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hm for the wrinkling with finite strains of very thin struc-tures made of hyperelastic material. In this work, 
inimiz-ing the total potential energy of the structure. The numerical solution is carried out by the means 
radient algorithm. Although the proposed approach is theoret-ically equivalent to the traditional finite 
ernative which is particularly efficient for thin wrinkled structures.
1. Introduction

Over the past years, new structural concepts for large spacecraft
applications involving thin film surface have been designed. Com-
pared to traditional spacecraft structures, these ‘‘Gossamer struc-
tures’’ could provide many advantages such as reduced mass and
package volume. However, the materials used in gossamer struc-
tures (as very thin Kapton� films) cannot support compressive stress
because of their small bending rigidity. The result of compressive
stress is that buckling occurs and wrinkles are formed. The existence
of wrinkled regions may affect the performance and reliability of the
flexible gossamer structures (as in an antenna or a reflector). Thus,
the prediction of wrinkle patterns in a membrane surface is one of
the many current technological interests in aerospace industry.

This paper deals with the use of the first order direct energy
minimization approach to solve the wrinkling problem in thin
structures. Although the proposed approach is theoretically equiv-
alent to the traditional finite element method, it is an attractive
alternative which is particularly efficient for thin wrinkled struc-
tures. In order to demonstrate it, a comparison is drawn with data
resulting from two different studies [1,2], where the wrinkling
problem has been studied experimentally as well as numerically
using a bifurcation and a post-buckling analysis.

The main advantage of the first order minimization technique

lysis is that no buckling
simulation. In order to

ath, a small random out
of plane displacement is imposed to the membrane at the begin-
ning of the simulation. This is necessary to avoid staying on the
fundamental path following a bifurcation point. The wrinkled
shape is thus automatically obtained by minimizing the total po-
tential energy of the structure.

The paper is organized as follows: Section 2 presents a review of
previous numerical studies on the topic of thin elastic membrane
wrinkling. In Section 3, the strain energy of thin shell is depicted.
Then in Section 4, the prediction of wrinkling with a first order algo-
rithm is explained. The finite elements used here are presented in
Section 5. The performance of the proposed method to predict wrin-
kle are illustrated in Section 6. Then Section 7 concludes the paper.

2. Review of numerical procedures of wrinkling simulation

The analysis of the wrinkling behavior of membrane structures
started with the works of Wagner [3], who initiated the method
called Iterative Material Procedures (IMPs). This method only takes
into account the in-plane stiffness. The bending stiffness is not
evaluated. These wrinkling models are mainly based on the defor-
mation gradient or the constitutive equation modification in order
to avoid compressive stresses [4,5]. As a result, this kind of ap-
proach does not make it possible to represent wrinkle patterns
and does not provide any information about the size of wrinkles.
This aspect is a major disadvantage of the IMP procedure. However,
the stress field and wrinkling zone are correctly determined.
Mansfield in [6] and Pipkin in [7] reformulated the theory by using
a suitable relaxed energy density as defined in the Tension Field
Theory. The relaxed energy density represents the average energy
per initial area unit over a region containing many wrinkles.
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To enable the computational simulation to predict the wrinkle
patterns, two methods are classically used. The first one involves
the treatment of bifurcation points with asymptotic expansion or
a similar process [8]. This method involves the detection of critical
points based on the singularity of the tangent stiffness matrix, then
the switching on a bifurcated branch. Its detailed developments
can be found in [9–11].

The second one is the post buckling analysis [1]. To enable the
computational method to predict the wrinkle patterns, the use of
an extensively refined mesh with thin-shell elements possessing
membrane and bending stiffness is necessary. This kind of ele-
ments enables to precisely analyze the buckling and post buckling
response of the stretched membrane. This specific treatment of the
buckling in the classical finite element method usually leads to
heavily computational times due to the dense mesh.

A wrinkling analysis, using the buckling of shell element, is usu-
ally performed in three stages: the first consists in obtaining a sta-
ble initial state in the case of very thin shells. This is often achieved
by applying slight initial pre-stress that increased the low bending
stiffness of thin shells by the geometrical bending stiffness. The
second step is an eigenvalue buckling analysis, which gives the
membrane mode shapes, introduced as geometrical imperfections
in the third step of the post buckling analysis.

Several recent computational studies have employed the post
buckling analysis with geometrically nonlinear shell finite element
models, see [1,12,2]. Wong and Pellegrino [1] performed a numer-
ical analysis of membrane wrinkling in a rectangular membrane
under shearing load and the wrinkling prediction in a square mem-
brane under corner loads where the membrane was modeled as a
thin shell with a near-zero stiffness.

The main difficulty in the post buckling analysis is the choice of a
possible wrinkling mode. If the final result is approximately known,
the convergence can be achieved by finding the buckling mode that
matches most to the final pattern. This is the solution chosen by
Wong and Pellegrino in [1]. Nevertheless, if the objective of the study
is to find a possible wrinkle shape without knowing the final pattern,
choosing to introduce a given buckling mode is difficult. Using the
first wrinkling mode corresponding to the lowest level of energy
may be considered as a solution to this issue. However the presence
of slack zones can disturb the bifurcation modes and consequently
the use of the post buckling method needs an excellent understand-
ing of the physical problem to achieve some good simulation results.

