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ABSTRACT 

PHOTOSENSITIZERS FOR PHOTODYNAMIC ACTION AND SYNTHESIS OF 

MODULES FOR A MOLECULAR DEMULTIPLEXER 

Tuğçe Durgut 

M.S. in Department of Chemistry 

Supervisor: Prof. Dr. Engin Umut Akkaya 

August, 2014 

Photodynamic therapy (PDT) is a new therapeutic methodology that uses light as a 

distinguishing tool for the treatment of diseased cells. In recent years PDT has 

become one of the most preferred therapies because it is innocent for the healthy 

cells and tissues while diagnosing and curing the malignant cells and tissues. Bodipy 

is one of the most favorite fluorophore in this field due to its excellent chemical and 

physical properties. Logic gates are widely used in modern technology as the 

fundamentals of logical operations for the development of science. The progressive 

advances leads to the emergence and growth of molecular logic gates. Molecular 

logic gates can be used for the diagnosis and therapies of disease which are 

originated from the heredity. In addition, they occupy an important place  in the 

theoretical and practical use of photodynamic therapy. 

In the first part of my thesis, we designed and synthesized a calix[4]arene-Bodipy 

conjugate molecule as a carrier for the photodynamic therapy agents. It is an 

amphiphilic delivery molecule that is utilized for the curing of tumor tissues. In the 

second part, we synthesized modules for molecular logic gate function, DEMUX 

(demultiplexer), serving as a theranostic device which selects either singlet oxygen 

channel or energy transfer between the modules depending on the inputs. The 

superiority of the project is that it serves a realistic pathway for the PDT. 

 

Keywords: Calixarenes, Logic gates, photodynamic therapy, demultiplexer 
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ÖZET 

FOTODİNAMİK AKSİYON İÇİN FOTODUYARLAŞTIRICILAR VE 

MOLEKÜLER DEMULTİPLEKSER MODÜLLERİNİN SENTEZİ 

Tuğçe Durgut 

Kimya Bölümü, Yüksek Lisans 

Tez Yöneticisi: Prof. Dr. Engin Umut Akkaya 

Ağustos, 2014 

Fotodinamik terapi (PDT), ışığı hasta hücrelerin tedavisinde ayırt edici etken olarak 

kullanan bir tanı ve tedavi yöntemidir. Kötücül hücre ve dokuların tanı ve tedavi 

işlemleri süresince sağlıklı hücre ve dokulara zararsız olması sebebiyle son yıllarda 

en çok tercih edilen terapi yöntemi fotodinamik terapi olmuştur. Bodipy, üstün 

kimyasal ve fiziksel öellikleri sayesinde bu alandaki en gözde floroforlardan biridir. 

Mantık işlemlerinin temelinde yatan mantık kapıları, bilimin ilerleyebilmesi için 

modern teknolojide sıkça kullanılır. Bilimde ilerleyen gelişmeler moleküler mantık 

kapılarının ortaya çıkıp gelişmesine öncülük etmiştir. Moleküler mantık kapıları 

kalıtsal olan hastalıkların tanı ve tedavisinde kullanılabilir. Ayrıca, fotodinamik 

terapinin teoritiksel ve pratik kullanmında önemli bir etki alanına sahiplerdir. 

Tezimde, ilk bölümde fotodinamik terapi ajanslarını taşıyacak olan kaliks[4]aren-

bodipy türevini ve sentezledik. Bu molekül, ampifilik özellik göstermekte ve tümörlü 

dokular için çalışmaktadır. Ikinci bölümde ise, bir moleküler mantık kapısı olan, 

teranostik cihaz vazifesi görerek glutatiyon ve asit girdileri ile singlet oksijen 

üretimini ya da ışımayı tercih eden DEMUX modüllerinin sentezi ile çalıştık. Bu 

projenin üstünlüğü ise, PDT için gerçekçi bir yol sağlamasıdır. 

 

Anahtar sözcükler: Kaliksarenler, Mantık kapıları, fotodinamik terapi, 

Demultiplekser 
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CHAPTER 1 

1 INTRODUCTION 

As the space need is getting bigger in the world everything in life has to be smaller 

and smaller. Molecular logic gates are the protagonists of this necessity. These small 

smart molecules can do everything one can imagine; from simple theoretical Boolean 

algebra to photodynamic therapy. This thesis includes the project that is about the 

molecular logic gates and their applications in photodynamic therapy.  

Logic gates are designed to produce integrated circuits. They are small devices that 

carry out logical operations via Boolean function systematic. They can be applied to 

the electronics, molecules and so biological research and applications. When a 

molecule serves as a logic gate it can called as molecular logic gate.  

The working principle of the molecular logic gates is as simple as the algebraic logic 

gates; there is one or more inputs which can be here physical or chemical and they 

give a response to that inputs as an output that can be measurable by analytical 

techniques such as intensity of emission. The combination of logic gates and their 

chemical applications was first represented by de Silva et al.1 After that time the 

importance of molecules that can perform as logic gates has been covered in the 

molecular information processing era. 

Cancer is accepted as one of the most vital disease in the last century. It is described 

as the abnormal growth of the malignant cells because of the damaged DNA. As its 

name implies, it sticks like a crab and it is hard to get rid of it. Although the certain 

reasons of cancer are not known well, there are some suspicious causes such as 

environmental effects, heredity, diet, smoking, sun exposure, radiation and 

hormones. Today, the medical treatment area of cancer is extended. The most 

common curing methods are medication, surgery, chemotherapy, immunotherapy, 

stem cell transplant and photodynamic therapy. Most of these techniques includes 

painful application to the diseased person who is quite demoralized. Also, the age, 

when surgery and radiation therapy were the only therapy, has ended as the 

knowledge of fundamental reasons of cancer lay on the molecular characteristics has 
1 

 



been covered.2 In addition, most of them are not targeted treatments so they may 

harm the healthy cells, as well. The important issue here is that the therapeutic agents 

should be selective to the diseased cells. 

Photodynamic therapy (PDT) is a developing treatment for carcinoma and other 

malignant cell diseases.3 As it is known, light was used for treatment of some 

diseases in ancient times. PDT also uses light as a cornerstone for the course of 

treatment. The working principle of the PDT depends on the generation of singlet 

oxygen which is toxic to the living cells via excitation of a photosensitizer (PS) at an 

appropriate wavelength. Controlling its action in the body assures that it can find the 

diseased cells and cure them without damaging any other healthy cells.4 This control 

can be done by using molecular logic gate methodology. 

In the first project of this thesis, we designed a photosensitizer that includes a 

calix[4]arene scaffold as a carrier. This heavy atom bounded calix[4]arene-bodipy 

complex molecule might lead further studies in which it can also target a malignant 

tissue due its superior design and novel synthesis. 

In the second project, modules for the molecular demultiplexer logic gate are 

synthesized. This theranostic system is designed as that it might selects between the 

emission at near-IR region and singlet oxygen creation for PDT by the pH control 

and glutathione switch. The advantage of this PDT agent is that, it is designed to 

work in aqueous medium that is necessary for in vivo applications for further 

therapeutic research.  
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CHAPTER 2 

2 BACKGROUND INFORMATION 

2.1 Photoluminescence Phenomenon 

Photoluminescence phenomenon is about the emission of light in multifarious forms  

due to the absorption of photons that have appropriate energy. Atoms and molecules 

are in their ground state at room temperature according to the Boltzmann 

distribution.5 When an atom or a molecule is exposed to electromagnetic irradiation  

there exists an electronic transition from ground state to the excited state that has 

higher energy and then the excess energy is emitted in different forms. This optical 

property is known as photoluminescence.  

2.1.1 Physical Basis of Absorption of Light  

There is a reason why some substances absorbs lights whereas the others do not; 

molecules that absorbs light has chromophores and its electron in the highest 

occupied molecular orbital (HOMO) is excited to the high energy level that is lowest 

unoccupied molecular orbital (LUMO) when an appropriate electromagnetic 

radiation is applied.  In this process, energy of photon is joined to the energy of the 

molecule that absorbs light. For this electronically excited state process, the 

wavelength of the photon should be in the range of visible and ultraviolet radiation 

region.  

There are two strict rules for the electron transition in energy levels of the molecule 

may take place. First of them, the spin selection rule implies that an electronic 

transition occurs only when there is no change in the total electron spin. It means that 

if the transitions require total electron spin to be changed, such as singlet to triplet or 

triplet to singlet state transitions, then the transition is defined as to be forbidden. 

However, as the spin orbit coupling phenomenon indicates, there is an interaction 

between the electrons with each other and also with the nucleus, and these 

interactions ensure that a singlet state has also some triplet character and vice versa. 6 

3 

 



Spin orbit coupling can be enhanced via heavy atom substitution in organic 

molecules. Especially in singlet to triplet state electronic transition rate of the 

intersystem crossing is increased with the heavy atom substitution.7 Enhancement of 

the rate of intersystem crossing due to spin orbit coupling via heavy atom 

substitution can be done in two ways; one is the internal heavy atom effect in which 

the heavy atom is incorporated to the molecule under interest, the other is the 

external heavy atom effect in which the heavy atom is placed in a solvent of the 

molecule.8 

The second rule for the electronic transition is known as orbital symmetry selection 

rule. When the wavefunctions of initial state and final state are closer to each other 

then one can say that rate of absorption is greatest because the molar absorption 

coefficient, which can be defined as the measurement of the electronic transition at a 

given wavelength, will be greatest. As it is seen in Figure 1, there are six types of 

electronic transitions. Between these transitions π- π* and n- π* transitions require the 

lower energy such that π- π* transition has ɛ values between 103 and 105 l mol cm-1 

which is in the range of partially allowed transition. This property is due to the 

orbital symmetry selection rule, it is spin allowed but not symmetry allowed. In 

general, the transition is mentioned as fully allowed when the molar absorption 

coefficient value is above the 105 l mol cm-1and it is  spin forbidden but symmetry 

allowed when the molar absorption coefficient value is above the 102 l mol cm-1 such 

as n- π* transition. 

 

Figure 1. Molecular Orbital Energies and Electronic Transitions in Organic 

Molecules. 
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Absorption of light changes due to the variety of the substance that absorbs light. 

Molar absorption coefficient, being the probability of absorption, has an effect on the 

relationship between the intensity of light, concentration and the path length. As it is 

stated in the Beer-Lambert Law, there is a linear relationship between the 

absorbance, concentration and path length; 

A=log(Iin/Iout)=ɛcl 

where A is absorbance, Iin is the intensity of light that enters, Iout is the intensity of 

light that is released, c is the concentration of the absorbing species and l is length of 

path. 

2.1.2 Physical Basis of Deactivation of Excited State 

The molecule that is irradiated with a photon, that has proper energy in the range of 

UV-Vis wavelength, elevates its electron to the higher energy excited state. 

However, this excitation process is such a short living process that the physical 

deactivation takes place immediately to give away that extra energy. There are two 

main classes of this physical relaxation; intermolecular relaxation and intramolecular 

relaxation.  

