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Behavior of unbound granular materials—
part I: isotropic case

Rabah Bouzidi, L. Coulibaly, P. Jouve
Laboratoire de Génie Civil de Nantes Saint-Nazaire, BP92208 44322 Nantes Cedex, France

The paper discusses the modeling of the behavior of unbound granular materials. A repre-
sentative approach that highlights some salient features of the behavior is proposed. This
approach is essentially based on experimental results and the study is extended to the con-
struction of the elastic potential from test results. to complete the analysis, two no-linear
elastic models involving 3 parameters are proposed. In the construction of these models, two
important aspects—the accuracy and the numerical stability—are analyzed.

Keywords: Unbound granular materials; Behavior relationship; Elastic potential; Isotropy; Triaxial test

1. Introduction

The usual approach for the modeling of the unbound materials behavior is to
search for a constitutive relationship that describes as closely as possible the
laboratory test results and then to present them within a consistent thermodynamic
framework. These laws are often based on observations and measurements per-
formed during the experiments. However, this kind of approach does not answer
some fundamental questions such as: does the observed kinematic field derive from a
potential function? In the case of obtaining the potential expression, is it the closest
one to the experimental observations? Is the behavior isotropic? The following
additional questions can arise during the use of these models: is the model still valid
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beyond the experimental data range? Can this model class be able to take into
account the most important behavior characteristics of the material?
This paper summarizes our modeling methodology of unbound granular materials

used in flexible pavements. It is an attempt to answer the above questions without
choosing any a prior model. The key idea is to obtain as much information as pos-
sible from the laboratory test results. This work is only focused on the reversible
aspect of the material behavior, so that no cyclic or plastic aspects are considered.

2. Background

Materials used in the sub-layers of pavement must satisfy two important criteria.
The first criterion related to the cost, since the material must be inexpensive and
available in large quantities. The second criterion is relative to the mechanical
response of the material to the stresses induced by the traffic load. The materials
obtained from crushed rock present a good quality-price compromise when used in
pavement sub-layers. Hereafter, we refer to these materials as the unbound granular
materials in contrast to those used in the upper layer like bituminous concrete. This
kind of material can include a broad or a limited grading distribution curve, with the
particle size ranging from 14 to 31.5 mm with 5–10% of fines (i.e. <0.075 mm) [2].
In the laboratory, we obtain these materials by combining and mixing several cru-
shed rock particle sizes. For a detailed description of the subject, see e.g. Refs. [5,6].

2.1. Experimental study of unbound granular material

The rolling load located at the abscise l on the road surface induces vertical and
horizontal stresses at the point M (Fig. 1). The ratio of the vertical stress to the
horizontal stress �1/�3 depends on the position M. This particular repeated load
path, due to the traffic, has been investigated by several laboratories developing
specific devices to characterize the behavior of the material for these loadings. In
1980, the Laboratoire Central des Ponts et Chaussées (LCPC) developed specific
devices for testing such granular materials. The tests were carried out with variable
lateral confining pressures on cylindrical samples of 16 cm in diameter and 32 cm in

Fig. 1. Stress path under rolling load.
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height [3,4]. In this apparatus, initially developed in 1974 at Nottingham university
by the Brown S.F. team., the confining pressure varies so that, the ratio of the
deviator stress to the confining pressure remains constant (Fig. 2). The stress paths
are set to reproduce the in situ loading conditions.
A cycling preconditioning before the test is performed. Over approximately 20,000

of load–unload cycles, with �1/�3 ratio equal to 6, are applied in order to obtain a
quasi-reversible behavior, with very small plastic deformations (Fig. 3). The speci-
mens obtained after this first stage of the tests are compact and exhibit significant
cohesion due to the fines and moisture of the material.
After the preconditioning stage, the test is carried out with different values of �1/

�3 ratio. The confining pressure of the cell �3 and the axial stress �1 are recorded in
order to evaluate the mean pressure p=(�1+2�3)/3 and the shear stress q=�1��3.
Also, the axial and radial strains are measured to estimate the volumetric strain
"v="1+2e3 and shear strain "q=2("1�"3)/3. Fig. 4a and b shows an example of an
interpolated test results, representing the volumetric and shear strain in the (p, q)
space.

