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Chondrosarcomas are malignant cartilage-forming tumours representing around 20% of malignant primary tumours of bone and
affect mainly adults in the third to sixth decade of life. Unfortunately, the molecular pathways controlling the genesis and the
growth of chondrosarcoma cells are still not fully defined. It is well admitted that the invasion of bone by tumour cells affects
the balance between early bone resorption and formation and induces an “inflammatory-like” environment which establishes a
dialogue between tumour cells and their environment. The bone tumour microenvironment is then described as a sanctuary that
contributes to the drug resistance patterns and may control at least in part the tumour growth. The concept of “niche” defined as a
specialized microenvironment that can promote the emergence of tumour stem cells and provide all the required factors for their
development recently emerges in the literature. The present paper aims to summarize the main evidence sustaining the existence
of a specific bone niche in the pathogenesis of chondrosarcomas.

1. Introduction

Most chondrosarcomas (90%) are conventional chondrosar-
comas which occur in the medullar cavity or at the bone sur-
face. The fact that cartilaginous tumours are mainly observed
in bones formed from endochondral ossification strengthens
the relationship between the differentiation of normal chon-
drocytes and these neoplastic cells. Chondrosarcoma cells
are cytologically and phenotypically related to the different
chondrocyte subtypes observed in the growth plate, and all
cell shapes can be observed in the tumour mass [1–4]. Thus,
these similarities are in favour of a mesenchymal stem-cell
origin for chondrosarcoma cells [1, 5]. The development of
cancer cells in bone site responds to several biological mech-
anisms potentially applicable to numerous other entities. For

instance, invasion of bone by a primary or metastatic tumour
cell affects the balance between early bone resorption and
bone formation. This dysregulation of osteoblast-osteoclast
coupling induces the release of factors initially trapped in the
bone matrix, which in turn promote tumour cell prolifera-
tion [6]. Thus, the bone tumour microenvironment controls
the tumour growth and is also described as a sanctuary that
contributes to drug resistance patterns [7]. The specific and
different bone sites in which the various sarcomas are able
to grow reinforce the prominence of the tumour micro-
environment. Chondrosarcomas are also characterized by
their chemo- and radioresistance leading to a therapeutic
surgical approach which remains the only available treatment
with a 10-year survival between 30% and 80% depending
on the grade [8, 9]. Currently, surgical excision is the main



2 Sarcoma

treatment for all chondrosarcoma subtypes [10], and non-
surgical treatments of their microenvironment are under
investigation. In this context, a better understanding of the
bone niche which interacts with chondrosarcoma is one of
the future therapeutic options. The present paper aims to
describe the bone niche of chondrosarcoma, its role in
tumour growth and drug resistance, and its clinical interest as
a therapeutic target.

2. The Bone Niche Is Composed of
Heterogeneous Cell Types with
Coupled Activities

In 2003, two research laboratories demonstrated that oste-
oblasts formed an osteoblastic niche to sustain hemopoiesis
[11, 12]. Osteoblasts establish an “epithelial-like” tissue
which physically interacts with hemopoietic stem cells and
contributes to their maintenance in a quiescent stage through
the interaction between Tie-2 and angiopoietin-1 [13]. Nils-
son et al. showed that primitive hematopoietic cells resided
close to the bone surface [14]. From these observations, the
concept of bone niche has strongly evolved and has been
applied to cancer stem cells [15]. Indeed, the “niche” is
a functional microenvironment able to promote the emer-
gence of cancer stem cells and to provide all factors required
for their development. Naturally, this concept is well rec-
ognized in the context of hematologic malignancies such as
multiple myeloma [16] or leukemia [17], and these diseases
appear as a stem-cell disease with a hierarchy analogous
to normal hematopoietic development. However, the bone
niche is not limited to osteoblasts and during skeletal remod-
elling, numerous cell types (preosteoclasts, preosteoblasts,
endothelial cells, macrophages, etc.) are closely located in
the bone matrix and their functional coordination is a pre-
requisite to maintain the bone and the bone niche microar-
chitecture. Using three-dimensional visualizations, Andersen
et al. clearly demonstrated the functional relevance of these
cellular interactions in the bone niche [18]. In physiological
conditions in which bone resorption and bone formation
are coupled, the bone surface is always covered by canopy
composed by flat cells expressing osteoblastic markers and
associated with sinusoidal vessels [18]. Disruption of this
canopy results in the dysregulation of the coupled bone-
formation bone-resorption process and leads to a bone
deficiency [18]. These very elegant observations revealed
that the bone niche is composed of multiple cell entities.
Macrophages also contribute to the bone niche as shown by
Chang et al. [19]. Indeed, a discrete population of resident
macrophages has been identified between bone lining cells
within endosteum and periosteum. These osteal tissue
macrophages are involved in bone dynamics by controlling
osteoblast functions and, more specifically, are required for
efficient osteoblast mineralization [19]. Into the bone niche,
self-renewal and differentiation activity are clearly balanced
as shown for hemopoietic stem cells [16, 17], and this
balance is being controlled by the level of hypoxia, which
modulates the interactions between tumour cells and the
components of bone niche. The proliferation stage of stem