Intermolecular relaxation processes includes vibrational relaxation, energy transfer 

and electron transfer. Due to absorption of light molecules that have extra vibrational 

energy will undergo a relaxation to the lowest vibrational level of the energy level 

that is under interest, and this is named as the vibrational relaxation. The time scale 

for a typical vibrational relaxation is between 10-13-10-9 s9. Energy transfer occurs 

when the excited molecule transfer its energy to an acceptor group and electron 

transfer occurs when the excited molecule interacts with the ground state acceptor 

molecule and an ion pair is transferred. Electron transfer and energy transfer 

concepts are going to be presented in the later subsections. 

Intramolecular relaxation processes are classified as radiative transitions that include 

fluorescence and phosphorescence and non-radiative transitions that include internal 

conversion and intersystem crossing. There is an emission as the relaxation takes 

place in the radiative transitions. If there is no emission during the relaxation then it 
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is called non-radiative transition. Fluorescence, an example of radiative transition, 

takes place when there is a photon emission between the spin allowed states. 

Phosphorescence is also a radiative transition between the spin forbidden states. 

Fluorescence exists from the lowest vibrational level of the excited singlet state, 

whereas phosphorescence exists from the lowest vibrational level of the excited 

triplet state.  

Internal conversion is a non-radiative relaxation between the excited electronic states 

that have the same multiplicity. It is known that the energies of higher states are 

close to each other. To give an example, the lowest vibration level of S3 state is close 

to the highest vibrational level of the S2 state, so it there may exist a rapid energy 

transfer between them. As the Kasha rule implies, because the relaxation to the 

excited state with the same multiplicity is a very rapid process, dissipation of the 

energy with luminescence emission are originated from the S1 at v=010. 

Intersystem crossing occurs as a spin-forbidden transition between the vibrational 

states that have the same total energy with different multiplicity. For example, 

transition from S1 at v=0 to T1 at v=n where n is the highest vibrational level is an 

intersystem crossing. There is an illustration of these relaxation processes in Figure 

2.  

 

Figure 2. Jablonski Diagram. 
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It is seen that the energy of the absorbed light is higher than energy of the emitted 

light because of the energy loss of molecule before the emission. The difference 

between these energy is called as Stokes shift.11 To be clear, it can be defined as the 

difference between the band maximum of the absorption and the band maximum of 

the emission of the same transition as it is seen in Figure 3. 

 

Figure 3. Stokes’ shift. 

2.1.2.1 Photoinduced Electron Transfer (PET) 

The system that have photoinduced electron transfer (a.k.a. PET) has two main 

components; one of them is known as fluorophore, the other one is known as 

receptor. As its name implies fluoro means luminescence and phore means the one 

that carries fluoro/light/luminescence and the fluorophore can be used as a dye that 

has a property of re-emitting light due to the excitation. The receptor here is the 

component that transfer its electron to the fluorophore or accepts an electron from the 

fluorophore. These two components are separated from each other by an inert spacer 

which breaks down the conjugation between them, but holds them together for the 

chemical processes to be involved. Therefore, for a molecule to be a PET based 

sensor, there should be a fluorophore,  a spacer and a receptor. Because the electron 

transfer occurs after the light absorption this mechanism is called as photoinduced 

electron transfer. If the energy levels of the highest occupied molecular orbital 

(HOMO) of the receptor and the lowest unoccupied molecular orbital (LUMO) of the 

fluorophore are at the convenient energy then there is an option for the PET 

mechanism to be materialize. PET occurs when the fluorophore that is excited has a 
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vacancy for an electron in its ground state. This vacancy in ground state can be filled 

by the electron transferred from the receptor if the HOMO of the receptor has higher 

energy than the HOMO of the fluorophore, or the excited fluorophore can transfer its 

electron to the LUMO of the receptor where the LUMO of the receptor has lower 

energy than the LUMO of the fluorophore. 

 

Figure 4. Schematic PET mechanism. 

As Figure 4 shows PET mechanism is a way of blocking the ordinary relaxation and 

so quenching the emission. In this figure, receptor acts as an electron donor and 

transfers its electron to the fluorophore and quenches emission. It is also shown that 

the PET mechanism can be controlled by an analyte which prevents the receptor to 

transfer its electron to the fluorophore. By this way controlled PET mechanisms 

which can be on “on” or “off” state are emerged. It is clear on the left side of the 

Figure 4 that when the receptor is free to transfer its HOMO electron to the vacant 

HOMO of the fluorophore, the electron in the LUMO of the fluorophore cannot turn 

back to its original position so emission is quenched and no fluorescence is observed. 

On the right side of the Figure 4, it is seen that the receptor is bounded to a analyte, 

so its HOMO energy is lower than HOMO energy of the fluorophore. Therefore, it is 

not possible for receptor to transfer its electron to the fluorophore and the electron in 

LUMO of the fluorophore turns back to vacant HOMO of fluorophore. Because of 

this, there is fluorescence.     

The natural and known example of PET mechanism is seen in photosynthesis.12 In 

this process the sun pioneers the transfer of electrons which then causes charge 

separation. The emerging free energy from these steps is used for the generation of 

adenosine triphosphate. This example shows that oxidation-reduction processes of 

molecules are related to the light absorption.  
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PET type sensors are widely used in supramolecular chemistry and become an 

important research area for the molecular devices. 13,14. In this step, the diversity of 

the molecular receptors becomes a necessary tool for a correct match between the 

analyte and receptor, because a rapid PET is depended on the fluorophore-receptor 

pair and the length of the spacer between them. 15 There are some molecules which 

are developed for being PET sensors; for example crown ethers are modified for 

being receptors for the alkali metal cations. The size of the crown ether determines 

the cation selectivity; as the ring becomes bigger, the cation that will be selected gets 

bigger.  

 

Figure 5. Examples of PET sensors. 

Simple PET sensors are shown in the Figure 5.  The crown ether 1 that is modified 

with an amine group and an anthracene is a simple PET sensor used for the metal 

ions such as K+ and it is observed that its  quantum yield increases with K+ ion in 

methanol solution.16 Also some anthrylmethylamines like 11 are used as pH based 

PET sensors. 17 In addition to these simple examples there are molecules which are 

used as PET sensors such as calixarenes, cryptands and etc. 

2.1.2.2 Intramolecular Charge Transfer (ICT) 

The most important difference of intramolecular charge transfer (ICT) based 

signaling systems from the PET systems is that there is no linker between the 

fluorophore and the receptor, which means a direct integration of fluorophore and 

receptor and so the receptor becomes a part of the π system of the fluorophore. 

Because of this the orbitals of the chemical units overlapped well and this results in 

one terminal to act as electron donor whereas the other terminal to act as electron 
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acceptor. When such a molecule is excited at a suitable wavelength the electron 

density is redistributed which then results in a serious dipole in the molecule. There 

exists an intramolecular charge transfer from electron donor to electron acceptor. 

When an analyte binds to the receptor molecule in question there is an interaction 

with the dipole of the excited state and this interaction can be observed with a change 

in absorbance and emission spectra. 18  

ICT is such a signaling mechanism that there is a blue shift or red shift according to 

the properties of the molecules that plays a role in the formation of this process. If 

there exists an electron donating group like amino group or hydroxy group onto the 

receptor part that is directly conjugated to the fluorophore part, the interaction 

between the receptor and a cation will cause a decrease in the electron donating 

property of the receptor to the fluorophore which means also a decrease in the 

conjugation. Therefore a blue shift in the absorption spectrum will be observed due 

to the destabilization of the ICT system. In contrary, if the receptor unit has an 

electron withdrawing group such as carbonyl group the interaction between the 

receptor and a cation will increase its electron withdrawing property so a red shift 

will be observed in the absorption spectrum due to the stabilization of the ICT 

system 19 as it is represented in Figure 6.  

 

Figure 6. Spectral changes in ICT based sensor 
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The essential reason behind the changes in emission and absorption spectra lies on 

the charge dipole interactions. 20 When the molecule is excited, if it contains an 

electron donating group this part will partially charged positively and this positive 

charge will interact with the cation and so there will be a destabilization of the 

excited state which means excited state will be more destabilized than the ground 

state. In this situation, the gap between the excited state and the ground state 

increases so there will be a blue shift in the emission and absorption spectra. 

Oppositely, the reason of the red shift in the emission and absorption spectra is that 

there is a decrease in the gap that is between the excited state and the ground state 

due to the interaction between the fluorophore where the cation will stabilize the 

excited state more than the ground state.15 

It is known that when the receptor and the fluorophore are integrated there exists a 

charge separation in the excited state. When the analyte is added, its π electron 

system will be perturbed.  

 

Figure 7. BODIPY dyes for ICT  

Bodipy dyes are commonly used for the design of  ICT based sensors. Modification 

of Bodipy with different groups may cause different results in spectral properties. For 

example, 3 given above gives blue shift upon protonation due to the aniline which 

has an electron donating property, whereas 4 gives red shift upon protonation due to 

the pyridine which acts as an electron accepting moiety.21 By this way it can be said 

that it is possible to obtain different spectral properties with similar structures. 
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2.1.2.3 Energy Transfer (ET) 

When the existing energy is transferred to the ground state of a chromophore from 

the excited state of another chromophore it is called as energy transfer.22 It is 

represented in Figure 8. Here, the consignee of energy can be called as acceptor 

which is then excited to its first singlet excited state, and the consignor of the energy 

can be called as donor which transfers its excited state energy. Energy transfer is also 

known as electron energy transfer (EET) and fluorescence resonance energy transfer 

(FRET).  

Because energy transfer is a kind of deactivation of excited state, it is effected by the 

rate of the other deactivation ways and so the choice of an energy transfer system 

should have meet properties to overcome the other patways.23 In addition, life time 

of the excited state of donor should be longer than the time which is necessary for the 

energy transfer. Here the most important thing that determines the mechanism of 

energy transfer is the distance between the so called donor and the acceptor moieties. 

Mainly according to this distance there exists two energy transfer systems; Dexter 

type energy transfer system and Förster type energy transfer system. 

 

Figure 8. Schematic representation of energy transfer systems. 

For a Dexter type energy transfer to take place the distance between the donor and 

the acceptor should be less than 10 Ǻ and for a Förster type energy transfer to take 

place this distance should be in the range of 10 to 100 Ǻ. 23 There are some ways to 

characterize the energy transfer such as comparison of quantum yields, relative 

lifetimes, emission of acceptor increase, emission of donor decrease, etc.  

