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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Univ-Nantes

https://core.ac.uk/display/53014534?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00463707


March 14, 2010 19:39

TOLERANCE SYNTHESIS OF MECHANISMS: A ROBUST DESIGN APPROAC H
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ABSTRACT
This paper provides a new robust design method to dimen-

sion a mechanism and to synthesize its dimensional tolerances.
The general issue is to find a robust mechanism for a given
task, and to compute its optimal dimensional tolerances. For
that purpose, the developed approach follows two consecutive
steps, which are independent and complementary. First, thedi-
mensions of the mechanism are computed by means of an appro-
priate robustness index, which is used to minimize the sensitivity
of its performances to variations. These robust dimensionsare
obtained independently of the amount of variations, and tolerate
globally the largest variations. Thus, knowing the acceptable per-
formance error of the mechanism, the second step aims at com-
puting the optimal dimensional tolerances of the mechanismby
means of the new tolerance synthesis method. This method is
used to find the best distribution of the error between the dimen-
sions of the mechanism. Two serial manipulators are studiedto
illustrate the theory.
Keywords: robust design, tolerance synthesis, mechanism, vari-
ations, sensitivity ellipsoid, optimization.

1 Introduction
Every engineering design is subject to variations that can

arise from a variety of sources, including manufacturing opera-
tions, variations in material properties, and the operating envi-
ronment. When variations are ignored, nonrobust designs can
result, which are expensive to produce or fail in service. Besides,
the robustness of a mechanism is important when calibrationis
necessary because the lower the sensitivity of the mechanism to
dimensional variations, the easier its calibration [1].

∗IRCCyN: UMR n◦ 6597 CNRS,École Centrale de Nantes, Université de
Nantes,École des Mines de Nantes

The concept of robust design may be first used by Taguchi.
He introduced the concept of parameter design to improve the
quality of a product whose manufacturing process involves sig-
nificant variability or noise [2]. Robust design aims at minimiz-
ing the sensitivity of performances to variations without control-
ling the causes of these variations. In the last decades, several
authors have contributed to the formulation and the improvement
of robust design problems. Kalsi et al. [3] introduced a technique
to reduce the effects of uncertainty and incorporate flexibility in
the design of complex engineering systems involving multiple
decision-makers. Chen et al. [4] studied two broad categories of
problems namely, (i) Type 1: minimizing variations in perfor-
mance caused by variations in noise factors (uncontrollable pa-
rameters) and (ii) Type 2: minimizing variations in performance
caused by variations in control factors (design variables,DV).
Sundaresan et al. [5] developed a procedure incorporating uncer-
tainties inDV and variations in constraints due to these uncer-
tainties.

The dimensional tolerances of a mechanism are fixed ac-
cording to various parameters such as the manufacturing process,
the performance tolerances, the manufacturing cost. Chaseet
al. [6,7] presented the Direct Linearization Method for tolerance
analysis of 2-D and 3-D mechanical assemblies. Parkinson [8]
used a deterministic method of robust design to determine the op-
timum nominal dimensions of an assembly in order to improve
the assembly quality without tightening tolerances. Moreover,
Rajagopalan and Cutkosky [9] used similar methods to analyse
the performance errors of mechanisms fabricatedin-Situ.

Some optimization methods for tolerance synthesis exist in
the literature. Zhang and Wang [10] used a simulated anneal-
ing algorithm to maximize the robustness of product by appro-
priately allocating assembly and machining tolerances. Lee et
al. [11] presented a tolerance synthesis method for nonlinear sys-
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tems based on nonlinear programming, whereas Gadallah and El-
Maraghy [12] presented a method using a system of experimen-
tal design. Zhu and Ting [13] used the theory of performance
sensitivity distribution to study the sensitivity of the system to
variations, and selected one manipulator among six, by means of
a robustness index. They defined the tolerance box as a contrac-
tion of the circumscribe box of the design sensitivity ellipsoid
of the mechanism. The link between dimensional tolerances and
product’s cost is presented in several works [14].

The paper focuses on mechanisms, which are assemblies of
moving parts performing a complete functional motion.

