Moral assessment moral hazard in indirect reciprocity

Sigmund, K.

IIASA Interim Report
2012
Interim Report

Moral assessment and moral hazard in indirect reciprocity

Karl Sigmund (ksigmund@iiasa.ac.at)

Approved by

Ulf Dieckmann
Director, Evolution and Ecology Program

February 2015

Interim Reports on work of the International Institute for Applied Systems Analysis receive only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other organizations supporting the work.
Moral assessment and moral hazard in indirect reciprocity

Karl Sigmund 1,2

1 Faculty of Mathematics, University of Vienna, A-1090 Vienna, Austria
2 International Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria

February 16, 2011

Keywords: evolutionary game theory; indirect reciprocity; cooperation; reputation;

Corresponding author: Karl Sigmund
Faculty of Mathematics, University of Vienna, A-1090 Vienna, Austria
e-mail: karl.sigmund@univie.ac.at, phone: +43 01 4277 50612, fax: +43 01 4277 9506
Abstract: xxx

1 Introduction

In *The Descent of Man* (Darwin 1872), Darwin wrote that in contrast to other social animals such as bees or ants, mans ‘motive to give aid no longer consists solely of a blind instinctive impulse, but is largely influenced by the *praise and blame* of his fellow men’ (our italics). Why should we attach weight to purely symbolic incentives such as praise and blame? Probably because they are often associated with more material incentives. It would make little sense to strive for a good image if all were treated equally. What others know about us is likely to affect the way we are treated.

In many modern approaches to the evolution of human cooperation, the quest to obtain a good image in the eyes of others is relatively neglected. Both in theoretical investigations and experimental tests, it is often assumed that players are anonymous. In real-life interactions, anonymity is less frequent. Usually, we have some information about the individuals we interact with, and are concerned about our own image.

In this paper, the role of reputation in indirect reciprocity will be reviewed. Indirect reciprocity is one of the Five mechanisms of cooperation (Nowak 2006), and arguably the one that is most special to humans. But it should be stressed right away that (a) reputation plays an important role in other forms of cooperation too (not just in indirect reciprocity), and that (b) conversely, there exist forms of indirect reciprocity which are not based on reputation assessment. This will be taken up in more detail in the discussion.

The canonical approach towards explaining altruistic acts (which, by definition, imply a cost to agents who confer benefits to others) is based on a long philosophical tradition. It aims to show that the costs can be recouped in the long run, so that they are self-interested after all. In other words, it means to take the altruism out of altruism (Trivers 2002).

The simplest scenario in this context is that of reciprocal altruism, usually modeled as a repeated Prisoners Dilemma game (Trivers 1971). The recipient of a helpful action returns help at some later occasion. This is the basis of direct reciprocation. ‘You scratch my back, and I’ll scratch yours’. With indirect reciprocity, the helpful action is returned, not by the recipient, but by a third party. ‘You scratch my back, and someone will scratch yours.’ This promise seems even more suspect than the previous one. Why should anyone shoulder my debt, and
pay vicariously, in my stead?

Among the several variants of indirect reciprocity, the best known is based on reputation (Sugden 1986, Alexander 1987, Nowak and Sigmund 2005). Help is channeled toward those who have acquired the reputation to be helpful. In this way, exploiters are repressed.

2 Reputation assessment

The simplest model is based on a large, well-mixed population of players randomly meeting each other (Nowak and Sigmund 1998a,b). The probability that the same two players meet more than once is negligible, in such a scenario. Whenever two players meet, chance decides who is the (potential) Donor and who is Recipient. Donors decide whether or not to confer a benefit \(b \) to the Recipient, at a cost \(c \) to themselves. As usual, it is assumed that \(c < b \). Donors providing help acquire the image \(G \) (for good), and Donors refusing help the image \(B \) (for Bad). Thus players have binary images, entirely determined by what they decided when last in the position of Donor. We can then consider three strategies: (1) the unconditional helpers \(\text{AllC} \) who always provide help, (2) the unconditional defectors \(\text{AllD} \) who always refuse to help, and (3) the conditional co-operators \(\text{CondC} \), who help Recipients if and only if these have a \(G \)-image. This strategy is the obvious analogue of \(\text{TFT} \) (Tit For Tat). It refuses help to those players who, in their previous round, refused to help. We denote by \(x, y \) and \(z \) the frequencies of the three strategies \((x + y + z = 1)\).

