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Abstract

This paper describes the rheological properties of silated hydroxypropylmethylcellulose 

(HPMC-Si) used in biomaterials domain as a three-dimensional synthetic matrix for tissue 

engineering. The HPMC-Si is an HPMC grafted with 3-glycidoxypropyltrimethoxysilane 

(GPTMS). HPMC and HPMC-Si were studied. It is shown that although silanisation reduces 

the hydrodynamic volume in dilute solution, it does not affect significantly the rheological 

behavior of the concentrated solutions. The HPMC-Si viscous solution (pH 12.8) crosslinks 

by decreasing the pH using an acid buffer, since HPMC-Si solution transforms into an elastic 

state. The kinetics of crosslinking and final elastic properties is influenced by several 

parameters such as polymer concentration, pH, and temperature. pH and temperature played 

an important role in the silanol condensation, mainly responsible for network formation. The 

study of the gelation process revealed the dependence of the final concentration of HPMC-Si 

hydrogel on crosslinking kinetics and viscoelastic properties. The percolation theory was 

applied to determine gel point and to discuss the dependence of storage (G’) and loss (G”) 

moduli on frequency. Results showed that both G’ and G” exhibit a power-law behavior with 

an exponent (0.68) which extends over the entire frequency range. This method is the only 

one to characterize the time where a liquid viscous phase shifts to hydrogel with elastic 

properties. In this case it was about 23 minutes for a final pH of 7.4

Keywords: Biomaterials; Tissue engineering; Cellulosic derivative; Silanol; Rheological 

properties, Gelation. 
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1. Introduction

Cellulose ethers are water-soluble polymers derived from cellulose, the most abundant 

polymer in nature. They have been used for a long time in pharmaceutical and food industries, 

due to their ability to behave as emulsifiers, colloidal stabilizers, and flow controllers, but also 

owing to their non-toxic nature. Moreover, cellulose ethers exhibit appropriate biological 

properties which make them suitable for biomedical applications [1]. 

Hydroxypropylmethylcellulose (HPMC) is a cellulose derivative polymer. HPMC is a 

methylcellulose modified with a small amount of propylene glycol ether groups attached to 

the anhydroglucose of the cellulose (Fig. 1).

In biomedical applications, this polysaccharide is used for preparation of biomaterial matrices 

and injectable calcium phosphate ceramics suspension (ICPCS) [2-5]. Weiss et al. developed 

a first generation of ICPCS [3, 6]. It was composed of a mixture of HPMC solution and 

biphasic calcium phosphate (BCP) granules [3]. These ICPCS showed good biocompatibility 

and had convenient rheological properties for injection, but the viscous suspension showed a 

tendency to flow after implantation in vivo. In 1997, a second generation of ICPCS was 

developed [7]. The long term flow was suppressed by using a silated HPMC (HPMC-Si) 

which crosslinks under easily controllable conditions without use of a toxic chemical catalyst. 

Crosslinking is obtained through a decrease of the pH by a buffer solution [8, 9]. After the 

second generation of ICPCS, a new concept of an injectable and self-setting hydrogel was 

developed. HPMC-Si appeared as a potential scaffold for three-dimensional amplification and 

transfer of chondrocytes in cartilage tissue engineering [10].

The self-hardening principle of the HPMC-Si hydrogel is based on the silanes grafted by an 

epoxy function along the HPMC chains (HPMC-Si). The silane used in this study was 3-

glycidoxypropyltrimethoxysilane (GPTMS). The grafted silane percentage on HPMC was 

determined from silicon content, as validated with silated hydroxyethylcellulose (HEC-Si) 
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[9]. Dissolution of HPMC-Si takes place in a strong basic medium (NaOH at pH 13.2) which 

leads to the silane's ionization into sodium silanolate (−SiO-Na+) [9]. The limiting pH of 

sodium silanolate stabilization is approximately 12.1~12.2, below which sodium silanolates 

transform into silanols (–SiOH) [8]. These lasts can undergo condensation reactions, forming 

a three-dimensional network of the HPMC-Si chains (Fig. 2). The first synthesis of silated 

polysaccharides was described in 1990 [11, 12] and Turczyn et al. [13] were the first to 

propose biomedical applications. The principle of synthesis and kinetics of crosslinking of 

HPMC-Si were largely described by Bourges et al. [8].