Here, the study of a mechanism and the calculation of its
dimensional tolerances are conducted in two consecutive steps.
First, its dimensions are computed by means of a robustness in-
dex, which is proposed to minimize the sensitivity of its perfor-
mances to variations. For example, a robust dimensioning ofthe
2Rmanipulator, whose end effectorE has to hit pointP with the
highest precision, is depicted in Fig.1. For this dimensioning, the
links of the manipulator are perpendicular whenE is supposed to
hit P. In this configuration, the maximum positioning error ofE,
ε, due to dimensional variations, is a minimum.

A

B

E

P

l1

l2

q1

q =2

y

x

p/2

e

Figure 1. A Robust Dimensioning of the 2RManipulator

Then, knowing the acceptable performance error of the
mechanism, the second step aims at computing the optimal di-
mensional tolerances of the mechanism by means of a new toler-
ance synthesis method. This method is based on the robustness
approach of the first step.

The formulation of a robust design problem is given in sec-
tion 2. Section 3 discusses of an appropriate robustness index for
mechanisms. The new tolerance synthesis method is developed
in section 4. Finally, a 2Rmanipulator and a 3R manipulator are
studied in section 5 to illustrate the theory.

2 Robust design problem
In a robust design problem, the distinction is made between

three sets: (i) the set of design variables (DV) whose nominal
values can be selected between the range of upper and lower
bounds, they are controllable; (ii) the set of design parameters
(DP) that cannot be adjusted by the designer, they are uncontrol-
lable; (iii) the set of performance functions. Thel -dimensional
vector of design variables is denoted byx = [x1 x2 · · ·xl ]

T . The
m-dimensional vector of design parameters is denoted byp =
[p1 p2 · · · pm]

T . Performance functions are grouped into then-
dimensional vectorf = [ f1 f2 · · · fn]T , [15]. DV are, however,
subject to uncontrollable variations because of manufacturing er-
rors, wear, or other uncertainties, although their nominalvalue is
fixed.

For instance, for the slider-crank mechanism depicted by
Fig.2, f =< N >, x = [lc lr e]T , andp = [ fp µ] where< N >
is the average side force on piston to be minimized.lc andlr are
the lengths of the rod and the crank of the mechanism.e is the
eccentricity between the crank and the piston.fp is the force on
piston andµ is the friction coefficient between the piston and the
cylinder .

lc lr

e

piston

Figure 2. Slider-Crank Mechanism

A system is robust when its performance is as little sensitive
as possible to variations. Performance functionf depends onDV
andDP, which are supposed to be independent.

f = f(x,p) (1)

Here, the study of the sensitivity of the system to variations is
based on the theory of performance sensitivity distribution.

δf = [Jx Jp]
[

δxT δpT]T
= J δX (2)
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In this theory, a Jacobian matrixJ describes the effect of the
component variations to the system performance, as depicted by
eq.(2) whereJx = ∂f/∂x, Jp = ∂f/∂p, J = [Jx Jp], XT =

[

xTpT
]

.
δx andδp are the variations inDV and inDP, respectively.Jx

andJp are the (n× l ) sensitivity Jacobian matrix off with respect
to x and the (n×m) sensitivity Jacobian matrix off with respect
to p, respectively. If variations inDV are not taken into account,
thenJ = Jp andX = p. On the contrary,J = Jx andX = x when
only variations inDV are considered.

The performance distribution is characterized in the varia-
tion space by a set of eigenvalues and eigenvectors,i.e.: by a
hyper-ellipsoid. Without loss of generality, assuming that vari-
ations inDV are negligible and that there are only twoDP, this
design sensitivity hyper-ellipsoid is an ellipse depictedin Fig.3.
σ1 and σ2 are the smallest and the largest singular values of
J, respectively, andq1, q2 are their corresponding eigenvectors.
Lengths of semi-axes are inversely proportional to singular val-
ues ofJ. Points on the ellipse surface lead to the same norm of
performance variation,‖δf‖2, where‖.‖2 depicts the Euclidean
norm. Moreover, the performance is the least sensitive to varia-
tions in the direction ofq1 and the most sensitive to variations in
the direction ofq2.

dp1

dp2

q1

q2

|| ||d sf 2/ 2

|| ||d sf / 12

|| || =df constant2

Figure 3. Design Sensitivity Ellipsoid

A mechanism is robust when the sensitivityS of its perfor-
mances to variations is a minimum. Therefore,Scan be defined
as the ratio of the Euclidean norm of variations in its perfor-
mances,‖δf‖2, and the Euclidean norm of variations inDV and
DP, ‖δX‖2, [15]. S represents a variation transmission ratio and
means the amount of variations transmitted from the sourcesto
the design. Besides, eq.(3) follows from eq.(2) and means thatS
is bounded by the smallest singular value,σmin, and the largest
singular value,σmax, of sensitivity Jacobian matrixJ.