Fig. 2. Stress path for triaxial variable confining stress test.

Fig. 3. Evolution of the axial distortion according to cycles.
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2.2. Modeling of unbound granular materials

The Boyce model is the most used to represent the behavior of such unbound
granular material [1]. It is based on the generalized elastic law, in which Young’s
modulus E and Poisson ratio � are given as functions of stress invariants. The model
is isotropic with nonlinear elasticity and the strain components are obtained by:

"ij ¼
1þ �

E
�ij �

3�

E
p�ij With : E ¼

9KG

3Kþ G
� ¼

3K� 2G

6Kþ 2G
ð1Þ

The bulk modulus K and the shear modulus G are defined by the author as fol-
lows:

K ¼ Ka
p

pa

� �1�n

1� ��2
� ��1

; G ¼ Ga
p

pa

� �1�n

ð2Þ

with 0<n <1 and �=p/q. Thus, Young’s modulus and Poisson ratio are obtained
by:

E ¼
9Ga

p
pa

� �1�n

3þ Ga

Ka
1� � �2
� � � ¼

3
2�

Ga

Ka
1� � �2
� �

3þ Ga

Ka
1� � �2
� � ð3Þ

From Eq. (1), we can write the volumetric and shear strains in the form:

"v ¼
pa

Ka

p

pa

� �n

1� ��2
� �

; "q ¼
pa

3Ga

p

pa

� �n

� ð4Þ

where pa is a reference pressure taken equal to 100 kPa. The model includes 3
parameters Ka, Ga and n together with a fourth parameter, �, which depends on the

Fig. 4. Interpolated results of the triaxial test. (a) Volumetric strains, (b) shear strains.
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three others, so that the strains derive from an elastic potential. The condition of the
existence of the elastic potential is given by the following equation:

@"v
@q

¼
@"q
@p

) � ¼ 1� nð Þ
Ka

6Ga
ð5Þ

Boyce wrote the complementary elastic potential as follows:

Uc ¼
pa

1þ nð ÞKa

p

pa

� �nþ1

1þ
1þ nð ÞKa

6Ga
�2

	 

ð6Þ

The strains obtained by the model are shown in Fig. 5 with the following fitted
parameters: Ka=187 MPa, Ga=298 MPa and n=0.32. These results, compared with
those obtained from the experiments (Fig. 4), show that the model describes the
material with a very satisfactory accuracy. However, its application beyond the
experimental data field can lead to unrealistic results. The model shows singular
expressions of Young’s modulus and Poisson ratio for �2=(1+3Ka/Ga)/�, [Eq. (3)].
These non-suitable singularities can occur in structure computations when the model
is used without plasticity bounding surface in the stresses space. In the following
section, a numerical procedure, based on test results, is proposed to characterize the
main properties of the unbound granular materials. No theoretical model is con-
sidered at this stage of the procedure.

3. Analysis of the reversible behavior

A new analysis procedure of the test results is presented in this section in order
to obtain as much information as possible from the experiment. Regardless of the

Fig. 5. Interpolated results of the Boyce’s model. (a) Volumetric strains, (b) shear strains.
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type of model to be used later, this procedure provides enough details on the fol-
lowing:

� the existence of an elastic potential,
� the general form of this potential. Especially, the assessment of the influence

of the mean pressure p and the shear ratio �,
� the validity of an isotropic behavior assumption.

3.1. Existence of the potential

Strains tensor is obtained from the complementary elastic potential as:

"ij ¼
@Uc

@�ij
ð7Þ

In the case of axisymmetrical loads, the volumetric and shear strains are given
by:

"v ¼
@Uc

@p
"q ¼

@Uc

@q
ð8Þ

In order to check the two relations given above, the values of the function Uc(p, q)
will be determined using strain measurements recorded during a triaxial compres-
sion test. Given the values of (p, q) used during the tests, it is assumed that the
complementary elastic potential is a function of the independent variables p and �.
Relation (8) then becomes:

"v ¼
@

@p
Uc p; �ð Þ �

�

p

@

@�
Uc p; �ð Þ "q ¼

1

p

@

@�
Uc p; �ð Þ ð9Þ

Hereafter, we first present a methodology for relating "v and "q to grid nodal
values of the potential Uc in (p, �) space. Next, we proceed to the calculation of the
nodal values of Uc by identifying the measured values of the strains: "mv , "

m
q and

those calculated from the potential: "cv and "cq

3.1.1. Local potential interpolation
In the square abcd in Fig. 6, the slope of the complementary elastic poten-

tial Uc(p,�) is assumed to be a bilinear function with respect to the variables p
and �.
At any point in local co-ordinates (x, y), this slope can be written as:

U;x x; yð Þ ¼ 
1 þ �1
x

h
þ �1

y

k
þ �1

xy

hk
ð10Þ

This expression must satisfy the slope calculated inside the square a, b, c
and d.
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U;x að Þ ¼ 
1 �
�1
2

¼
U2 �U1

h

U;x bð Þ ¼ 
1 þ
�1
2

¼
U3 �U2

h

U;x cð Þ ¼ 
1 �
�1
2
þ �1 �

�1
2
¼

U5 �U4

h

U;x dð Þ ¼ 
1 þ
�1
2
þ �1 þ

�1
2
¼

U6 �U5

h

The equation system obtained gives the interpolation factors. By substituting the
expressions of these parameters in Eq. (10), it follows that:

Uc
;p ¼

X6
i¼1

aiUi ð11Þ

with

a1 ¼
1

h
�
1

2
þ

x

h
þ

y

2k
�

xy

hk

� �

a2 ¼
1

h
�
2x

h
þ
2xy

hk

� �

a3 ¼
1

h

1

2
þ

x

h
�

y

2k
�

xy

hk

� �

a4 ¼
1

h
�
1

2

y

k
�

xy

hk

� �

a5 ¼
1

h
�
2xy

hk

� �

a6 ¼
1

h

1

2

y

k
þ

xy

hk

� �

Relation (11) gives the slope Uc
;p(x,y) at any point in the square abcd according

to its co-ordinates in the local reference (o, x, y) and the values of the com-
plementary elastic potential at the six nodes. The same previous methodology
could be adopted to establish the expression of Uc

;�. By using similar interpolation
inside square efgh in Fig. 6b it can be shown that Uc

;�, is written, in the local
reference (o, x, y), as follows:

Uc
;� ¼

X6
i¼1

biUi ð12Þ
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with

b1 ¼
1

k
�
1

2
þ

x

2h
þ

y

k
�

xy

hk

� �

b2 ¼
1

k
�

x

2h
þ

xy

hk

� �
b3 ¼

1

k
�
2y

k
þ 2

xy

hk

� �

b4 ¼
1

k
�2

xy

hk

� �
b5 ¼

1

k

1

2
�

x

2h
þ

y

k
�

xy

hk

� �

b6 ¼
1

k

x

2h
þ

xy

hk

� �

3.1.2. Evaluation of Uc
;p and Uc

;� from measurements
During triaxial compression tests with variable confining pressure, a set of m

measurement points (p, q, "v, "q) is recorded. Given a range of experimental data p
and �, a regular rectangular grid with n nodes can be formed as we can see in Fig. 7.
The triangular dots refer to the measurement points obtained during the tests.

From the interpolation systems [Eqs. (11) and (12)], a system of 2m equations with n
unknowns, is obtained for the whole measurement points.

Uc
;p

n o
¼ A½ 	 Uf g Uc

;�

n o
¼ B½ 	 Uf g

Fig. 6. Interpolation fields of U,p. and of U,�.
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The elements of the matrices [A] and [B] depend on the position of the measure-
ment points (p, �). From Eq. (9), the volumetric and shear strains at the measure-
ment points, can be obtained from the elastic potential:

"cv
� �

¼ Uc
;p

n o
�

�

p
Uc

;�

� �
"cq

n o
¼

1

p
Uc

;�

� �

it follows in matrix notations:

"cv
� �

¼ Mv½ 	 Uf g "cq

n o
¼ Mq

� �
Uf g ð13Þ

with (Mv)ij=Aij�
�i
pi
Bij (Mq)ij=

1
pi
Bij

If the condition 2m>n is satisfied, an approximate solution can be obtained for
the equation system (13). In practice, this condition should be taken into account
when forming the grid of interpolation. The solution of this problem is given by
optimizing the potential using the least squares method. The quantity to be mini-
mized is the square difference between the measured strains "m and the calculated
strains "c from the potential [Eq. (13)].

