Parameter-based reduction of Gaussian mixture models with a variational-Bayes approach
Pierrick Bruneau, Marc Gelgon, Fabien Picarougne

To cite this version:

Parameter-based reduction of Gaussian mixture models
with a variational-Bayes approach

Pierrick Bruneau1,2, Marc Gelgon1,2 and Fabien Picarougne1

(1) Nantes university, LINA (UMR CNRS 6241), Polytech Nantes
rue C.Pauc, La Chantrerie, 44306 Nantes cedex 3, France (2) INRIA Atlas project-team
firstname.surname@univ-nantes.fr

Abstract

This paper1 proposes a technique for simplifying a
given Gaussian mixture model, i.e. reformulating the
density in a more parcimonious manner, if possible (less
Gaussian components in the mixture). Numerous applica-
tions requiring aggregation of models from various
sources, or index structures over sets of mixture models
for fast access, may benefit from the technique. Vari-
ational Bayesian estimation of mixtures is known to be a
powerful technique on punctual data. We derive herein
a new version of the Variational-Bayes EM algorithm
that operates on Gaussian components of a given mix-
ture and suppresses redundancy, if any, while preserv-
ing structure of the underlying generative process. A
main feature of the present scheme is that it merely re-
sorts to the parameters of the original mixture, ensur-
ing low computational cost. Experimental results are
reported on real data.

1. Introduction

Many current research directions in pattern recogni-
tion pertain to applying statistical learning and classifi-
cation to an ever larger number of classes (e.g. visual
objects [9], dynamic video characterisation or speaker
recognition). To this aim, sparse class models may be
investigated [10]. There is also growing interest for in-
dxing structures that handle sets of probabilistic mod-
els, as well as for statistical learning and searching on
distributed infrastructures (cluster, peer-to-peer, sensor
networks). In this second branch of works, one often
faces the need to aggregate models. This is encountered
for instance when defining concise parent models from
similar leave models in a tree [11], or merging mod-
els describing the same class, i.e. the same underlying
hidden probability distribution functions (pdfs), but esti-
1This work was funded by the ANR Safimage and the Pays-de-la-
Loire MILES project.
mated from different data sources [3, 8].

A simple weighted sum of Gaussian mixtures is
likely to introduce undesirable redundancy, with a view
to capturing the underlying density. A straightforward
solution, but more expensive in terms of communica-
tion and/or computation, would consist in re-estimating
a mixture model from the original data or from data
sampled from the original mixture. In contrast, a main
feature of the present scheme is that it merely resorts to
the parameters of the original mixture.

A Gaussian Mixture Model (GMM) is defined by the
following pdf:
\begin{equation}
p(x) = \sum_{k=1}^{K} \omega_k \mathcal{N}(x | \mu_k, \Lambda_k^{-1})
\end{equation}

where \(x \) is a \(d \)-dimensional feature vector and \(\mathcal{N}(\cdot | \mu_k, \Lambda_k^{-1}) \) is a Gaussian pdf with mean vector \(\mu_k \) and
precision matrix \(\Lambda_k \). In the remainder of this paper,
we will designate \(\mathcal{N}(\cdot | \mu_k, \Lambda_k^{-1}) \) as the \(k \)-th com-
ponent of the GMM. \(\Omega = \{\omega_k\} \) is a weight vector associ-
atized to the components, following the constraint \(\omega_k \geq 0 \ \forall k, \sum \omega_k = 1 \). We introduce a lightweight notation
for the GMM parameters : \(\theta = \{\Omega, \mu, \Lambda\} \) where \(\mu = \{\mu_k\} \) and \(\Lambda = \{\Lambda_k\} \).

Estimating a GMM can be decomposed in 2 com-
plementary problems : estimating a correct number of
components (K) and correct parameters for the com-
ponents. This joint estimation is classically known to be
difficult. Variational Bayesian estimation of a GMM
[2, 4] is an effective way to overcome this issue. Re-
lying on simple hypotheses about the obtained distribu-
tion (i.e. variational distribution), and on properly cho-
\n\n\n
We propose to adapt this framework to the model
reduction problem evoked previously. We will see
that few simple hypotheses about the data that origi-

1-2175-6/08/$25.00 ©2008 IEEE
a convenient reformulation of the VBEM framework. This reformulation depends only on GMM parameters, while preserving the good properties guaranteed by the VBEM framework (see figure 1 for an illustration of the proposed algorithm).

In section 2 we will decline a reformulation of the VBEM variational pdfs that takes parameters rather than punctual data as input. We will see that it leads to coupled update equations, from which we derive an iterative EM-like algorithm (named VBMerge hereafter).

