The Solution of a Two-Person Poker Variant

Ponssard, J.-P.

IIASA Working Paper
WP-74-016

1974
THE SOLUTION OF A TWO-PERSON POKER VARIANT

Jean-Pierre Ponssard

June 1974

WP-74-16

Working Papers are not intended for distribution outside of IIASA, and are solely for discussion and information purposes. The views expressed are those of the author, and do not necessarily reflect those of IIASA.
THE SOLUTION OF A TWO-PERSON POKER VARIANT

by

Jean-Pierre Ponssard

International Institute for Applied Systems Analysis
Laxenburg, Austria

(On leave from the Centre d'Enseignement Supérieur du Management Public, 94112, Arcueil, and from Groupe de Recherche en Gestion des Organisations Ecole Polytechnique, 75005, Paris, France)

June 1974
ABSTRACT

This note presents the solution of a two-person poker variant considered by Friedman [1]. The solution is derived using a general algorithm proposed by the author to solve two-person zero sum games with 'almost' perfect information [2].
1. **Description of the Game**

The following poker game is a slight generalization of Friedman's "Simple Bluffing Situation with Possible Reraise" [1]. Player 1 has a low card up and one card down, Player 11 has a high card up and one card down. If both players have either a high or a low card down, then Player 11 wins; otherwise, the player with the high card down wins. There are n units in the pot. Player 1 may either drop or raise 1 unit. Then Player 11 may either drop, call or reraise (m-1) units. Finally, Player 1 may either drop or call (in Friedman's example n=1, m=4).

Let \(p \) and \(q \) be the respective probabilities that Player 1 and Player 11 have a high card down. Of course, each player knows whether his own card down is high or low.

2. **Computation of the Value of the Game**

The solution will be derived using a general algorithm proposed by the author to solve two person zero sum games with 'almost' perfect information[2]. For convenience we shall use the same notation as in [2].

Let the letters D, C, R stand for drop, call or raise respectively and let \(m_1 \in \{D, R\} \), \(m_2 \in \{D, C, R\} \), \(m_3 \in \{D, C\} \). Let \(V^{m_1 m_2 m_3} \) be the value of the \(m_1 - m_2 - m_3 \) restricted game; that is, the game in which the players' choice sets are restricted to the unique elements \(m_1, m_2, m_3 \) respectively. Then we have (theorem 1 in [2])

\[V^{m_1m_2} = \text{Cav}(\text{Max} V^{m_1m_2m_3}), \quad \Omega_1 m_3 \]

\[V^{m_1} = \text{Vex}(\text{Min} V^{m_1m_2}), \quad \Omega_{II} m_2 \]

and finally: \(V = \text{Cav}(\text{Max} V^{m_1}), \quad \Omega_I m_1 \)

We shall make the computation stage by stage and represent the functions on the unit square \((0 \leq p \leq 1, 0 \leq q \leq 1)\). It will turn out that all functions will be "rectangle wise" linear (of the form \(apq+bp+\lambda q+\delta\) on rectangles) so that only the values at the extremal points of the rectangles need be computed.

For the computation of the optimal strategies, it will also be helpful to keep track of how the Cav and Vex are constructed. This will be done by labeling the corresponding vertices of the rectangles. (For instance, for \(q \in [0,(m+n+1)/(2m+n)]\), \(v^{RR}\) is a convex combination of \(v^{RRD}\) at \(p = 0\) and \(v^{RRC}\) at \(p = 1\)).
* (Player 1's hidden card, Player 11's hidden card)
3. Computation of the Optimal Behavioral Strategies

3.1 Player 1's first optimal move

For \(p_0 \in \left[0, \frac{m_1}{n_2}\right] \) and \(q_0 \in \left[0, \frac{n(m+n+1)}{(n+1)(2m+n)}\right] \)

Step 1

It is easily seen that

\[
V(p_0, q_0) = \alpha_D V^D(0, q_0) + \alpha_R V^R((n+1)/(n+2), q_0)
\]

with

\[
p_0 = \alpha_D 0 + \alpha_R \frac{n+1}{n+2}.
\]

