A Cutting Plane Algorithm for Integer Programs With an Easy Proof of Convergence

Bell, D.E.

IIASA Working Paper

WP-73-015

1973
1. **Introduction**

Let B be the optimal LP basis for a given problem with m rows and $n+m$ variables.

\[
\begin{align*}
\min & \quad c_B^T y + c_N^T x \\
\text{s.t.} & \quad B y + N x = b \\
& \quad y, x > 0 \text{ integer,}
\end{align*}
\]

where $B^{-1} b \geq 0$, $c_N \geq c_B B^{-1} N$, and all coefficients are assumed to be integral.

Lemma 1 If $c_B B^{-1} b$ is not integral, the constraint

\[
 c_B y + \lfloor c_B B^{-1} N \rfloor x \geq \lfloor c_B B^{-1} b \rfloor
\]

is a valid cut for the I.P., where $\lfloor t \rfloor$ is the lowest integer not less than t.

Proof Since B is optimal

\[
 c_B y + c_N^T x \geq c_B B^{-1} b
\]

for all feasible y, x, and for any value of c_N satisfying $c_N \geq c_B B^{-1} b$. In particular

\[
 c_B y + \lfloor c_B B^{-1} N \rfloor x \geq c_B B^{-1} b
\]
Since c_B, $[c_B^{-1}N]$ are integral, for all feasible integral values of (y, x)

$$c_B y + [c_B^{-1}N] x \geq [c_B^{-1}b]$$

which is therefore a valid cut.

Lemma 2 If the cut of Lemma 1 is added to the LP, the optimal objective value increases to at least $[c_B^{-1}b]$.

Proof Let (y^*, x^*) be the optimal solution to the new LP, then

$$c_B y^* + c_N x^* \geq c_B y^* + [c_B^{-1}N] x^* \geq [c_B^{-1}b]$$

since $c_N \geq [c_B^{-1}N]$ because c_N is integral and because of the new cut.

//
2. The Algorithm

Step 1 Solve the L.P.

Step 2a If the value of the objective is not integral, add the cut of lemma 1 and return to step 1.

Step 2b If the value of the objective is integral, create a subproblem with added constraint

\[c_B y + c_N x = c_B B^{-1} b \]

Togeter with a new objective function \((d_B, d_N)\) chosen
only to be independent of the existing m+1 rows. Implement this algorithm on the subproblem. If the subproblem has a feasible solution, it is optimal. If it has no feasible solution, add the cut

\[c_B^y + c_N^r \geq c_B^{B^{-1}} + 1 \]

to the original L.P. and go to step 1.
3. **Convergence**

Theorem The algorithm of section 2 produces the optimal solution, or shows there is none, after solving only a finite number of L.P. problems, if the L.P. feasible region is bounded.

Proof By induction on \(n \) the number of non basic variables.

For \(n = 0 \) the algorithm produces the solution or the information that no solution exists after solving at most two L.P.'s.

Assume that the algorithm converges for all programs having up to \(n \) non basic variables and now consider a problem having \(n + 1 \).

If the subproblem is created, it has only \(n \) non basic variables and hence can be solved finitely so that each repetition of step 1 occurs after a finite number of L.P. solutions. Note that the objective value increases by at least 1 every two iterations of step 1. If the L.P. region is bounded, the algorithm must converge finitely.