F ¼
Xm
i¼1

1

#v
"cvi � "mvi
� �2

þ
1

#q
"cqi � "mqi

� �2	 


The variances of the measurements #v and #q are defined as follows:

#v ¼
Xm
i¼1

"mvi � "v
� �

#q ¼
Xm
i¼1

"mqi � "q

� �

The variances are used here to give comparable weights to the volumetric and
shear strains. Symbols "v and "q denote the averages of the measurements. The
minimization is achieved by writing the optimal condition @�/ @Ui at each node of
the grid which results in a system of n equations with n unknown {U}.

K½ 	 Uf g ¼ Ff g ð14Þ

with

K½ 	 ¼
1

#v
Mv½ 	

T Mv½ 	 þ
1

#q
Mq

� �T
Mq

� �

and

Ff g ¼
1

#v
Mv½ 	

T "mv
� �

þ
1

#q
Mq

� �T
"mq

n o
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Since the matrix [K] is singular, the condition U1=0 must be added in order to
obtain a unique solution. The quality of the adjustment of the two functions is
evaluated by a correlation coefficient � defined as follows:

ln �ð Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

1

#v
"cvi � "mvi
� �2

þ
1

#q
"cqi � "mqi

� �2	 
s
ð15Þ

The coefficient � varies from zero to one. It tends toward one when the difference
between the calculated value and the measured one vanishes.

3.2. Application to the test results

The method for calculating the potential values at the grid nodes [Eq. (14)], is
applied to laboratory tests. The materials are reconstituted gravels of different kinds
[4], typically Ecuelles and Poulmarc’H ones which had been combined in four dif-
ferent way. From 10 up to 25 measurement points (pi, qi, "vi, "qi) are obtained from
the tests. The efficiency of the method proposed here is tested on hypothetic
‘‘experimental’’ results obtained using Boyce’s law. These examples were based on
real values of the loadings (p, q). The theoretical strains are calculated with Boyce’s
model and we obtain a table of values (pi, qi, "vi, "qi) similar to that given by the
experimental tests. The correlation coefficients obtained for these tests are greater
than 96%. From a theoretical point of view, the correlation must be equal to 100%.
Nevertheless, the results of the calculations indicate an acceptable correlation. The
marginal inaccuracy mentioned above is mainly due to the approximation of the
derivative evaluation of the potential [Eqs. (11) and (12)]. However, the nodal

Fig. 7. Example of the potential grid and the positions of the measurement points.
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approximation of the potential can be considered acceptable. In the next step, this
method is applied to experimental results.
Table 1 shows that the values of the correlation coefficient are very satisfactory.

The shape of the surface of the complementary elastic potential is similar to that
presented in Fig. 8. The correlation coefficients given by the adjustment calculations
are good since the values are higher than 79%. Therefore, we conclude that the
behavior of the materials considered here can be modeled by laws—to be defined—
which derive from elastic potential. Moreover, it should be noticed from Fig. 8, that
when the variable p or � is constant, the curves obtained on the potential surface
seem to be homothetical and regular. Thus, we can assume the existence, for each
material, of two main curves, one depending only on p and the other only on �. In
other words, the elastic potential can be expressed by the product of two indepen-
dent functions given as follows: Uc(p, �)=f(p) g(�).

3.3. Variables separation

The purpose of this section is to check whether the complementary potential
associated with the measurements can be written as a product of two independent
functions f(p) and g(�). In the grid considered in Fig. 8, there are k values of Uc

corresponding to k values of p by line of � constant and there are r values of Uc

corresponding to r values of � by column of p constant. At each node of the grid, the
complementary potential is obtained by the product of fi(p) by gj(�), with i=1..k and
j=1..r. In addition, f1 is assumed equal to zero, so that a single decomposition can
be performed. The functions fi and gi are given using the nonlinear method of the
least squares which consists in minimizing the following quantity:

� ¼
X
i;j

figj �Uc
ij

� �2

The minimization of � is obtained by solving a nonlinear system formed by the
following equations:

@�

@fi
¼ 0 ) fi ¼

Sr
j¼1gjU

c
ij

Sr
j¼1 gj

� �2 i ¼ 1::k

@�

@gj
¼ 0 ) gj ¼

Sk
i¼1gjU

c
ij

Sk
i¼1 fj
� �2 j ¼ 1::r

An iterative process gives the solution of this system. The value fi are computed

Table 1

Correlation coefficients of the elastic potential surface

Material Ecu1 Ecu2 Ecu3 Ecu4 Poul1 Poul2 Poul3 Poul4

� (%) 83 93 79 90 91 90 90 81
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using those of gj, and gj values are obtained from those of fi. The initial values of gj
are taken equal to 1. In order to assess the quality of the calculation process given
above, a use is made of the correlation coefficient � defined by:

ln �ð Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

1

#u

X
i;j

figj �Uc
ij

� �2 !vuut

with the variance Si;j(U
c
ij �U� c)2 and the average U� c ¼ 1

rþkSU
c
ij

3.4. Application to the test results

The application of the decomposition method of the potential to two independent
functions f(p) and g(�), gives very satisfactory results. Table 2 summarizes the values
of the correlation coefficients obtained for each tested material.
These results validate the assumption of the separation of the variables p and �.

Fig. 9a and b depicts functions f(p) and g(�) for the three materials.
The function f(p) always shows the same monotonous and increasing shape. On

the other hand, the function g(�) generally presents a parabolic shape but shows

Fig. 8. Complementary elastic potential obtained for material Ecuelles2.

Table 2

Correlation coefficients of the adjustments of f(p) and g(�)

Material Ecu1 Ecu2 Ecu3 Ecu4 Poul1 Poul2 Poul3 Poul4

� (%) 98 96 95 98 95 98 98 97
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some differences on the original slope according to the type of material. The effects
of the average stress p and the shearing stress � can be separated in the com-
plementary elastic potential expression. The expressions of functions f(p) and g(�)
will be determined in the next section.

4. A generic expression for the elastic potential

4.1. Isotropy condition

When a material behavior is assumed isotropic and elastic linear or non-linear, the
volumetric and shear strains can be obtained using Hooke’s law:

"v ¼
p

K
"q ¼

q

3G

the behavior derives from an elastic potential, the strains can be written as:

"v p; �ð Þ ¼
@Uc p; �ð Þ

@p
�
�

p

@Uc p; �ð Þ

@�
"q p; �ð Þ ¼

1

p

@Uc p; �ð Þ

@�

"q p; 0ð Þ ¼
1

p

@Uc p; 0ð Þ

@�
¼ 0

This equation is a condition of isotropy which means that when a material is
defined by an isotropic elastic behavior, the corresponding function g(�) must have a
zero slope at the origin on Fig. 9b. Some materials considered here present non-zero
slopes at the origin which denote orthotropic behavior at the hydrostatic stress state.
For a good interpretation of the results, this fact should be considered in the ana-
lysis of this type of materials behavior.

Fig. 9. Curve of f(p) and g(�) for the different materials.
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4.2. Expression of the elastic potential

The choice of the expressions of the two functions f(p) and g(�) must be based on
two different criteria. Obviously, the first criterion is related to the representative-
ness of the model for the experimental, and the second criterion relates to the use of
these laws in the computer programs. For this last case, it is significant to make sure
that the model works correctly beyond the experimental data. Among several func-
tions which can be used to represent the functions f(p) and g(�); we preferred the
following expressions :

f pð Þ ¼
p1�n
a p1þn

1þ nð ÞKa
g �ð Þ ¼

1þ 
�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ��2

p
! 1þnð Þ

with 0 < n < 1

These two expressions, which stem from the curves in Fig. 9a and b, define the
model entirely. It can be seen that g(�) function satisfy the conditions g(0)=0 and
g0(0)=0. Thus, the model is isotropic and needs four parameters Ka, n, 
 and �,
whereas pa is taken equal to 100 kPa. The resulting volumetric and shear strains are
given as:

"v p; qð Þ ¼
@Uc p; �ð Þ

@p
¼

p

K p; qð Þ
"q p; qð Þ ¼

@Uc p; qð Þ

@q
¼

q

3G p; qð Þ

K p; qð Þ ¼ Ka
p

pa

� �1�n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ��2

p
1þ 
�2

 !1þn
1þ 
�2
� �

1þ �2
� �2

1þ 2� � 
ð Þ�

G p; qð Þ ¼
Ka

3

p

pa

� �1�n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ��2

p
1þ 
�2

 !1þn
1þ 
�2
� �

1þ ��2
� �

2
� � þ 
��2

For large values of �, the bulk and shear moduli can be written as follows:

K p; qð Þ  Ka
p

pa

� �1�n �
nþ3
2


n 2� � 
ð Þ
�1�n ð16Þ

3G p; qð Þ  Ka
p

pa

� �1�n �
nþ1
2


nþ1
�1�n ð17Þ

and

G

K

2� � 


3
�
ð18Þ

It can be verified by using this G/K ratio and from the Eq. (1) that for an infinite
value of �, Poisson ratio and Young’s modulus remain finite. This result will be
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shown in the next subsection. In the case of low values for �, the second order
Taylor expansion gives the following volumetric and shear strains:

"v 
p1�n
a pn

Ka
1� ��2
� �

with � ¼ 1� nð Þ
2
� �

2
ð19Þ

"q 
p1�n
a pn

Ka
2
� �ð Þ� ð20Þ

From Boyce’s law, we have �=(1-n)Ka/6Ga. Replacing this result in Eq. (19), it
ensures:

2
� �

Ka
¼

1

3Ga

This ensures that our model is still close to Boyce’s one for the low values of the
shear ratio �

4.3. Formulation of E and �

Using Eq. (1), the Young’s modulus and the Poisson ratio can be written as:

E ¼ 9Ka
p

pa

� �1�n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ��2

p
1þ 
�2

 !1þn
1þ 
�2
� �

1þ ��2
� �

9 2
� �ð Þ þ 1ð Þ þ 2� � 
þ 9
�ð Þ�2
ð21Þ

� ¼
9 2
� �ð Þ � 2ð Þ þ 9
� � 2 2� � 
ð Þð Þ�2

18 2
� �ð Þ þ 2ð Þ þ 18
� þ 2 2� � 
ð Þð Þ�2
ð22Þ

The model presented above has 4 independent parameters: Ka, 
, n and �. The
parameter Ga is obtained from Eq. (18) as:


 ¼
1

2
� þ

Ka

3Ga

� �
ð23Þ

The presence of a horizontal asymptotic line for both E and � [Eq. (21)] indicates
that the formulation adopted offers a less brutal variation of these functions for high
values of the q/p ratio. Consequently, the model formulated does not present
numerical instabilities. However, from the triaxial compression test results, the
determination of the parameters becomes difficult or even impossible. It is then
necessary to determine the parameters by other experimental results. In the follow-
ing section, relations between the parameters are proposed to reduce their number.

5. Models with three parameters

Because of the limitation described above, we limit the model to 3 parameters so
that they can be identified from triaxial test results. We considered two cases with a
simple relationship between the parameters 
 and �.
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5.1. Model with constant Poisson ratio

As a first possibility, let �=
. The volumetric and shear strains can be rewritten as
follows:

"v ¼
p1�n
a pn

Ka
1þ 
�2
� �n�1

2 "q ¼
p1�n
a pn

3Ga
1þ 
�2
� �n�1

2 �

Eq. (23) leads to 
=Ka/(3Ga). Eq. (16) gives G/K="v�/3"q =1/(3
), Eq. (3) yields
to:

� ¼
9
� 2

2 9
þ 1ð Þ
ð24Þ

Obviously, the Poisson ratio is constant. To get a positive Poisson ratio, the con-
dition 
>2/9 must be satisfied and therefore we obtain �41/2, which guarantees the
condition of elasticity.