The aim of this work was to characterize the influence of silanisation of HPMC on the 

rheological properties of the solution and to study the kinetics of gelation of HPMC-Si using 

oscillatory shear rheometry. Studies were conducted first to determine the difference between 

nongrafted HPMC and silated HPMC under different forms: (i) powders using vibrational 

spectroscopy (Fourier transform infrared and Fourier transform Raman) (ii) dilute solutions

using intrinsic viscosity measurements, and (iii) concentrated solutions using rheological 

measurements (flow curves and oscillatory frequency sweeps). The second step was to 

determine the gelation properties of HPMC-Si. The self-hardening of hydrogel was studied as 

a function of time by oscillatory time sweeps and oscillatory frequency sweeps and the gel 

point was determined.

2. Materials and methods

2.1. Synthesis of HPMC-Si

The natural water-soluble cellulose ethers HPMC (Methocel® E4M) used in this study were 

supplied by Colorcon (England). The average degree of substitution (D.S.), molecular weight 

(Mw) and percentage of methoxyl (–OCH3) and hydroxypropyl (–OCH2CHOHCH3) groups of 

Methocel® E4M are listed in Table 1.



The principle of HPMC-Si synthesis was largely described by Bourges et al. [8]. 1.9 l of n-

heptane (Acros, Belgium) were stirred with 420 ml of 1-Propanol (Acros, Belgium). 12 g of 

NaOH (Prolabo, France) and 240 g of dry HPMC were added to the mixture under stirring. 

The mixture was kept at room temperature for 50 min under a nitrogen bubbling. 36 ml of 3-

GPTMS (Aldrich, Germany) which is the group to be grafted were added dropwise and 

temperature was increased until 85°C in 35 min. The boiling was kept for 3.5 h. Heating was 

closed and at 40°C, 30 ml of glacial acetic acid was poured for the reaction neutralization. 

After 30 min, the mixture was filtered on a buschner. The powder was washed successively 4 

times with 3 l of an acetone/water mixture (85:15 v/v) to eliminate unreacted GPTMS and 

HPMC-Si powder was dried at 37°C.

The silane percentage was determined by inductively coupled plasma atomic emission 

spectroscopy (ICP-AES). This analysis method allows us to calculate the silane percentage 

grafted on HPMC using the following formula (Eq. (1)):

Silane grafted:
Si

GPTMSHPMCSiHPMC
grafted Mw

MwSiSi
Si

)(
(%)


  (1)

where SiHPMC-Si (%) is the measured silane in HPMC-Si; SiHPMC (%) is the silane traces in 

HPMC; with MwGPTMS=236.34 g.mol-1 and MwSi=28.08 g.mol-1.

2.2. Vibrational (FT-IR and FT-Raman) studies

The infrared spectra were collected with a Magna IR 550 spectrometer (Nicolet) equipped 

with a DTGS detector. The powders were pressed in KBr pellets and the spectra were 

recorded with 100 scans at 4 cm-1 resolution. All the spectra were corrected from H2O and 

CO2 absorptions, using OMNIC software (ThermoFisherScientific). Raman spectra were 

obtained using a FT-Raman Bruker RFS 100 spectrometer with the near-IR excitation line 

(1064 nm).



2.3. Intrinsic viscosity determination

The intrinsic viscosity is a measure of the hydrodynamic volume occupied by a 

macromolecule, which is closely related to the size and conformation of the macromolecular 

chains in a given solvent [14]. The intrinsic viscosity ([η]) was determined using a Couette 

type rheometer (Contraves Low Shear 40) at 25°C, by measuring viscosities of very dilute 

solutions and using equation (2):

c
sp
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With the specific viscosity:
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solventsolution
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where solution is the solution viscosity ; solvent is the solvent viscosity ; c is the polymer 

concentration (g.ml-1). The data were plotted using the Huggings [15] and Kraemer [16]

graphical representations (Eqs. (4) and (5)).
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where Kh is the Huggings coefficient, Kk is the Kraemer coefficient.

2.4. Preparation of HPMC and HPMC-Si solutions

Aqueous solutions of HPMC and HPMC-Si were prepared at different concentrations (from 1 

to 5% w/w). The powders were dissolved in sodium hydroxide solution (0.2 M NaOH) at 

25°C during 48 h. Aqueous solutions were refrigerated subsequently at 4°C to insure a 

complete solubilization. HPMC and HPMC-Si solutions were dialyzed in dialysis bag 

(Spectra-por 6000-8000) against 3.8 l (each one) of NaOH solution (0.09 M) during 16 h and 



with 4 l (each one) of NaOH solution (0.09 M) during 2 h. Two days after their preparation, 

polymer solutions were sterilized by steam at 121°C during 20 min.