If a population contains only two of these strategies, the outcome is the same with direct as with indirect reciprocity (Brandt and Sigmund 2006). \(\text{AllD} \) players dominate \(\text{AllC} \) players. The competition of \(\text{AllD} \) with the conditional strategy is bi-stable, as long as the cost-to-benefit ratio \(c/b \) is smaller than the probability \(w \) for another round (with the same partner, in direct reciprocity, and with some other partner, in indirect reciprocity). In a mixture of unconditional and conditional co-operators, both do equally well. In order to avoid this dynamic degeneracy, and also to add a realistic feature, we assume that with a probability \(\epsilon \), an intended help is not implemented (see also Fishman 2003, Fishman et al 2001, Lotem et al 1999). In this case, there exists a stable coexistence between \(\text{AllC} \) and \(\text{CondC} \). In the interior of the simplex \(\Delta_3 \) which corresponds to the state space of the population \((x, y, z)\), the replicator dynamics (see (Hofbauer and Sigmund 1998) admits a line of rest points, which joins the \(\text{AllD} + \text{CondC} \) equilibrium with the \(\text{AllC} + \text{CondC} \) equilibrium and is given by a constant value of \(z \). In the
vicinity of the $AllC + CondC$ equilibrium, these rest points are stable (but not asymptotically stable, of course). These stable rest points correspond to highly cooperative populations. In the long run, however, random shocks will eventually push the population into the homogeneous state $y = 1$ corresponding to the fixation of $AllD$ (Fig 1). Hence cooperation can prevail for some time, in this model, but will ultimately break down. Although the details of the dynamics differ, the same conclusion holds with direct reciprocity too, if $CondC$ is replaced by TFT.

(We assume, in both cases, that the cost c is smaller than the discounted benefit that can be expected in the following round, i.e., $wb(1 - \epsilon)$. If this does not hold, the triumph of $AllD$ is immediate.)

One of the reasons for the failure of $CondC$ lies in its paradoxical nature. If a conditional co-operator refuses help to a player with image B, it acquires that image too. The $CondC$-player can, by helping a G-recipient on the next opportunity, redress that image. But during some time, the player is branded, and less likely to receive help. In this sense, the act of punishing a B-player is costly. The strategy can help to uphold cooperation in the population (for a while), but this comes at a price.

There is an obvious way to repair this weakness. It consists in discriminating between justified and unjustified defection. The same problem had already been treated in the context of direct reciprocation. It is well known that a pure TFT-population is greatly plagued by errors in implementation. Each such error provokes a chain of backbiting. A variant of TFT called $ContriteTFT$ can overcome this problem. It is based on the notion of standing (Sugden 1986). In a similar vein, Sugden suggested that assessments, in indirect reciprocity, should take into account whether the Recipient of a refusal to help had a B- or a G-image. Only the latter refusal should be considered as bad, and entail a B image to the non-helping Donor. 'A player can keep his good standing even as he defects, as long as the defection is directed at a player with bad standing. We believe that Sugden's strategy is a good approximation to how indirect reciprocation actually works.' (Nowak and Sigmund 1998a) This point was taken up by a number of authors (Panchanathan and Boyd 2003, Leimar and Hammerstein 2001).

This opens up a vast range of ways of assessing actions, (i.e., attributing a G- or a B-image), even if the actions are not directed at the observer. A first-order assessment rule simply depends on whether the Donor helps the Recipient or not. A second-order assessment rule takes into account, additionally, whether the Recipient has a G-image or a B-image. A third order assessment rule can depend, additionally, on the image of the Donor. It may make a difference whether a B-player or a G-player provides help to a B-player. Altogether, there are 256
third-order assessment rules.

A strategy, in this indirect reciprocity game, depends not only on the assessment rule (i.e., how the player judges actions between two other players), but also how such an assessment is used to reach a decision on whether to help or not. A player could, for instance, decide to give help only to G-players. But the player could also take into account the own image, and help, for instance, whenever the own image is B, so as to remove the blemish as quickly as possible. There are 16 such action rules (including the two unconditional rules $AllC$ and $AllD$), and hence 4096 different strategies conceivable in this set-up (Brandt and Sigmund 2004, Ohtsuki and Iwasa 2004). Not surprisingly, most are nonsensical.