cells is predominant with increased levels of oxygen and
hypoxia resulting in opposite effects [20, 21].

The concept of bone niche is also currently discussed for
solid tumours and strengthens the very modern theory of
“seed and soils” proposed by Paget in 1887 in which tumour
cells (“seeds”) would colonize receptive foci (“soils”) [22].
This data is supported by the fact that specific molecules
(e.g., cadherin and osteopontin) contribute to the stabi-
lization of cancer cells in bone niches mimicking the cell
interactions which take place during hemopoiesis [23, 24].
Such interactions have been identified in the premetastatic
niche of breast carcinoma, where carcinoma cells grow avidly
in bone which stores a variety of cytokines and growth
factors and thus provide an extremely fertile environment
for growing cells [25, 26]. The seed and soil theory can be
also envisaged for the primary bone tumours. In a recent
study, we reported an unexpected local osteosarcoma relapse
which occurred at the exact site of autologous fat grafts in
a patient who did not present any predictive factor of local
recurrence [27]. Moreover, we showed that tumour growth
was promoted by fat injection using a human osteosarcoma
model induced in athymic nude mice. We then demonstrated
that the mesenchymal stem cells isolated from adipose
tissue induced exactly the same effect, probably reactivating
quiescent tumour cells locally deposited into the bone tissue
[27]. A recent study reinforces this theory by presenting 8
cases of osteosarcoma development several years after benign
bone tumour treatment by curettage associated with bone
graft. To explain the development of “de novo” sarcomas
in these patients, an attraction mechanism of mesenchymal
stem cells by the scaffold has been hypothesized [28].
Although mechanisms by which cancer stem cells could drive
the tumour growth are still unknown, modulation of the
microenvironment by mesenchymal stem cells may interfere
with the biological behavior of this cell subpopulation.
Similarly, inflammatory process associated with surgery may
be also responsible for the reactivation of dormant tumour
cells [29, 30]. Thus, a disturbance of the microenvironment
and the bone niche modifies the proliferation/differentiation
program of the tumour cells.

3. The Bone Niche of Chondrosarcoma

The key role of bone microenvironment in chondrosarcoma
development has been suspected many years ago. Indeed,
a rat intraosseous model simulating the progression of
human chondrosarcoma has been set up to assess the inter-
actions between bone environment and chondrosarcoma
[31]. Transplantation of swarm rat chondrosarcoma within
bone marrow or in close contact to the bone with induced
periosteal lesions led to extensive bone remodelling with
trabecular bone rarefaction and periosteal apposition asso-
ciated with tumour growth. In contrast with these results,
transplantation in close contact to the bone but without
any periosteal lesion had no effect on bone, suggesting that
bone healing factors interact with tumour development. The
tumours which developed in intramedullary environment
presented different foci with various gradings confirming
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that bone environment is an important factor in the patho-
genesis of chondrosarcoma [31]. Histological examination
of conventional chondrosarcoma reveals the presence of
numerous cells types in close contact to the cartilaginous
tumour cells (Figures 1(a) and 2). The morphology of car-
tilaginous tumour cells depends on the grading of the
tumour and associated cartilage-like tissue composed by
tumour chondrocytes with heterogeneous shapes (Figures
1(b)–1(e)) and tumour cell types with mesenchymal aspect
(Figure 1(e)). The tumour mass is characterized by lobular
foci separated by vascularized soft tissue, which establishes
a continuum with bone marrow or with the surrounding
tissues (Figure 1). When chondrosarcoma develops in the
medullary space (central or primary chondrosarcoma), the
tumour cells induce the dysregulation of the balance between
osteoblasts and osteoclasts, degrading the trabecular bone,
perturbing the bone marrow environment. When chon-
drosarcoma develops from the bone surface (peripheral or
secondary chondrosarcoma), tumour mass exhibits a similar
lobular morphology associated with a periosteal reaction
[31]. These peripheral chondrosarcoma develop on preex-
isting osteochondroma defined as the most common benign
bone tumours and characterized by a cartilage-capped exo-
phytic lesion that arises from the bone cortex. Nevertheless,
the limit between osteochondroma and chondrosarcoma is
still unclear, especially with low-grade chondrosarcoma that
is closely related to osteochondroma. These tumours interact
with periosteum mimicking the “bone niche”. Periosteum
is a continuous membrane intimately linked covering the
bone, well vascularized and containing osteoprogenitor cells
including mesenchymal stem cells [32–34]. Thereby, periph-
eral and central chondrosarcoma can interact with the same
kind of bone microenvironment. The permeation of tumour
cells into the bone tissue is associated with the activation of
bone resorption through the induction of osteoclast forma-
tion (Figures 1(f) and 2). In fact, the bone niche of chon-
drosarcoma includes all cell types described in the other neo-
plastic bone diseases. The narrow relationship between chon-
drosarcoma cells, soft tissue, vessels, and bone cells strength-
ens the relevance of a specific bone niche able to sustain tum-
our growth.