2.1.2.3.1 Dexter Type Energy Transfer 
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The orbital interaction between the donor and acceptor moieties is the decisive fact in 

Dexter type energy transfer. 24 There should be a conjugated linker between the 

donor and the acceptor to supply an exchange of electrons between the HOMOs and 

LUMOs of the donor and acceptor. As it is implied a short distance between the 

donor and the acceptor such as 10 Å is necessary for the orbital interactions. As the 

distance between increases the rate constant of energy transfer decreases 

exponentially; 

 

                                               kET = K J exp(-2RDA / L)       

                                        

Here, kET represents rate constant of energy transfer, K stands for orbital interaction, 

J symbolizes overlap integral between donor emission and acceptor absorbance, RDA 

represents the separation between the donor and acceptor and L stands for the van 

der Waals radius. 23  

In other words, Dexter type energy transfer is depended on the interaction between 

the orbitals of donor and acceptor that leads to electron exchange from HOMO of the 

donor to LUMO of the acceptor. 25  

A variety of molecules that can be used as a Dexter type energy transfer system are 

synthesized. When these systems are excited at absorbance wavelength of donor they 

achieve energy transfer. One of them is shown below in Figure 9. In this system there 

are four terminal porphyrins that have zinc in the central are coordinated to the 

interjacent prophyrin. There occurs energy transfer from terminal porphyrins to the 

center through ethynyl bridge. 
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Figure 9. Dexter type energy transfer system 126 (Copyright ©, 1993, Elsevier. 

Reprinted with permission from Ref. 26) 

Figure 10 shows another example for Dexter type energy transfer system which is 

composed of an anthracene moiety and a Bodipy. Here, energy is transferred from 

anthracene to Bodipy when the anthracene is excited. The reason depends on the 

parallel alignment of S1 dipole moment of the donor and the S0 dipole moment of the 

acceptor. 27 
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Figure 10. Dexter type energy transfer system 228 (Copyright ©, 2006, Elsevier. 

Reprinted with permission from Ref. 28) 

2.1.2.3.2 Förster Type Energy Transfer 

Förster type energy transfer is known as Förster resonance energy transfer (FRET) 

and also as electronic energy transfer (EET). There is a non-conjugated linker 

between the donor and the acceptor. In contrast to Dexter type energy transfer orbital 

interaction between the donor and the acceptor is not a remarkable property because 

the distance between them is large. There are three important parameters for FRET; 

one of them is the distance between donor and acceptor moieties, the second one is 

the spectral overlap between the emission of donor and the absorption of acceptor, 

and the third one is the relative orientation of the transition dipoles of these moieties. 
29, 30, 31 They have an important role in the occurance of energy transfer, rate of 

energy transfer and the efficiency of the energy transfer.  

In FRET mechanism, the energy released by the relaxation of the donor’s electron 

from its LUMO to HOMO is used for the excitation of the acceptor’s electron from 

HOMO to LUMO. The emission wavelength of the donor moiety should match with 

energy absorbed by the acceptor moiety for the existence of spectral overlap. The 

equations below shows the dependence of  FRET on distance and overlap integral; 

 

EFRET = [1 + (R/Ro)6]-1 

   Ro6 = [9 Qo (ln10) κ2 J] / [128 π5 n4 NA] 

 

where Ro refers to the distance between the donor and acceptor moieties and called 

as Förster radius, R is the separation between the FRET moieties. Here, the quantum 
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yield of FRET donor is represented as Qo, the orientation factor of dipole is  the 

overlap integral is J, the refractive index of the medium is n, and the Avagadro’s 

number is NA. It is clear that as the spectral overlap increases FRET efficiency 

decreases. In addition as it is shown in Figure 11 there is no FRET beyond 10 Ǻ as it 

is stated before. 

 

 
Figure 11. Distance dependence of FRET efficiency  

There are two main patways to determine the efficiency of FRET; the first one of 

them is the steady state approach and the second one of them is time-resolved 

approach. 32 Steady state approach is used to follow the decrease in the donor unit’s 

quantum yield. The only problem here is the re-absorption of the emitted light by the 

same molecule which is also called as inner filter  effect. This problem is overcome 

by the utilization of very dilute solutions. 33,34  

Efficiency of FRET with steady state is given below; 

E = 1 – (ΦDA / ΦD)                                                 

 where ΦDA represents the quantum yield of donor in the presence of acceptor and ΦD 

represents the quantum yield of donor in the absence of acceptor. There is also 

another formula, that is related to the increase of acceptor unit’s fluorescence, to 

calculate FRET efficiency; 

E = AA (λD) / AD (λD) * [IAD(λAem) / IA(λA em) - 1]                        
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where AA is the absorbance of acceptor and AD is the absorbance of donor at a 

wavelength at which the absorbance of donor is maximum, integrated area of the 

acceptor is denoted as IAD and IAD in the presence and absence of donor at λA em, 

respectively.  

FRET efficiency calculation is much more accurate with the second pathway; time 

resolved approach that uses time-resolved emissions of acceptor and donor as its 

name implies. FRET efficiency can be calculated by using the formula below 32; 

E = τD*kFRET / (1 + τD*kFRET) 

kFRET = 1/τDA - 1/τD 

where τDA and τD  represents lifetime of the excited state of donor in the presence 

and absence of acceptor, respectively.  

 

Figure 12. An example of FRET system (Copyright ©, 2009, Elsevier. Reprinted 

with permission from Ref. 35) 

An example of FRET system can be seen in Figure 12. The emission of the core 

Bodipy increases as the number of terminal Bodipy donors are increased. 35 

2.2 Molecular Logic Gates 

Human life is extended and reached to a more comfortable condition in novadays. 

The improvement of computers and digital devices has a great impression on this 
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development of life conditions. Their function and contribution in sharing 

information, saving and generating data and communication between people all 

around the world can be shown as the base of the civilization. Contemporary 

technology is proceeded enough to use electronic signal as a carrier for these kind of 

information sharing, storing and communication by means of miniaturization. 

Information is encoded as a series that is composed of a combination of zeros and 

ones which represent low and high voltage, respectively, in this kind of digital 

systems. 36,37  

The fundamental building blocks of silicon circuitry depends on the logic gates 

which are a kind of electronic devices and carry out Boolean functions. 38 There 

should be one or more logical inputs for a logical operation and for the creation of an 

output. There are 16 different types of Boolean logic operations. 39 Here, the most 

commonly used logic operations are; AND, OR, NOR, XOR, NAND, XNOR, INH 

and NINH. The interconnection of AND, OR, XOR and INH which are the basic 

logic operations results in the others; NOR, NAND, XNOR and NINH operations.  

Table 1 displays the truth tables for all these commonly used logic gate operations. If 

and only if the both  inputs are 1 then the output is 1 which indicates a state above a 

specified threshold, otherwise the output is 0 which indicates a state below a 

specified threshold in any combination of inputs in an AND gate. In an OR gate, it is 

enough for a one input to be 1 for the output to be 1. The output will be 0 only when 

the two inputs are 0. In an XOR gate, when the both inputs are at the same logic state 

the output becomes 0, if the inputs have different state from each other the output is 

1. For an INH gate, one of the input determines whether the output is 1 or 0. It is 

seen that the outputs of NAND, NOR, XNOR and NINH are the reverse of AND, 

OR, XOR and INH gates, respectively.  

There are also more complex logic gate systems that are composed of the integration 

of Boolean logic operations. Some of them are half adder, half substractor, full adder, 

full substractor, multiplexer and demultiplexer. 40 
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Inp1 Inp2 Outp Outp Outp Outp Outp Outp Outp Outp 

A B OR AND XOR INH NOR NAND XNOR NINH 

0 0 0 0 0 0 1 1 1 1 

1 0 1 0 1 0 0 1 0 1 

0 1 1 0 1 1 0 1 0 0 

1 1 1 1 0 0 0 0 1 1 

 

Table 1. Truth tables for the commonly used logic operators that have 2 inputs 

Transistors are the main components of the logic gates in computers which makes 

them to be used as electronic switches. When the current is turned on in the 

transistor, it is symbolized as 1, when it is turned off it is symbolized as 0. 41 With 

the emergency of silicon based transistors there occurred a chance to combine the 

transistors in a small chip which makes it possible to profit from space, energy, cost 

and performance. 42  

Molecular logic devices are the extended version of the macroscopic logic devices. 

Molecules can be synthesized and designed in such a way that they can be capable of 

performing some special functions. There is a need for energy and signal to operate 

and communicate with the operator. 43 The energy here can be light such as 

luminescence, electrical energy or chemical energy and electronic and/or nuclear 

rearrangements are used to operate. 43 The prominent study in molecular logic gates 

was proposed by de Silva in 1993 which then gained a great importance in the area 

of molecular mimicry. 1 There should be an ion responsive molecule to carry out a 

logical operation due to a given input in molecular logic gates. The output of the 

molecular logic system is followed by a signal which might be fluorescent or an 

other optical signal. Fluorocesce phenomenon is opted in general because of its 

advantages on selectivity and sensitivity. With help of chemical stimuli fluorescence 

switches between “on” and “off” states. It is obvious that these kind of molecular 

logic gates are design to work with on/off switching systems such as photoinduced 

electron transfer, internal charge transfer and energy transfer. 
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After the first application of logic gates into the molecular world a variety of 

different molecular logic gates are upgraded. 44 Figure 13 represents the receptor 

molecule that is designed and synthesized by de Silva et al. in 1993, which acts as a 

logic gate having two inputs. 1 It is proposed to be an AND gate in which H+ and Na+ 

are represented as inputs and the molecule of interest binds selectively to that ions. 

Binding to the both ions selectively results in an increase in the intensity of 

fluorescence, in all other ways intensity of fluorescence will be lower. 

 

Figure 13. Two-input molecular logic gate by de Silva et. al. (1993) (Copyright ©, 

2014, Elsevier. Reprinted with permission from Ref. 1) 

2.2.1 A Higher Function Molecular Logic Gate - Molecular Demultiplexer 

Although for the basic logic operations fundamental logic gates are satisfactory, 

there is a need for more complex logic systems for performing higher level functions. 

By connecting the simple logic gates to each other in a compatible manner 

generation of complex logic systems is carried out. The important thing here is that, 

the output of the one logic gate should be used as the input of the other logic gate. 