In the present study, an alternative approach to those men-
tioned above is presented. It is based on the minimization of the
energy by descent method. The main interest of this approach is
that no bifurcation analysis is needed before performing the wrin-
kling computation. The method is sufficiently robust to find a pos-
sible wrinkle pattern after applying a small random displacement
at each node of the membrane surface.
3. The approach of total potential energy minimization

This section is concerned with the presentation of the strain en-
ergy of a thin film submitted to external loads. Then, the fundamen-
tals of the minimization of the total potential energy are explained.
3.1. The internal potential energy

Engineering applications of thin film involves small strain and
large deformations. In this study, only the elastic response of mate-
rial is considered. Indeed, in wrinkling problems, the effects of large
deformations are primarily due to large rotations. Thus, we model
the elastic comportment of material by a Saint Venant–Kirchhoff
material. Using this model and considering the kinematic of thin
shell, the expression of the strain energy of a thin film is obtained.
3.1.1. Kinematics of deformation
The geometry of the structure is depicted using the natural co-

ordinate system {n1,n2,n3}. We limit our attention to the theory of
thin shells which is based on the approximation that the displace-
ment is assumed to vary linearly through the thickness. Then, we
specialize this classical shell theory to Kirchhoff–Love theory by
explicitly containing the shell director to remain normal to the de-
formed middle surface of the shell. Here, only the main results are
presented. Furthers details and discussions may be found in
[13,14].

We begin by considering a shell whose initial geometry (at time
t0) is characterized by a middle surface of domain (X(t0). The de-
formed or actual configuration of the shell (at time t) is character-
ized by a middle surface of domain X(t) with (X(t0), X(t) # R3). X

!

and~x are the position vectors of the same material particle in the
reference and deformed configuration. Curvilinear coordinates n1,
n2, n3 are used to describe the position of a thin shell characterized
by its middle surface n1, n2, 0 and its thickness n3; � h

2 6 n3
6

h
2

� �
as-

sumed uniform as: (see Fig. 1)

X
!ðn1; n2; n3Þ ¼ X

!ðn1; n2; 0Þ þ n3 bA!3ðn1; n2Þ ð1Þ
~xðn1; n2; n3Þ ¼~xðn1; n2; 0Þ þ n3~a3ðn1; n2Þ ð2Þ

bA!3 is the unit normal of the shell reference surface while the
corresponding vector on the actual surface a3

�! is not a unit vector
nor normal. This description undergoes the thin shell hypothesis
for which the kinematics is linear over the thickness.

We note the curvilinear base G
!

i ¼ X;i
�!

in the initial configura-
tion, and~gi ¼ x;i

! in the actual configuration. They can be written as:

G
!

a ¼ A
!

a þ n3 @
bA!3

@na ¼ X
!ðn1; n2;0Þ;a þ n3 bA!3;a and G

!
3 ¼ bA!3

~ga ¼~aa þ n3 @~a3

@na ¼~xðn1; n2;0Þ;a þ n3~a3;a and ~g3 ¼~a3

ð3Þ

where the Greek indices have the range {1, 2} while the Latin indi-

ces have the range {1, 2, 3}. A
!

i and~ai are the material basis vectors
on the middle surface i.e.

A
!

iðn1; n2Þ ¼ G
!

iðn1; n2;0Þ and

~aiðn1; n2Þ ¼~giðn1; n2; 0Þ
ð4Þ

The contravariant basis in initial configuration G1
�!

; G2
�!

; G3
�!

and

actual configuration g1
�!

; g2
�!

; g3
�!

are defined as:

G
!i � G
!

j ¼ di
j and ~gi �~gj ¼ di

j

A
!i � A
!

j ¼ di
j and ~ai �~aj ¼ di

j

ð5Þ

The metric tensors components are defined in the initial and ac-
tual configurations respectively by:

Gij ¼ G
!

i � G
!

j and gij ¼~gi �~gj

Gij ¼ G
!i � G
!j and gij ¼~gi �~gj

ð6Þ

The components of the Green–Lagrange strain tensor are:

Eij ¼
1
2
ðgij � GijÞ ð7Þ

The mixed components of this tensor are then:

Ej
i ¼ EikGkj ¼ 1

2
ðgikGkj � GikGkjÞ ¼ 1

2
gj

i � dj
i

� �
Ej

i ¼
1
2

Cj
i � dj

i

� � ð8Þ

where Cj
i are the mixed components of the right stretch tensor.



Fig. 1. Base vectors of the deformed system.
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3.1.2. Thermodynamic potential
The material is assumed elastic and governed by a quadratic po-

tential of strain tensor E defined per unit volume as:

w ¼ 1
2

HijklEijEkl P 0 ð9Þ

where H is the fourth-order tensor of elastic moduli which are
constants.

The second Piola–Kirchhoff stress tensor R is given by:

R ¼ @wðEÞ
@E

¼ H : E ð10Þ

In this study, materials are modeled as isotropic. Consequently,
the fourth-order tensor of elastic moduli H reduces to:

Hijkl ¼ kGijGkl þ lðGikGjl þ GilGjkÞ ð11Þ

where k and l are the Lamé constants.
It follows from this relation, that the expression of the strain en-

ergy may be written as:

w ¼ k
2

tr E
� �2

þ l E : E ð12Þ

which is the classical expression of the Saint–Venant Kirchhoff
model.