Ohtsuki and Iwasa (2004, 2006) have shown that there exist, among the 256 assessment rules, only eight which can lead to cooperation, when the whole population embraces them. Each of these ‘leading eight’ is stable in the following sense: there exists a specific action rule such that no dissident minority using another action rule (such as $AllC$ or $AllD$) can do better, and invade. None of these ‘leading eight’ is of first order. Each distinguishes between justified and unjustified defection. They agree on several points. It is always good to give help to a G-player, and always bad to withhold help from a G-player. Moreover, a good player refusing help to a B-player does not lose the G-image. There remain three situations: namely when someone (good or bad) helps a B-player, or when a B-player refuses help to a B-player. This yields the $2^3 = 8$ assessment systems belonging to the leading eight. Two of them are of second order, and in the following we shall only deal with them. They both agree in viewing (rather oddly) that a B-player refusing to help a B-player obtains a G-image. They disagree on whether it is good to help a B-player or not. The assessment that views it as good will be termed $MILD$, the other $STERN$. For both $MILD$ and $STERN$, the corresponding action rule is: give help if and only if the Recipient has image G. (In particular, the own image will not influence the decision). The corresponding strategy will again be denote by $MILD$ resp. $STERN$.

It is straightforward to analyze the replicator dynamics for a population consisting of the two unconditional strategies $AllC$ and $AllD$ and either the $MILD$ or the $STERN$ strategy (Ohtsuki and Iwasa 2007, Sigmund 2010). In each case, we obtain a bi-stable situation. (Fig.2) But what happens if both the $MILD$ and the $STERN$ strategy occur in the population? This is not obvious. It is important to note that the stability of the leading eight means: no other action rule can invade. This does not imply that no other assessment rule can invade.

Ohtsuki and Iwasa have assumed, like several other authors (Panchanathan and Boyd 2004, etcXXX), that all members of the population agree in their as-
essment. This means that every player has either the G- or the B-image in the eyes of all players. These authors would agree that it is unlikely that all players observe all interactions, but they assume that every interaction is observed by one player, whose assessment is then shared by all. No matter whether this is a likely scenario or not, it has clearly to be abandoned as soon as one is interested in the competition of several assessment rules. Which moral norm is likely to become established in the population?

Thus G and B mean different things in the eyes of a MILD or a STERN observer. To distinguish them, we may say that a player can be good or bad when assessed according to the MILD rules, and nice or nasty when assessed by the STERN rules. A priori, then, a player can be good and nice, good and nasty, bad and nice or bad and nasty.

The replicator dynamics of a population consisting only of players adopting the MILD or the STERN strategy is disappointing. There is no selective advantage one way or the other, the segment representing all possible mixtures of MILD and STERN consists of rest points. If we add unconditional AllC- or AllD-players to the population, we observe a bistable outcome. Depending on the initial condition, either a homogeneous AllD population will emerge, or a stable mixture of MILD and STERN. The best that can be said is that STERN has a slight advantage, in the sense that whenever there are equally many STERN and MILD players (together with unconditional players), the ratio of STERN to MILD will increase (Uchida and Sigmund, 2010).

This analysis, so far, has relied on the assumption of perfect information. Every player knows about every interaction, either by direct observation or through gossip. This is clearly an unrealistic assumption. If we want to give it up, we must assume that every player has a private list of the images of all other players. Thus the image matrix (β_{ij}) consists of entries G or B, depending on whether player j has image G or B in the eyes of player i. Whenever player j is Donor to some Recipient player k, then those players i who observe the interaction will have an occasion for updating their image of j. The new entries will depend on β_{ik} (since we assume only second-order assessments, the image of the Donor plays no role). But if player i does not observe the interaction between j and k, the value β_{ij} remains unchanged.

This updating process corresponds to a Markov chain on the space of image matrices. A rigorous analysis seems to offer considerable challenges. Uchida has investigated the stochastic process by means of extensive computer simulations (Uchida 2011). The outcome is striking. The smallest deviation from the perfect-information condition has disastrous consequences for a homogeneous population.
of *STERN* players. In the long run, every entry of the image matrix is *G* or *B* with equal probability. The entries are uncorrelated. Thus effectively, a *STERN* player is not doing any better than a player letting a coin-toss decide between helping or not. Compared with this, a homogeneous population of *MILD* players does much better. A large majority of them will keep agreeing on the images of their co-players. (The percentage depends only on the probability ϵ of misimplementing an intended donation, and on the probability q to observe a given interaction.) A *CondC* population, on the other hand, ends up with a bad image for everyone. But a mixture of *CondC* and *AllD* can keep cooperating: meeting with an *AllC*-player provides the conditional co-operators with an opportunity to redress their image.