Can we suspect the existence of cancer stem cells in this
bone niche which could be at the origin of chondrosarcoma
and become quiescent in specific circumstances? Expression
of SOX9 in human chondrosarcomas suggests that chon-
drosarcomas originate from a multipotent stem cell commit-
ted to differentiation along the chondrogenic pathway [35].
Moreover, the results of the cDNA array analyses emphasize
the heterogeneous nature of chondrosarcoma. Using similar
approaches, Boeuf et al. [36] proposed a new classification
of chondrosarcoma in two clusters: a prechondrogenic
phenotype with immature cells and a chondrogenic pheno-
type composed of more mature cells. Primary conventional
central chondrosarcoma cells could be then grouped into two
main clusters with distinctive marker expression signatures:
one group clustering together with mesenchymal stem cells
(CD49b-high/CD10-low/CD221-high) and a second group
clustering close to fibroblasts (CD49b-low/CD10-high/
CD221-low) [37]. These data strongly suggest the existence

of cancer stem cells possibly with mesenchymal stem cells
or fibroblast markers. Although most of the literature on
chondrosarcoma has confirmed that adequate surgery is the
mainstay of treatment for local tumour control, which itself
constitutes a risk factor for survival, an additional feature
of chondrosarcoma is also the high level of local recidive
even in case of adequate surgery [38–40]. This feature is
also in favour of the existence of cancer stem cells in the
bone marrow which may remain dormant until some yet
unknown signals promote their growth or/and metastasis
formation in bone tissue.