3.1.3. Strain energy of a thin shell
In the case of the Kirchoff Love theory, the deformed vector a3

�!
in the actual configuration coincides with the unit normal to the
deformed surface of the shell. This hypothesis and the kinematic
linearization over the thickness lead to the following expression
of the Green Lagrange strain tensor:

Eab ¼ vab þ n3qab ð13Þ

where

vab ¼
1
2
ð aa
�! � ab

!� Aa
�!
� Ab
�!
Þ ð14Þ

qab ¼ A
!

3 � A
!

a;b �~a3 �~aa;b ð15Þ

The components vab measure the plane strain of the middle
surface and qab the curvature change. Here, the transversal shear
and the normal stretching have been neglected, consequently,
Ga3 = G3a = ga3 = g3a = 0, G33 = g33 = 1.
The shell strain energy density per unit area is obtained by sum-
ming the volumetric density over the thickness:

W ¼ 1
2

Z h
2

�h
2

HijklEklEijdn3 ð16Þ

which leads to the following expression:

W ¼ Habkl h
2
aabakl þ

h3

24
qabqkl

" #
ð17Þ

where the material constants at the mid-surface are defined by:

Habkl ¼ kAabAkl þ lðAakAbl þ AalAbkÞ ð18Þ

The kinematic hypothesis of thin shell enables to write the
strain energy as the sum of membrane strain energy and a bending
one. These two energies are thus decoupled even though a large
deformation formulation is considered.

A finite strain formulation is considered here, although the
deformations stay infinitesimal for the wrinkling problems studied
in Section 6. This framework formulation allows to consider rub-
ber-like materials which can be submitted to finite strains.

3.2. Total potential energy theorem

The equilibrium of the structure is stated by the principle of
minimum total potential energy. The structure shall deform to a
position that minimizes the total potential energy. We consider
conservative structures for which no dissipative loads are present.
All the loads applied to the structure derive from a potential Pext

and the constitutive law is hyperelastic, so that the stresses derive
from the internal potential energy Pint.

For a general membranous structure with a volume V and mid-
surface S, the total potential energy, P, is the sum of the internal
energy of the body Pint:

Pint ¼
Z

V
wdV ¼

Z
S
WdS ð19Þ

and the external potential energy Pext:

Pext ¼ �
Z

S
T
!�~udS�

Z
V

~f �~udV ð20Þ

Here ~u is the displacement field of the structure, ~f represents
prescribed body forces and T

!
pressures acting at S. So that:
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P ¼ Pint þPext ð21Þ

For equilibrium configuration ~x, the energy change dP should
be stationary irrespective of a small displacement perturbation d~u.

The discrete formulation of the internal energy Pint is given in
Eq. (47) and discussed in Section 5 while the discrete form of Pext

is obtained by:

PextðfugÞ ¼ �fugTfRg ð22Þ

where {u} and {R} are respectively the vector of nodal displace-
ments and the vector of reaction forces applied at each node of
the whole structure. Supposing that we have a one-parameter load
conservative system, then {R} = k{q} where {q} is the reference load
vector and k a scalar load multiplier.

Our attention is limited to a single control parameter. If multi-
ple control parameters {k} are needed, the load process is staged
and then linearized at each stage. Between two states {k}i and
{k}i+1, the variations of all the components of {k} are assumed to
stay proportional to the control parameter k such as:

fkg ¼ ð1� kÞfkgi þ kfkgiþ1 ð23Þ

where k is a one stage control parameter and varies from 0 to 1.

4. Use of a first order method of energy minimization to predict
the phenomenon of wrinkling

The energy minimization can be achieved either by first order
methods, like descent methods, or second order methods, like qua-
si-newtonian ones. To explain the fundamentals of these two kinds
of methods, we will focus on the series expansion of the change of
discretized energy.

DP ¼ @P
@fug

� �T

Dfug þ 1
2

DfugT @2P

@fug2 Dfug þ OðDfugÞ3 ð24Þ

¼ fggTDfug þ 1
2

DfugT ½K�Dfug þ OðDfugÞ3 ð25Þ

fgg ¼ @P
@fug is the gradient of the total potential energy P while

½K� ¼ @2P
@fug2 is the Hessian matrix.

The first order minimization algorithm used here is a classical
conjugate gradient algorithm proposed by Fletcher and Reeves in
[15]. It is based on the descent method. Nevertheless, we insist
on the fact that the gradient of the total potential, which gives
the opposite direction of descent, must be exactly computed. Thus,
it is necessary to provide the analytical expression of the gradient
of the potential in order to obtain the sufficient accuracy and to
correctly handle some phenomena like bifurcation.

The first order methods were used to seek for a minimum by
successive line search. The descent direction is computed thanks
to the gradient {g} which gives the direction of greatest increase
of P. The global convergence of the conjugate gradient algorithm
is demonstrated in the case of convex potentials. In wrinkling
problems, the potential is nonconvex and the algorithm converges
toward an existing minimum which may be either a local or global
minimum. Futher details about this subject will be found in [16].