σmin ≤ S=
‖δf‖2

‖δX‖2
≤ σmax (3)

3 Choice of an appropriate robustness index
In order to obtain a robust solution independently of the

amount of variations inDV andDP, a judicious robustness index
is required. The robustness indices usually found in the recent
literature are the condition number and the Euclidean norm of
the sensitivity Jacobian matrix,J. Al-Widyan and Angeles [15],
Ting and Long [16] used the condition number ofJ. Zhu [13]
and Hu et al. [17] suggested the use of the Euclidean norm ofJ.
In this section, it is shown that the Euclidean norm ofJ is more
appropriate for the robust design of mechanisms.

The condition number of a matrix is the ratio of its largest
singular value to its smallest singular value. LetRI1 be the con-
dition number ofJ.

RI1 = ‖J‖2‖J−1‖2 =
σmax

σmin
(4)

According to [16,15], a design is robust whenRI1 is a mini-
mum. Assuming that only variations inDP are considered, each
variationδpi has the same influence on the norm of variations in
performance whenRI1 is unitary,i.e.: the sensitivity ellipsoid is a
sphere. Although this property is interesting, the previous index
is not sufficient because the influence ofδpi on performance is
not necessarily a minimum whenRI1 is unitary, [18]. Indeed, the
condition number,RI1, can be small even if the values ofσmin

andσmax are large.
A singular value ofJ corresponds to the error transmission

factor in the direction of its corresponding eigenvector and in the
space of variations. The ideal solution is the minimizationof all
the singular values ofJ, but is not easy to obtain. According to
eq.(3), a compromise solution is to minimize the upper bound
of S, which is the largest singular value ofJ. Thus, a second
robustness index,RI2, is defined by eq.(5).

RI2 = ‖J‖2 = σmax (5)

F t( )

X t( )

M Cd

Figure 4. Damper
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The damper shown in Fig.4 is studied to compareRI1 and
RI2. The design variables are massM and damping coefficient
Cd to be determined with the aim of keeping the magnitude of
displacementX0 at a nominal value of 0.1m, while the magni-
tudeF0 of the excitation forceF(t) = F0cos(ωt) and its pulsa-
tion ω undergo considerable variations beyond the control of the
designer:F0 = 10N, ω = 2π rad/s. The displacement is equal
to X(t) = X0cos(ωt + φ) whereφ is the phase. Moreover, the
following relations exist:

X0 =
F0

ω
√

C2
d +ω2M2

, φ = tan−1
(

ωM
Cd

)

x = [M Cd]
T , p = [F0 ω]T , f = [X0 φ]T . Equation (6) gives

the relation between variations inf and variations inp.

δf = J δp (6)

where the sensitivity Jacobian matrix depends onx andp,
and is equal to:

J = Jp =

[

1 −1−α2

0 α
√

1−α2

]

, α =
X0

F0
ω2M

and

δf =
[

δX0/X0

δφ

]

, δp =

[

δF0/F0

δω/ω

]

M M/ [%]max

1/
R

I1

Figure 5. Robustness index RI1

Figure 6. Robustness index RI2
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Figure 7. Design Sensitivity Ellipses

Figures 5, 6 depict robustness indicesRI1 and RI2 of the
damper with respect toM, respectively. In Fig.5,RI1 is a mini-
mum whenM/Mmax= 0.54 with Mmax= 2.533kg. Fig.6 shows
that RI2 increases withM. According to Fig.7, which depicts
some design sensitivity ellipses of the damper, plotted fordiffer-
ent values ofM, the moreM tends towards zero, the larger the
size of the ellipse. It means that the design can tolerate globally
more variations inF0 andω, i.e.: it is robust. Besides, the el-
lipse corresponding to the value ofM/Mmax that minimisesRI1
is the smallest one. Therefore, minimizingRI1 is not equivalent
to minimizing the influence of variations inDP on performance
function.