Hypoxia is a signal resulting in a large number of adaptive
changes aimed at surviving in the hypoxic environment as
well as correcting the oxygen deficit. Hypoxia inducing factor
(HIF)-1 is a dimeric transcription factor composed of HIF-
1 alpha and beta subunits. HIF-1 protein levels increase as a
result of decreased degradation of the oxygen sensitive sub-
unit HIF-1α. HIF-1 modulates changes in gene expression
during hypoxia. Although the angiogenesis compound of
cartilage tumours is heterogenous [41], hypoxia modulates
the proliferation of chondrosarcoma cells similarly to the
other solid tumour types and hemopoietic neoplasia. Thus,
there is a significant relationship between the expression
of HIF-1α, the microvessel density and the proliferating
cell nuclear antigen [42]. Several authors demonstrated that
malignant chondrocytes increased HIF-1α expression in an
oxygen concentration-dependent manner and increased V-
EGF expression in response to hypoxia [43–46] which is
closely related to the potential malignancy of chondrosar-
coma [47, 48]. Hypoxia is also known to increase chemokine
receptor expression such as CXCR4 in numerous cell types
[49] and CXCR4/SDF1 also indirectly promotes the prolifer-
ation and migration of tumour cells and enhances tumour-
associated angiogenesis [50]. CXCR4 expressed by tumour
cells contributes to their migration into the premetastatic
niche [51]. Interestingly, chondrosarcoma cell invasion is
increased by hypoxia-induced expression of CXCR4 and
MMP1, a process mediated by HIF1α and ERK [52], and
CXCL12, also called SDF-1, increases the invasiveness of
chondrosarcoma cells [53]. Other chemokine/chemokine
receptors couples are also involved in chondrosarcoma
progression. Thus, the interaction of CCL5 (RANTES), a
product of activated T cells present in bone environment
during the tumour process with CCR5 expressed on the cell
membrane enhances the migration of chondrosarcoma cells
through the increase of MMP-3 production [54]. Overall,
these data point out the similarities between the behaviour
of chondrosarcoma cells and the invasion of leukaemia cells
in the bone niche [51]. Osteopontin is also a typical example
of these similarities. Indeed, osteopontin could mediate
the anchoring of cancer cells in osteoblastic niches in a
manner that mimics the mechanisms used by osteoblast
to retain hematopoietic stem cells in these niches and to
negatively regulate stem-cell pool size [55]. Osteopontin also
influence the behaviour of carcinoma cells (proliferation,
invasiveness, etc.) [56]. Similarly, osteopontin located in the
bone matrix increases the migration and MMP expression
in human chondrosarcoma and contributes to the patho-
genesis of chondrosarcoma in its bone niche [57]. More
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Figure 1: The bone niche of chondrosarcoma is composed by various cellular entities. Chondrosarcoma tissue shows heterogeneous cell
morphology (a–d) with chondrocyte-like (b–d) and mesenchymal features (f). Chondrosarcoma bone niche is associated with several cell
types including osteoclasts (e), endothelial cells vascularized soft tissue (f). HES staining, original magnification (×20, a and b; ×40: c–e).
Tumour cells: arrow head, asterix: blood vessels, and arrow: osteoclast.

recently, Vincourt et al. [58] demonstrated not only that the
respective levels of C-propeptides of procollagens I and II
in chondrogenic tumours but also that the interactions of
chondrosarcoma cells with the surrounding extracellular
matrix may modulate tumour progression, angiogenesis, and
metastasis. C-propeptides of procollagen I favor angiogenesis
and tumour progression, whereas C-propeptides of pro-
collagen II exert antitumour and antangiogenic properties
through apoptosis induction when they are immobilized,
and progression and metastasis when they are soluble [58].
Endostatin derived from collagen XVIII, a potent endoge-
nous antiangiogenic factor that induces regression of various
tumours of epithelial origin, prevents the chondrosarcoma
growth via its potential activity on endothelial cells [59].
These results demonstrate that bone microenvironment and
extracellular matrix establish a very complex bone niche
adapted to the tumour progression.

The interactions between the extracellular matrix of bone
niche and chondrosarcoma cells are tightly controlled by
cytokines and growth factors produced by the environmental
cells (osteoblasts, endothelial cells, macrophages, lympho-
cytes, etc.) and also by tumour cells themselves [60]. Proin-
flammatory cytokines are particularly associated with the
pathogenesis of chondrosarcoma. Interleukin (IL)-1 regu-
lates the expression of a disintegrin and metalloproteinase
with thrombospondin motifs 1 (ADAMTS1) and VEGF by
chondrosarcoma cells, then contributing to a strong positive
impact of IL-1 on vascularization and tumour progression
[61]. TNF-α, another proinflammatory cytokine, induced
MMP-12 expression in chondrosarcoma cells when chondro-
cytes undergo malignant transformation [62] and increased
also MMP-13 [63]. Members of TGF-β superfamily play
also a crucial role in migration and metastasis of human
chondrosarcoma. For instance, TGF-β1 and BMP-2 increase
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Figure 2: Chondrosarcoma growth is strongly linked to the bone tissue. Relationship between bone tissue and chondrosarcoma cells (a–
c). Infiltration of chondrosarcoma cells into the bone tissue (permeation) (a–c). Chondrosarcoma development is associated with bone
resorption foci (b). HES staining, original magnification (×20, a and b; ×40: c). Arrow: bone resorption area, arrow head: necrosis of
chondrosarcoma tissue, and ∗: viable tumour component.

motility of human chondrosarcoma via the PI3K/Akt path-
way [64, 65]. Oncostatin (OSM), a member of IL-6 cytokine
family, induces a hypertrophic differentiation, with reduced
SOX9 and induced Cbfa1, Coll10, MMP13, VEGF, and
RANKL expression in chondrosarcoma cells. RANKL being a
pro-osteoclastogenesis factor and then a proresorptive factor,
OSM enhances osteoclast formation at the tumour/bone
interface and reduces the ectopic bone neoformation [66].