The main asset of first order methods is that they allow to con-
verge towards a local or global minimum even in the neighborhood
of a bifurcation point. It is not the same for second order methods
which require to compute the stiffness matrix [K]: it may be ill-
conditioned when a significant loss of stiffness occurs. At a bifurca-
tion point, the stiffness matrix is singular and ill-conditioned in
their neighborhood. This is why corrective solution methods, like
the Newton–Raphson method, may run into difficulties at or near
critical points. This ill-conditioning may introduce noise which
makes the solution procedure unstable. Sometimes traversing crit-
ical points may become computationally overwhelming and may
require either specialized techniques or intensive human interven-
tions, such as the introduction of geometrical imperfections or the
dissipation of a small part of the energy (see [1]).

In the present paper, we used the conjugate gradient algorithm
to obtain the equilibrium path. This method uses only the gradient
vector of the total potential energy. The numerical developments
are implemented in the Surface Evolver code developed by
K. Brakke and presented in [17].

4.1. Energy variation along equilibrium path

Suppose that we have a one-parameter load conservative sys-
tem. The total potential energy of the discrete model can be writ-
ten as:

Pðfug; kÞ ¼ Pint � kfqgfug ð26Þ

{q} is the reference load vector and k a scalar load multiplier. Then
consider the power series expansion of the energy variation at an
equilibrium point ({u}, k):

Pðfug þ Dfug; kþ DkÞ ¼ Pðfug; kÞ þ f @P
@fug g

TDfug þ @P
@k

Dk

þ 1
2

DfugT @2P

@fug2 Dfug þ 1
2
@2P

@k2 ðDkÞ2

þ @2P
@fug@kDfugDkþ OðDk3;Dfug3Þ

¼ Pðfug; kÞ þ fggTDfug � fqgTfugDk

þ 1
2

DfugT ½K�Dfug

� fqgTDfugDk OðDk3;Dfug3Þ ð27Þ

If ({u}, k) is a state of equilibrium, then {g} = 0. When the change
(D{u}, Dk) occurs along the equilibrium path, the displacement
D{u} and the load factor Dk are bound by the following relation:

Dfug ¼ Dk½K��1fqg ð28Þ

We note hi the eigenvalues of [K] in ascending order and {zi} the
corresponding eigen vectors. The components of displacement vec-
tor in the eigenvectors base are noted Ai = D {u}T{zi}. The Eq. (28) is
rewritten in the eigenvectors base as follows:

DfugTfzig ¼ Dk
1
hi
fqgTfzig ) Ai ¼

Dk
hi

qi ð29Þ

From the general expression (27), the energy variation due to
D{u}, at a fixed load level k + Dk can be simply obtained:

Pðfug þ Dfug; kþ DkÞ �Pðfug; kþ DkÞ

¼ 1
2

DfugT ½K�Dfug � fqgTDfugDkþ OðDk3;Dfug3Þ

¼ 1
2

h1A2
1 þ h2A2

2 þ . . . hnA2
n

h i
� DkfqgTDfug ð30Þ

The component qi of vector {q} in the base of eigenvectors of [K],
is given by Dk{q}{zi} = Aihi. The product Dk{q}TD{u} is then equal to
h1A2

1 þ h2A2
2 þ . . . hnA2

n.
Then the energy variation can be expressed either by the eigen-

values of the stiffness matrix:

Pðfug þ Dfug; kþ DkÞ �Pðfug; kþ DkÞ

¼ �1
2

h1A2
1 þ h2A2

2 þ . . . hnA2
n

h i
ð31Þ

Or as the dot product of load vector {q} and displacement vector
D{u}

Pðfug þ Dfug; kþ DkÞ �Pðfug; kþ DkÞ ¼ �1
2

DkfqgTDfug ð32Þ
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As we can see from (31), the energy variation is negative for all
displacement vectors D{u} obeying to the equilibrium Eq. (28).
4.2. Use of downhill methods

The expression (31) shows clearly that, when the loading
parameter is incremented from k up to level k + Dk, the displace-
ment vector D{u} accompanying the load increment will decrease
the total potential energy for all possible stable equilibrium paths
(hi > 0,"i). In these situation, [K] is positive definite and a minimum
energy exists. Algorithms based on descent method converge to-
ward the minimum.

At critical point, the minimal eigenvalue of [K] is equal to zero.
The energy shows a neutral state for displacements proportional to
the associated eigenvector: D{u} = A1{z1} i.e. {z1}T[K]{z1} = 0. In
these circumstances, a full investigation of the stability will require
higher-order terms of the energy variation along the branch of
bifurcation. The uses of downhill methods fail to switch on bifur-
cated branch since the gradient of the energy is orthogonal to
the first eigenvector.

However this type of algorithms, based on the gradient of en-
ergy, has a linear convergence. The iterative process tends towards
the equilibrium path without ever reaching it exactly, because the
gradient tends to zero close to the equilibrium path. This lack of
convergence becomes a benefit for the treatment of bifurcation
as it acts as a permanent geometry perturbation during the load
incrementation process.

In some situations, we need to perturb randomly the geometry
in such a way that the underlying regularity intrinsic to a bifurca-
tion point is destroyed. This is the case in this study when we
introduce a very slight random perturbation of the actual geometry
at the beginning of the iterative process. However the reference
configuration is not perturbed. We fixed the position perturbation
to a � 10�3 mm, where a is a positive random number a 2 [0, 1].
We insist on the fact that the introduced perturbation is not an
imperfection on the initial geometry but just a slight deviation of
the actual configuration from the equilibrium path before loading,
i.e. at time t = 0.
Fig. 2. Finite element discretization of the triangular membrane element.
5. Finite element discretization

This section is concerned with the discretization of the shell po-
tential given in (17) which is the expression used to find the pos-
sible wrinkle shape of thin film structures.