In order to obtain an intuitive feeling for these results, we may look at the updating process for β_{ij}. With probability $(1-q)$, it remains unchanged. With probability q, it will be replaced by the new image of j in the eyes of player i. This is 1 if either (a) j gives to k, and i approves, or j refuses to help k, and i approves. The probability that j helps k is $(1-\epsilon)\beta_{jk}$, and the probability that i approves is 1 if i follows the *MILD* or *CondC* assessment rule, and β_{ik} in the case of *STERN*. The probability that j refuses to help k is $1-(1-\epsilon)\beta_{jk}$, and the probability that i approves is $(1-\beta_{ik}$ if i follows the *MILD* or *STERN* assessment rule, and 0 if i plays *CondC*. If we assume (wrongly) that the images of k in the eyes of i and j, i.e., β_{ik} and β_{jk}, are independent, and if we denote by h_{ij} the expected value of β_{ij} etc, then in the stationary equilibrium, where $h_{ij} = h_{jk} = h$ by symmetry, we obtain for *CondC*, *MILD* and *STERN*, respectively

\[
(1-\epsilon)h = h \\
(1-\epsilon)h + (1-(1-\epsilon)h)(1-h) = h \\
(1-\epsilon)h^2 + (1-(1-\epsilon)h)(1-h) = h
\]

The corresponding solutions are $h = 0$, $h = (1 + \sqrt{\epsilon})^{-1}$ and $h = 1/2$, respectively. Of course the independence assumption is false, but in the case of small q it is almost satisfied.

This handful of results is a striking illustration of the fact that information conditions are of the utmost importance, for reputation-based indirect reciprocity. This was stressed already in the first papers on this topic. In (Nowak and Sigmund 1998b), q denotes the probability that a player knows about the reputation of another player, i.e., has some information about the behavior of that player. With probability $1-q$, the co-player is unknown. In this case, it is assumed that the co-player receives the benefit of doubt, i.e., is held to be a *G*-player. *CondC*-players
could resist invasion by AllD players if $q > c/b$ (or, in a more elaborate model, if $c < qwb(1 - e)$. In (Uchida 2011) q is the probability that a given player observes the last action of a co-player. If not, then the co-players former image will remain unaltered. Eventually, models will have to encompass both types of uncertainty. It could be that in Alices eyes, player Bob is a stranger. It could also be that Alice knows Bob, but has missed Bobs last action as a Donor.

Whatever the interpretation of q, it seems likely that it is not a constant. In particular, it is reasonable to assume that the social network of a player grows with time. In this case, the player will be more and more likely to know the reputation of a recipient. In (Fishman et al 2001), (Mohtashemi and Lui 2003) and (Brandt and Sigmund 2005), it is shown that appropriate assumptions can turn the CondC + AllC equilibrium into a stable attractor, able to repel invasion attempts by AllD-minorities.

It is an obvious weakness of all models considered so far that they are based on a very short memory only. Assessments are updated according to the action last observed. In real life, reputations are not always based on one action only. If we know that a player has cooperated for a long time, and we suddenly see him defecting in one interaction, we will not necessarily lose our good opinion of him (but rather assume that the recipient deserved no better). In particular, (Berger 2011) has shown that a tolerant first-order assessment rule (TolerantScoring) can stably sustain cooperation. Such an assessment with built-in tolerance against single defections can be based on sampling two actions in the recipients past.

Several models consider a more sophisticated evaluation system, for instance with a score that is not binary (see e.g. Nowak and Sigmund 1998a, or Leimar and Hammerstein 2001). It provides stability to cooperation: a few isolated defections will not destroy the good reputation that a player has accumulated, but only slightly reduce it.

3 Discussion

Historically, studies of indirect reciprocity were based on direct reciprocity. In a certain sense, however, indirect reciprocity can be viewed as the primary phenomenon, and direct reciprocity as a special case, based on direct experience (as a recipient) of the co-players action. In any case, direct and indirect reciprocation are likely to interact. Thus, players who start a repeated Prisoners Dilemma interaction with some co-player are likely to be guided by that co-players past behavior towards others, and to defect in the first move. The corresponding strategy
ObserverTFT (Pollock and Dugatkin 1992) is an interesting link between TFT and CondC. (Whereas the usual TFT-player, on engaging with a new partner in a repeated Prisoners Dilemma game, always provides help, an ObserverTFT also takes into account how that new partner behaved in interactions with others, and in particular defects in the first round if and only if this new partner was last seen defecting.)

Roberts (Roberts 2005) has pointed out that in small populations, the assumption that players interact at most once is implausible. If the probability of re-meeting is sufficiently large, CondC will be superseded by strategies based on direct experience. But a second-order assessment based on three images (good, bad and neutral) exploits advantageously the supplementary information conveyed by reputation and proves superior to strategies based on direct experience only.