2.5. Steady shear and dynamic oscillatory measurements

Rheological measurements were performed at 25°C using a RheoStress 300 (ThermoHaake®, 

Germany) rheometer equipped with a titanium cone-plate geometry (60 mm diameter, 1° cone 

angle). The rheometer was equipped with a circulating water bath to control the temperature.

The flow curves (viscosity (η) against shear rate ( )) were established for HPMC and 

HPMC-Si solutions at different concentrations. The experiment was carried out during 60 s in 

the rate-controlled mode from 0.01 to 9000 s-1 at 25°C. The flow curves were fitted using the 

simplified Cross equation (Eq. (6)) [17]: 

n)(1
0
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where η0 is the limiting Newtonian viscosity at low shear; λ is the relaxation time (the inverse 

of a critical shear rate c ); n is the exponent of the power-law. Dynamic frequency sweep 

experiments were carried out to determine the storage (G’) and loss (G”) moduli as a function 

of frequency () at 25°C for HPMC and HPMC-Si solutions at different concentrations. A 

fixed shear stress (1 Pa) was convenient to maintain the linear viscoelastic regime. G’ 

quantifies the elastic component, it is a measure of the magnitude of the energy stored in the 

materials. G”, on the other hand, quantifies the viscous property, it is a measure of the energy 

lost as viscous dissipation [18].

2.6. Self-hardening study of HPMC-Si 

The HPMC-Si concentration was set at 3% (w/w). A buffer solution at pH 3.2 based on 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid sodium salt 99% (HEPES) (Aldrich, 



Germany) was used in this study. To investigate the influence of the final polymer 

concentration on the viscoelastic properties of HPMC-Si hydrogel at pH 7.4, one volume of 

the HPMC-Si solution was mixed with 0.5 volume of buffer to reach a final polymer 

concentration of 2% (w/v) (1v0.5) or with one volume of buffer (1v1) to reach a final polymer 

concentration of 1.5 % (w/v). The evolution of the storage (G’) and loss (G”) moduli during 

gelation was recorded as a function of time for three different frequencies (1, 3.2 and 10Hz) 

using the multiwave facility.  A total shear stress of 1 Pa were applied. 

In order to study the frequency dependence of the dynamic moduli during gelation, frequency 

sweeps between 60 and 0.1 Hz were repeatedly carried out. Since the data for the different 

frequencies are not collected at the same time, interpolation of the dynamic moduli at a given 

time was carried out to obtain the frequency dependence of the moduli below, at and above 

the gelation transition. Such a procedure is valid to take into account slow linear changes of 

the material during the measurement time, which was indeed the case here.

3. Results 

3.1. Studies on HPMC and HPMC-Si powders

The ICP-AES method was used to determine the amount grafted silane. The silane content in 

HPMC and HPMC-Si were 0.07% and 0.66%, respectively. The grafted silane percentage 

(w/w) was calculated as 0.59%.

The infrared spectra of HPMC and silated HPMC in their powder forms are presented in Fig. 

3a. No significant changes are observed between these two polymers, indicating that the 

grafting synthesis does not degrade significantly the chemical structure of the polymer. Fig. 

3b shows the FT-Raman spectra of powders of HPMC and HPMC-Si. Here again, no 

pronounced change between the spectra can be detected. 



3.2. Intrinsic viscosity

For HPMC and HPMC-Si, the Huggins and Kraemer plots (Fig. 4) yield consistent results and 

were selected as the best methods for intrinsic viscosity determination. The [η] value for 

HPMC ([]~674 ml.g-1) was slightly higher than [η] value for HPMC-Si ([]~587 ml.g-1).

These intrinsic viscosity values allow us to determine the overlap concentration c* as c*=1/[η] 

[14]. c* is equal to 1.48 10-3 g.ml-1 for HPMC and 1.7 10-3 g.ml-1 for HPMC-Si. 

Kh values were determined as 0.53 and 0.26 for HPMC and HPMC-Si, respectively. The 

Huggins constant (Kh) lies usually between 0.3 and 0.8 for flexible macromolecules and 

values larger than 1 imply strong polymer-polymer aggregation [19]. 