4. The Bone Niche: A Sanctuary for
the Drug Resistance and a Source of
New Therapeutic Targets

Although bone niche represents an adequate microenviron-
ment for the survival/proliferation of cancer stem cells and
has been identified as a major parameter regulating the
metastatic process [67], recent studies also described the
tumour microenvironment as a sanctuary contributing to
the phenomenon of drug resistance [68]. The process of
drug resistance has been shown to be mediated through
(i) soluble factors such as cytokines or adhesion molecules
constituting de novo drug resistances or (ii) acquired drug
resistance linked to resistance mechanisms caused by selec-
tive pressure of chemotherapy or other therapeutic drugs
[68]. Chondrosarcomas are poorly vascularized in correla-
tion with resistance to systemic chemotherapy and exhibit
poor metastatic potential. However, although this poor
vascularization represents a first explanation for the drug

resistance, the bone niche also contributes to this resistance
as observed for other tumour entities. In this context, a
better definition of bone niche leads to the identification
of relevant drug targets to improve the efficiency of the
current treatment. This concept has been already validated
in leukemia [69]. In sarcomas, similar approaches have
been also envisaged [70]. Targeting of angiogenesis has
been assessed in combination of chemotherapy and induced
tumour necrosis [71]. Cyclooxygnease-2 (COX-2), a media-
tor of angiogenesis, is expressed in malignant cartilaginous
tumours [72]. In chondrosarcoma, the use of celecoxib,
a COX-2 inhibitor, first results in a decrease in tumour
volume followed unfortunately by a relapsed tumour growth
after 6 weeks [73]. Higher doses of COX-2 may be used,
or a combinatory therapy based on this concept may be
designed. HDAC4 represses VEGF expression and associated
angiogenesis in chondrosarcoma [74]. Similarly, a therapeu-
tic approach of chondrosarcoma based on HDAC inhibitor
administration may be interesting [75, 76]. Bisphosphonates
and rapamycin and its derivatives have been originally
developed, respectively, as antiresorptive and antifungal
agents [77, 78]. However, in vitro and in vivo experiments
demonstrated that these compounds are multifunctional
molecules exerting their effects not only on bone remodelling
but also on tumour cell growth. mTOR targeting has
been envisaged for numerous cancer types including malig-
nant primary bone tumours [78–80], and a very impres-
sive response of myxoid chondrosarcoma has been obtained
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in combination with cyclophosphamide [81]. The main
targets of bisphosphonates are bone-resorbing osteoclasts
[82] which contribute to the hemopoietic and tumour bone
niche [82]. Bisphosphonates also reduce the proliferation
and invasion of chondrosarcoma [83, 84]. In preclinical
model of chondrosarcoma, zoledronic acid slows down rat
primary development and recurrent tumour progression
after intralesional curettage and increases overall survival
[85]. Thus, osteoclasts targeting may be used in prevention of
chondrosarcoma recurrence. Cytokinic treatment represents
another relevant therapeutic approach of chondrosaroma
[2]. Oncostatin M, a member of the IL-6 cytokine family
mainly produced by macrophages, neutrophils, and T lym-
phocytes, is a cytostatic factor for chondrosarcomas in
vitro and in vivo [66]. This growth inhibitory effect is
also observed with two other cytokines of the same family
able to reduce chondrosarcoma expansion but with a lower
efficiency: IL-6 in association with its soluble receptor and
IL-27 [66]. This list is not exhaustive but gives some evidence
of the interest to target or to modulate the bone niche com-
ponents to improve chondrosarcoma treatment.

5. Conclusion

The treatment of chondrosarcoma is currently based on
surgery, radiotherapy, and chemotherapy being occasionally
used for metastatic tumours. However, a recent concept has
emerged based on the key role played by the tumour micro-
environment in the tumour invasiveness and in the drug-
resistance phenomenon. This bone niche allows to identify
new therapeutic targets for chondrosarcoma, and it appears
clearly that a better understanding of the chondrosarcoma
bone niche will open nonsurgical therapeutic options for
chondrosarcoma which could also be combined with surgery.
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