Thus,

\[
p_D = 0, \quad p_R = \frac{n+1}{n+2}, \quad \alpha_R = \frac{p_0(n+2)/(n+1), \quad \alpha_D = 1 - \alpha_R}
\]

So that Player 1's optimal move may be written as follows

| Player 1 | \(\text{Prob} \left(m_1 | L \right) \) | \(\text{Prob} \left(m_1 | H \right) \) |
|----------|---------------------------------|---------------------------------|
| \(m_1 = D \) | \(\frac{\alpha_D}{1-p_0} \) | 0 |
| \(m_1 = R \) | \(\frac{\alpha_R(1-p_R)}{1-p_0} \) | 1 |

For \(p_0 \in \left[\frac{n+1}{n+2}, \frac{n(n+m+1)}{(n+1)(2m+n)}\right] \)

\[
V(p_o, q_0) = V^R(p_o, q_0)
\]

Hence Player 1 raises independently of his state.

For \(q_0 \notin \left[0, \frac{n(n+m+1)}{(n+1)(2m+n)}\right] \)

\[
V(p_o, q_0) = V^D(p_o, q_0)
\]

Hence Player 1 drops independently of his state.
3.2 Player II's optimal first move

Given that Player 1 raised, Player II may either drop, call or re-raise.

For \(p_0 \in [0, (n+1)/(n+2)] \) and \(q_o \in [0, n(m+n+1)/(n+1)(2m+n)] \)

Step 1

Since Player 1 raised, we have \(p_1 = p_R \). It is easily seen that we have two extremal Bayesian best responses for Player II.

\[
k = 1
\]

\[
V^R(p_R, q_o) = \beta_D^1 V^{RD}(p_R, 0) + \beta_R^1 V^{RR}(p_R, (m+n+1)/(2m+n)),
\]

with \(q_o = \beta_D^1 0 + \beta_R^1 (m+n+1)/(2m+n) \).

Thus \(q_D = 0, q_R^1 = (m+n+1)/(2m+n), \beta_R^1 = q_o(2m+n)/(m+n+1), \beta_D^1 = 1 - \beta_R^1 \)

| \(y \) | \(\text{Prob} \ (m_2|L) \) | \(\text{Prob} \ (m_2|H) \) |
|---|---|---|
| \(m_2 = D \) | \(\beta_D^1/(1-q_o) \) | 0 |
| \(m_2 = R \) | \(\beta_R^1 (1-q_R^1)/(1-q_o) \) | 1 |

\[
k = 2
\]

\[
V^R(p_R, q_o) = \beta_C^2 V^{RC}(p_R, 0) + \beta_R^2 V^{RR}(p_R, (m+n+1)/(2m+n)),
\]

with \(q_o = \beta_C^2 0 + \beta_R^2 (m+n+1)/(2m+n) \).

Thus \(q_C = 0, q_R^2 = (m+n+1)/(2m+n), \beta_R^2 = q_o(2m+n)/(m+n+1), \beta_C^2 = 1 - \beta_R^2 \).

| \(y \) | \(\text{Prob} \ (m_2|L) \) | \(\text{Prob} \ (m_2|H) \) |
|---|---|---|
| \(m_2 = C \) | \(\beta_C^2/(1-q_o) \) | 0 |
| \(m_2 = R \) | \(\beta_R^2 (1-q_R^2)/(1-q_o) \) | 1 |

(notice that \(q_R^1 = q_R^2 \) and \(\beta_R^1 = \beta_R^2 \) so that the \(k \) index may be dropped).
Step 2

We now have to find the convex combination of these two Bayesian best responses which is in equilibrium with Player 1's first move (that is, which makes him indifferent between bluffing or not, if he has a low card).