Chen et al. [4] and Parkinson [19] proposed an optimiza-
tion algorithm to increase the robustness of a design without us-
ing robustness indices. However, they need to know the magni-
tude of source variations to use their algorithm. Assuming that
∆F0/F0 = 0.1, ∆ω/ω = 0.1 andM/Mmax≥ 1/2, their algorithm
converges onM/Mmax= 1/2 andCd = 13.78 N.s.m−1 in order
to minimize variations inX0 andφ. So, according to [4] and [19],
the mass of the damper is minimized to make it robust, like with
robustness indexRI2. In conclusion, the study of the damper con-
firms thatRI2 is more suitable thanRI1 to evaluate the robustness
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of a mechanism.RI2 is used in the following sections of this
paper.

Remark: It is important not to confuse symbolsδ and∆.
δv depicts the variation of variablev and∆v depicts its tolerance,
i.e.:−∆v≤ δv≤ ∆v.

4 An efficient tolerance synthesis method
The dimensional tolerances of a mechanism are usually

fixed according to various parameters such as the manufactur-
ing process, the performance tolerances, the manufacturing cost.
Some optimization methods for tolerance synthesis exist inthe
literature. Zhu and Ting [13] defined the tolerance box as a con-
traction of the circumscribe box of the design sensitivity ellipsoid
of the mechanism. However, this Tolerance Box, called Zhu-TB,
includes some rejects, cf Fig.8.

U

V

dx1

dx2

x( )C

u1

u2

Caro-TB

Zhu-TBrejects

2
D
x

2
o
p
t

2Dx1opt

Figure 8. Tolerance Synthesis, l=2

Some works in the literature deal with the link between di-
mensional tolerances and product’s cost [14, 9]. Here, the cost
of a mechanism is supposed to decrease when its dimensional
tolerances increase. Thus, a new tolerance synthesis method is
proposed, which aims at finding the largest tolerance box of a
mechanism that does not include rejects. Letξ(C) be the design
sensitivity ellipsoid of a mechanism corresponding to a norm of
variations in its performance equal toC. Assuming that this norm
has to be smaller thanC, the optimal tolerance box is supposed
to be the largest box included inξ(C). This tolerance box called
Caro-TB and depicted in Fig.8, is smaller than Zhu-TB, but does
not include any reject. The choice of the tolerance box depends
on the wish of the designer. However, it is always important to
know the solution without rejects because the cost of the loss due
to rejects can be estimated from this solution.

First, nominal valuesx = [x1 x2 · · · xl ]
T of design variables

are computed from robustness indexRI2, presented in section 3.

Then, their optimal dimensional tolerances∆xiopt are computed
using the following optimization algorithm:























max
u

l

∏
i=1

|ui |

s.t. U(u1, u2, · · · , ul ) ∈ ξ(C)
ui.sign(Vi)≥ 0, i = 1, · · · , l
|ui| ≥ ∆ximin, i = 1, · · · , l

∆xiopt = |ui|, xi −∆xiopt ≤ xi ≤ xi +∆xiopt, i = 1, · · · , l

This algorithm consists in maximizing thehyper-volumeof
the tolerance box included inξ(C). V is the eigenvector corre-
sponding to the maximum singular value of the sensitivity Jaco-
bian matrix of the mechanism andVi is its ith component. Be-
sides, pointU whose coordinates are(u1, u2 · · · , ul) belongs to
ξ(C) if and only if uT JT

x Jxu = C2 whereu = [u1, u2, · · · , ul ]
T .

Moreover, each dimensional tolerance∆xi has to be higher than
a minimum dimensional tolerance∆ximin, depending on the man-
ufacturing process andxi . For instance, Fig.8 depicts all the pos-
sible positions ofU whenl = 2 andV1, V2 are negative and posi-
tive, respectively.

In the following, a 2R and a 3R manipulators are studied
to illustrate the proposed robust design and tolerance synthesis
methods. If the positioning error of the end effector has to be
smaller than a scalarC atn different goal poses, it means that the
tolerance box has to be included inn design sensitivity ellipsoids
because each pose of the manipulator is associated with a design
sensitivity ellipsoid. However, the tolerance synthesis algorithm
works with only one design sensitivity ellipsoid. To cope with
this problem, we consider the most restrictive ellipsoid,ξmr. As
for any serial manipulator, a unitary variation in one design vari-
able and no variation in the others lead to a unitary positioning
error of its end effector, the design sensitivity ellipsoids intersect
at 2l points wherel is the number of design variables. There-
fore, ξmr is the ellipsoid with the smallest small axis among the
n design sensitivity ellipsoids.