3.3. Flow curves of HPMC and HPMC-Si solutions

The dependence of the steady shear viscosity on the shear rate of HPMC and HPMC-Si in the 

range of concentration from 1 to 5% in NaOH (0.2 M) at 25°C is given in Fig. 5. Clearly, a 

Newtonian plateau observed at low shear rates is followed by a shear-thinning behavior. At 

high shear rate the viscosity shows a power-law dependence with the shear rate. The flow 

curves could be conveniently fitted by the simplified Cross model [17] (correlation coefficient 

of 0.99). The values of the parameters at different concentrations for the HPMC and HPMC-

Si solutions are shown in Table 2. The limiting Newtonian viscosity (η0) increases with the 

polymer concentration, and at the same time the Newtonian plateau limit shifts to a lower 

shear rate region, as commonly observed for entangled polymer solutions [20, 21]. 

Reduced dimensionless variables are often used to produce master curves in such systems. 

The reduced viscosity is defined as η/η0 and the reduced shear rate as , where η0 and  have 

been obtained by fitting the flow curves (Table 2). Master curves for HPMC and HPMC-Si 

have been obtained (Fig. 6), covering a larger shear rate window than for a single 

concentration and are (of course) well described using the Cross model. For both polymers the 



exponent value (n) is close to 0.8 (0.78 and 0.81 for HPMC and HPMC-Si, respectively) 

which is typical of a flexible polymer [22]. 

3.4. Concentration dependence of limiting Newtonian viscosity and relaxation time

Fig. 7a shows the concentration dependence of η0 for the HPMC and the HPMC-Si in NaOH 

(0.2 M) at 25°C. Clearly, only the concentrated domain was investigated. η0 follows a power-

law dependence on concentration with exponents of 4.20 and 4.41 for HPMC and HPMC-Si 

respectively. Despite higher viscosity values for HPMC-Si compared to HPMC (Table 2), it 

can be concluded that silane grafting does not change the concentration dependence on 

viscosity.

The relaxation time () defined as the typical time for macromolecules to return to 

equilibrium, is the inverse of the critical shear rate ( c ), which corresponds to the transition 

from Newtonian to viscoelastic behavior. As shown in Fig. 7b, the relaxation time scales with 

HPMC concentration with an exponent larger than 3 (i.e. ~c3.91). A similar power-law 

exponent is obtained for the HPMC-Si (~c3.72).

3.5. Viscoelastic properties 

The frequency dependence of the dynamic storage (G’) and loss (G”) moduli of the HPMC 

and HPMC-Si samples at 3% (w/w) are shown in Fig. 8. 

From Fig. 8, it is readily apparent that the synthesis of grafting silane increases the 

viscoelastic properties of the polymer. In the frequency range studied, the G” values were 

found to be higher than G’ values. Such results indicate that HPMC and HPMC-Si at 3% 

(w/w) can be classified as solutions [23]. In the low frequency zone (<10 rad.s-1), for HPMC 

and HPMC-Si, the storage modulus G’ increases like 2 whereas the loss modulus G” 

increases like 1, confirming the terminal zone behavior of macromolecular solutions [24].



The similarity of the various curves has been used to obtain master curves (Fig. 9). Master 

curves were generated by shifting both the storage (G’) and loss (G”) moduli data of HPMC 

and HPMC-Si with the 3% (w/w) concentration as reference to obtain an overlap of the 

various concentrations. The vertical and horizontal shift factors were the same for both G’ and 

G” curves. The existence of a master curve shows that the behavior of the G’ and G” moduli 

is identical for all concentrations and characteristics of entangled polymer solutions. Both 

HPMC and HPMC-Si solutions show a viscous behavior, the values of G” are higher than 

those of the G’.

3.6. Self-hardening study of HPMC-Si

Fig.10 shows the time evolution of the dynamic moduli obtained from multiwave tests during 

self-hardening of a 2% (w/v) HPMC-Si hydrogel. During the first stages of the gelation 

process G” is higher than G’. Both moduli increase with time, however, the faster increase 

with time of G’ compared to G” leads to a crossover point before reaching a pseudo plateau 

for the two moduli. Fig. 10 indicates clearly that the crossover point depends on frequency, 

therefore it is inappropriate to define the gel time (tg) from the crossing point. The often used 

criterion to determine the gel point, due to Winter and Chambon [25, 26], defines tg as the 

unique point where the curves of tan(δ) (i.e. G”/G’) cross for all frequencies. 

