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Estimating rare event probabilities in large scale
stochastic hybrid systems by
sequential Monte Carlo simulation

Henk A.P. Blom, Jaroslav Krystul and G.J. (BertkBar

Abstract— We study the problem of estimating small
reachability probabilities for large scale stochast hybrid
processes through Sequential Monte Carlo (SMC) sintation.
Recently, [Cerou et al., 2002, 2005]] developed &MC approach
for diffusion processes, and referred to the resuhhg SMC
algorithm as an |Interacting Particle System (IPS). In
[Krystul&Blom, 2004, 2005] it was shown that this PS approach
works very well for a diffusion example, but has i limits when
applied to a switching diffusion with large differences in discrete
state (mode) probabilities or with rare mode switcing. In order
to cope with these problems, in [Krystul&Blom, 20042005, 2006]
the IPS approach has been extended to Hybrid IPS (RS)
versions. Unfortunately, these HIPS versions may ed
impractically many particles when the space of theliscrete state
component is very large. Such situation typically ccurs when the
stochastic process considered is highly distributed and
incorporates many local discrete valued switching rpcesses.
Then the vector of local discrete valued componentsas a state
space the size of which is exponentially large. Thaim of the
current work is formulate the estimation of extremdy small rare
event probabilities in stochastic hybrid systems wh a large state
space for the discrete valued process component inbne of a
hierarchical estimation process, and to use this fdhe derivation
of a Hierarchical HIPS version. The effectivenessfahe approach
is illustrated for evaluating the risk of collision between two
aircraft in a scenario of the future.

Index Terms— Air transportation, Collision processes, Monte
Carlo methods, Risk analysis, Safety, Sequential temation,
Stochastic systems

|I. INTRODUCTION

The aim of the current paper is to study the problef
estimating small reachability probabilities for dar scale
stochastic hybrid processes through Sequential #&@wdrlo
(SMC) simulation. In particular, we are interested
estimating of collision risk in free flight by adsssing this
within the framework of stochastic hybrid systenfsor
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applications to other safety critical industriesg.enuclear,
chemical, such approach has been well developgdl(@beau
et al., 2000) within the class of Piecewise Detaistic

Markov processes (Davis, 1984, 1993). For risk @at@dn of
air traffic operations, however it is needed to lude

Brownian motion in the models to represent the atffef

random wind disturbances on aircraft trajectoriébis is

supported by the class of generalized stochastibridy
systems (Pola et al., 2003).

This paper considers the problem of estimatingptiodability
that a generalized stochastic hybrid system reaztpesticular
small sub-set of the state space and within some kiorizon.
Numerical analysis of such reachability problemE&riswn to
be demanding. An alternative is to accomplish tyisMonte
Carlo simulation. The advantage of Monte Carlo (MC)
methods for reachability probability estimatiorthat they do
not require specific assumptions on the system munde
consideration. However, obtaining accurate estimaterare

event probabilities, say abol0™ per flying hour requires to

simulate at leastl0" flying hours, which is very time

consuming.

In order to assess collision risk of free flighteogtion, the
idea is to perform many Monte Carlo simulations hwé
model of the free flight operation and, while doisg, to
estimate the collision risk by counting the numdiiecollisions
and divide this by the number of simulated flightuts.
Though this idea is simple, to make it work in pice we
need an effective way of speeding up the Monte dCarl
simulation. This paper describes the way we aragdltiis by
extending the Interacting Particle System (IPS)reagh of
Cérou et al. (2002, 2005) to collision risk assessnfor a
strong Markov process model of AMFF operations.

Recently [Cerou et al., 2002, 2005] developed gusetial
MC algorithm for estimating such small reachability
probabilities of strong Markov processes within som
guaranteed level of precision. The key idea behtnid
approach is to express the small probability testEmated as
the product of a certain number of larger probtesdj which
can be efficiently estimated by the Monte Carlo rapph.
This can be achieved by introducing sets of inteliate states
that are visited one set after the other, in armd sequence,



before reaching the final set of states of interekhe
reachability probability of interest is then giviey the product
of the conditional probabilities of reaching a sef
intermediate states given that the previous séttefmediate
states have been reached. Each conditional prdtyaksi
estimated by simulating in parallel several copasthe
system, i.e. each copy is considered as a paftilttaving the
trajectory generated through the system dynamice.
guarantee the precision, the MC simulated procass fmve
the strong Markov property.