5 Case studies
5.1 Study of a 2R manipulator

The mechanism studied in this section is a serial 2R manip-
ulator, depicted in Fig.9. It is composed of two revolute joints
and two linksABandBE of lengthsl1 andl2, respectively. First,
the manipulator is designed, so that its end-effectorE can hit all
points of a targetST , and to be as little sensitive as possible to di-
mensional variations. Indeed, the lower the sensitivity ofthe ma-
nipulator to dimensional variations, the easier its calibration [1].
Subsequently, the tolerance synthesis method introduced in sec-
tion 4 is used to compute its optimal dimensional tolerances.
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Figure 9. A 2RManipulator and its target ST

5.1.1 Dimensioning of the 2R manipulator Let ST

be defined as a set ofn pointsP1,P2, · · · ,Pn. First, E can hit all
points inST if and only if l1 and l2 satisfy the following condi-
tions:

{

|l1− l2| ≤ r
l1+ l2 ≥ R

with r = mini d(A,Pi), R = mini d(A,Pi), i = 1, · · · ,n where
d(A,Pi) is the distance betweenPi andA. These conditions bound
the feasible design variables space as shown in Fig.10.

The formulation of a robust design problem was given in
section 2. For the manipulator under study, the set of design
variables,x, and the set of performance functions,f, are given by
eqs.(7,8).

x = [l1 l2]
T , f = [eT

1 · · ·eT
i · · ·eT

n ]
T (7)

ei = l1
[

Cθ1i Sθ1i

]T
+ l2

[

Cθ1i+θ2i Sθ1i+θ2i

]T (8)

whereei is the vector of the Cartesian coordinates ofE at Pi .
Cθ ji = cosθ ji , Sθ ji = sinθ ji whereθ ji is the jth actuated joint
variable atPi , j = 1,2.

The relation between the positioning error ofE at Pi , δfi ,
and dimensional variationsδl1, andδl2, follows from eq.(8) and
is given by eq.(9).

δfi = Jxi δx with Jxi =

[

Cθ1i Cθ1i+θ2i

Sθ1i Sθ1i+θ2i

]

; δx =

[

δl1
δl2

]

(9)

The norm ofδf = [δfT
1 , · · · ,δfT

i , · · · ,δfT
n ]

T , ||δf||, is the global
positioning error ofE on ST . The sensitivity Jacobian matrix of
the manipulator,Jx, is a (2n×2) matrix composed of matrices

Jxi . The relation betweenδf, Jx and dimensional variations,δx,
is given by eq.(10).

δf = Jxδx with Jx = [JT
x1
· · ·JT

xi
· · ·JT

xn
]T (10)

The robustness of the manipulator with respect to dimen-
sional variations is quantified by robustness indexRI2, defined
in section 3. RI2 is the maximum singular value ofJx and
corresponds to the maximum norm of positioning error ofE,
||δf||max, when the norm of dimensional variations is unitary,i.e.:
δl21 + δl22 = 1.

0 2 4 6 8 10
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3

4

5

6

7

8

9

10

2.5833

2.5001

2.4169

2.2505
2.08412.08412.25052.4169

l l r2 1- =

l1

l1opt

l l R1 2+ =

l2
o
p
t Dopt

Crob

l l r1 2- =

L2

l2

O

Figure 10. RI2 = f (l1, l2)

LetST be made up of four points,P1,P2,P3,P4, whose Carte-
sian coordinates are (1,5), (2,7), (3,7), (4,6), respectively. Fig.10
shows the isocontours ofRI2 in the feasible design variable
space. We can notice thatRI2 isocontours form a family of el-
lipses and thatRI2 is a minimum when design variables belong
to the circleCrob. In fact, the algebraic expression ofRI2 can be
derived as shown in eq.(11):

RI2 =

√

n+

∣

∣

∣

∣

n

∑
i=1

cosθ2i

∣

∣

∣

∣

=

√

n+

∣

∣

∣

∣

n

∑
i=1

x2
i + y2

i − l21 − l22
2l1l2

∣

∣

∣

∣

(11)

wherexi andyi are the Cartesian coordinates of pointPi . Thus,
the set of solutions (l1, l2), satisfying eq.(11) for a fixedRI2, is ei-
ther ellipseε1 or ellipseε2 whose equations areL2

1/a2
1+L2

2/b2
1 =

c andL2
1/a2

2+L2
2/b2

2 = c, respectively, wherea1 = b2 = 1/RI2,

a2 = b1 = 1/
√

2n−RI22. L1 andL2 are the expressions ofl1 and
l2 in the coordinate frame rotated of 45deg with respect to the
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reference frame of the design variable space. Thus,ε1 andε2,
depicted in Fig.11, are the isocontours of robustness indexRI2.