Fig. 11a shows an example of the mechanical spectra obtained at given times during the 

crosslinking of 3% (w/w) HPMC-Si solution with buffer (1v0.5). Data series for G’ and G” 

below, at and above the gelation transition are shown. The first spectrum was taken at the 

beginning of the crosslinking process (t=0min). G’ and G” are those of a macromolecular 

solution [23, 24]. The next spectrum reported in these series was taken at the gel point 

(t=23min). As predicted by percolation theory, both G’ and G” exhibit a power-law behavior 

with an exponent (~0.68) which extends over the entire frequency range (G’~G”~). This 



agrees with the exponent already found for other weak gels [27-29]. The two spectra at the top 

of the figure are characteristic of a gel. The data qualitatively confirms the behavior expected 

from theory [27]. At low frequency, the material behaves like an elastic medium with a 

storage modulus G’ which is frequency independent and a loss modulus G” which decreases 

with decreasing frequency. In Fig. 11b the data have been plotted in a different way designed 

to test whether the asymptotic low frequency range has been reached where the scaling theory 

applies and consequently the gel point determination by the crossing of tan(δ) is valid [28]. 

According to theory, at sufficiently low frequency G”/G’ vs  should be frequency 

independent at the gel point, it should decrease with increasing frequency below the gel point 

and increase above the gel point. This is exactly what is observed in Fig 12b. It allows one to

accurately determine the gel point and furthermore to assert that one is in the scaling regime. 

An additional confirmation of the validity of the theory is the measured low frequency plateau 

value of G”/G’, G”/G’=tan(δ)=tan(/2) which yields =0.68 ± 0.02 for the critical exponent 

, consistent with the expected universal value  =0.71 ± 0.02 [28].

The influence of the concentration on the rheological behavior of HPMC-Si hydrogels has 

been studied by varying the quantity of the buffer added. In Fig. 12, the storage (G’) and loss 

modulus (G”) are plotted as a function of time at 1 Hz for two different buffer volumes. A 

dilution effect is observed, as expected. The kinetics of crosslinking is faster and the values of 

the G’ and G” moduli are higher with 1v0.5 buffer in comparison with 1v1 buffer. The gel 

point tg, according to the tan(δ) criterion, was 23 and 32 min for HPMC-Si hydrogel with 

1v0.5 of buffer and 1v1of buffer, respectively. In general, the crosslinking kinetics depend on 

temperature and pH [8]. In this study we showed, at a fixed pH and temperature, the influence 

of dilution. A dependence of final concentration of HPMC-Si hydrogel on crosslinking 

kinetics and viscoelastic properties was observed. The higher the polymer concentration, the 

more rapid are the crosslinking kinetics. 



4. Discussion 

FT-IR analyses did not shown any difference between silated HPMC and non grafted HPMC. 

No significant changes are observed between these two polymers, indicating that the grafting 

synthesis does not degrade the chemical structure of the polymer. Three broad and intense 

bands are observed around 3500, 2900 and 1060 cm-1, associated respectively to O−H, C−H 

and C−O/C−C stretching modes. These features are characteristic of HPMC and consistent 

with previous results [8, 30, 31]. Previous similar studies on chitosan showed that silane 

grafting induces new infrared absorptions related to Si−OH, Si−O−C, Si−O−Si bonds at 920, 

1000-1100, and 1020-1150 cm-1 respectively [32, 33]. In our results, none of these bands can 

be observed in the spectrum of HPMC-Si. This could be due to the fact that HPMC possesses 

strong absorptions in this frequency range or to a low ratio of silanisation of our polymer.

The silane grafting was neither detected by FT-Raman. As no particular symmetry effect is 

expected, the frequencies of the Raman modes are the same as the infrared ones. However, 

significant changes can be noticed in their relative intensity compares to the infrared bands. 

The OH stretching is not observed in the FT-Raman spectra, while the C−O/C−C stretching 

modes lose intensity with regards to the CH methyl and methylene groups bending mode 

(1455 cm-1). The effect of silanisation is neither detectable in Raman spectra [30, 34].