The supporting hyperplane to $V(p,q_o)$ for $p \in [0,p_R]$ has for equation:

$$\gamma = \left[\frac{n-q_o(n+1)(2m+n)}{(m+n+1)}\right] \frac{(n+2)p}{n+1}.$$

The hyperplanes associated with the two Bayesian best responses are easily identified since y^1 is a Bayesian best response for $p \in [p_R,0]$ and y^2 for $p \in [0,p_R]$. Thus

$$y_1 = n-q_o(n+1)(2m+n)/(m+n+1),$$

$$y_2 = \left[1-q_o(2m+n)/(m+n+1)\right] \frac{(n+2)p}{n+1} - 1$$

So that

$$\gamma = \mu_1 y_1 + \mu_2 y_2$$

with

$$\mu_1 = \frac{1}{n+1} \left[1-q_o(2m+n)/(m+n+1)\right], \quad \mu_2 = 1-\mu_1$$

Player 11's optimal strategy may be interpreted as follows:

- if he has a high hand, he reraises,
- otherwise, he reraises with probability $\beta_R(1-q_o)/(1-q_o)$
 or, given that he does not reraise, then he will drop
 with probability μ_1, and call with probability μ_2.

For $p_o \in [0,(n+1)/(n+2)]$ and $q_o \in [0,n(n+m+1)/(n+1)(2m+n)]$

Step 1

Since Player 1 raised independently of his state, $p_1 = p_o$.
There is only one Bayesian best response for Player 11; it is \(y^1 \) as described on page 6, thus it is Player 11's optimal first move.

3.3 Player 1's optimal move

The procedure used in 3.2 may be repeated. We shall only give the final result.

For \(p_0 \in [0, (n+1)/(n+2)] \)

| Player 1 | Prob \((m_3 | L)\) | Prob \((m_3 | H)\) |
|----------|------------------|------------------|
| \(m_3 = D \) | 1 | \((m-1)/(m+n+1)\) |
| \(m_3 = C \) | 0 | \((n+2)/(m+m+1)\) |

For \(p_0 \in [(n+1)/(n+2), 0] \)

| Player 1 | Prob \((m_3 | L)\) | Prob \((m_3 | H)\) |
|----------|------------------|------------------|
| \(m_3 = D \) | 1 | \(1-(n+1)/(m+n+1)p_0\) |
| \(m_3 = C \) | 0 | \((n+1)/(m+n+1)p_0\) |

While the optimal strategies may appear complicated, the description of the "story" of the game in terms of the graph of conditional probabilities is quite simple. Here is such a story for \(p_0 \in [0, \frac{n+1}{n+2}] \), \(q_0 \in [0, n(n+m+1)/(n+1)(2m+n)] \).
Starting with probability distributions $p_o = \frac{1}{2}$ and $p_o = \frac{1}{2}$, an observer to the game could derive the following conditional probabilities:

- Player 1 drops, he has a low card,
- Player 1 raises of n units, the probability that he has a high card jumps from p_o to $\frac{n+1}{n+2}$;
- Player 2 calls or drops, he has a low card,
- Player 2 raises of m units, the probability that he has high cards jumps from q_o to $\frac{m+n+1}{2m+n}$;
- Player 1 calls, he has a high card;
- Player 1 drops, the probability that he has a high card falls from $\frac{n+1}{n+2}$ to $\frac{(m-1)(n+1)}{m(n+2)}$.

This sequence of conditional probabilities and the knowledge of (μ_1, μ_2) fully describe the optimal behavioral strategies.
Ordinarily the conditional probabilities would be sufficient, except that here they do not completely specify Player II's strategy.

4. **Some Comments on Computational Feasibility**

The use of this algorithm for real poker is severely limited by the fact that so far no numerical procedure is available for the Cav and Vex operators in more than two dimensions. Concavifications have to be carried out by hand using "visual judgments". On the other hand, the number of reraises and their amounts may be quite arbitrary with no further complications.
REFERENCES

[1] Friedman, L., "Optimal Bluffing Strategies in Poker"
Management Science, Vol. 17, No. 12, Aug. 1971