The paper is organized as follows. Section Il fdates the
problem considered. Section Il develops a facaiiin of the
risk. Section IV characterizes each of the riskdesz Section
V uses this to develop the sequential MC simulasipproach.
Section VI applies this approach towards estimatithg
collision risk of demanding free flight scenaricecBon VII

draws conclusions.

II. MONTE CARLO SIMULATION OF COLLISION RISK

Throughout this and the next sections, all stodahast

processes are defined on a complete stochastis @asfF, I,

obtained through the mapping’ (), and vertical rate of

climb/descent is obtained through the mapp'n"ig(xt). The

relation between these position and velocity magpsatisfies
the following two equations:

Tin(X)=\9(>§)d1 @

dz' (%)= ¢ (x)dt

A collision between aircrafti,j) means that the process
{y'(x), 2( x)} hits the boundary of an area where the

)

distance between aircrafandj is smaller than their physical
size. Under the assumption that the length of emadt equals
the width of an aircraft, and that the volume ofarcraft is
represented by a cylinder the orientation of whildes not
change in time, then aircrafi,jj have zero separation if

x, 0D’ with:
D' ={xOR" |y'(3|<(| +1)/2 AND

7 x(3 s+5 )2 & ] ©

P, T) with (Q, F, P) a complete probability space, and Fis an

increasing sequence of sokalgebra’s on the positive time

line T=R,, i.e. IFé{],((E,tDT),T}, g containing all P-null

sets ofrand J O ¥, O ¢ U F for everys<t.

We assume that air traffic operations are represemly a
generalised stochastic hybrid procgsg g} which satisfies
the strong Markov property [Bujorianu & Lygeros,0&). For
an N-aircraft free flight traffic scenario the stochiastybrid
process {x. 6} consists of

X B CoKx’, ..., X'}

and g A CoKe’.6.....6"}, X

assumes values from rh and Ht‘ assumes values from a

finite set (M ').

components

where |J-

simplicity, we assume that all aircraft have theesasize, by
which (3) becomes:

D' ={xOR" |y(3|<I AND |Z(J|<} ¥ | @

andSj are length and height of aircraft For

Although all aircraft have the same size, noticat ih (4),
D' still depends ofif). If X, hits D' at time 7", then we
say a collision event between aircraff)(occurs at moment

T, ie.

r' =inf{t>0; x 0D}, N )

The first moment' of collision with any of the other

Physically,{X[i, 49:} ,i=1,...,N, is the hybrid state processaircraft, i.e.

related to the-th aircraft, and{x’, 8} is the non-aircraft 7' =inf{7’} =inf{ t®; x OD} #f{ t6; x OB
j# jA

related hybrid state process. The prodessg} is R" X M-

N N
valued W|thn—§r] and M —EOMi.
In order to model collisions between aircraft, weraduce
mappings from the Euclidean valued procegg} into the
relative position and velocity between a pair obtaircraft
(i, j). The relative horizontal position is obtained tigh the

mapping y"

through the mapping’ (x ). The relative vertical position is

(6)

with Di :U Dij
j#i
From this momentr’ on, we assume that the differential
equations fo{xti, 6{'} stop evolving.

An unbiased estimation procedure of the risk wdogdto
simulate many times aircraft amidst other aircrafover a

(%), the relative horizontal velocity is obtainedPeriod of lengthl and count all cases in which the realization

of the moment7' is smaller thanT. An estimator for the
collision risk of aircrafi per unitT of time then is the fraction



of simulations for whichr' <T. X, =1 ifr, <T ork=C

=0, else
IIl. RISK FACTORIZATION USING MULTIPLE CONFLICT LEVELS

By using this,Yli( definition we can write the probability of

Cérou et al. (2002) have developed a novel waypeéding collision of aircrafti with any of the other aircraft as a product
up Monte Carlo simulation to estimate the probapilhat an  of conditional probabilities of reaching the nernfict level

R"-valued strong Markov proces, hits a given “small” given the current conflict level has been reached:
n . . . . o . . X m . m X X

subset DO R _ within a given time period (0,T). This P(r <T)=E[x.]=H[]x] = IEEX.JXH =1]

method essentially consists of taking advantage aof - - (10)
appropriately nested sequence of closed subsetdRof il - - UL
S iy e =[]® &<Tla<T X[]%
D=D,UD,,.,0..0 D, and then start simulation from - -
outside D, , and subsequently simulate frob), to D,, from A