In dilute solutions, the [] value for HPMC (674 ml.g-1) is higher than the HPMC-Si one (587 

ml.g-1). This higher value for HPMC suggests that HPMC macromolecular chains occupy a 

larger hydrodynamic volume and thus that HPMC-Si chains are more compact. This change 

can be due to the modification of the macromolecular conformation due to specific 

interactions or to a decrease of the molecular weight arising from degradation during the 

silane grafting synthesis. The first assumption leads to an increase of the viscosity of 

concentrated solution as compared to the unmodified polymer, as it is commonly observed in 

associating polymers. The second one, on the contrary, leads to a decrease of the viscosity. 



The study of entangled solutions has shown that the viscosity increases after chemical 

modifications, showing that specific interactions (probably between Si-grafted groups) lead to 

some kind of association between macromolecular chains. Going from dilute to concentrated 

solutions induces a change between intramolecular and intermolecular associations, 

explaining the decrease of the intrinsic viscosity and the increase of the viscosity of 

concentrated solutions. A decrease of the molecular weight can not be totally excluded, since 

both effects might partially compensate each other. 

The value of Huggins constant (Kh) lies between 0.3 and 0.8 for flexible polymer chains in 

good solvents and values larger than 1 imply strong polymer-polymer aggregation [19]. Kh

values from this study are 0.53 and 0.26 for HPMC and HPMC-Si, respectively [35, 36]. The 

Kraemer constant Kk obtained for HPMC (0.1) was slightly lower than that obtained for 

HPMC-Si (0.17). The sum of the Huggins constant Kh and Kraemer constant Kk should equal 

0.5 ± 10% and larger or smaller values are attributed to molecular association [19]. Values 

from this study do not fall far from this range, meaning the presence of light molecular 

association. 

A large dependence of limiting viscosity on polymer concentration was observed with η0~c4.20

and η0~c4.41 for HPMC and HPMC-Si, respectively. Such values of the exponent are expected 

for entangled solutions in good to moderately good solvents. The same type of dependence 

was obtained for chitosan solution (η0~c4.1) [37]. 

The relaxation time is proportional to HPMC and HPMC-Si concentration with an exponent 

larger than 3 (i.e. ~c3.91 and ~c3.72, respectively). This relaxation time dependence on 

polymer concentration has been reported for the chitosan solution (~c3.1 ) [37]. It is however 

larger than expected for entangled polymer chains in a good solvent. 

The exponent value (n) of the Cross model obtained from the master curves for HPMC and 

HPMC-Si was 0.78 and 0.81, respectively, which is typical of a flexible polymer [22]. A 



similar exponent value (0.82) has been reported for polysaccharide which adopts semi flexible 

conformation [22, 38].

In the crosslinking experiments characterized in the linear viscoelastic domain, the behavior 

of HPMC-Si hydrogel reflects a classical liquid-gel transition for polysaccharides, as already 

reported in the literature. The gel point (tg), on the basis of the percolation theory [28], 

appears when G’ and G” show the same power-law dependence with frequency [39] and 

where tan(δ) is thus independent of frequency [25, 26] (Fig. 11b). At tg theory predicts that 

both G’ and G” versus frequency exhibit a power-law behavior with an exponent of Δ~0.68 

which extends over the entire frequency range. In this study, the data qualitatively confirm the 

behavior predicted by the percolation theory [27].

For the same final pH, the effect of polymer concentration was clearly observed. The HPMC-

Si hydrogel obtained with a 1v0.5 buffer shows faster kinetics of crosslinking as compared 

with a 1v1 buffer. In the same time, the G’ and G” values with 1v0.5 buffer are higher than 

those with 1v1 buffer. 

The effect of pH neutralization and silanol condensation temperature was also studied in a 

previous work on HPMC-Si [8]. The HPMC-Si dilution plays an important role in 

determining of the self-hardening properties. This parameter can be used, together with the 

neutralization pH and temperature, to control the kinetics of crosslinking and the viscoelastic 

properties of the gel. 

tg is an interesting parameter in tissue engineering applications. It is the time needed to 

manipulate the cells and inject them without a flow character [40]. The time for crosslinking 

after injection of our hydrogel was a first issue of concern, but viscoelastic properties could 

also be interesting. HPMC-Si is a convenient three-dimensional network able to support the 

development of differentiated chondrocytes [10]. By adapting the gel parameters one could



propose hydrogels with crosslinking properties adapted to clinical applications by controlling 

the amount of grafted silanol, pH of neutralization, temperature and buffer volume.