Because of the small thickness of the studied structures (be-
tween 25 lm and 125 lm), the strain energy of a thin shell finite
element due to bending is negligible compared to the strain energy
due to tension or compression. Consequently the shell element
behavior can present a membrane locking mechanism that may af-
fect the result of the wrinkling simulation. Even though the bend-
ing stiffness is very small in thin shells, it is fundamental in
wrinkling deformation since, after buckling, it highly influences
the shape of the wrinkles. Indeed, the bending stiffness, even if it
is very low, is the parameter which, in conjunction with in-plane
tension, determines the shape of the wrinkles in terms of ampli-
tude and wavelength. The choice of a finite element is therefore
an important aspect in wrinkling simulation and we will briefly
discuss it.

The finite elements used to predict the shape and the size of
wrinkles are classically thin shell finite elements formed by super-
imposition of a genuine membrane element and a plate element
even if some authors computed it only with a genuine membrane
element [18,8].

In [1] various finite elements have been tested. These studies
emphasize that one should use a dense mesh of primitive elements
rather than a coarse mesh made up of higher order element to accu-
rately predict the geometric nonlinearity of very thin structures.

In the study [1] the finite element S4R5 (code ABAQUS �) has
been chosen for being the most adapted element in terms of com-
putational efficiency and calculation time. This quadrilateral ele-
ment is formed by the superimposition of a genuine membrane
element and a plate bending element. The plate bending formula-
tion DKQ used in the S4R derived from the DKT formulation pro-
posed by Batoz [19]. The same element was also used in [12,2].

Numerical results obtained by using a membrane-DKT triangu-
lar element are presented in this paper. In this formulation, the
plate bending behavior requires the introduction of rotational de-
grees of freedom, which may cause troubles with ill-conditioned
stiffness matrices, such as numerical locking, when the thickness
is low. In order to avoid this phenomenon, a rotation free shell ele-
ment has been used. These elements include the bending behavior
of thin shells without introducing any additional degree of freedom
compared to a membrane element. The bending energy is discret-
ized by using the out-of-plane displacements of a patch of four tri-
angular elements. These kinds of elements have been successfully
used in thin shells buckling problems like the simulation of an air-
bag inflation [20] or in metal forming simulations [21].

In this study, we have used a triangular three nodes thin shell
finite element formed by the superposition of a genuine membrane
element and a plate element. For the plate element, two models
have been tested: the DKT and the rotation-free element proposed
by Sabourin and Brunet [22].

In Section 5.1 the expression of the membrane energy PM is dis-
cretized and in Section 5.2 the expression of the bending energy PB

is detailed for Rotation Free element and briefly depicted for the
DKT element. Then, the shell energy is obtained by summing the
membrane energy and and the bending one.

5.1. Discretization of the membrane energy

As shown in Fig. 2, the tangent basis vectors on the mid-surface
are computed with the help of reference Xj

i and actual xj
i vertices

coordinates of triangle finite elements such as:

A1
�!
¼ X2
�!� X1

�!
; a1
�! ¼ x2

!� x1
!

A2
�!
¼ X3
�!� X1

�!
; a2
�! ¼ x3

!� x1
! ð33Þ

The components of these vectors are then:

ai
1 ¼ xi

2 � xi
1

ai
2 ¼ xi

3 � xi
1

ð34Þ
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where the subscripts indicate the node number (i = 1, . . . , 3) and the
superscript refers to the coordinate on the direction ej

! with (j = 1,
. . . , 3).

The mixed components of the Green–Lagrange strain tensor are
then:

Eb
a ¼ vb

a ¼
1
2
ð aa
�! � ab

! Aa�! � Ab
�!
� db

aÞ ¼
1
2

Cb
a � db

a

� �
ð35Þ

The membrane energy wM density is evaluated, with plane
stress assumption, by using the expression given in Eq. (12) which
leads to:

wM ¼ lk
2ðkþ 2lÞ ½3� 3C1

1 þ C1
1

� �2
þ C1

1C2
2 þ C2

1C1
2 � 3C2

2 þ ðC
2
2Þ

2�

þ l2

2ðkþ 2lÞ ½2� 2C1
1 þ C1

1

� �2
þ 2C2

1C1
2 � 2C2

2 þ C2
2

� �2
� ð36Þ

Since the element is linear, the strain tensor is constant. The en-
ergy of a finite element (e) is simply computed by the product of
the energy density by the volume of the element.

PM
e ¼ AhwM

e ð37Þ

where A is the area of the finite element (e) and h its thickness.
The nine components of the finite element strain energy gradi-

ent are the partial derivatives of wm with respect to the coordinates
of the vertices xj

i i.e.

rPM
e

� �
ij ¼ Ah

@wM
e

@xj
i

¼ Ah
@wM

e

@Cb
a

@Cb
a

@xj
i

ð38Þ

This is the exact formulation of the gradient of the membrane
strain energy used for large scale problems.

