,, ,  for which 

1ˆ 0
j

i

t

ηω
−

, ≠ : 

 

• Sample a ˆ j

i

t

η
κκ , ∈M  from 

1 1ˆ ˆ ˆ ˆ1 1 1
ˆ ˆ( )hh h h

j jt t t tj j j j

i i

t tX
P xη η

θκ κ
κ θ η

− −− − −

, ,
| , , | , ,ɶ   with 

1 1ˆ ˆ ˆ ˆ1 1 1
ˆ ˆ

1  , if 
( )

    , else       
hh h h

j jt t t tj j j j

i i

t tX
P xη η

θκ κ

α κ η
κ θ η

α− −− − −

, ,
| , ,

− =
| , , 


ɶ ≜  

and α some fixed small probability.  

• For all κκ η, ∈M , 1 pi … N= , ,  evaluate the transition 

probabilities 

1 1ˆ ˆ ˆ ˆ1 1 1

1ˆ ˆ1 11

ˆ ˆ

ˆ
( )

( )

[ ( ( )) ]

hh h h
j jt t t tj j j j

i i
j

t tj j

i i

t tX

i rh

t
F

P x

I P x rh eη η

η η
θκ κ

η
θ θ θ θ

θ κ

κ θ η
− −− − −

, ,
−

− −−

, ,
| , ,

∗ , −

∈

| , , ≈

≈ + ,∑
 

where 
1

( ) ( )P I
r

ζ ζ∗ = Λ +ɶ , with ( )Λ ⋅ɶ  defined by  

1

1

( )  if [0, ),
( )

 if [0, ). N N

x x T
x

O x T×

Λ ∈
Λ =  ∉
ɶ  

 
• Adapt the weights: 

1 1ˆ ˆ ˆ ˆ1 1 1

1

1

1 1ˆ ˆ ˆ ˆ1 1 1

1

ˆ ˆ ˆ
,

ˆ

,
ˆ

ˆ ˆ ˆ
,

ˆ

( )
 if 

1

( )
if 

hh h h
j j jt t t tj j j j

j

j
hh h h

j j jt t t tj j j j

j

i i i

t t tXi
t

i
t i i i

t t tXi
t

p x

p x

η η η
θκ κη

η
η η η

θκ κη

κ θ η
ω κ η

α
ω

κ θ η
ω κ η

α

− −− − −

−

−

− −− − −

−

, , ,
| , ,

, , ,
| , ,

 | , ,
 =
 −

= 
| , ,

≠


⌣

 

• Select per κκ ∈M  all particles { }1 1 1ˆ ˆ ˆ ˆ,
j j j j

i i i i

t t t t
xη η η ηθ ω κ

− − −

, , , ,, , ⌣ , 

κη ∈M , 1 pi … N= , , , for which ˆ j

i

t

ηκ κ, = , and 

renumber the indices of these particles such that the 

ˆ j

i

t

ηκ , value is recognizable from the first index of a new 

set of particles. This yields for each κκ ∈M  the 

following new set of particles 

ˆ

1 11ˆ ˆˆ 1 ˆ{ }  if N 0,t j

j jj j

Nii i
it tt tx

κ
κ κκ κωθ− −−

,, ,
=, , ≠  and an empty set 

ˆ{} if N 0.
jt

κ =  

Substep 2.j.b (Prediction):  
• Determine the new set of particles 

ˆ

1ˆ ˆ ˆ{ } t j

j j j

Ni i i
it t t

x
κ

κ κ κθ ω, , ,
=, , , κκ ∈M  by evaluating for 

each particle a new value ̂
j

i

t
xκ ,  according to Euler 

discretization scheme:  

11 1 11 1 ˆ ˆˆ ˆ ˆˆ ˆˆ ( ) ( )( )
j jj j jj jj

i ii i i i i i
t tt t tt tt

x a h bx x x W W
κ κκ κ κ κθ θ −− − −− −

, ,, , , ,= + , + , −   

and new value ˆ j

i

t

κθ ,  by independent sampling with 

replacement from:  

11ˆ ˆ ˆ ˆ1 1

1

1

ˆˆ

ˆ

ˆ

ˆ ˆ1 1

ˆ ˆ1 1

( )

1 ( ( ))[ ( ( )) ]

1 ( ( ))[ ( ( )) ]

h hh h
jjt t t tj j j j

j

j

ii
ttX

rhi
t

i rh

t

i i
t tj j

i i
t tj j

P x

F I P rh ex

F I P x rh e

κκ
θ θκ

κ
κ

κ
κθ

κ κθ θθ θ

κ κθ θθ θ

θ κ θ

θ

θ

−−− −

−

−

,,
| , ,

∗ −,

∗ , −
∈

, ,
− −

, ,
− −

| , , ≈

+
≈

+∑ M

 

• The weights are not changed: 
1ˆˆ jj

i i
tt

κ κω ω −

, ,= .  