5. Conclusion

An HPMC-Si aqueous solution is able to crosslink by decreasing the pH. It is shown here that 

a slight chemical modification (0.6% w/w of silane) which cannot be detected by 

spectroscopic techniques (FT-IR and FT-Raman) can induce large changes in the macroscopic 

behavior. The presence of Si-grafted groups along the polymer backbone induces interaction 

between these groups which lead to a decrease of the size of the coils in dilute solution and 

increase (by about a factor 2) the viscosity of concentrated solutions as compared to native 

HPMC. Despite this change, the rheological behavior of the HPMC-Si solutions is typical of 

that of concentrated polymer solution and essentially determined by entanglements. 

In the present work HPMC-Si self-hardening hydrogel was prepared. The hydrogel was 

obtained by condensation of silanol using an acid buffer as a neutralizing agent. No toxic 

initiators or organic solvents are required. The gelation time depends on temperature, polymer 

concentration, silanol grafting, buffer volume and pH. Rheological techniques were used to 

determine the gel point and the percolation theory was applied to discuss the dependence of 

G’ and G” on frequency. This method is the only one to characterize the time where a liquid 

viscous phase shifts to hydrogel with elastic properties.
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Notation

 : viscosity (Pa.s)

sp : specific viscosity

rel : relative viscosity

solvent : solvent viscosity (Pa.s)

solution : solution viscosity (Pa.s)

Kh : Huggings coefficient

Kk : Kraemer coefficient

[η] : intrinsic viscosity (ml.g-1)

0 : limiting Newtonian viscosity (Pa.s)

 : shear rate (s-1)

c : critical shear rate (s-1)

 : relaxation time (s)

n : exponent of the power-law

G’ : loss modulus (Pa)

G” : storage modulus (Pa)

 : frequency (rad.s-1 or Hz)

C or c : concentration (g.ml-1 or %)

c* : overlap concentration (g.ml-1)

tg : gel point (min)
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Figures and Tables

Fig. 1: Typical chemical structure of hydroxypropylmethylcellulose (Technical Handbook of 

Methocel® cellulose ethers, Dow Chemical Company).

Fig. 2: Silane behaviors grafted on the HPMC: (1) dissolution in basic middle with silanolate 

function formation; (2) decrease pH generates silanolate transformation into silanol; (3) 

silanol condensation.

Fig. 3: (a) FT-IR spectra and (b) FT-Raman spectra of powders of (1) HPMC and (2) HPMC-

Si.

Fig. 4: Intrinsic viscosity: Kraemer and Huggins plots of (a) HPMC and (b) HPMC-Si in 

dilute solutions.

Fig. 5: Flow curves of (a) HPMC and (b) HMPC-Si dispersed in NaOH (0.2M) at different 

concentrations (1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5%) at 25°C.

Fig. 6: Master curves for reduced shear rate ( λ) dependence of reduced viscosity (η/η0) of 

(a) HPMC solutions (1 to 5% in concentration) exponent value n ~0.78 and (b) HPMC-Si 

solutions (1 to 5% in concentration) exponent value n ~0.81.

Fig. 7: Concentration dependence of (a) limiting Newtonian viscosity (η0) and (b) relaxation 

time (λ) of HPMC and HPMC-Si dispersed in NaOH (0.2M).

Fig. 8: Storage modulus (G’) and loss modulus (G”) vs frequency at 25°C, for 3% (w/w) 

HPMC and HPMC-Si solutions. A stress of 1Pa was applied.

Fig. 9: Master curves for HPMC and HPMC-Si solutions at 25°C (1 to 5% in concentration). 

Normalized G’ and G” vs normalized frequency. The concentration reference was 3%.

Fig. 10: Multiwave test of HPMC-Si hydrogel (1v0.5) at 25°C. Time dependence of the 

storage (G’: x) and loss (G”: ○) moduli. For better visualization, each spectrum has been 

Captions



shifted upward vertically by one decade with respect to the previous one. The frequencies 

were 1, 3.2 and 10Hz and a total shear stress of 1Pa was applied.

Fig. 11: (a) Frequency dependence of the storage (G’: ○) and loss (G”: ●) moduli at several 

stages during the crosslinking of HPMC-Si at 25°C. The bottom spectrum, at t = 0 min, is 

below the gel point; the next one at t = 23 min, is at the gel point; and the following two, at t = 

60 and 1200 min, are above the transition. For better visualization, each spectrum has been 

shifted upward vertically by one decade with respect to the previous one. (b) tan(δ) (G”/G’) as  

a function of frequency of the same data. 