45°

l1

l2 L1L2

b1 a2

a1b2
e1e2

RI2=constant

Figure 11. Design Variables (l1,l2) corresponding to the same RI2

l21 + l22 =
1
n

n

∑
i=1

x2
i + y2

i =
1
n

n

∑
i=1

d2(A,Pi) (12)

According to eq.(11),RI2 is a minimum when eq.(12) is sat-
isfied, i.e.: when dimensioning (l1,l2) belongs to the circle of
radius the square root of the mean of square distances between
pointsA and Pi and centered at the origin of the design space
variable. Therefore, this circle corresponds toCrob. Its radius is
equal to 6.87. Thus, there exists an infinite number of dimen-
sionings (l1,l2) that minimizeRI2. Three of them are depicted in
Fig.12.

-2 -1 0 1 2 3 4 5 6 7
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7

P1

P3P2

P4

A

x

y

Manipulator 1

Manipulator 3

Manipulator 2

2 1 2 2l l=

Figure 12. Robust Manipulators

According to eq.(11), the maximum global positioning er-
ror of E is a minimum when cosines of anglesθ2i tend towards

zero. It means that the links of a robust 2Rmanipulator should be
almost perpendicular. That is apparent in Fig.12. The obtained
robust dimensions are independent of the amount of variations
and tolerate globally the largest variations.

As there are several robust manipulators, the designer can
choose another criterion to be optimized. For instance, he can
take into account the cost or the complexity of the mechanism.
Here, the optimal robust manipulator is supposed to be the one
with the best dexterity. This criterion is frequently used in ma-
nipulator design. It evaluates the ease of a manipulator to execute
motions or arbitrary motions in all directions. It is quantified by
the condition number of its kinematic Jacobian matrix, [20]. The
smaller this condition number, the higher the dexterity. Besides,
the manipulator is isotropic when its condition number is equal
to one, [20]. LetJk be the kinematic Jacobian matrix of the 2R
manipulator:

Jk =

[

−l1sin(θ1)− l2sin(θ1+θ2) −l2sin(θ1+θ2)
l1 cos(θ1)+ l2cos(θ1+θ2) l2cos(θ1+θ2)

]

(13)

For any posture of the manipulator defined by angleθ2, the
condition number ofJk is a minimum if and only ifl2 = l1

√
2/2

[20]. Let L be the line of equationl2 = l1
√

2/2. Dopt, the in-
tersection ofC rob with L , depicts the optimal robust manipula-
tor, cf Fig.10. In conclusion, the 2R manipulator of link lengths
l1 = l1opt = 5.61 andl2 = l2opt = 3.97 is the optimal robust one,
i.e.: the one with the best dexterity among the least sensitive
ones to dimensional variations that allow their end effector E to
hit all points inST . This manipulator is the second one depicted
in Fig.12,i.e.: the one whose links are depicted with bold lines.

In conclusion, the robust design method gave the set of all
the robust manipulators. The optimal dimensioning was chosen
among this set by means of another criterion, namely the dexter-
ity. In the following section, the tolerance synthesis method pre-
sented in section 4 is used to compute the optimal dimensional
tolerances of the selected manipulator.

5.1.2 Tolerance synthesis of the 2R manipulator
In addition to the fact thatE has to hit every point ofST , its
positioning error has to be smaller than 10µm whatever its pose.

Fig.13 depicts the design sensitivity ellipses of the optimal
robust manipulator defined in the previous section, when target
ST is defined byP1,P2,P3,P4, plotted in Fig.12. The shape, size
and orientation of these ellipses depend only on the second actu-
ated joint variable,θ2, of the manipulator.θ2 belongs to interval
[θ2min,θ2max] to allow E to hit all points ofST . Moreover, points
on these ellipses lead to the same positioning error ofE, equal to
10µm.