 
Substep 2.j.c (Store and neutralize arrived particles):  
 

• If ˆ j

i
kt

x D
κ , ∈ , then a copy of the particle 

ˆ ˆ ˆ{ }
j j j

i i i

t t t
xκ κ κθ ω, , ,, ,  is stored in the set kSκ , and then in 

the original particle we set ˆ 0
j

i
t
κω , = .  

 
Advanced IPS Step 3. Assess arrived particles; 

• Renumbering the particles in kSκ  yields a set of 

particles 1
ˆ ˆˆ{ } Sk

N
i i i

k k k ix
κκ κ κθ ω, , ,

=, ,  with 
kS

N κ the number 

of particles in kSκ . 

• Approximation of kγ : ,

1

ˆ
Sk

p

N

N i
kk k

i

κ

κ

κ

κ
γ γ ω

∈ =

≈ = .∑ ∑
M

 If 

0
kS

N κ =  for all κκ ∈M , then the algorithm stops 

with estimate (0 ) 0.hitP T, ≈  

 

Advanced IPS Step 4. Resampling : p pN N

k kp π→ ; 

 

• Resample pN  particles per mode κκ ∈M from  kSκ  

according the following scheme: 
 

− If 
k

pS
N Nκ >  then draw pN  particles { }, , ,, ,i i i

k k kxκ κ κθ ω  

independently from the empirical measure 

{ }, ,

, ,
ˆˆ ,

1

ˆ
Sk

p

i i
k k

N

N i
k k x

i

κ

κ κ

κ κ
θ

π ω δ
=

=∑ and set 

,
, 1

ˆ

.

Sk

p

N i
ki i

k N

k pN

κ κ
κ ω

ω
γ

== ∑ . 

 

− If 1
2

k
p pS

N N Nκ≤ ≤  then  



RESIM 2006 6 

1. Copy the
kS

N κ particles, i.e. 

{ } { }, , , , , ,ˆ ˆˆ, , , ,i i i i i i
k k k k k kx xκ κ κ κ κ κθ ω θ ω=  and set 

, ,ˆ
.

k

p

Si i
k k N

k p

N

N

κκ κω ω
γ

=  for 1
kS

i … N κ= , , ,  

2. Draw 
k

p S
N N κ− particles { }, , ,, ,i i i

k k kxκ κ κθ ω  

independently from the empirical measure 

{ }, ,

, ,
ˆˆ ,

1

ˆ
Sk

p

i i
k k

N

N i
k k x

i

κ

κ κ

κ κ
θ

π ω δ
=

=∑ and set 

,
, 1

ˆ

.

Sk

p

N i
ki i

k N

k pN

κ κ
κ ω

ω
γ

== ∑ . 

 

− If 1
20

k
pS

N Nκ< <  then  

1. Copy the
kS

N κ particles, i.e. 

{ } { }, , , , , ,ˆ ˆˆ, , , ,i i i i i i
k k k k k kx xκ κ κ κ κ κθ ω θ ω=  and set 

, , 1
ˆ .

2. p

i i
k k N

k

κ κω ω
γ

= for  1
kS

i … N κ= , , ,  

2. Draw 
k

p S
N N κ− particles { }, , ,, ,i i i

k k kxκ κ κθ ω  

independently from the empirical measure 

{ }, ,

, ,
ˆˆ ,

1

ˆ
Sk

p

i i
k k

N

N i
k k x

i

κ

κ κ

κ κ
θ

π ω δ
=

=∑  and set 

,
, 1

ˆ

2. .( )

Sk

p

k

N i
ki i

k N

k p S
N N

κ

κ

κ
κ ω

ω
γ

==
−

∑
 

− If 0
kS

N κ =  then make dummy particles 

{ }, , ,, ,i i i
k k kxκ κ κθ ω  with  , 0i

k
κω =  

 
• The new set of particles per mode κ  is 

{ }, , ,

1
, ,

pNi i i
k k k i

xκ κ κθ ω
=

, κκ ∈M . 
• If k m<  then (to account for empty sets kSκ ) do one 

interaction based resample Substep 2.j.a* (specified 
below) and prediction Substep 2.j.b. and then repeat 
steps 2, 3 for 1k k:= + .  

 
• If  k = m, then stop with an estimate 

1
(0 ) p

m N

hit kk
P T γ

=
, ≈ ∏ . 