Fig. 12: The storage modulus (G’) and loss modulus (G”) of HPMC-Si hydrogel at different 

volume of buffer (1v0.5 and 1v1). A total shear stress of 1Pa at 25°C was applied.

Table 1: Composition and characteristics of HPMC sample used in the present worka.

Table 2: Values of Cross parameters at different concentrations for the HPMC and HPMC-Si 

solutions at 25°C.
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Figure 4
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Figure 5
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Figure 6
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Figure 7

(a)

h0=0.0072C
4.20 (±0.032)

R
2
=0.9863

h0=0.0113C
4.41 (±0.014)

R
2
=0.9834

0,001

0,01

0,1

1

10

100

0,1 1 10
C (%)

h
0

(P
a.

s)

HPMC
HPMC-Si
Linear Fit (HPMC)
Linear Fit (HPMC-Si)

(b)

l=0.037C
3.91 (±0.074)

R
2
=0.9917

l=0.092C
3.72 (±0.058)

R
2
=0.9639

0,01

0,1

1

10

100

0,1 1 10
C (%)

l
 (

m
s)

 

HPMC
HPMC-Si
Linear Fit (HPMC)
Linear Fit (HPMC-Si)

Figure 7



Figure 8

0,01

0,1

1

10

100

1000

0,1 1 10 100 1000
Frequency (rad.s-1)

G
' ,

 G
" 

(P
a)

G" HPMC-Si 
G' HPMC-Si 
G" HPMC 
G'  HPMC 

2

1

Figure 8



Figure 9

(a)

0,001

0,01

0,1

1

10

100

1000

0,01 0,1 1 10 100 1000 10000
Normalized frequency (rad.s-1)

N
or

m
al

iz
ed

 m
od

u
li

 (
P

a)

(b)

0,001

0,01

0,1

1

10

100

1000

0,01 0,1 1 10 100 1000 10000
Normalized frequency (rad.s-1)

N
or

m
al

iz
ed

 m
od

u
li

 (
P

a)

Figure 9



Figure 10
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Figure 11
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Figure 12
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Table 1

Sample Product Metoxyl degree 
of substitution

Methoxyl 
(%)

Hydroxypropyl 
molar substitution

Hydroxypropyl 
(%)

molecular weightb

(g.mol-1)
HPMC Methocel® E4M 1.9 29.0 0.23 9.7 290 000
afrom certificate of analysis Dow Chemical Company 
bas determined by light scattering (Bourges et al., 2002).

Table 1



Table 2

Polymer c (% w/w) 0 (Pa.s)  (ms) n
c (s-1)

HPMC 1.0 0.010  0.000 0.031  0.004 0.831  0.099 -
1.5 0.043  0.001 0.273  0.004 0.830  0.012 3668.00  58.64
2.0 0.073  0.002 0.430  0.024 0.786  0.013 2328.33  129.62
2.5 0.260  0.008 1.314  0.011 0.742  0.014 760.80  6.68
3.0 0.811  0.013 3.062  0.088 0.740  0.000 326.73  9.52
3.5 1.571  0.041 5.511  0.323 0.773  0.008 181.87  10.90
4.0 2.435  0.054 8.069  0.523 0.768  0.006 124.27  7.84
4.5 4.409  0.079 14.002  0.803 0.777  0.015 71.58  4.20
5.0 6.636  0.880 18.641  1.454 0.780  0.020 53.86  4.18

HPMC-Si 1.0 0.010  0.000 0.056  0.013 0.767  0.058 -
1.5 0.055  0.000 0.440  0.002 0.750  0.000 2275.33  10.07
2.0 0.244  0.008 1.375  0.015 0.750  0.000 727.40  8.05
2.5 0.714  0.035 4.787  0.572 0.717  0.015 210.83  24.57
3.0 2.924  0.195 9.860  0.854 0.777  0.006 101.91  8.47
3.5 3.179  0.124 10.209  1.105 0.790  0.010 98.72  10.72
4.0 3.679  0.067 13.799  2.028 0.783  0.006 73.63  11.81
4.5 7.887  0.107 18.237  0.869 0.810  0.010 54.91  2.55
5.0 10.760  0.131 24.476  1.383 0.827  0.006 40.95  2.39

Table 2