D, to D, , ..., and finally fromD,_, to D_ . In order to  with y, =P(7, <T‘ZJ|(_l <T)

apply this approach to the free flight operatiomaincept
considered we identified the following approactdafining a ,
sequence of nested subsets. conditional probabilitiesy'k in such a way that the product of

these estimators is unbiased. Because of the ricdtiipn of

With this, the problem can be seen as one to einhe

Prior to a collision of aircraft with aircraftj a sequence of
conflicts ranging from long term to short term ajwa
happened. In order to incorporate this explicitythe MC other, in general such a product may be heavilgdnaThe
simulation, we formalize this sequence of confllevels Kkey novelty of Céerou et al. (2002) was to show thath a

through a sequence of closed subsetR0f product may be evaluated in an unbiased way Whgn

Dl = Dirin 0 D‘J'w1 0.0 |j1 with fork=1,....m: makes part of a larger stochastic process thasfieatithe
strong Markov property. This approach is explainexsit.

the various individualyf( estimators, which depend on each

D} ={xOR" |y'(3 +AV(¥|< d AND

) ) @) IV. CHARACTERIZATION OF THERISK FACTORS
|2 (9 +AF (Y] < h, for somedD[0,T,] },i# j

I
Let us denoteE' = R™x M, and let € be the Borel

_ _ . o —algebra of E'. For any BOE', 71,(B) denotes the
with d,, h and T, the parameters of the conflict definition

A
at levelk, and with d,, =1, h, = s and T, =0, and with conditional probability of & =(7,,X, ,6, )U B given

de,2d, hy,=2h andT, =T . If X hits DE at time XI‘ =1 foricl <k.

T, ., then we say the first leved conflict event between Define D} =(0,T)x D.xM, k=1..,m. Then the

. . i
aircraft (,j) occurs at moment, , i.e. estimation of the probability fof, to arrive at thé-th nested

7, =inf{t>0; x 0D} @® Borel set D, is characterized through the following

recursive sequence of transformations
Similarly as we did for reaching the collision lévey

aircraft i, we consider the first moment, that aircrafti 71, (0 P5ers, pi (00 O Eeertes, 72 (0
reaches conflict levéd with any of the other aircraft, i.e. !
T, :ijrlf{ r} :inj1;{ t9;, x ODy mf{ t6 x OB, (9 Vi
where p, (B) is the conditional probability o, [J B given
. AN . -
with D, =( | D} X, =1 forO<l<k-1 Becaus¢x,8} is a strong

j#i : —_—
Following the approach of Cérou et al. (2002), nwset Markov process{¢,} is a Markov sequence, the prediction

define {0,1}-valued random variableé)(:(, k=1,.,m}as of which satisfies:

follows: p:((B) = _[E, pgk|gk_l( Bl f)nlk—l( &) for all BJ £ (11)



Next we characterize the conditional probability@dching
the next level:

Ve =P <T|1,,<T)

=ELX | X =1] (12)
= [ Lepy PLAE).
And the conditioning satisfies:
| =y Pi(dd)
7. (B) = '[BJWD 3 forall BOE'. (13)

.[E']Ié'mﬁ B p'i< (d5")

With this, each of tham terms y'k in (10) is characterized

as a solution of a sequence of “filtering” kind @duations
(11)-(13). An important difference with “filteringgquations
is however that (11)-(13) are ordinary integral &ns, i.e.
they have no stochastic term entering them.

V.

Based on this theory, an advanced Interacting dbarti
System (IPS) simulation algorithm is explained néxt a
multi aircraft scenario the operation of which &sbd on the

INTERACTING PARTICLE SYSTEM BASED RISK ESTIMATION

By @,(k) we will denote an approximation of -mode
probability pkh(/() (i.e. total weight of particles i -mode)
and @, (k) = p,zg(K)' By A= (4 (X)),NJ -, we denote the
infinitesimal switching rate matrix of the discretalued
component {Ht} The particle is defined as a triplet

(x,0,w), wd[0,1], xOR" and GLM. The first

component ofX counts the time.