 
Description of Substep 2.j.a* (Interaction based 
resampling) 
 

• For all κκ η, ∈M , 1 pi … N= , ,  evaluate the transition 

probabilities 

1 1ˆ ˆ ˆ ˆ1 1 1

1ˆ ˆ1 11

ˆ ˆ

ˆ
( )

( )

[ ( ( )) ]

hh h h
j jt t t tj j j j

i i
j

t tj j

i i

t tX

i rh

t
F

P x

I P x rh eη η

η η
θκ κ

η
θ θ θ θ

θ κ

κ θ η
− −− − −

, ,
−

− −−

, ,
| , ,

∗ , −

∈

| , , ≈

≈ + ,∑
 

where 
1

( ) ( )P I
r

ζ ζ∗ = Λ +ɶ , with ( )Λ ⋅ɶ  defined by  

1

1

( )  if [0, ),
( )

 if [0, ). N N

x x T
x

O x T×

Λ ∈
Λ =  ∉
ɶ  

Evaluate probabilities of modes:  

ˆ

1 1 1ˆ ˆ ˆ ˆ1 1 1

ˆ

ˆ ˆ ˆ
1

( ) ( )

( )

h
jt j

p

hh h h
j j jt t t tj j j j

t

N
i i i

t t tX
i

p

p x

κ

η η η
θκ κ

η

κ ϕ κ

κ θ η ω
− − −− − −

, , ,
| , ,

∈ =

≈ =

= | , ,∑ ∑
k
M

  

• For each κκ ∈M  independently draw pN  random pairs 

1 1ˆ ˆ( )
j j

ii
t tx

κκ θ− −

,, , , 1 pi … N= , ,  from the following particle 

spanned unnormalized joint measure: 

ˆ ˆ ˆ ˆ ˆ ˆ1 1 1 1

1 1 1ˆ ˆ ˆ ˆ ˆ ˆ1 1 1 1 1
ˆ ˆ ˆ { }

1

( ) ( )

( ) ( )

hh h hh h
t t t t t tj j j j j j

p

h i ih h h
j j jt t t t t tj j j j j j

X X

N
i i i

t t t xX
M i

B p Bp

p x Bη η

κ

θ κ θ κ

η η η
θθκ κ

η

θ κ θ κ

κ θ η ω δ θ

− − − −

, ,
− − −− − − − −

, | , ,

, , ,
| , , ,

∈ =

, | = , , ≈

≈ | , , ,∑ ∑
 

• This yields for each κκ ∈M  the following set of 

particles 
1 11ˆ ˆˆ 1{ } p

j jj

Nii i
it ttx

κκ κωθ− −−

,, ,
=, ,  with 

1ˆ ˆ ( )
j j

i
pt t

Nκ ϕ κω −

, = / . 

 
In order to apply this new IPS algorithm towards the 

assessment of collision risk of free flight, we need to develop 
a MC simulator of these operations the simulated trajectories 
of which are known to constitute a version of a generalized 
stochastic hybrid process that is strong Markov. 
[Bujorianu&Lygeros, 2005]. [Everdij&Blom, 2005, 2006] 
have developed a Stochastically and Dynamically Colored 
Petri Net (SDCPN) formalism that accomplishes this.  
 

VI. IPS BASED ESTIMATION OF AMFF COLLLISION RISK  

 
In Everdij et al. (2006) it is shown how the SDCPN 

formalism has been used to develop a MC simulation model of 
the AMFF operation. The IPS algorithm developed above is 
now applied to this AMFF MC simulation model. The 
scenario has two aircraft, the flight plans of which cause the 
aircraft to be on a head on collision course. 

A. Parameterization of the IPS simulations  

The main safety critical parameter settings of the free flight 
enabling technical systems (GNSS, ADS-B and ASAS) are 
given in the following table. 
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Model Parameter  Probability 

Global GNSS down 1.0 x 510−  

Global ADS-B down1 1.0 x 610−  

Aircraft ADS-B Receiver down 5.0 x 510−  

Aircraft ADS-B Transmitter down 5.0 x 510−  

Aircraft ASAS System mode corrupted 5.0 x 510−  

Aircraft ASAS System mode failure 5.0 x 510−  

 
The IPS conflict levels are defined by parameter values for 

lateral conflict distance kd , conflict height kh  and time to 

conflict kT . These values have been determined through two 

steps. The first was to let an operational expert make a best 
guess of proper parameter values. Next, during initial 
simulations with the IPS some fine-tuning of the number of 
levels and of parameter values per level has been done. The 
resulting values are given in the next table.  
 
k 1 2 3 4 5 6 7 8 

kd (Nm) 4.5 4.5 4.5 4.5 2.5 1.25 0.5 0.054 

kh (ft) 900 900 900 900 900 500 250 131 

kT (min) 8 2.5  1.5 0 0 0 0 0 

 

B. Two head-on flying aircraft 

In this simulation two aircraft start at the same flight level, 
some 250 km away from each other, and fly on opposite 
direction flight plans head-on with a ground speed of 240 m/s. 
 