5.2. Discretization of the bending energy

The rotation free triangular plate bending element used here
was initially presented in [22]. Here we follow the formulation
proposed in [23].

A flat patch of elements formed of a central triangular element
and its three neighbors is considered (see Fig. 3). The Kirchhoff the-
ory is used to approximate the curvatures tensor q from the out-of-
plane displacements of the patch of four triangular elements.
ni
!
; ði ¼ 1; . . . ;3Þ refers to the normal of the side i and hi are the

orthogonal distance of vertex i, (i = 1, . . . , 6) to the opposite edge
of the central triangle.
Fig. 3. Discretization of a plate
The relative vertical displacements w�i are also the out of plane
displacements that cause the bending of the surface. The curvature
tensor is assumed constant and consequently the surface is as-
sumed parabolic irrespective of a relative vertical displacement
w⁄. The out of plane displacement along the normal n1

�!, is then:

w� ¼ nðn� h4Þ
h1ðh1 þ h4Þ

w�1 þ
nðh1 þ nÞ

h4ðh1 þ h4Þ
w�4 ð39Þ

where n is the coordinate along the normal direction. The curvature
along the direction n1

�! is the second derivative of the out of plane
displacement w⁄ with respect to the coordinate n, i.e.

q
n1
�! ¼ d2w�

dn2 ¼
2

ðh1 þ h4Þ
ða1 þ a4Þ ð40Þ

where ai ¼ wi�

hi
are the rotation angles between two adjacent ele-

ments. The rotation angles are considered as rigid-body rotations.
Then identical relations can be obtained for sides 2 and 3.

The curvatures along the directions ni
! are used to obtain the

components qab of the curvature tensor of the main element. Then
it is possible to interpolate the rotation angle ai from the patch ele-
ment out of plane displacements vector {w}. It follows:

fqg ¼
q11

q22

q12

264
375 ¼ ½BB� � fwg ð41Þ

Further details about the formulation of the matrix [BB] may be
found in [23].

As for the membrane strain tensor, the curvature tensor is con-
stant over the central element of the patch. Thus the bending stiff-
ness matrix of a particlar finite element (e) is then written as:

KB
e

h i
¼ A � ½BB�T � h3

12
H � ½BB� ð42Þ

where A is the area of the central element. The bending energy is a
quadratic expression of the nodal displacement:

PB
e ¼

1
2
� fwgT � KB

e

h i
� fwg ð43Þ

From which we deduce the gradient of PB:

rPB
e ¼ KB

e

h i
� fwg ð44Þ

The DKT formulation leads to similar expression for the energy
and its gradient as in Eqs. (43) and (44). The vectors of degree of
triangular patch element.
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freedom and the interpolation matrix [BB] used in the patch ele-
ment and DKT element are different. In the patch formulation, each
node of the patch possesses only three translations as degree of
freedom, while the DKT formulation uses three translations and
three rotations for each node. The introduction of this rotational
degree of freedom can possibly lead to ill-conditioned matrix.

The thin shell strain energy, for each element (e) of the wole
structure, is the sum of the membrane strain energy and the bend-
ing one i.e.

Pint
e ðfugÞ ¼ PM

e ðfugÞ þPB
e ðfugÞ ð45Þ

The gradient of the strain energy is then:

rPint
e ðfugÞ ¼ rPM

e ðfugÞ þrPB
e ðfugÞ ð46Þ

The total internal energy of the structure is:

PintðfugÞ ¼
X

e

Pint
e ðfugÞ ð47Þ

which is the discrete form of the internal energy given in Eq. (21)
while the gradient is:

rPintðfugÞ ¼
X

e

rPint
e ðfugÞ ð48Þ
Table 1
Shear test of a membrane: material properties.

Thickness (lm) 25
Young’s modulus E (MPa) 3500
Poisson’s ratio m 0.31
6. Numerical samples

This section shows the ability of a first order minimization algo-
rithm to predict a possible wrinkle shape. The performance of the
method proposed here is demonstrated by computing the wrinkles
details of three thin film structures for which experimental data
are available:

� The wrinkling prediction on a rectangular shell–membrane
under transverse in-plane displacement.
� The wrinkling prediction on a square membrane under corner

loads.
� The study of a cruciform membrane under biaxial load.

In these three problems, the wrinkling is the result of particular
loads, membrane shapes or boundary conditions. Nevertheless,
wrinkling may occurs even in the common case of a simple rectan-
gular membrane longitudinally stretched. (see [24,25]). This is a
consequence of the clamped boundary conditions preventing lat-
eral displacements along the loaded edges as explained in [24].

The wrinkling problem of the cruciform structure has been inves-
tigated experimentally in [2]. In the same papers the experimental
results have been compared with numerical wrinkling simulations
performed using the post-buckling analysis presented in [1] (code
ABAQUS �). This simulation procedure starts with an eigenvalue
buckling analysis which allows to obtain the possible wrinkling
Fig. 4. Shear test of a me
modes of the membrane. The eigenvectors of the tangent stiffness
matrix are possible wrinkling shapes of the membrane. Then, mode
shapes are introduced as initial geometric imperfections in the
structure before performing the post-buckling computation. It is
carried out using the Newton Raphson method. Nevertheless when
the formation of an additional wrinkle occurs, the equilibrium path
may be unstable. To achieve convergence in spite of the presence of
unstable paths, pseudo-viscous forces are added to the model. These
forces are scaled by a stabilization factor which corresponds to a
fraction of the dissipated strain energy. The stabilization parameter
could affect the shape of the wrinkled membrane. Consequently, to
achieve a good accuracy, it is generally preferable to set this param-
eter to the lowest possible value for which convergence can still be
obtained (see [1]).