It seems plausible that humans do not have separate modules for playing direct reciprocity or indirect reciprocity. Similarly, behavior in direct or indirect reciprocity affects, and is affected, by behavior in public good games (Milinski et al 2002a,b, Panchanathan and Boyd 2004 xxx). A good reputation for cooperating in dyadic interactions is likely to promote the reputation for cooperating in larger groups, and vice versa. (In this context, it may be noted that non-punishers will, in general, not be punished, see Kiyonari et al 2004, just as rewarders will often be rewarded in turn. The former issue is an Achilles heel for cooperation based on negative incentives. The latter is an advantage for cooperation based on positive incentives.)

Both direct and indirect reciprocity rely on the implicit assumption that players act consistently, and that past behavior allows to infer future actions.

An impressive number of experiments have shown that indirect reciprocity works (Wedekind and Milinski 2000, Wedekind and Braithwaite 2002, Bolton et al 2004, 2005, Seinen and Schram 2005, Engelmann and Fischbacher 2009). Interestingly, many players seem to content themselves with first-order assessment, possibly because higher-order assessment is cognitively taxing (Milinski et al 2001). Of particular interest are the large-scale experiments unwittingly provided by e-trading (Keser 2002, Bolton et al 2004). In e-Bay, for instance, the remarkably high level of honesty is supported by a very simple assessment system based on the satisfaction of customers with their partners. This measure (amalgamated over six months) does not take into account the reputation of the customers themselves who evaluate their partner, and hence is of first-order.

Ever since Trivers seminal paper on reciprocal altruism (Trivers 1971), it is known that reciprocation need not be based on repeated interactions between the same two players only. There exist different notions of generalized reciprocation.
What we have described is reciprocation based on reputation: players known for being helpful are more likely to be helped not necessarily by their recipients, but possibly by others who return the help vicariously, so to speak. Vicarious reciprocation is also known as up-stream reciprocity. We may say that help is caused by a feeling of admiration (Shalizi 2011). Down-stream reciprocity occurs when a player who has been helped returns the help, not to the donor, but to a third party. This can be viewed as misguided reciprocation, caused by a feeling of gratitude. Such misguided reciprocation is well documented by experiments, not only on humans (Wedekind and Milinski 2000, Engelmann and Fischbacher 2009, Rutte and Taborsky 2007, Rutte and Pfeiffer 2009, Barta et al 2010). So far, the only theoretical models that support it seem to require some structured population, and localized interactions (Pfeiffer et al 2005).

The promise of a reward (i.e., a positive incentive) can be used to promote cooperation, if individuals are opportunistically motivated to help whenever they can expect a reward (Hauert et al 2001). The mechanisms are not quite the same. In indirect reciprocity, players reward a co-player because they know that this co-player has performed a helpful action. In the context of positive incentives, players perform a helpful action because they know that they will receive a reward. Switching from positive to negative incentives, we note that an individual with a reputation for punishing cheaters is more likely not to be exploited. In several papers, it has been argued that a player with a reputation as a punisher is less likely to encounter exploiters. Hence, acquiring such a reputation can be beneficial (Hauert, Sigmund, etc XXX). (So far, there seems only one experimental paper supporting this view, see Barclay 2011). All these mechanisms (indirect reciprocity, positive and negative incentives) can be viewed as instances of generalized reciprocity, and the corresponding strategies as offspring of Tit For Tat.

In a larger context, explanations of cooperation based on the handicap principle, such as competitive altruism, also rely on reputation (Zahavi 1995, Roberts 1998, Bshary and Grutter 2006, Sylwester and Roberts 2010). An individual who is known as a good co-operator is more likely to be chosen as partner than an individual known for free-riding. The resulting partner-market may well be the most important aspect of reputation-based cooperation. Our reputation can greatly affect our economic opportunities. As Darwin said, praise and blame can have an important influence on our willingness to help others.
Acknowledgment: Part of this work was supported by TECT I 104-G15.

4 References

Brandt, H. and Sigmund K (2005) Indirect reciprocity, image scoring, and moral hazard, PNAS 102 2666-2670

Hauert et al 2001

Hilbe

Nowak, M A and Sigmund, K (1998b) The dynamics of indirect reciprocity, JTB 194, 561-574
Ohtsuki, H., and Iwasa, Y. 2006. 'The leading eight: social norms that can maintain cooperation by indirect reciprocity’, Journal of Theoretical Biology 239, 435-444.
Ohtsuki, H. and Iwasa, Y. 2007. 'Global analyses of evolutionary dynamics and exhaustive search for social norms that maintain cooperation by reputation’, Journal of Theoretical Biology 244, 518-531.
Pollock, G B and L A Dugatkin (1992) Reciprocity and the evolution of reputation, JTB 159, 25-37
Shalizi, C. 2011, Honor among thieves, American Scientist ?? 87-88

Figure 1.
Figure 2.
Figure 3.