5.2. Model with a variable Poisson ratio

As a second possibility, we set �=
/2 and therefore we get from Eq. (23), 
=2Ka/
9Ga. The volumetric and shear strains are given as follows:

"v ¼
p1�n
a pn

Ka

1þ 
�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 


2 �
2

q
0
B@

1
CA
1þn

1

1þ 
�2ð Þ 1þ 

2 �

2
� �

"v ¼
p1�n
a pn

Ka

1þ 
�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 


2 �
2

q
0
B@

1
CA
1þn

3þ 
�2

1þ 
�2ð Þ 1þ 

2 �

2
� � �

The ratio G/K becomes:

G

K
¼

"v
3"q

� ¼
2

3
 3þ 
�2ð Þ

� ¼
9
2�2 þ 27
� 4

2 9
2�2 þ 27
þ 2ð Þ
ð25Þ

In the present case, the Poisson ratio varies with � as shown in Fig. 10.

5.3. Comparison between the proposed models and the test results

In the previous section, two models of 3 parameters have been presented. The
Poisson ratio is assumed to be constant in the first model, and variable in the second
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one. In this section, the verification and validation of the two models will be pre-
sented. Numerical adjustments of the parameters of the models were conducted to fit
experimental results for different unbound granular materials (Ecuelles, Soreze,
Poulmarc’H and Garonne). The results of the adjustments on the Ecuelles and
Poulmarc’h materials are presented in Figs. 11, 12 and 13. Also, we can see in these

Fig. 10. Evolution of the Poisson ratio.

Fig. 11. Evolution of the Ka parameter for different models.
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figures the position of Boyce’s model parameters. The results of the adjustments
indicate that:

� The correlation coefficients, shown in Fig. 14, are greater then 60% (Fig. 14)
for the majority of the materials tested except for Ecuelles3. This ensure that
the two models are satisfactory for these tests.

� The correlation coefficients obtained with our nonlinear models are not very
different from those obtained with Boyce’s model. However, in the next sec-
tion, we will show that beyond the experimental data field, the models are
different from each other.

Fig. 12. Evolution of the Ga parameter for different models.

Fig. 13. Evolution of the correlation coefficients for different models.
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5.4. Numerical stability of the proposed models

Fig. 15 shows the agreement and disagreement regions between the proposed
nonlinear models and the Boyce’s model. For low values of � (up to 3), the results
indicate good agreement between the two models for all the materials tested. Beyond
the experimental data, Poisson ratio tends towards 0.5 for the model with �=
/2,
and the value is constant for the second model. However, for Boyce’s model, Pois-
son ratio varies significantly and reaches unrealistic values for large values of q/p. It
is important to notice that in reality, when the ratio q/p becomes large this kind of
material undergoes plastic deformations which are not taken into account in this

Fig. 14. Comparison of the evolution of the Poisson ratio, case of Ecuelles1.

Fig. 15. Evolution of the Poisson ratio for different models, case of Ecuelles1.
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study. The comments previously made on Poisson ratio also apply to the elastic
modulus. The proposed nonlinear models and Boyce’s one compare favorably rela-
tively to the experimental test results. However, beyond this experimental data
range, the results obtained by Boyce’s model appear unrealistic.

6. Conclusions

This study has shown the ability of a model that deriving from an elastic potential
to represents the recoverable strain behavior of unbound granular materials. The
method has been based on the determination of the complementary potential values
from strain’s measurements. in all analyzed cases, the results has shown that the
strains can be explained by a complementary potential with a good correlation
coefficient. Moreover, the analysis has also shown that it is possible to express the
complementary potential as a product of two functions with one depending only on
the average pressure p and the other on the shear stress q/p ratio.
Nonlinear elastic models with three parameters have been proposed to model the

behavior of unbound granular materials. For q/p<3, these models have shown
similar numerical results to those obtained by the Boyce’s model. However, for lar-
ger values of shear stress ratio, both the elastic modulus and the Poisson ratio reach
finite values, which avoid the singularities.
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Liaison des Laboratoires des Ponts et Chaussées 1994:190.

[4] J.L. Paute, P. Hornych and J.P. Benaben. Repeated load triaxial testing of granular materials in the

French network of Laboratoires des Ponts et Chaussées. In: Gomes Correia, editor. Proceeding

flexibles pavements, Balkema; 1996. p. 53–64.

[5] SETRA-LCPC. Complément de recommendations: réalisation des assises de chaussées en grave non
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