The main advantages of the post-buckling analysis are as
follows:

It implies numerical methods usually available on the majority
of finite elements codes. It allows to focus on the response of the
structure on different stability paths.

The main drawback of the post-buckling analysis is it using
complexity, because it requires to choose the wrinkling modes to
introduce as geometrical imperfections and an appropriate value
for the prescribed fraction of the dissipated strain energy. More-
over, crossing a critical point may still be difficult and some re-
starts of the analysis are often needed.

The first order minimization method, used to perform the three
following wrinkling simulations instead of the post-buckling anal-
ysis, avoids these numerical difficulties. The conjugate gradient
algorithm is able to converge towards a local minimum even in
the neighborhood of a bifurcation point. Consequently, additional
numerical techniques are not necessary to achieve the convergence
of the computation. To obtain a bifurcated solution, a small ran-
dom displacement has been applied at each node of the membrane
surface. This allows to leave the fundamental equilibrium path.
Then a bifurcated solution is automatically reached but a particular
equilibrium path cannot be chosen to perform the analysis with
this procedure.

6.1. The membrane in simple shear

Firstly, we present the study of the initially flat and stress free
linear elastic membrane proposed in [26]. The dimensions of this
structure are depicted in Fig. 4. The material that was used is the
Kapton HN �. Its material properties are listed in Table 1.
mbrane: geometry.
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A shear displacement of 3 mm is imposed on the upper edge.
The horizontal edges are held at fixed distance while the two side’s
edges are unconstrained.

The finite element mesh used here consists of 26,660 triangular
thin shell elements. Two different formulations have been tested:
the membrane-DKT element and the membrane-patch element.
Fig. 5 shows the wrinkle pattern of the membrane, computed by
using the membrane-patch element, for a shear displacement
dc = 3 mm.

To achieve the simulation convergence, a small random dis-
placement of magnitude a � 10�3 mm has been applied at each
node of the membrane surface before performing the shear dis-
placement. This allows to leave the fundamental equilibrium path.

Fig. 5 shows that the wrinkle shape presents two slack regions
near the unconstrained edges, while the wrinkles in the central re-
gions are inclined at 45� to the upper and bottom edges of the
structure. The wrinkle pattern is the same as that experimentally
observed in [26].

The wrinkles shapes are further investigated by plotting the
central cross section (y = 64 mm) as shown in Fig. 6. First, it ap-
pears that the simulations performed with the DKT element and
the patch element lead to different results even if they are close.
The wrinkle shape obtained using the DKT element is slightly noisy
and one wrinkle starts to divide in two new wrinkles. It is probably
a problem of membrane locking due to the very small thickness of
the membrane.
Fig. 5. Wrinkle pattern of the membrane in simple shear computed using the
membrane-patch element (dc = 3 mm).

Fig. 6. Central cross section of the mem
The cross section shows 18 wrinkles for the DKT element
against 19 with the patch element. That is the number of wrinkles
observed by Wong and Pellegrino in [26]. Moreover, the wave-
length k predicted by the numerical simulation is 16.6 mm and
the average amplitude Aw is 0.38 mm which is close to the exper-
imental observations (k � 20 mm and Aw � 0.4 mm).

6.2. The square membrane under corner load

The second validation test is the wrinkling prediction on a
square membrane under corner load proposed in [26]. The mem-
brane is loaded at the four corners by two diagonal pairs of equal
and opposite forces. It was loaded up to 5 N at the two horizontal
corners and up to 20 N at the two vertical corners. The geometry of
this structure is depicted in Fig. 7. The material that was used is the
same that for the previous sample, its material properties are listed
in Table 1.

The corner of the structure were cut at 45� to a width of 25 mm.
They are reinforced with Kapton �adhesive and steel pins over an
area of 25 mm � 20 mm. Here, we have modeled these parts as ri-
gid body. The finite element mesh used here consists of 62,300 tri-
angular thin shell element. As for the previous sample, simulations
have been performed using the membrane-DKT element and the
membrane-patch element.
brane in simple shear (dc = 3 mm).

Fig. 7. The square membrane under corner load: geometry and load case.
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The numerical wrinkle shape (see Fig. 8) shows a large vertical
wrinkle as observed in [26]. Here the use of the membrane-DKT or
the membrane-patch element leads to very similar results. Wong
and Pellegrino have observed a nonsymmetric shape for the large
vertical wrinkle with a maximum of approximately 2.6 mm and a
minimum of approximately �1.2 mm. The numerical simulation
has predicted a maximum of 2.76 mm with the membrane-DKT
element and 2.65 mm with the membrane-patch element. The
minimum observed are respectively �0.96 mm with the mem-
brane-DKT element and �1.066 mm with the membrane-patch
element.

For the two previous samples, the numerical predictions show
good agreement with the experimental data either using the mem-
brane-DKT element or the membrane-patch element. Neverthe-
less, best results have been obtained with the membrane-patch
element. Thus for the last sample, only this element has been used.
Fig. 9. The cruciform membrane under biaxial load: geometry.