The optimal dimensional tolerances∆l1opt and ∆l2opt of
lengths l1 and l2 are computed from the tolerance synthesis

7
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method developed in section 4. The ellipse used in the tol-
erance synthesis algorithm is the one corresponding toθ2max,
i.e.: the one with the smallest semi-axis. Finally,∆l1opt =
∆l2opt = 5.82µm and the corresponding tolerance box is depicted
in Fig.13.

PointsA1(1,0), A2(0,1), A3(−1,0), A4(0,−1) belong to all
design sensitivity ellipses of the manipulator because a unitary
variation inl i and no variation inl j , (i 6= j), lead to a unitary po-
sitioning error of its end effector. As an ellipse is convex,square
A1A2A3A4 is included in all the design sensitivity ellipses what-
ever the bounds ofθ2. It follows that eq.(14) is a sufficient con-
dition for the positioning error ofE to be smaller than 10µm
whatever its pose.

∆l1+∆l2 ≤ 10µm (14)

Without the tolerance synthesis method developed in section
4, the designer would have chosen dimensional tolerances∆l1
and∆l2 by means of eq.(14). Here,∆l1opt and∆l2opt do not re-
spect eq.(14) because∆l1opt+∆l2opt = 11.64µm. However, they
allow the positioning error ofE to be smaller that 10µm onST .
So, knowing the target of the manipulator, the tolerance synthesis
method proposed in section 4 is more interesting than the suffi-
cient condition, defined by eq.(14), to synthesize its dimensional
tolerances.

The 2R manipulator has been studied in order to get graph-
ical interpretations of the results and algebraic expressions of
robustness indexRI2. However, the foregoing methods can be
applied to more general mechanisms andRI2 may be computed
numerically, as for the study of the 3Rmanipulator in the follow-
ing section.

d2

d3

r2

q1

q3

q2

P1

d4

E

Pi

Pn

Figure 14. 3RManipulator

5.2 Tolerance synthesis of a 3R manipulator
A three-dof serial positioning manipulator with three rev-

olute joints is shown in Fig.14. Modified D-H parameters are
used to describe its geometry [21].θ1, θ2, θ3 are the actuated
joint variables of the 3R manipulator andd2, r2, d3, d4 denote
its dimensions. Its inverse geometric model was studied in [22].
The positioning error,εE, of end effectorE, has to be smaller
than 10µm at any pointPi , i = 1, · · · ,n, of a path. Variations in
θ1, θ2 andθ3 are negligible because the encoders are supposed to
be very accurate. So,εE depends on variations in the other D-H
parameters. Here, only variations ind2, r2, d3 are considered in
order to get graphical representation.

The relation between the positioning error ofE atPi , δfi , and
dimensional variationsδd2, δr2, andδd3, is given by eq.(15).

δfi = Jxi δx with Jxi =





cosθ1i −sinθ1i cosθ1i cosθ2i

sinθ1i cosθ1i sinθ1i cosθ2i

0 0 −sinθ2i





(15)
whereθ1i andθ2i are the values ofθ1 andθ2 at Pi, computed
with the inverse kinematic model of the manipulator [22].f =
[ex ey ez]

T whereex, ey andez denote the Cartesian coordinates
of E andδx = [δd2 δr2 δd3]

T whereδd2, δr2, δd3 are variations
in d2, r2, d3, respectively.

The norm ofδf= [δfT
1 , · · · ,δfT

i , · · · ,δfT
n ]

T , ||δf||, is the global
positioning error ofE. The sensitivity Jacobian matrix of the
manipulator,Jx, is a (3n×2) matrix composed of matricesJxi .
The relation betweenδf, Jx, andδx, is given by eq.(10).

Assuming thatn = 5 and Cartesian coordinates of points
P1,P2,P3,P4,P5, are (1, 1, 1), (2, -2, 3), (5, 6, 2),(-1, -4, 3), (2, 3,
5), respectively. IndexRI2, defined in section 3, is used to find the
robust dimensioning of the manipulator, and is computed numer-
ically. Here,RI2 is a minimum and the design of the manipulator
is robust whend2 = 1.75,r2 = 2.5, d3 = 3.25, andd4 = 2.5.