However, because the molecular logic gates use different types of signals such as 

electrical, chemical and optical, this input-output homogeneity is not the actual fact 

for the molecular logic gates. Although it seems hard to integrate simple gates to 

each other scientists found out an easier way; designing such a molecule that 

minimizes the problem of physical integration of simple logic gates, by this way 

mimicking higher functions logic gates with molecules has found a place in 

literature. 45 A demultiplexer (DEMUX) is such a logic gate that takes one input and 

selects between different outputs. There is an address input that effect the selection 

of output process. Nowadays, scientists have developed chemical systems that are 
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capable of operating as DEMUX by combining organic molecules, lasers and 

nanocrystalline semiconductures. 46 There is an example below that works as a 1:2 

DEMUX; 

 

Figure 14. Chemical structure and proton equilibrium of a 1-2 Molecular 

Demultiplexer and its truth table 47 (Copyright ©, 2008, Elsevier. Reprinted with 

permission from Ref. 47) 

There are two basic parts of the molecule which are activated photochemically and 

linked by a methylene bridge. Here, the output-1 or output-2 are photonically  

addressed by the proton,which is the input, due to the control input, c. 47 

2.3 Photodynamic Therapy 

Photodynamic therapy is a new clinically used method that is found about a century 

ago for the treatment of certain diseases such as melanoma, cardiovascular diseases, 

pancreas cancer, lung cancer, and many other malignant diseases. 48 It is asserted as 

an alternative curing method to the chemotherapy and radiotherapy by being less 

harmless then these. A light sensitive drug or a photosensitizer (PS) is taken orally 

and after 1 to 3 days of administration it is exposed to a certain wavelength of light 

which then generates toxic singlet oxygen. 48 Hence, the main components of PDT 

are light, photosensitizer and singlet oxygen. Using visible/near infrared light makes 

PDT less harmless than radiotherapy in which the light with high energy is used. A 

photosensitizer is an organic molecule which is a fundamental element of PDT. It is 

important because it is responsible for the generation of singlet oxygen from the 

molecular oxygen. The highly reactive singlet oxygen damages the diseased cell 
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which is exposed to the light. To summarize, it can be said that by activating the PS 

by photons with appropriate energy results in the formation of singlet oxygen from 

the molecular oxygen. The place of the PS determines where the cellular attack of 

singlet oxygen will occur, it can damage lipids, DNA or proteins oxidatively. 49 the 

cellular response is given as apoptosis or necrosis and the vascular supply is broken 

down so hypoxia or activation of immune system takes place. 50,51 In PDT, either a 

laser source of light emitting diodes (LEDs) that are red or near infrared are used as a 

light sources because these red or near IR light penetrates to the tissues better. 52  

2.3.1 A Brief History of Photodynamic Therapy 

The story of PDT began with the observation of some chemicals caused cell death in 

the presence of certain intense light about a century ago. Oscar Raab, a 

pharmacology student, observed that a certain bacteria was dead due to the toxic 

affect of acridine red molecule when it was subjected to the light. 53 He found out 

that a flurorophore was needed for the corresponding light induced toxicity. After the 

first emergency of PDT, eosin dye was used as the first PS for the medical treatment 

of skin cancer by Tappeiner and Jesionek. 54 Year 1979 has a great importance for 

the development and understanding of PDT. It is the year that the mechanism of 

oxygen dependent toxicity of photoactive molecules was found due to monitoring the 

generation of singlet oxygen by electron spin resonance technique. 55 Meyer-Betz, a 

scientist, made the first trial of human PDT on himself and suffered from an 

extensive phototoxic reactions and felt extreme pain. 56 The clinical application of 

PDT was performed by Dougherty et al. in 1978. 57 After that, the  first PS approved 

by FDA was photofrin. The commercialization of photofrin was completed in 

Canada for the treatment of bladder cancer ,n 1993. By being the most used PDT 

drug, it has been approved in USA for oesophagel cancer, in Netherlands and France 

for lung cancer, in Japan for gastric cancer and in Germany for early stage lung 

cancer. . Following this, a lot of PS were approved by FDA and this leaded to a great 

success in the treatment of diseases by PDT.   
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2.3.2 Mechanism of Photodynamic Action 

The most important step of the photodynamic action is the generation of singlet 

oxygen which occurs due to the photoactivation of the fluorophore. The Jablonski 

diagram below that demonstrates the steps of singlet oxygen generation is given in 

Figure 15. 

 

Figure 15. Jablonski Diagram PDT Action 

The first step in the generation of 1O2 is the excitation of the fluorophore to its singlet 

excited state with a photon that is in appropriate energy level. After the relaxation to 

the vibrational ground state there are two possible ways of relaxation to the ground 

state besides radiationless relaxation (step 3); one of them is the fluorescence (step 2) 

in which the electron falls back to its electronic ground state, the other one is the 

intersystem crossing to triplet state. (step 4). If there are heavy atoms attached to the 

interested molecule that can favor the intersystem crossing pathway generation of 

singlet oxygen takes place due to the energy transfer from triplet excited state to 

ground state, else it prefers phosphorescence (step 5). 58 Photodynamic therapy 

depends on the formation of reactive singlet oxygen species and its oxidative damage 

to the diseased cell. It is known that life time of the singlet oxygen is very short 

(about 0.6 µs) and the diffusion distance is about 0.1µm so it is accepted as the 

cellular damage begins around the photosensitizer. 59 Therefore, the localization of 

the PS is important for the PDT in terms of targeting the cell that is in interest.  

2.3.3 Biochemistry Beyond the Photodynamic Action 

There are two different mechanisms for the cell death in PDT. In the first one, 

unstable radicals are formed due to the reaction between excited PS and a substrate, 
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which is called as a biomolecule. These radicals are used to generate singlet oxygen. 

In the second one, there is an energy transfer from excited PS to oxygen that leads to 

the formation of singlet oxygen. It is accepted that both of the mechanisms occurs 

concurrently. 50 The newly generated singlet oxygen (1O2) reacts with biomolecules 

such as membrane lipids whose structure and integrity are changed due to the 

formation of radicals and other destructive chemicals that lead to an increase in the 

oxidative stress in cell. 60 Hydroxyl radicals generated by reactions of 1O2 attack to 

the deoxyribose sugar and bases of DNA and this mutation causes an immediate cell 

death. 61  

Cell death in PDT can take place in two different morphological ways; apoptosis and 

necrosis. 62 Apoptosis is known as the programmed cell death. Apoptosis causes 

some characteristic morphological changes in the cell, such as; DNA fragmentation, 

blebbing, cell shrinkage and chromatin condensation. Caspases, as known as 

proteolytic enzymes exist in all cells as inactive precursors or procaspases and 

activated by other caspases cleavage process and produces a proteolytic caspase 

cascade, intercede apoptosis by cleaving specific proteins in cytoplasm and nucleus. 
63 It is activated with an apoptotic signal which is triggered by radiation, an increase 

in intracellular calcium concentration, viral infection and lack of nutrition. With the 

initiation of the activation intracellular adaptor molecules begin to aggregate and 

activate procaspases, and the cell death exist. Necrosis is the second way of cell 

death by PDT. Unlike apoptosis, it is known as being traumatic and unnatural cell 

death. It can be fatal to the organism. Cell membrane integrity is lost and products of 

cell death are set free in the cell membrane, in necrosis. Both apoptosis and necrosis 

can be observed as outcome of the PDT. 

2.3.4 Properties of Photosensitizers 

There are some special requirements for the photosensitizer which is sent to the cell 

before the light is applied for being an efficient agent. For the PDT takes place, there 

should be a generation of singlet oxygen which requires appropriate physical and 

chemical properties in a specific molecule. The transition from triplet ground state of 

molecular oxygen to singlet oxygen excited state is spin forbidden. Its probability is 

increased with the spin-orbit (SO) coupling which provides a singlet character to the 
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triplet state by mixing the spin angular momentum and the orbital angular 

momentum.  

                                                Hso=[(e2Z4)/(2a0m2c2n3)]LS                                       

SO-Hamiltonian formula is given64 above shows that SO-Hamiltonian term is 

proportional to the fourth power of atomic number , Z, where e is charge of electron, 

a0 is Bohr’s radius, m is the mass of electron, c is the speed of light, n is the principle 

quantum number, L is the angular momentum and S is the spin operator. It is clear 

that heavy atom attachment to the molecule of interest increases the spin-orbit 

coupling and so the spin forbidden transition from singlet to triplet state. Heavy atom 

effect on efficacy of the photosensitizer was verified on BODIPY dyes with bromine 

attachment by O’Shea et al. 65 Therefore, photosensitizers with heavy atoms have a 

better singlet oxygen generation capability.  

In addition, because of the reactive singlet oxygen generated during the PDT action 

most of the photosensitizers are degraded which is called photobleaching. Hence, 

photosensitizer should be designed as a photostable molecule for the sake of PDT.  

The depth of the penetration of light to the tissue is another important issue. It is 

known that penetration of light is decreased substantially beyond 1150 nm because 

of the absorbance of water. Visible light is absorbed by flavins, collogens, melanin 

and hemoglobins. Near UV region is absorbed by some aromatic amino acids such as 

phenylalanine, tyrosine and tryptophan. When all these conditions are considered it 

gives out that maximum penetration of light is obtained in the range of 620-850 nm 

which is called therapeutic window. To produce reactive singlet oxygen the chosen 

or designed photosensitizer should absorb light in this region sufficiently. 66  

Besides the properties mentioned above a photosensitizer should meet the other 

requirements for biological application such as it should be biocompatible, 

effervescent and should have dark toxicity which means it is inactive until the light is 

exposured. 
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CHAPTER 3 

3 PEGylated Calix[4]arene as a Carrier for a Bodipy-based 

Photosensitizer 

This work is partially described in the following publication 

Yusuf Çakmak, Tuğrul Nalbantoğlu, Tuğçe Durgut, Engin U. Akkaya 

Tet. Lett., 2014, Vol. 55, pp. 538-540 

3.1 Introduction 

Photodynamic therapy (PDT) is accepted as an alternative method to the other 

traditional therapeutic methods that includes chemotherapy, radiation therapy and 

surgery because of being less invasive than them.50 PDT is a selective method by 

performing the cytotoxic action only in the presence of light, sensitizer and dissolved 

oxygen. Its selectivity depends on the capability of controlling the region of 

irradiation.  

There is a great interest in generating and controlling the photodynamic action of late 

years. In addition, there is an increase in the introduction of novel chromophore 

families such as Bodipy dyes as potential photosensitizers. 67 Bodipy dyes are seen 

as one of the most promising and efficient photosensitizers although they were 

ascribed to be chemically and photochemically stable hence unavailable to form 

triplet state and so the interaction with ambient oxygen is reduced which is necessary 

for PDT at first. However, with incorporation of heavy atoms such as iodine or with 

the increase in degeneracy of the excited state frontier orbitals an efficient 

photosensitizer can be obtained from a Bodipy dye. 68 

The wavelength of irradiation is the other important point that should be considered. 

The dyes with weak absorptions in the red end of the visible spectrum where the 

mammalian tissues are most transparent are preferred in the PDT studies. Studies on 

obtaining dyes that have absorptions in the red and near IR region of the spectrum 

are acceptable in this point of view. Porphyrin family is an example to these kinds of 

dyes. 69 Bodipys give a chance to tune their absorption bands in a wide range. For 
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example, by substituting one or two styryl groups to a Bodipy dye its absoption peak 

can be moved between 500 nm and 850 nm. 70 With the consideration of this 

practical property of the Bodipy dye we come up with a new type of scaffold 

carrying this dye and also enabling it to absorb near IR light.  