Advanced IPS Step 0. Initial setup
Choose an appropriate nested sequence of closedtsub

D,. (j =1...,m), of R™ such that
D=D,UD,, U...0 D, and define
5ké(O,T)>< D xM, k=1,..,m.
Choose a smalf > 0 and compute

N
= N +£.
r ig}gﬁléﬁua)l £

xOR

j#

T
Choose a discretization stép= 3

AMFF  operational concept [KleinObbink, 2003]. TheAdvanced IPS Step 1. Initial sampling k = 0.

transformations (11)-(13) lead to the IPS algoritionestimate
P(r,,<T). By Ji°, p." and 7,° we denote the
numerical approximations of,, P, and 77, respectively (to
simplify expressions we drop inddy. When simulating from

D, to D,, a fraction ykNp of the Monte Carlo simulated

trajectories only will reactD, within the time period (0,T).
In [Krystul & Blom, 2005, 2006] two versions of IPS
algorithm are presented. In these two versicM§ particles

are used per each mod2[JM in total N,Xx N particles,

here N =| M | is the number of elements itM . The
resampling in these algorithms is done separdt#lyeach
@-mode (i.e. stratified sampling with strata corsging to

@-modes). If N is big then the algorithm becomes
inefficient and slow, since a huge number of platianust be
treated. In this section we present a version & &Rjorithm
which aims to handle this problem. The idea isntwoduce

new “aggregated” mode proce{a&t} :
k(@) = F(6(a), tOR,,
Where F:M - M, and |M, K|IM | An element

kOM, corresponds to a set @f-modes: F (k) O M .

In our new algorithm the resampling is done coodiily on
K -modes, (i.e. stratified sampling with strata cepanding
to K -modes).

Attime t =0 we start with a set oN , particles for
each modex UM, ={e,.., g :
0,65 e} 2, K OM,
where 6" are independently drawn from, (LK),
Xg‘i OR"™ are independently drawn from
pX0|90([]]6?(’)(’i) with the first component ok!"' equal to
zero, and the initial weights satisfy
o = P, (K)
N

p

=1, N, kKOM,.

Then
N

el

'S s o (BO),

65

%" (B,6)=
k
BOB(R"), 60M

{0l
iy

and

VoP =1.

Iteration: for K =1,.., m over step 2 (prediction) and step 3
(assessment)

Advanced IPS Step 2. Prediction:l‘[kN_"l U - p:'"

Start with empty setsS’, K M, , to store D, arrived
particles.



For j=1...,J, with h:% andfj =T, +h0j {XfKi’i,HfK' }--1, kM, by evaluating for

each particle a new value(f’f" according to Euler
]

Substep 2.j.a (Interaction basedx resampling for each discretization scheme:

particle: y |
o — ki —KI’—KI h+ ’—KI i
Do for each particle n{x;7 6{'7_1 aﬂ'} for which X =X a(Xt 0 ") lixtJ 05, 1)(V\)tJ W, )
W £0: and new vaIuerj’ by independent sampling with
v replacement from:
i P O|«, _K', =

*  Sample aK?" OM, from oIkl X! .6, 1( | Xg, ;" )

= + _’f’i ~rh

R(b IXF .68 _kf (Kl )471 4! 97' ’,7) with 1 (F (9))[IHKI (P K| 6( tj_l))rh]e

FRAIER L -
P, *|%' @ 1-a ,ifk=n D o K(F(é’))[l K,9+(pm g(—m))rh]em
Ktllx‘hl-lgrj—l tI] -1 ! tJ -’ a , else tia N

and a some fixed small probability. * The weights are not changeﬁ{l -

« Forallk,n0OM,, i=1..., N, evaluate the transition _ _ _ _
Substep 2.j.¢(Store and neutralize arrived particles):

probabilities
i ~ .
PK.,|Xt, O K 1(K| )47] oy ‘90 ”7) o If )<le| ODy. then a copy of the particle
= > [+ 9()(:7 yrhje™, {xf’(l',Ht’j' ,a{’i} is stored in the seB; , and then in
O0F (k) N

1- - the original particle we setf” =0.
where PY(¢) ==A(¢) + |, with A() defined by j
r

Ko< ] A D0,
(0= o™ if x [0, ).

Advanced IPS Step 3. Assess arrived particles;
¢ Renumbering the particles lﬁf yields a set of

AN,
particles{ X", 6", &'} 5 with N, the number

* Adapt the weights: . . oK
of particles irS; .

Pt o (K7 1.ar, .
off |f K=n ) s
o' = " 1-a * Approximation of J, : Y, = ), * = Z Z(w"- If
tia . p,(t XD g tf7]l | )gjll’egll’”) - KOM,, i=1
a{ﬂl e p if k21 Ny =0 for all K (1M, , then the algorithm stops

with estimateR,, (0, T) = 0.
«  Select perk M, all partlcles{xg7 ! Kf”} ,

far Advanced IPS Step 4. Resampling pkN” O - iTkN”;
nOM,,i=1..,N,, for which th’j" =Kk, and
renumber the indices of these particles such that te ResampIeNp particles per mode [1 M, from Sf