In section 3 we provide experimental results obtained by applying this technique to real data and draw concluding remarks.

2 A variational-Bayes technique for model reduction

Introducing virtual sampling in the variational Bayes framework

We follow notations used in [4] for punctual data. Classically, variational mixture estimation considers a set of data \(X = \{x_1, \ldots, x_L \} \) and \(Z = \{z_1, \ldots, z_N \} \) that is assumed to be generated from the mixture. \(x_i \) is a \(d \)-dimensional feature vector and \(z_i \) the associated binary variable indicating from which component \(x_i \) was generated (e.g. from \(k \)-th component \(\equiv z_{ik} = 1, z_{ij} = 0 \forall j \neq k \)). Z is generally hidden, and the purpose of the procedure is to compute a joint estimate of \(\theta \) and \(Z \). The associated pdfs are:

\[
p(Z | \Omega) = \prod_{n=1}^{N} \prod_{k=1}^{K} \omega_k z_{nk} \quad (2)
\]

\[
p(X | Z, \mu, \Lambda) = \prod_{n=1}^{N} \prod_{k=1}^{K} \mathcal{N}(x_n | \mu_k, \Lambda_k^{-1})^{z_{nk}}(3)
\]

Now consider an arbitrary mixture defining \(L \) components, with parameters \(\theta' = \{\Omega', \mu', \Lambda'\} \). This model might have redundant components, typically as the result of summing several mixtures. We then assume that \(X \) and \(Z \) were i.i.d sampled from this distribution. It is therefore possible to regroup \(X \) by the component that originated its various items. It leads us to the following formalism:

\[
X = \{\hat{x}_1, \ldots, \hat{x}_L \} \quad \text{with card}(X) = N, \quad \hat{x}_1 = \{x_i \mid z_{i1} = 1\} \quad \text{and card}(\hat{x}_1) = \omega_1'N. \quad \text{Let us express the distributions (2) and (3) w.r.t this formalism.}
\]

To achieve tractability, let us assume: \(\forall x_i \in \hat{x}_i, z_{ik} = \text{const} = z_{ik} \). This assumption is equivalent to stating that components from the model we wish to reduce will not be split in the estimated mixture. This conforms to the vision of model reduction we illustrated in figure 1. Thus we can rewrite the expression (3):

\[
p(X | Z, \mu, \Lambda) = \prod_{k=1}^{K} \prod_{l=1}^{L} \left[\prod_{i=1}^{N} \mathcal{N}(x_{li} | \mu_k, \Lambda_k^{-1}) \right] z_{lk} \quad (4)
\]

\[
\ln p(X | Z, \mu, \Lambda) = \sum_{k=1}^{K} \sum_{l=1}^{L} \ln \mathcal{N}(x_{li} | \mu_k, \Lambda_k^{-1}) \quad (5)
\]

\[
\omega_1'N \sum_{l=1}^{L} \ln \mathcal{N}(x_{li} | \mu_k, \Lambda_k^{-1}) \quad \omega_1'N \sum_{l=1}^{L} \mathcal{N}(x_{li} | \mu_k, \Lambda_k^{-1}) \quad (6)
\]

For \(N \) sufficiently large, we can make the following approximation:

\[
\omega_1'N \sum_{l=1}^{L} \ln \mathcal{N}(x_{li} | \mu_k, \Lambda_k^{-1}) \approx \omega_1'N E_{\mu', \Lambda'} \left[\ln \mathcal{N}(x | \mu_k, \Lambda_k^{-1}) \right] \quad (7)
\]

This statement is known as virtual sampling, and was introduced in [11, 12].

The expectation term can be rewritten as follows:

\[
E_{\mu', \Lambda'} \left[\ln \mathcal{N}(x | \mu_k, \Lambda_k^{-1}) \right] = \int \mathcal{N}(x | \mu', \Lambda_k^{-1}) \ln \mathcal{N}(x | \mu_k, \Lambda_k^{-1}) \, dx = -KL \left(\mathcal{N}(x | \mu'_l, \Lambda_l^{-1}) \parallel \mathcal{N}(x | \mu_k, \Lambda_k^{-1}) \right) - H(\mathcal{N}(x | \mu'_l, \Lambda_l^{-1})) \quad (8)
\]

with \(KL(q_0 \parallel q_l) \) the KL divergence of \(q_l \) from \(q_0 \) and \(H(q_0) \) the entropy of \(q_0 \). These two terms have closed-form expressions [5]. Thus by reinjecting (8) into (7), and then (7) into (6), we obtain the following expression:

\[
\ln p(X | Z, \mu, \Lambda) = N \sum_{k=1}^{K} \sum_{l=1}^{L} z_{lk} \omega_l' \left[-KL \left(\mathcal{N}(x | \mu'_l, \Lambda_l^{-1}) \parallel \mathcal{N}(x | \mu_k, \Lambda_k^{-1}) \right) - H(\mathcal{N}(x | \mu'_l, \Lambda_l^{-1})) \right] \quad (9)
\]
\[
\ln p(X \mid Z, \mu, \Lambda) = N \sum_{k=1}^{K} \sum_{l=1}^{L} z_{ik} \omega_l^k \\
0.5[\ln \det \Lambda_k - \text{Tr}(\Lambda_k \Lambda_l^{-1}) - (\mu_l^k - \mu_k^k)^T \Lambda_k (\mu_l^k - \mu_k^k) - d \ln(2\pi) \tag{10}]
\]

Using virtual samples also has consequences on (2) : as we previously stated that \(z_{ik} = z_{nk} \forall x_n \in \bar{x}_i \), we can write :
\[
p(Z \mid \Omega) = \prod_{n=1}^{N} \prod_{k=1}^{K} \omega_{nk}^k = \prod_{l=1}^{L} \prod_{k=1}^{K} \omega_k^k N(\Lambda_k \mid W_0, \nu_0) \tag{11}
\]

A modified VBEM algorithm

Variational Bayesian estimation of a Gaussian mixture relies on (2) and (3) to model the origination of a data set, but also introduces priors over the parameters occurring in these distributions. Let us recall here expressions defining these priors :
\[
p(\Omega) = \text{Dir}(\Omega \mid \alpha_0) \tag{12}
\]
where Dir denotes the Dirichlet distribution, and \(\alpha = \{\alpha_k\} \) is the hyper-parameter governing it. \(\alpha_0 \) designates the initial value.

\[
p(\mu, \Lambda) = p(\mu \mid \Lambda) p(\Lambda) = \prod_{k=1}^{K} \mathcal{N}(\mu_k^0 \mid m_0, \beta_0 \Lambda_0) \mathcal{W}(\Lambda_k \mid W_0, \nu_0) \tag{13}
\]

The Normal-Wishart distribution above uses hyper-parameters \(m, \beta, W \) and \(\nu \). The two latter govern the Wishart distribution while \(m \) represents the mean vector for the Normal term. \(\beta \) is a normalization term. Variational framework defines a factorized variational distribution \(q(Z, \Omega, \mu, \Lambda) = q(\Omega) q(\mu | \Lambda) q(\Lambda) \), that is intended to minimize the loss w.r.t. the true, unknown and intractable posterior distribution. Calculations exposed in [2, 4] show that the optimal form for a single factor \(q_j \) (denoted \(q^*_j \)) is obtained by applying the following general formula :
\[
\ln q^*_j = \mathbb{E}_{i \neq j} [\ln p(X, Z, \Omega, \mu, \Lambda)] + \text{const} \tag{14}
\]
\[
p(X, Z, \Omega, \mu, \Lambda) \text{ is obtained from the product of (2), (3), (12) and (13). Applying this general formula for } q(\Omega), q(\mu \mid \Lambda) \text{ and } q(\Lambda) \text{ leads to update expressions for hyper-parameters. Relatively to } q(Z), \text{ estimates (i.e. } \mathbb{E}[z_{nk}] = r_{nk}) \text{ that depend on moments computed w.r.t. to current hyper-parameters are obtained. Due to conciseness concerns, it is not possible to recall all update equations here, please refer to [4] for details. All these expressions are coupled, and cycling through these equations implements an EM-like algorithm.}

Update equations evoked previously are obtained by involving expressions of \(p(Z \mid \Omega) \) and \(p(X \mid Z, \mu, \Lambda) \).

Therefore, using modified versions (10) and (11) causes changes in the standard update equations. In the remainder of this section we review these modifications.

\(r_{nk} \) estimates are obtained from normalization of the associated \(\rho_{nk} \). In our modified scheme, we compute these as follows :
\[
\ln(\rho_{nk}) = \frac{N}{2} \Bigl[(\ln \omega_k^l) \Bigl(2 \ln \tilde{\omega}_k + \ln \tilde{\Lambda}_k - d \ln(2\pi) \Bigr) - \text{Tr}(\Lambda_k \Lambda_l^{-1}) \Bigr] + \ln \tilde{\omega}_k = E[\ln \omega_k] + E[\ln \det(\Lambda_k)].
\]

The moment w.r.t. \(\mu_k \) and \(\Lambda_k \) is easily evaluated to give
\[
d \ln r_{nk} + \nu_k \Bigl[\text{Tr}(W_k \Lambda_l^{-1}) + (\mu_l^k - m_k^k)^T W_k (\mu_l^k - m_k^k) \Bigr].
\]

