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Calculation of the average number of excitons per QD <N> based on one-, two- and 

three-photon pumping. The one- (1PA), two- (2PA) and three-photon (3PA) absorption 

cross-sections of CdSe/CdS/ZnS core-multi-shell QDs were determined in order to calculate 

the average number of excitons at threshold. The 1PA at 480 nm was determined, following 

previously reported method
[1]

, through renormalization of extinction coefficient curves for 

CdSe QDs published by Yu et al.
[2]

 during overcoating with CdS/ZnS multi-shell. According 

to the first exciton absorption peak wavelength of 603 nm, we derive the corresponding 

extinction coefficient to be 4.0×10
5
 L mol

-1
 cm

-1
, which corresponds to the 1PA ( 1 ) of 1.4 

×10
-15

 cm
2
 at 480 nm. The 2PA at 800 nm was determined by Z-scan measurements (see 

Experimental Section). Differently, Si biased detector was used at 800 nm, while Ge biased 

detector at 1300 nm. The 2PA ( 2 ) and 3PA ( 3 ) of CdSe/CdS/ZnS QDs were derived to be 

13700 GM and 2.8×10
-77

 cm
6
 s

2 
photon

-2
, respectively. Finally, the average number of 

excitons per QD were calculated by: 

One-photon pumping: 
[1]

  11 /  fN                                                                        (1)  

Two-photon pumping: 
[1, 3]

   2

22

2 /  fN                                                             (2)  

Three-photon pumping: 
[3,4]

   3

3

233

3

21 3/  IN                                                   (3)  

where f is the pump fluence (J cm
-2

), is the laser pulse-width (seconds), I is the pump 

intensity (W cm
-2

), and 1 , 2 and 3 are the photon energies at 480 nm, 800 nm and 1300 

nm, respectively. The relationship between f and I is given by:
[3]

  

2/21  If                                                                            (4) 
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The TEM statistical information on the size distribution of CdSe/CdS QDs and 

CdSe/CdS/ZnS QDs are shown in Figure S1a and S1b, respectively. The inhomogeneity of 

size distribution is found to increase after multi-shell coating from the fit with Gaussian 

curves (red lines). 

   

Figure S1. Size histograms for a) CdSe/CdS QDs and b) CdSe/CdS/ZnS QDs. The red lines 

are the fit with Gaussian curves. 
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The optical images of close-packed colloidal QDs solids are shown in Figure S2a-d. It is 

found that QDs solution can spread very well on the glass slides and optically smooth surfaces 

are formed at room temperature. However, a pretty rough surface was obtained by drying the 

QDs suspension drop-casted onto hydrophobic glass slides at a relatively high temperature 

(50 ~ 60 
o
C).   

 

Figure S2. a) Smooth CdSe/CdS/ZnS core-multi-shell QDs film. b) Well-defined cracking 

formed in the sample during solvent evaporation. c) Film thickness characterization. (d) Self-

assembled CdSe/CdS/ZnS core-multi-shell QDs aggregations. 
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Figure S3a shows the single exciton decay of close-packed CdSe/CdS/ZnS QDs solids with a 

lifetime of 16.5 ns at low pumping intensity of 5.4 mJ cm
-2

. The decreased lifetime compared 

to that of dilute solution of CdSe/CdS/ZnS QDs was mostly due to the dipole-dipole 

interaction between adjacent QDs.
[5]

 Figure S2b-d depicts the time resolved PL spectrograms 

of PL dynamics with varied pumping intensities.  

 

Figure S3. a) Single exciton decay of close-packed CdSe/CdS/ZnS QDs solids with a lifetime 

of 16.5 ns at low pumping intensity of 5.4 mJ cm
-2

. b)-d) Time resolved PL spectrograms of 

PL dynamics of close-packed CdSe/CdS/ZnS QDs solids at excitation intensities of 5.4 mJ 

cm
-2

, 14.0 mJ cm
-2

 and 16.0 mJ cm
-2

, respectively.  
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Figure S4 shows the schematic of Z-scan experimental setup used in this work. The laser 

beam was separated into two parts through a beam splitter. The reflected beam was recorded 

(Detector 1) in order to reduce the influence of pulse fluctuations. The transmitted beam was 

focused onto a 1 mm thick quartz cuvette containing the sample with radius of ~20 µm by a 

circular lens with a focus length of 20 cm, which moved along the laser beam axis, and finally 

detected by a Ge biased detector (Detector 2) using standard lock-in amplifier technique. 

 

Figure S4. Schematic of Z-scan experimental setup. 
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Table S1. A summary of results in this work and data available in the literature about 

3PA cross-sections of commonly used QDs and dye. 

 

Samples Diameters (nm) Parameters  of 

excitation pulse 

3PA cross-sections 

(cm
6
 s

2
 photon

-2
) 

CdSe/CdS QDs
a
 4.95 100 fs,1300 nm 4.3×10

-78
 

CdSe/CdS/ZnS QDs
a
 6.57 100 fs,1300 nm 2.8×10

-77
 

CdSe QDs
[6]

 3.9 160 fs, 1300 nm ~10
-78

 

CdS QDs
[7]

 NA 100 fs, 1000 nm ~10
-79

 

ZnS QDs
[8]

 2.5 120 fs, 620-780 nm ~10
-78

 

Rhodamine 6G
[9]

 NA 150 fs, 1300 nm 6×10
-81

 

a: Experimental uncertainty: ±15% 
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