Table 2
The cruciform membrane under biaxial load: material
properties.

Thickness (lm) 25, 50 and 125
Young’s modulus E (MPa) 3350
Poisson’s ratio m 0.3
6.3. The cruciform membrane under biaxial load

The last numerical sample is the wrinkling prediction on a cru-
ciform membrane under biaxial load. In [2] an experimental study
of the formation and evolution of the wrinkle pattern that form in
flat elastic and isotropic membranes under the action of in-plane
tension is presented. The experiments were carried out on a cruci-
form specimen stretched along two uncoupled axes using various
loading paths. The wrinkled shapes of the membrane were digi-
tized by using a full-field measurement based on the fringe analy-
sis method. This set of experiment allows us to discuss the quality
of the numerical results for different thicknesses of the membrane,
and the reproducibility of a kinematic configuration of wrinkles.

The biaxial tests were performed on cruciform specimens
according to the geometry depicted in Fig. 9.

The membrane tested is the Kapton VN � polyimide film. The
experimental Young’s modulus and the Poisson’s ratio correspond-
ing to the experimental conditions (the average strain imposed
upon the structure is less than 1%) have been identified in [2].
Table 2 summarizes the material characteristics of the specimens.

Various sets of displacements have been applied to the horizon-
tal and vertical sides of the specimen. The displacement d1 is a
negative displacement performed along the axis X while the dis-
placement d2 is a tensile displacement imposed along the axis Y.
Before performing the displacement (d1 and d2) the horizontal
and vertical side edges are clamped while the circular edges are
Fig. 8. Wrinfle shape on the square
unrestrained. We have computed here the wrinkle shape of
125 lm, 50 lm, and 25 lm, membranes for the load case
d1 = �3 mm and d2 = 3 mm where the negative displacement d1 is
performed before the tensile displacement d2.

Figs. 10–12 show the wrinkle shape obtained for respectively
125 lm, 50 lm and 25 lm membranes. The numerical results have
been obtained using a mesh of 64,000 triangular membrane-patch
elements.

The wrinkles shapes are further investigated by plotting the
central cross section y = 0 mm and by superimposing the experi-
mental and numerical sections on the same figure. For the speci-
membrane under corner load.



Fig. 10. Numerical out of plane displacements (Specimen thickness = 125 lm).

Fig. 11. Numerical out of plane displacements (Specimen thickness = 50 lm).

Fig. 12. Numerical out of plane displacements (Specimen thickness = 25 lm).

10



Fig. 13. Comparison of the numerical and experimental wrinkling results for d1 = �2 mm and d2 = 0.5 mm (Specimen thickness = 125 lm).

11
men of 125 lm the shape of wrinkles (pattern, wavelength and
amplitude) predicted by the numerical simulation appear to be
close to those observed during the experiment. Nevertheless, for
the 50 lm and 25 lm specimens, noticeable differences have been
observed concerning the amplitude of the wrinkles in the central
area. For instance, with the specimen of 25 lm the experimental
value of the central wrinkle amplitude (at x = 0) is about
0.27 mm against 0.18 mm for the numerical one.

As shown in Figs. 10–12 the accuracy of the numerical predic-
tions decreases when the thickness reduces. Two phenomena
could explain the differences between the experimental and the
numerical data. The first one is the finite element discretization.
The shell elements used here are probably sensitive to numerical
locking when the thickness is very low. The second one concerns
experimental considerations. Before performing the experiment
on the biaxial set up, the cruciform specimen depicted in Fig. 9 is
slightly stretched and then assumed flat (see [2]). In the experi-
ment, the initial shape of the membrane may show a small deflec-
tion which could affect the pattern of wrinkles when performing
the displacements.

As explained in Section 4.2, the conjugate gradient algorithm
can converge toward different local minima if they exist. Thanks
to this phenomenon, different possible wrinkle shapes of the struc-
tures can be obtained for a given load parameter. These different
wrinkle shapes are associated with different buckling modes of
the structure. Here, for the load case d1 = �2 mm and d2 = 0.5 mm
we have obtained different wrinkle shapes by applying different
random out of plane displacements a at the start of the simulation
(see Fig. 13). The different solutions are associated with possible
kinematic configurations of the physical system. Nevertheless the
algorithm doesn’t allow choosing a particular bifurcated branch
to achieve convergence.
7. Conclusions

The wrinkling simulations have been performed by directly
minimizing the total potential energy using a first order descent
method, instead of satisfying the equilibrium equations as done
with the usual finite element method. It proves to be an attractive
alternative which is particularly efficient for thin wrinkled struc-
tures. Indeed, the proposed solving procedure has been first vali-
dated through three problems: the wrinkling prediction of
rectangular membrane under transverse in-plane displacements
and the wrinkling prediction in a square membrane under corner
loads. Then comparison has been done with a biaxial experiment
performing on cruciform membrane specimens. All the wrinkles
patterns predicted during the numerical computations showed a
good agreement with the experimental results.

Moreover the main interest of the minimization algorithm is
that no specific buckling analysis is carried out during the calcula-
tion. The wrinkling procedure is simply started by applying a small
random displacement at each node of the membrane surface.
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