Fig.15 depicts the most restrictive ellipsoid of the manipula-
tor and its optimal tolerance box. The most restrictive ellipsoid,
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ξmr, is the one with the smallest semi-axis among the five de-
sign ellipsoids of the manipulator and corresponds to pointP1.
The tolerance synthesis method proposed in section 4 is usedto
compute the optimal tolerance box included in the most restric-
tive ellipsoid, i.e.: the following algorithm is used to compute
∆d2opt, ∆r2opt and∆d3opt:























max
u

|u1u2u3|
s.t. U(u1,u2,u3) ∈ ξmr

u1 ≥ 0
u3 ≥ 0
|ui | ≥ ∆ximin , i = 1, · · · ,3

where∆x1min = 1µm, ∆x2min =
r2

d2
∆x1min, ∆x3min =

d3

d2
∆x1min

The results of this optimization problem are:u1 = 4.08µ,
u2 = −5.77µ andu3 = 4.08µ. Thus,∆d2opt = 4.08µm, ∆r2opt =
5.77µm and∆d3opt = 4.08µm.
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Figure 16. Validation of the Optimal Tolerance Box

Fig.16 depicts the values ofεE whenδd2, δr2, δd3, are be-

tween−∆d2opt and ∆d2opt, −∆r2opt and ∆r2opt, −∆d3opt and
∆d3opt, respectively, and for the five poses of the manipulator .
εE is always smaller than 10µm. It means that the positioning
error ofE is smaller than 10µm for any posture of the manipula-
tor when the tolerances ofd2, r2, andd3 are∆d2opt, ∆r2opt, and
∆d3opt, respectively.

d
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d
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m
]
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Figure 17. The Optimal Tolerance Box is not included in the Octahedron

Points B1(1,0,0), B2(−1,0,0), B3(0,1,0), B4(0,−1,0),
B5(0,0,1) andB6(0,0,−1) belong to all design sensitivity ellip-
soids of the manipulator because a unitary variation of a design
variable and no variation of the others lead to a unitary variation
of the position ofE. As an ellipsoid is a convex volume, octahe-
dronB1,B2,B3,B4,B5,B6 depicted in Fig.17 is included in all the
design sensitivity ellipsoids of the manipulator such thata point
on the surface leads to a positioning error ofE equal to 10µm.
It follows that eq.(16) is a sufficient condition for the positioning
error ofE to be smaller than 10µm whatever its pose.

∆d2+∆r2+∆d3 ≤ 10µm (16)

Without the tolerance synthesis method proposed in section
4, the designer would have chosen dimensional tolerances∆d2,
∆r2, and ∆d3 by means of eq.(16). Here,∆d2opt, ∆r2opt, and
∆d3opt do not respect eq.(16) because∆d2opt+∆r2opt+∆d3opt =
13.9µm. It means that the optimal tolerance box is not included
in octahedronB1,B2,B3,B4,B5,B6, as depicted by Fig.17. How-
ever, they allow the positioning error ofE to be smaller that 10
µm at each posePi , i = 1, · · · ,5. So, knowing the target of the ma-
nipulator, the tolerance synthesis method proposed in section 4 is
more interesting than the sufficient condition, defined by eq.(16),
to synthesize its dimensional tolerances.

In conclusion, the optimal dimensional tolerances of the
3R manipulator are∆d2 = 4.08µm, ∆r2 = 5.77µm and,∆d3 =
4.08µm so that the positioning error ofE is less than 10µm at
any pointPi , i = 1, · · · ,5.
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6 Conclusions
This paper has provided a new and efficient tolerance syn-

thesis method for mechanisms, based on a robust design ap-
proach. The study of the robustness of a mechanism follows
two consecutive steps, which are independent and complemen-
tary. The first step aims at computing its robust dimensions by
means of an appropriate robustness index. The Euclidean norm
of the sensitivity Jacobian matrix is such an index. The study
of a damper confirmed that the Euclidean norm of its sensitiv-
ity Jacobian matrix is more suitable than its condition number,
to quantify the robustness of a mechanism. This method yields
the set of all the robust manipulators and allows the designer to
integrate other criteria. Then, the developed tolerance synthesis
method is used to compute the optimal tolerance box of the se-
lected robust manipulator. The theory is illustrated by twoserial
manipulators. The application of this theory to the robust design
and tolerance synthesis of parallel manipulators is one of the next
steps in our research work.
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