Furthermore, calix[4]arene which has a hydrophobic core and special geometry is a 

very useful molecule for organic chemists. Up to this point in time there are only a 

few examples that incorporate Bodipy dyes and calix[4]arenes. Akkaya et al. have 

synthesized a bodipy around a monoformylated tetrahydroxycalix[4]arene for pH 

sensing with the help of the working principle of photoinduced electron transfer 

(PeT).71 In this design, the bodipy is synthesized around the formyl unit which 

ensures obtaining the bodipy unit attached to the calix[4]arene unit. It is notable that 

π conjugation is faded due to the orthogonalty of the phenyl of calix[4]arene and the 

bodipy. By this way absorption spectrum of the bodipy does not change. In our 

design, we improved the aforementioned system in terms of absorbance, application, 

route of synthesis and the number of bodipy units attached to the calix[4]arene 

backbone.  

3.2 Design and Synthesis 

Incorporation of maximum number of bodipy molecules to the calix[4]arene scaffold 

is the main principal of our design. Our aim was putting forward a new type of 

molecule that would function effectively in other potential applications. The number 

of bodipy unit is important for the enhancement of the phototoxic effect. Therefore, 

our design of PS (Fig. 16), there are two bodipy chromophores that are attached to 

the calix[4]arene core.  
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Figure 16. Design of the final molecule72 (Copyright ©, 2014, Elsevier. Reprinted 

with permission from Ref. 72) 

The absorption wavelength of the PS is the second important parameter of a good PS 

as it is mentioned before. Therefore, we thought that there should be a π-bond 

character in the bond between the bodipy units and calix[4]arene for the extension of 

π-conjugation of the bodipy units which causes a red shift in the absorbance of 

wavelength. This type of organization of the molecule is the first example that 

includes both bodipy and any kind of calixarene. The third design parameter is 

increasing the molecule’s solubility in organic solvents, and therefore four decyl 

groups attached to the lower rim of the calix[4]arene. This attachment makes one 

side of the molecule hydrophobic and so it is possible to go inside the cell via 

diffusion by interacting with the hydrophobic moieties around the cell. As a fourth 

property, this molecule has two poly(ethyleneglycol) polymers attached to the bodipy 

which makes the molecule water soluble, in other words these two moieties act as 

complementary for the molecule to gain amphiphilic character. Fifth, 4-

Dimethylaminobenzaldeyde units are attached to the bodipy to increase the π-

conjugation more and to guarantee the maximum absorbance wavelength at around 

700 nm. Finally, our design includes iodine atoms on the bodipy core. By this way, 

rate of intersystem crossing for the production of singlet oxygen increases which is 

necessary for the PDT. 
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The synthesis of the final compound was completed in eleven steps at all which is 

shown in Figures 17-19.  

 

Figure 17. Synthesis of calix[4]arene derivative 

Compound 6 was synthesized in five steps to be ready for the reaction with bodipy 

derivative. First of all, for the de-tert-butylation step, 1 and benzoyl chloride reaction 

was performed to get the compound 2 as the protected group. Two of the four tert-

butyl groups were de-tert-butylated in step 2 by using AlCl3 and toluene to yield 

compound 3. For the removal of the protecting groups hydrolysis reaction was 

performed with NaOH and EtOH. Compound 5 was yielded by the alkylation 

reaction of compound 4 with 1-bromodecane. Compound 5 was diformylated at 

elevated temperature with hexamethylenetetramine and TFA to get compound 6. 

Synthesis of diiodinated bodipy derivative was performed in three steps which are 

shown in Figure 18. 

1 
2 3 

6 
5 

4 
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Figure 18. Synthesis of diiodinated bodipy derivative 

First step is the reaction of the propargyl bromide and 4-hydroxybenzaldehyde. 

Product of this reaction was reacted with 2,4-dimethylpyrrole with an ordinary 

bodipy synthesis procedure and yielded alkynyl bodipy derivative, which was then 

diiodinated with iodine and iodic acid to yield compound 7.  

Compound 8 was obtained due to the Knoevenagel reaction of compound 6 and 

compound 7. (Fig. 19). Another typical Knoevenagel reaction on compound 8 with 

4-(Dimethylamino)benzaldehyde yielded in compound 9, which then forms 

compound 10 due to a click reaction with pre-prepared PEG-N3.  

1H NMR, 13C NMR and ESI or MALDI mass spectroscopy were used for the 

characterization of the compounds. Because of the large molecular weights of the 

compound 9 and compound 10 characterization of them was hard. However, by 

comparing their 1H NMR data analysis, the structure of the photosensitizer, 

compound 10 was verified. (Fig. 20) 

7 
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Figure 19. Schematic synthesis of the photosensitizer, compound 10 

 

Figure 20. Comparative 1H NMR data analysis of compound 9 and compound 10 

8 9 

10 
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A comparative 1H NMR spectra of compound 9 and compound 10 are given in 

Figure 20. There are three differences in aliphatic regions of the 1H NMR spectra of  

these two compounds due to the successful final click reaction. First of all, 

disappearance of the acetylenic proton at 2.61 ppm (proton a, in Fig. 20) is a proof of 

the accomplishment of the click reaction. The second difference is that, a methylene 

proton that belongs to the PEG group linked directly to the triazole is appeared at 

4.58 ppm (proton d, in Fig.20). And lastly,  there is a shift of methylene bridge 

protons which connects the triazole unit to the phenoxy unit of the Bodipy from 4.89 

ppm to 5.25 ppm is observed (proton shifting from b to e, in Fig. 20). This kind of a 

peak shift is also observed in a similar compound that is synthesized by Erbas et al.73 

In the aromatic region of the spectra, there exists a triazole proton at 7.90 ppm. 

(proton e, in Fig. 20). Because the electronic structure and the geometric shape of the 

molecule do not change too much, there are no such important changes in the 

aromatic region of the 1H NMR spectra. 

3.3 Results and Discussion 

After synthesizing the photosensitizer, compound 10, we focused on the PDT 

experiments. For this aim, we planned two experiments; one of them is in organic 

medium and the other one is in the aqueous medium because our final compound is 

amphiphilic. We used 1,3-diphenylisobenzofuran (DPBF) which is known as a 

universal oxygen scavenger compound for the experiments took place in the organic 

medium. Maximum absorbance of DPBF in a broad range of organic solvent types is 

about at 410 nm and intensity of the absorbance peak at 410 nm is decreased due to 

the reaction with oxygen that is generated by the PS in action. Therefore, we focused 

on the decrease in the intensity of the peak at 410 nm. 

First of all, we performed control experiments without PS, compound 10. We used 

only DPBF (10µM), light and bubbled air (5 min.) in isopropanol. We started the 

photodynamic experiments in dark by withdrawing light and recording the 

absorbance spectra for 15 minutes. After that, irradiation with LED light array of 725 

nm was applied with 5 min time intervals for 60 min. The normalized absorbance 

graph (Black dotted line in Fig. 21, below) shows that the absorbance of trap 
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molecule does not change with time, by proving that there is no cytotoxic 1O2 

formation. 

Secondly, we included compound 10 (46 nM) to the control experiments in 

isopropanol. For this case, again 15 min. dark toxicity experiment was applied and it 

was observed that the absorbance did not change with time and there was no 

cytotoxic 1O2 formation. (Red dotted line in Fig. 21) Then, it was irradiated by 725 

nm light for 60 min. with 5 min time intervals again for the photodynamic activity. 

There was a successful decrease in the absorbance of scavenger with time which was 

a proof of 1O2 formation. 

 

Figure 21 Change in absorbance spectrum of DPBF in the absence of compound 10 

and in the presence of compound 10 in IPA; first 15 min dark and then 60 min 

irradiation with 725 nm LED array (above). Normalized absorbance vs. time graph 

of DPBF; control experiment without (black dotted line) and with (red dotted line) 

compound 10 (below). (Copyright ©, 2014, Elsevier. Reprinted with permission 

from Ref. 72) 

Afterward, we performed singlet oxygen experiments in aqueous medium. Because 

DPBF is not soluble in such polar solvents we needed a water soluble trap molecule. 

For this reason we synthesized an anthracene derivative substituted with malonic 

acid groups (2,2’-(anthracene-9,10-diylbis(methylene))dimalonic acid, ADMDA). 

Figure 22 shows the schematic synthesis of ADMDA that tracks 1O2 formation. 

Dioxygen bridges are formed as a result of the reaction with 1O2 and there is a 

decrease in the absorbance signal around 380 nm of the original compound. 

33 

 



 

Figure 22. Structure of 2,2’-(anthracene-9,10-diylbis(methylene))dimalonic acid that 

is used to track 1O2 production in aqueous media. (Copyright ©, 2014, Elsevier. 

Reprinted with permission from Ref. 72) 

The absorbance of the trap molecule (1 µM) first in dark and then 60 min irradiation 

was recorded in PBS at pH 7.4 as a control experiment. It is seen that there is a 

minimum decrease in absorbance in Fig. 23 (Black dotted line, below). 

 

Figure 23. Change in absorbance spectrum of ADMDA in the absence of compound 

10 and in the presence of 2.3 µM of compound 10 in PBS at pH 7.4; first 15 min 

dark and then 60 min irradiation with 725 nm LED array (above). Normalized 

absorbance vs. time graph of ADMDA; control experiment without (black dotted 

line) and with (red dotted line) compound 10 (below). (Copyright ©, 2014, Elsevier. 

Reprinted with permission from Ref. 72) 
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After the control experiments a PBS solution at pH 7.4 was prepared. Because the 

compound 10 did not dissolved in PBS well because of the polar ethylene glycol 

units we first dissolved in tiny amount of ethanol and then studied with PBS. There 

was no precipitation and it worked well. We used 2.3 µM of compound 10 for the 

photodynamic activity experiment in PBS. It was mandatory to use 50 folds of 

compound 10 due to the short lifetime of the 1O2 (2 µs) in aqua. The same procedure 

with organic media was applied to the this experiment; there was no change in 

absorbance in the first 15 min dark experiment, and a sharp decrease in the 

absorbance with 60 min irradiation with 725 nm LED array (Figure 23). 

Eventually, we observed the singlet oxygen formation and photodynamic activity in 

both organic (IPA) and aqueous (10% EtOH in PBS) media due to amphiphilic 

structure of the calix-bodipy photosensitizer. 

3.4 Conclusion 

Initially, we came up with an idea such that getting a carrier molecule having four 

bodipy units. In addition, we were planning to link this carrier molecule to an 

antibody of a cancer tissue to recognize it and act as a targeting group. Because 

characterization of the structure of antibody, reacting it with our previously designed 

photosensitizer and functionalizing the calix[4]arene to react with bodipy would be 

difficult we redesigned it with decyl groups in the end.  

The selectivity of the designed photosensitizer that have decyl groups is very low in 

biological media. However, it is well known that hydrophobicity ensures the 

interaction between the molecule and the cell membrane and also facilitates diffusing 

into cells. It is an advantage because nuclei are responsible for the cell destruction 

which is a strong effect of the photodynamic action. Moreover, amphiphilic character 

of the photosensitizer mimics biological molecules, so a molecule that reflects the 

truth of life was synthesized.  