By running ten times the classical IPS algorithm [Cerou et al., 
2002, 2005] the collision risk is estimated ten times. The 
number of particles per IPS simulation run is 12,000. The total 
simulation time took about 5 hours on two machines, and the 
load of computer memory per machine was about 0.5 
Gigabyte. For the first four IPS runs, the estimated fractions 

pN

kγ  are given in the table below for each of the conflict 

levels, k = 1,..,8. 
 

Level 1st IPS 2nd IPS 3rd IPS 4th IPS 

1 1.0000 1.0000 1.0000 1.0000 
2 0.0003 0.0007 0.0007 0.0007 
3 0.0000 0.0000 0.0036 0.0148 
4 0.0000 0.0000 0.0116 0.0003 
5 0.0000 0.0000 0.0046 0.0000 
6 0.0000 0.0000 0.0000 0.0000 
7 0.0000 0.0000 0.0000 0.0000 
8 0.0000 0.0000 0.0000 0.0000 
Product of 
fractions 

0.0000 0.0000 0.0000 0.0000 

                                                           
1 Global ADS-B down refers to frequency congestion/overload of the data 

transfer technology used for ADS-B. 

 
Apparently, none of the particles reaches level sets of number 
6 or higher. Hence, the estimated collision probability is zero. 
Obviously, this is a very unreliable estimate of the collision 
risk. In other words, the IPS approach does not work well for 
this case. 
 
In order to estimate the collision risk for this case we used our 
new more advanced version of IPS algorithm (section V), the 
results of which are given in the following table. 
 
Level 1st Adv 

IPS 
2nd Adv 

IPS 
3rd Adv 

IPS 
4th Adv 

IPS 
1 0.9998 1.0000 1.0000 1.0000 
2 0.3076 0.2848 0.2911 0.2986 
3 0.0575 0.0483 0.0576 0.0561 
4 0.0824 0.0625 0.0593 0.0337 
5 0.0275 0.0184 0.0244 0.0163 
6 0.0641 0.4296 0.2579 0.0444 
7 0.1163 0.0427 0.0398 0.8953 
8 0.6180 0.5792 0.5809 0.5013 
Product of 
fractions 

1.84x
7

10
−

 1.68x
7

10
−

 1.45x
7

10
−

 1.84x
7

10
−

 

 
The estimated mean probability of collision between the two 
aircraft equals 1.67×10-7. The minimum and maximum values 
stay within 25% of the mean value, which shows that the 
estimated value is quite accurate. It is remarkable to see that 
the variation in the fractions per level is significantly larger 
than the variation in the estimated collision probability 
product of the fractions. Apparently, the dependency between 

the fractions  pN

kγ  reduces the variation in the multiplication 

of these fractions. This is a convincing illustration of the 
power of IPS based algorithms for a complex hybrid state 
strong Markov process. 
 

VII.  CONCLUDING REMARKS 

 
This paper studied collision risk estimation of a free flight 

operation through a sequential Monte Carlo simulation. 
Sequential MC simulation method of [Cerou et al., 2002, 
2005] has been extended for application to collision risk 
estimation in air traffic, and has subsequently been applied to 
a model of free flight.  

The results obtained clearly show that our new IPS based 
collision risk estimation method allows to speed up Monte 
Carlo simulation by orders of magnitude for a much more 
complex simulation model than what was possible before (e.g. 
Blom et al., 2003a; Everdij et al., 2006]. The main value of 
having performed this collision risk estimation for an initial 
simulation model of AMFF is that this provides valuable 
feedback to the design team and allows them to learn from 
Monte Carlo simulation results they have never seen before. 
The designers can use it for adapting the AMFF design such 
that it can better bring into account future high traffic levels.   

 In its current form the sequential MC simulation approach 
works well, but at the same time poses very high requirements 
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on the availability of dynamic computer memory and 
simulation time. The good message is that in literature on 
sequential MC simulation (e.g. Doucet et al., 2001; 
Glassermann, 2003; DelMoral, 2004) complementary 
directions have been developed which remain to be explored 
for application to free flight collision risk estimation. These 
potential improvements of the sequential MC simulation 
approach will be studied in follow-up research. 
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