/(tf’_‘i value is recognizable from the first index of a new according the following scheme:
J

set of particles. This yields for eachk JM, the

- If N > N_ then drawN  particles{ X', 8", af’
following new set of particles . b o P {Xk of }

independently from the empirical measure

_Z_lalf

D

ij'l,éf'l,ﬁ(j-" IfN ¢0 and an empty set

Sf
{}ifN £ =0. Z 5 a) and setaf
i i=1

Substep 2.j.b(Prediction):

» Determine the new set of particles
- If 3N, <N, < N, then



Copy theNs: particles, i.e.
{X{f’i,ﬁl’:'i ,a){:’} :{f(’li' 61 ,&){i’} and set
o’ wﬁ

N,

Draw N, - st particles{ X g 15‘jk(j}

independently from the empirical measure

Za{f g, Vi é:j}and setaf”

fori=1,... NK,

"N,

1
If 0< Ns{ <3 Np then

Copy theNs: particles, i.e.
{X{f‘iﬂ{f‘i ,a{fj} :{%ki ¢ ,d/f’} and set
o’ wﬁ

Draw N - st particles{ X8 ,a/lfj}

independently from the empirical measure
N ZZSKK(L{f’iO' .1 and set

2yk ’ (N - N )

If Ns: =0 then make dummy particles

{x".6 '} with af' =0

The new set of particles per mo#eis

{x'. g}, kOM,.

If K < m then (to account for empty seﬁf) do one

interaction based resamBebstep 2.j.a*(specified
below) and predictiosubstep 2.j.b and then repeat

steps 2, 3 fok := k+1.

for i=1... NK,

a{_

If k=m, then stop with an estimate

RO =[r 1"

Description of Substep 2.j.a* (Interaction based
resampling)

For all k,nn UM,
probabilities

_z_lar_

Li=1.., N, evaluate the transition

P |Xh gh h (

UEATBRE UL

= 2 [gpt

60F X (k) %

where P() :Fl/N\(Z) + 1, with A() defined by

~ A(x) if x [0, T),

A= oo D
O™ if x O[O, T).

Evaluate probabilities of modes:

P, ()=, ()=
‘ZZ

nOM,, i=1

RORANE
P UL

Ixh G0 kD (Kl)ﬁl t,1 111

IJl']l'l

*  For eachk 1M, independently drauN , random pairs

(xfj'l,é' ) |=],...,Np
spanned unnormalized joint measure:

Py o 0(BOIK)=D0 o (BOK)=

h
I11 tj-145 9111 y

ZZ KEIXE L OE k) “( |)§7_1 t,1 tJ1{><7 9’71}(8’9)

oM, i=1

from the following particle

« This yields for eachKDMK
particles{i{"l gt L @f} =1 with &t ' = ¢fj(K)/Np.

the following set of

In order to apply this new IPS algorithm towards th

assessment of collision risk of free flight, we ch¢e develop

a MC simulator of these operations the simulategettories

of which are known to constitute a version of aegatized
stochastic hybrid process that is strong Markov.
[Bujorianu&Lygeros, 2005]. [Everdij&Blom, 2005, 26D
have developed a Stochastically and Dynamicallyofeal
Petri Net (SDCPN) formalism that accomplishes this.

VI. IPSBASED ESTIMATION OFAMFF COLLLISION RISK

In Everdij et al. (2006) it is shown how the SDCPN
formalism has been used to develop a MC simulatiodel of
the AMFF operation. The IPS algorithm developedvabis
now applied to this AMFF MC simulation model. The
scenario has two aircraft, the flight plans of whizause the
aircraft to be on a head on collision course.

A. Parameterization of the IPS simulations

The main safety critical parameter settings offtee flight
enabling technical systems (GNSS, ADS-B and ASAS®) a
given in the following table.



Model Parameter Probability
Global GNSS down 1.0x10°°
Global ADS-B down 1.0x10°®
Aircraft ADS-B Receiver down 5.0 x10™®
Aircraft ADS-B Transmitter down 5.0 x107°
Aircraft ASAS System mode corrupted |5 g 410®
Aircraft ASAS System mode failure 5.0 x107°

The IPS conflict levels are defined by parametdues for
lateral conflict distanced, , conflict height i) and time to

conflict T, . These values have been determined through t

steps. The first was to let an operational expeakena best
guess of proper parameter values. Next, duringiainit
simulations with the IPS some fine-tuning of themier of
levels and of parameter values per level has beee.dThe
resulting values are given in the next table.

k 1 J2 [3 |4 |5 |6 |7 8
d.(Nm)|45 |45 [ 45 ] 45[ 25 125 05 0.0
h.(fty |900 |900[ 900 900 900 500 250 13]
T.(min)|8 |25 |15[0 [0 [0 [0 [0

B. Two head-on flying aircraft
In this simulation two aircraft start at the santightt level,

Apparently, none of the particles reaches leved séhumber
6 or higher. Hence, the estimated collision prolitgtis zero.
Obviously, this is a very unreliable estimate oé ttollision
risk. In other words, the IPS approach does nokweell for
this case.