The other problem was that low yields of the reaction steps made it difficult to study 

our PS in vitro and in vivo cytotoxic experiments. Especially, the yield of the two 

Knoevenagel condensation reactions were very low (10-20%) and restricted our 
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studies. The long reaction steps that reached to eleven steps limited the final amount 

of the aforementioned molecule as well.  

In conclusion, although we faced such problems through the project we finally 

succeeded in synthesizing the amphiphilic photosensitizer that is photoactive in both 

organic and aqueous media. This π-conjugated bodipy calix[4]arene scaffold may be 

used in future works for another applications.  

3.5 Experimental Details 

3.5.1 Methods and Materials 

Chemicals for the experiments were purchased from Merck and Sigma-Aldrich and 

used without further purification. Reactions were monitored by thin layer 

chromatography using Merck TLC Silica gel 60 F254. Merck Silica Gel 60 (particle 

size: 0.040-0.063 mm, 230-400 mesh ASTM) was used for the column 

chromatography. 1H NMR and 13C NMR spectra were recorded on Bruker DPX-400 

in CDCl3 where the internal standard is tetramethylsilane. Chemical shifts were 

given in parts per million and the coupling constants (J) were in Hz. Mass spectra 

were performed on Agilent Technologies 6224 TOF LC/MS and Accurate Mass Q-

TOF LC/MS. MALDI spectra were recorded in Izmir Institute of Technology, 

Chemistry Department by Bruker MALDI-TOF-TOF. Varian Cary-100 

spectrophotometer and Varian Cary 5000 UV-VIS-NIR absorption 

spectrophotometer were used for the absorption spectra. Varian Eclipse 

Spectrofluometer was used for the fluorescence measurements. 1,3-

Diphenylisobenzofuran was used as a singlet oxygen trap in organic medium singlet 

oxygen measurement and purchased from supplier. For aqueous medium singlet 

oxygen measurement 2,2’-(Anthracene-9,10-diylbis(methylene))dimalonicacid was 

synthesized via literature procedure. 74 Compound 475 and Compound 773 were 

synthesized according to literature.  

3.5.2 Synthesis of Compounds 

Compound 5 
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NaH (60% dispersion in oil – 2.23 g, 55.7 mmol) was washed with hexane and 

filtrate was added to the dry DMF (40 mL) with care. Then Calix[4]arene-OH (1.79 

g, 3.34 mmol) and 1-Bromodecane (7.38 mL, 33.4 mmol) were added to the solution. 

The reaction mixture was heated at 600 C for 12 hours. After reaction it was allowed 

to cool down. Ice/water was added (100 mL) and the mixture was extracted with 

dichloromethane (3×50 mL). Organic layer was washed with water (3×50 mL), 

aqueous ammonium chloride solution (2×50 mL) and brine (50 mL) and dried with 

K2CO3. Then organic layer was evaporated in low pressure and yellow solution was 

obtained. Upon waiting overnight the compound precipitatedin MeOH. The 

compound was filtrated and washed with MeOH to get the pure product as a white 

solid (2.4 g, 60%). 1H NMR : 7.09 (s, 4H; ArH), 6.21 (t, 2H, J = 7.5 Hz; ArH), 6.09 

(d, 4H,J = 7.5 Hz; ArH), 4.45 (d, 4H, J = 13.2 Hz; CH2), 4.05 (t, 4H, J=8.3; OCH2), 

3.72 (t, 4H, J=6.5; OCH2), 3.11 (d, 4H; J=13.3), 1.95-2.01 (m, 4H; CH2), 1.81- 1.95 

(m, 4H; CH2), 1.51-1.65 (m, 4H; CH2), 1.15-1.50 (m, 70H; CH2, CH3), 1.00-0.85 (m, 

12H; CH2, CH3). 13C NMR : 155.5, 155.3, 144.2, 135.9, 133.6, 127.2, 125.6, 122.0, 

75.1, 75.0, 34.1, 32.0, 31.8, 31.3, 30.6, 30.4, 30.2, 29.9, 29.8, 29.5, 26,7, 26.1, 22.8, 

14.1. HRMS (TOF-ESI): m/z calcd for C76H120O4Na: 1119.9084 [M+Na]+; found: 

1119.9138 [M+Na]+, Δ = 4.82 ppm. 

 

Compound 6 

 

A mixture of Compound 5 (1 g, 0.91 mmol), Hexamethylenetetraamine(4.52 g, 27.34 

mmol) and Trifluoroacetic acid (20 mL) was stirred at 1250 C for 4 h in a screw-

capped vial, then the reaction mixture was cooled to room temperature. Diluted with 

aqueous 1 M HCl (150 mL) and CH2Cl2 (50 mL) and it was stirred for 3 h 

vigorously. The organic layer was taken and extracted with dichloromethane (50 

mL). Then dried with K2CO3 and evaporated in vacuo. The compound  was obtained 

pure after column chromatography with chloroform (1.044 g, 99%). 1H NMR: 9.15 

(s, 1H; CHO), 7.11 (s, 4H; ArH), 6.59 (s, 4H; ArH), 4.49 (d, 4H,J=13.4; CH2), 4.10 

(t, 4H, J=8.3; OCH2), 3.75 (t, 4H, J=6.5; OCH2), 3.18 (d, 4H, J=13.6, CH2), 1.80-

2.00 (m, 8H; CH2), 1.50-1.62 (m, 4H; CH2), 1.41 (s, 18H; CH3), 1.18-1.41 (m, 52H; 

CH2), 0.88-0.98 (m, 12H; CH3). 13C NMR : 191.5, 160.7, 155.0, 145.3, 135.4, 134.9, 

131.1, 129.1, 126.1, 75.3, 75.0, 34.2, 32.0, 31.7, 31.2, 30.4, 30.2, 30.1, 29.8, 29.7, 
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29.5, 29.4, 26.6, 26.0, 22.7, 14.1. HRMS (TOF-ESI): m/z calcd for C78H121O6: 

1153.9163 [M+H]+; found: 1153.9107 [M+H]+, Δ = 4.85 ppm. 

 

Compound 8  

 

Compound 6 (100 mg, 86×10-3) and Diiodobodipy (Compound 7) (173×10-3) were 

dissolved in benzene (50 mL). Piperidine (0.3 mL) and then acetic acid (0.3 mL) was 

added to the solution. The reaction mixture was heated to reflux in Dean-Stark 

apparatus. When most of the solvent has been evaporated the compound was started 

to compose and the product was tracked by TLC with CHCl3 as an eluent. After 

product formed in majority EtOAc (20 mL) was added and extracted with H2O (3×30 

mL). Organic layer was dried with Na2SO4, and evaporated in vacuo. In order to 

eliminate polar impurities evaporated mixture a short column chromatography done 

by using chloroform as an eluent. The product then recrystallized with CHCl3 and 

Hexanes. The product precipitates in hexane which was filtrated to yield the pure 

product as blue solid (22 mg, 11 %). 1H NMR: 7.80 (d, 2H, J=16.0; CH), 7.11-7.21 

(m, 6H; CH and ArH), 6.98-7.10 (m, 8H; ArH); 6.51 (s, 4H; ArH), 4.85 (s, 4H; 

OCH2), 4.48 (d, 4H, J=12.9 Hz; CH2), 4.05 (t, 4H, J=7.9 Hz; OCH2), 3.73 (t, 4H, 

J=6.0 Hz; OCH2), 3.20 (d, 4H, J=12.9 Hz; CH2), 2.60-2.68 (m, 8H, ArCH3 and CH), 

2.00-2.10 (m, 4H, CH2), 1.82-1.95 (m, 4H, CH2), 1.50-1.61 (m, 4H, CH2), 1.41 (s, 

6H, ArCH3), 1.35 (s, 18H, CH3), 1.10 (s, 6H, ArCH3), 0.80-1.00 (m, 12H, CH3). 13C 

NMR : 158.2, 157.1, 155.1, 145.8, 145.2, 140.7, 135.4, 134.0, 132.4, 131.4, 130.5, 

129.5, 128.4, 127.3, 126.0, 116.3, 115.7, 78.0, 76.2, 75.5, 75.2, 56.2, 34.2, 32.0, 31.7, 

31.0, 30.5, 30.3, 30.2, 29.9, 29.8, 29.5, 29.4, 26.6, 26.2, 22.7, 17.7, 16.9, 14.1.  

MALDI 2483.722 measured as 2483.558. 

 

Compound 9 

Compound 8 (50 mg, 0.021 mmol) and N,N-Dimethylaminobenzaldehyde (7.46 mg, 

0.05 mmol) were dissolved in Benzene (50 mL).Piperidine (0.3 mL) and then acetic 

acid (0.3 mL) was added to the solution. Then the reaction mixture was heated to 

reflux in Dean-Stark apparatus. When most of the solvent has been evaporated the 

compound was started to form and tracked by TLC and CHCl3 used as an eluent. 
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After product formed in majority EtOAc (20 mL) was added and extracted with H2O 

(3×30 mL). Organic layer was dried with Na2SO4, and evaporated in vacuo. The 

mixture was obtained as a pure product after column chromatography with CHCl3: 

Hexane (3:1) as a green solid(17 mg, 31%). 1H NMR: 8.15 (d, 2H, J=16.7 Hz; CH), 

7.81 (d, 2H, J=16.6 Hz; CH), 7.59 (d, 4H, J=8.8 Hz; ArH), 7.53 (d, 2H, J=16.8 Hz ; 

CH), 7.15-7.24 (m, 6H; ArH and CH), 7.00-7.09 (m, 8H; ArH), 6.77 (d, 4H, J=8.1 

Hz; ArH), 6.53-6.62 (m, 4H; ArH), 4.89 (d, 4H, J=2.4 Hz; CH2), 4.48 (d, 4H, J=12.8 

Hz; CH2), 4.05 (t, 4H, J=8.1 Hz; CH2), 3.75 (t, 4H, J=6.6 Hz; CH2), 3.21 (d, 4H, 

J=12.9 Hz; CH2), 3.01 (s, 12H; N(CH3)2), 2.61 (t, 2H, J=2.4 Hz; CH), 2.00-2.10 (m, 

4H; CH2), 1.82-1.95 (m, 4H; CH2), 1.51-1.65 (m, 4H; CH2), 1.48 (s, 6H; ArCH3), 

1.20-1.42 (m, 70H; CH3 and CH2), 1.18 (s, 6H; ArCH3), 0.80-0.97 (m, 12H, CH3). 
13C NMR :158.1, 156.9, 154.9, 145.4, 135.3, 133.9, 130.9, 129.8, 129.3, 128.8, 

127.4, 125.9, 115.7, 112.2, 78.1, 76.0, 75.5, 75.2, 68.2, 56.2, 40.4, 38.8, 37.1, 34.1, 

32.0, 31.9, 31.8, 31.7, 31.0, 30.5, 30.4, 30.2, 30.1, 30.0, 29.9, 29.8, 29.7, 29.5, 29.4, 

26.6, 26.2, 23.8, 22.7, 17.7, 17.6, 14.1. MALDI 2639.972 measured as 2639.604. 