Modifications in the hyper-parameter update expressions also emerge from using (10) and (11) :
\[
\begin{align*}
\alpha_k &= \alpha_0 + \sum_l N \omega_l \rho_{lk} \tag{16} \\
\beta_k &= \beta_0 + \sum_l N \omega_l \rho_{lk} \tag{17} \\
m_k &= \beta_0^{-1}(\beta_0 m_0 + \sum_l N \omega_l \rho_{lk} \mu_l^k) \tag{18} \\
W_k^{-1} &= W_0^{-1} + \beta_0 m_0 m_0^T - \beta_0 m_k m_k^T \\
& \quad + \sum_l N \omega_l \rho_{lk} (\mu_l^k \mu_l^k^T + \Lambda_l^{-1}) \\
\nu_k &= \nu_0 + \sum_l N \omega_l \rho_{lk} \tag{20}
\end{align*}
\]

It is recalled in [4] that the previously described algorithm monotonically decreases the KL distance between the variational pdf and the true posterior. This is equivalent to maximising the lower bound of the complete likelihood. As we can compute this lower bound, and as this bound should never decrease, it supplies our age database contains 100 items, for which we have 72 views (each taken at a different viewpoint, viewpoints are separated by 5° from one to another). We retain 9 40°-separated views for each object. We employ the
same feature extraction process as presented in [11]. Ours differs in that we keep only the 12 first variables as very high-dimensional spaces often have bad properties with regard to density estimation. We also chose to estimate each single GMM with VBEM procedure, instead of classic EM in [11]. It is therefore possible to avoid choosing an arbitrary number of components here. Eventually we obtain a GMM representing each object of the original database. For each object, the first view will be the query object, and the 8 remaining will form a database. This database will be summarized by grouping all its components and computing a reduction on this group using VBMERge. Again, we don’t have to choose the final number of components. As mentioned above, this is part of the single-run estimation process. By using this summarized model, only one similarity measurement will be necessary to identify the original group of a query object. To measure similarity between a query object q and a database model p, we traditionally measure $KL(q \parallel p)$. We can calculate this value directly using a Monte-Carlo integration, or alternatively use the approximation introduced in [6].

Learning time for the summarized model is very small, as usually few iterations are needed (between 5 and 10 in most cases), and the complexity depends only on d and on the number of merged models. These values are usually low (in our case, $d = 12$ and $n_{	ext{models}} = 8$). In our experiments, only the time to learn each individual GMM (i.e. representing each image) was rather long, but not significantly much compared to classic EM estimation (with equal K). Variational estimation with uninformative priors requires more classes than a classic EM estimation (as some of them will be pruned), but in the same order as the amount used in Vasconcelos’ experiments (8 in [11], 50 in our experiments).

We obtain 75% success rate at identifying the correct image given the query and the reduced model. More generally, 95% of the 3 first ranked reduced models sets (i.e. lowest KL divergence) contain the correct answer. Therefore we obtain similar results as obtained in [11] with 8 components per reduced model in a much more parsimonious approach (see figure 2). It is important to notice that all our experiments were carried out with fully random initializations, relying on good uninformative priors. Though doing so helps avoid bad local optima, we might have merged models of inequal relative quality (likelihood w.r.t the best optimum’s likelihood). This results in uncertainty that impacts the quality of the model reduction. In many situations this uncertainty might not impact significantly the process, but with high dimensional spaces and high precision requirements it is relevant to use better initialization strategies, such as multiple initial short runs. The value of the lower bound

<table>
<thead>
<tr>
<th>success rate</th>
<th>0.75</th>
</tr>
</thead>
<tbody>
<tr>
<td>correct image in the 3 1st ranks</td>
<td>0.95</td>
</tr>
<tr>
<td>avg. N components / image</td>
<td>6.05</td>
</tr>
<tr>
<td>avg. N comp. / reduced model</td>
<td>2.06</td>
</tr>
</tbody>
</table>

Figure 2. Obtained results summary. (partially defined by equations (21) and (22)) would be a decision criteria between candidate initialisations.

We disclosed a new variational Bayesian approach to model reduction, and an iterative EM-like algorithm that efficiently operates directly on model parameters, which is crucial to scaling up many learning and recognition tasks. Results are promising but could be improved easily with a better initialisation strategy. Besides initialisation issues, t distributions mixture models would lead to a more robust estimation [1], and therefore are an interesting clue for future work. Also, though we didn’t exploit that aspect in the present work, prior modelling and ability to reduce models depending only on parameters can be very useful in a distributed context [8].

References