In order to estimate the collision risk for thisseave used our
new more advanced version of IPS algorithm (sectiprthe
results of which are given in the following table.

Level 1'Adv | 29%Adv | 39Adv | 4™ Adv
IPS IPS IPS IPS

1 0. 9998 1. 0000 1. 0000 1. 0000
2 0. 3076 0.2848 0.2911 0. 2986
3 0. 0575 0. 0483 0. 0576 0. 0561
Wb 0. 0824 0. 0625 0. 0593 0. 0337
5 0. 0275 0.0184 0. 0244 0.0163
6 0. 0641 0. 4296 0. 2579 0. 0444
7 0.1163 0. 0427 0. 0398 0. 8953
8 0.6180 0. 5792 0. 5809 0.5013
Productof | 4 500107 | 1680 | 145x07 | 1.84x0
fractions

The estimated mean probability of collision betwéka two

54aircraft equals 1.6710°. The minimum and maximum values

stay within 25% of the mean value, which shows et
estimated value is quite accurate. It is remarkéblsee that
the variation in the fractions per level is sigedfintly larger
than the variation in the estimated collision piuibty

product of the fractions. Apparently, the depengdnetween

the fractions ), " reduces the variation in the multiplication
of these fractions. This is a convincing illustoati of the

some 250 km away from each other, and fly on opeosipower of IPS based algorithms for a complex hylsidte

direction flight plans head-on with a ground spe&@a40 m/s.

By running ten times the classical IPS algorithrerdl et al.,
2002, 2005] the collision risk is estimated ten &#m The
number of particles per IPS simulation run is 10,0Che total
simulation time took about 5 hours on two machirzes] the

load of computer memory per machine was about 0.5

Gigabyte. For the first four IPS runs, the estirdatections

ykNp are given in the table below for each of the cenfli
levels,k=1,..,8.

Level 1°'IPS 291PS 37IPs Aips
1 1.0000 1.0000 1.0000 1.0000
2 0.0003 0.0007 0.0007 0.0007
3 0.0000 0.0000 0.0036 0.0148
4 0.0000 0.0000 0.0116 0.0003
5 0.0000 0.0000 0.0046 0.0000
6 0.0000 0.0000 0.0000 0.0000
7 0.0000 0.0000 0.0000 0.0000
8 0.0000 0.0000 0.0000 0.0000
Product of 0.0000 0.0000 0.0000 0.0000
fractions

! Global ADS-B down refers to frequency congestigaftoad of the data
transfer technology used for ADS-B.

strong Markov process.

VIl. CONCLUDING REMARKS

This paper studied collision risk estimation ofreef flight
operation through a sequential Monte Carlo simoiati
Sequential MC simulation method of [Cerou et al002,
2005] has been extended for application to colisiisk
estimation in air traffic, and has subsequentlynbagplied to
a model of free flight.

The results obtained clearly show that our new bRSed
collision risk estimation method allows to speed Mpnte
Carlo simulation by orders of magnitude for a muobre
complex simulation model than what was possibl®teefe.g.
Blom et al., 2003a; Everdij et al., 2006]. The maalue of
having performed this collision risk estimation fan initial
simulation model of AMFF is that this provides vatile
feedback to the design team and allows them ta |&am
Monte Carlo simulation results they have never daefiore.
The designers can use it for adapting the AMFFgiesuch
that it can better bring into account future higfftc levels.

In its current form the sequential MC simulatiggpeoach
works well, but at the same time poses very higjuirements



on the availability of dynamic computer memory and20] M.H.C. Everdi, H.A.P. Blom, G.J. (Bert) Bakker, Melling lateral
simulation time. The good message is that in litega on

sequential
Glassermann,

MC simulation (e.g. Doucet
2003; DelMoral, 2004)

et al.,

directions have been developed which remain toxpdoeed
for application to free flight collision risk estation. These
potential improvements of the sequential MC simafat
approach will be studied in follow-up research.
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