 

Compound 10  

 

Compound 9 (17 mg, 6.44×10-3mmol) and PEG2000-N3 (25.76 mg, 0.0129 mmol) 

were dissolved in dry DMF (5 mL). Argon was bubbled through the solution for 10 

minutes and CuI (2.94 mg, 15.4×10-3 mmol) was added to the deaerated solution. 

The reaction  mixture was stirred at 600 C overnight. Then 5 mL of CHCl3 was added 

and CuI was filtrated. Then solution was evaporated and compound was separated 

through column chromatography in MeOH: CHCl3 (7:93) as green solid (10 mg , 

24%) 1H NMR: 8.15 (d, 2H, J=16.2 Hz; CH), 7.90 (s, 2H; CH), 7.85 (d, 2H, J=16.6 

Hz; CH), 7.61 (d, 4H, J=8.1 Hz; ArH), 7.53 (d, 2H, J= 15.6 Hz;CH), 7.21 (d, 2H, 

J=17.1 Hz, CH), 7.11-7.17 (m, 4H, ArH), 6.72-6.81 (m, 4H, ArH), 6.58-6.70 (m, 4H, 

ArH), 5.22-5.28 (m, 4H; OCH2), 4.58 (t, 4H, J=3.8 Hz; NCH2), 4.48 (d, 4H, J=12.0 

Hz; CH2), 4.03 (t, 4H, J=7.9 Hz; OCH2), 3.91 (t, 4H, J= 4.9 Hz; OCH2), 3.35-3.88 

(m, 364 H, OCH2), 3.23 (d, 4H, J=11.0 Hz; CH2), 3.05 (s, 12H; N(CH3)2), 1.83-2.11 

(m, 8H; CH2), 1.51-1.63 (m, 4H; CH2), 1.47 (s, 6H; ArCH3), 1.23-1.43 (m, 70 H; 

CH2), 0.87-0.95 (m, 12H, CH3). MALDI calculated as 6736.998, found 6728.428. 
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CHAPTER 4 

4 SYNTHESIS OF MODULES FOR A MOLECULAR 

DEMULTIPLEXER 

4.1 Introduction 

The potential application of  linking molecular logic gates for diagnosis and 

therapeutic purposes is very exciting.  As it is reported in de Silva article1 molecules 

that can perform like logic gates are seen as prerequisites for the molecular 

information processing. Although they have some limitations according to their 

inspired precedents, Boolean logic, one of these limitations “input-output 

heterogeneity” can create a positive situation that one can design a single molecule 

that may perform two different logic gate operations. 76 Demultiplexer is a kind of 

logic gate operation that uses this advantage. It is a combinational device that takes 

one input and selects between multiple outputs depending upon the control groups.  

It is discussed previously that molecular logic operations are now seen as the 

backbone of photodynamic therapy where the selectivity is seen as the supreme key 

of the theranostics. It is known that a simple logic gate operation, an AND gate, can 

enhance the selectivity and brings advantages for the diagnosis. 77 Demultiplexer, 

can be very effective in this from this point of view by being a dual selective in 

outputs such as light and cytotoxic singlet oxygen. In this thesis we designed the 

modules of such molecular demultiplexer that can be used for further researches in 

theranostics. 

4.2 Design and Synthesis 

Design of a molecular logic gate with a proper application is quite hard. It is known 

that a demultiplexer can switch between the two outputs with one input and a control 

group. In this project we aimed to synthesize the modules of such a molecular 

demultiplexer that can diagnose the carcinogenic cells and can apply therapy by 

killing the cancer cells via generation of singlet oxygen with the help of emission 

property.  Our modules are composed of three different parts; first one is the 
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photosensitizer, the second one is the fluorophore and the last one is the linker that 

links the PS and FL.  

 

Figure 24. Molecular structures of PS, Linker and FL 

In this design, we figured out the synthesis of modules of molecular demultiplexer. 

We design them to act as a molecular demultiplexer when we combine FL and PS 

with the linker by click reaction. We expect the energy of FL to be less than the 

energy of PS according to the literature examples. The PS is similar to the molecule 

in Figure 7178, so we expect its maximum absorbance at about 700 nm. The FL is 

similar to the molecule in Figure 7279 and we expect its maximum absorbance at 

around 650 nm so their spectra might intersect. so we expect an energy transfer from 

PS to FL when the PS is excited. In addition, there should be an acidic medium for 

the excitation step and so the protonation of the PS. We know that the carcinogenic 

cells are acidic. 80 To sum up, we can say that PS can produce singlet oxygen in the 

acidic medium but it prefers energy transfer. However, when there is Glutathione in 

that acidic medium, because it is also known that glutathione uptake is increased in 

carcinogenic cells81, the S-S bond of the linker is broken and singlet oxygen 

production is set free due to the long distance between the FL and the PS.  

Here, the PS module has heavy atom groups which includes iodine to increase rate of 

singlet oxygen production by making the intersystem crossing process easier.  
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Figure 25. Schematic synthesis of PS 

We first synthesized the propargyl aldehyde (compound 11) from 4-

Hydroxybenzaldehyde and propargyl bromide, and then used it for the simple 

BODIPY reaction (compound 12) with 2,4-Dimethylpyrrole. After iodination 

reaction of the BODIPY (compound 13), Knoevenagel condensation reaction was 

used with 4-Diethylaminobenzaldehyde and the targeted PS (compound 14) was 

obtained as it is seen in Figure 25. 

The FL module is designed to be fluorescent. We used pre-synthesized propargyl 

aldehyde and 2,4-dimethyl-3-ethyl pyrrole to synthesize the BODIPY (compound 

15). Then we synthesized the compound 16 by using 4-hydroxybenzaldeyde and 6-

bromohexanoic acid. After that we used these two compounds to synthesize the FL 

module (compound 17) by Knoevenagel condensation reaction as it seen in Figure 

26. 

13 

14 

11 12 
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Figure 26. Schematic synthesis of FL 

The synthesis of the linker is important because we need S-S bond, for the design of 

the molecular DEMUX.  

 

Figure 27. Schematic synthesis of the linker 

We began with the disulfide synthesis by using 2-mercaptoethanol, as it is seen in 

Figure 27. Then we used the product, 2-hydroxyethyldisulfide (compound 18), in 

tosylation reaction with 4-Toluenesulfonyl chloride for the synthesis of compound 

15 16 

17 

18 19 

20 

43 

 



19.  And finally, we made an azide synthesis (compound 20) from this compound by 

using sodium azide.  

4.3 Results and Discussion 

In this project we designed and synthesized the necessary modules for the concept of 

molecular demultiplexer. As it is mentioned before, molecular logic gates have 

opened a new door to the exciting research areas. In addition when they are 

integrated with the life necessity such as diagnosis and therapy of some cancer types 

imputed as undeterred diseases it becomes an attractive field to discover. 

Photodynamic therapy is such a sort of therapy that can easily be combined with 

logic gate approach. However, it is a serious application for diseased people so it 

might be controlled in a detailed way. Molecular demultiplexer is one of the unique 

molecular logic gate. It is unique because it has an ability to select between the two 

different outputs when it receives an input. It should define the diseased region of the 

tissue and then select the right patway of the outputs to operate.  

Photodynamic therapy based on the excitation of the specialized photosensitizer that 

is in the tumor tissue and then generation of the singlet oxygen to destroy 

aforementioned tissue. It can be seen that molecular DEMUX can be a very effective 

way in the photodynamic therapy context.  It can be designed to select between the 

two outputs such as energy transfer or the generation of singlet oxygen.  

In this project, we  expect the energy of the FL be less than the energy of the PS. In a 

molecular DEMUX, one can combine FL and PS with a linker such that we 

synthesized here. If one excites the molecule in a normal tissue, there will be no 

change in the molecule. If one excites the PS in an acidic medium at a certain 

wavelenght, energy transfer is expected from PS to FL and there is no harm for the 

tissue. If there is GSH in that acidic medium than the molecule prefers to generate 

singlet oxygen because the breakage of the S-S bond causes FL and PS to be 

seperated and energy transfer becomes impossible because of the distance between 

them. It can be seen clearly in Figure 28. 
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Figure 28 Logic gate function of the DEMUX 

Synthesis of these compounds are important for the application of logic gates in real 

life.  As it is mentioned before our design composed of three important modules; PS, 

linker and FL. In the synthesis of PS, it is important that it has heavy atoms like 

iodine because it is known that Bodipys become more efficient photosensitizers with 

the incorporation of heavy atoms. As it is implied heavy atom substituted Bodipys 

have intersystem crossing step faster which then causes generation of singlet oxygen. 

In addition one can adjust the absorption band of a Bodipy. Tunable absorption band 

is an important phenomenon for a PDT agent. Absorption peak of the module can be 

tuned in between 550-800 nm wavelenght with the substitution of styryl groups to 

the Bodipy core because the ligth that can be used for PDT should be in this range. 

The NMR spectra show that the compound was synthesized successfully.  

Our second target compound was the linker. As it is mentioned before the S-S bond 

system was designed according to the gluthathione’s structure. A simple azide 

synthesis procedure was applied to get the compound. Mass data and NMR spectra 

indicate that the synthesis of the linker was accomplished.  

The synthesis of FL was the most arduous part of the project. Because there are two 

carboxylic acid groups on the molecule, applying column chromatography was 

difficult. However, the synthesis was completed assuring the target compound was 
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yielded. NMR spectrum and mass spectrum verify the final compound was the target 

compound.  

 

4.4 Conclusion 

In this Project we made progress  with the idea that includes design and synthesis of 

a possible molecular logic gate; DEMUX as a theranostic device. Our design is 

composed of a three different modules; a photosensitizer that is able to generate 

singlet oxygen upon excitation with the help of the heavy atom substitution, a 

fluorophore  that is fluorescent especially upon protonation and linker that is able to 

link these two modules to each other and is able to break up in the presence of GSH.  

In conclusion we can say that although we faced a lot of difficulties in the 

purification steps of the modules we are able synthesize these three PDT modules in 

a successful manner. Our mass spectra and NMR spectra support the synthesis is 

successful. We expect our modules to be used can be used  as we envisoned in the 

synthesis of a functional threnostic device based on a molcular demultiplexer.  This 

in turn will be a radical departure from the current approaches for obtaining 

theranostic agents, with hopefully much better results.   

 

4.5 Experimental Details 

4.5.1 Methods and Materials 

Chemicals for the all experiments were purchased from Merck and Sigma-Aldrich 

and used without further purification. 1H NMR and 13C NMR spectra were recorded 

on Bruker DPX-400 in CDCl3 where the internal standard is tetramethylsilane. s 

(singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublet) and m (multiplet) 

are used for the indication of splitting pattern. Reactions are monitored by thin layer 

chromatography using Merck TLC Silica gel 60 F254. Merck Silica Gel 60 (particle 

size: 0.040-0.063 mm, 230-400 mesh ASTM) was used for the column 

chromatography. Mass spectroscopy was performed on Agilent Technologies 6530 

Accurate-Mass Q-TOF LC/MS.  
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4.5.2 Synthesis of Compounds 

Compound 11  

After solving 2.45 g (20 mmol) of 4-hydroxybenzaldehyde in 100 ml acetone, 2.5 g 

(30 mmol) of propargyl bromide was added to the solution. 5.5 g (39.8 mmol) of 

K2CO3 and a small crystal of 18-crown-6 were added. The reaction mixture was 

refluxed until 4-hydroxybenzaldehyde was consumed. Acetone was evaporated and 

the product was extracted with CH2Cl2 and dried over anhydrous Na2SO4. Organic 

phase was evaporated in vacuo and the product was purified via silica gel column 

chromatography using CH3Cl/Hexane (50/50; v/v) as eluent. Compound 11 was 

obtained after the solvent was removed. (2.72 g, 16.98 mmol, 85%) 1H NMR 

(CDCl3, 400 MHz, δ ppm) 2.59 (q, J=1.00 1H), 4.75 (q, J=1.00 2H), 7.12 (t, J=1.00 

2H), 7.88 (q, J=1.00 2H), 9.92 (s, 1H), 13C NMR (CDCl3, 400 MHz, δ ppm) 190.75, 

162.38, 131.89, 115.19, 77.34, 77.02, 76.70, 76.35, 55.95. HRMS-ESI: calculated for 

M+Na 183.0422, found 183.0422, ∆= 0 ppm.  

 

Compund 12  

300 ml of CH2Cl2 was purged for 30 minutes with argon. 1.00 g (6.24 mmol) of 

Compund 11 and 1.31 g (13,7 mmol) of 2,4-dimethyl pyrrole were dissolved in it. a 

few drops of trifluoroacetic acid was added to the solution and the mixture was 

stirred for 12 h at room temperature. 1.52 g (6.24 mmol) of p-chloranil was added to 

the mixture and it was stirred for 45 minutes at room temperature. Triethylamine (5 

ml) and boron trifluoride diethyl etherate (5 ml) were added, respectively. The 

product was extracter with diethylether after 30 minutes stirring. Organic phase was 

dried with Na2SO4 and evaporated under vacuum. Purification of the product was 

performed with silica gel column chromatography by using Hexane/Ethyl Acetate 

(8/1; v/v) as mobile phase. Fraction containing compound 12 was collected and the 

solvent was evaporated. (256 mg, 0.68 mmol, 11%) 1H NMR (CDCl3, 400 MHz, 

1.43 (s, 6H), 2.56-2.58 (m, 6H+1H), 4.77 (d, J=2.4 Hz, 2H), 5.99 (s, 2H), 7.10 (d, 

J=8.7 Hz), 7.21 (d, J=8.7 Hz, 2H). 13C NMR (CDCl3, 100 MHz, d ppm) 14.5, 14.6, 

56.0, 75.9, 78.0, 115.6, 121.2, 128.0, 129.2, 131.8, 141.5, 143.1, 155.4, 158.1. 

HRMS-ESI: calculated for M+Na 401.1617, found 401.1644, D= 6.7 ppm. 
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Compund 13 

0.256 g (0.677 mmol) of compound 12 was dissolved in 100 ml ethanol. 0.429 g 

(1.692 mmol) of I2 was added to the solution. 0.238 g (1.354 mmol) of HIO3 was 

dissolved in a few drops of water and added to the previous mixture. The reaction 

mixture was stirred at 60 0C and monitored with TLC. When all BODIPY was 

consumed 50 ml of saturated solution of sodiumthiosulfate was added and stirred for 

an extra 30 minutes. Extraction was performed with DCM. The purification of the 

product was done with column chromatography by using Hexane/DCM (50/50 ;v/v) 

as eluent. The product was obtained through the evaporation of the organic solvent. 

(0.382 g, 0.607 mmol, 90%) 1H NMR (CDCl3, 400 MHz, δ ppm) 1.36 (s, 6H), 2.49 

(s, 1H), 2.56 (s, 6H), 4.70 (s, 2H), 7.04 (d, J=8.8 Hz, 2H), 7.09 (d, J=8.8 Hz, 2H). 
13C NMR (CDCl3, 400 MHz, δ ppm) 16.0, 17.1, 56.1, 76.1, 85.8, 100.1, 116.0, 

127.8, 129.1, 131.6, 141.4, 146.0, 156.7, 158.6. HRMS-ESI: calculated for M+Na 

652.9550, found 652.9515, ∆= 5.4 ppm. 

Compound 14 

0.200 g (0.317 mmol) of compound 13 and 0.050 g (0.285 mmol) of 4-

diethylaminobenzaldehyde were dissolved  in 30 ml benzene. 0.45 ml of piperidine 

and 0.45 ml of acetic acid were added. The reaction mixture was refluxed by using 

Dean-Stark. Extraction was done with DCM and water. The organic layer was dried 

with sodium sulfate and its solvent was evaporated under vacuum. The product was 

purified by column chromatography where the mobile phase was DCM/Hexane (2/1; 

v/v). Fraction containing compound 14 was collected and the solvent was 

evaporated. (0.045 g, 57 µmol, 18%) 1H NMR (CDCl3, 400 MHz, δ ppm) 1.24 (m, 

Hz, 6H), 1.51 (s, 3H), 2.60 (t, J=10.8, 3H), 3.44 (m, 4H), 4.79 (d, J=2.4, 2H), 6.69 

(d, J=8.9, 2H), 7.15 (m, 2H), 7.48 (s, 2H), 7.54 (t, J=8.8, 3H), 8.22 (d, J=16.5, 1H) 
13C NMR (CDCl3, 400 MHz, δ ppm) 158.83, 140.84, 129.81, 129.54, 115.90, 

113.36, 111.60, 76.00, 56.21, 44.56, 29.74, 17.88, 16.96, 16.25, 12.77 HRMS (TOF-

ESI): m/z calcd for C33H32BF2I2N3O-  787.0666 [M-H]-, found: 787.06594 [M-H], Δ 

= -0.84 ppm. 

Compound 15 
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1.5 g (9.36 mmol) of compound 11 was dissolved in 300 ml DCM to which Argon 

was purged for 30 min. 2.78 ml (2.54 g, 20.60 mmol) of 2,4-dimethyl-3-ethyl pyrrole 

was added to the solution. 3 drops of trifluoroacetic acid was added dropwise. The 

reaction mixture was stirred for 12 h at room temperature. Then 2.31 g (9.36 mmol)  

of p-chloranil was added and the mixture was stirred for 45 min. After that 8 ml of 

triethyl amine and 8 ml of boron trifluoride diethyl etherate were added, in sequence. 

The reaction mixture was stirred for an extra 30 min. Then it was extracted with 

water. The organic phase was dried over Na2SO4 and evaporated. Silica gel column 

chromatography was applied to the product by using  Hexane/EtOAc solvent system 

(8/1; v/v). The fraction that contains compound  15 was collected and its solvent was 

evaporated under vacuum. (0.6 g, 1.38 mmol, 15%) 1H NMR (CDCl3, 400 MHz, 

δ ppm) 7.22 (m, 2H),  7.10 (t, J = 0.02 Hz, 2H), 4.78 (d, J = 2.40 Hz, 2H), 2.55 (m, 

5H), 2.32 (t, J=7.49, 5H),  1.60 (s, 5H), 1.28 (s, 3H) 1.00 (t, J= 0.01, 3H). 13C NMR 

(CDCl3, 400 MHz, δ ppm) 158.0, 153.6, 140.0, 138.4, 132.8, 131.1, 129.8, 128.9, 

115.6, 78.1, 75.8, 56.0, 17.1, 14.6, 12.5, 11.8.  

Compound 16 

1 g (8.19 mmol) of 4-Hydroxybenzaldehyde and 1.36 g (6.96 mmol) of 6-

Bromohexanoic acid were dissolved in 150 ml acetone. A few crystals of 18-Crown-

6 was added to the mixture. Then 3.40 g (24.57 mmol) of K2CO3 was added. The 

reaction mixture was refluxed for 12 h and then filtered. The filtrate was dissolved in 

water and then neutralized with 4 M HCl. White precipitate was filtered and dried. 
1H NMR (400 MHz, DMSO) 1.56 (q, J=2.00 2H), 1.75 (q, J=2.00, 2H), 2.24 (t, 

J=2.00, 2H),  2.50 (m, 2H), 4.08 (t, J=2.00, 2H), 7.12 (t, J=1.00, 2H), 7.86 (q, 

J=1.00, 2H), 9.86 (s, 1H), 11.92 (s, 1H), 13C NMR (CDCl3, 400 MHz, δ ppm) 

191.75, 174.89, 164.14, 132.28, 115.37, 68.40, 40.59, 40.39, 40.18, 39.97, 39.76, 

39.56, 39.34, 34.06, 28.69, 25.51, 24.68 HRMS (TOF-ESI): m/z calcd for C13H16O4
-  

235.0961 [M-H]-, found: 235.09758 [M-H]-, Δ = 6.26 ppm. 

 Compound 17 

0.10 g (0.24 mmol) of compound 15 was dissolved in 30 ml of benzene. 0.13 g (0.60 

mmol) of compound 16 was added to the solution. Then 0.3 ml of acetic acid and 0.3 
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ml of piperidine were added. The reaction mixture was refluxed for 2 h with Dean-

Stark apparatus. It was extracted with DCM and water. After the solvent of organic 

phase was removed silica gel column chromatography was applied for purification 

with Methanol/EtOAc (1/9; v/v). The fraction containing the product was evaporated 

under vacuum. (0.027 g, 0.032 mmol, 13%). 1H NMR (400 MHz, DMSO) 1.10 (q, 

J=8.44, 4H), 1.34 (d, J=7.02, 4H), 1.45 (d, J=7.48, 6H),  1.56 (s, 4H), 1.72 (s, 6H), 

2.25 (s, 4H), 4.02 (s, 4H), 4.39 (t, J=6.08, 4H), 4.46 (s, 1H), 4.89 (d, J=2.47, 2H), 

7.01 (t, J=8.91, 4H), 7.07 (d, J=8.60, 2H), 7.17 (d, J=8.88, 2H), 7.31 (d, J=8.89, 2H), 

7.53 (d, J=8.82, 2H), 7.68 (s, 2H), 7.89 (d, J=11.02, 2H), 12.06 (s, 2H), HRMS 

(TOF-ESI): m/z calcd for C52H57BF2N2O7
- 868.4191 [M-H]-, found: 868.41904 [M-

H]-, Δ = -0.11 ppm. 

Compound 18 

2 g (25.6 mmol) of mercapto ethanol was dissolved in 10 ml DMSO. The mixture 

was stirred at 80 0C for 12 hours. After cooling the mixture to room temperature 

extraction was performed with brine and ethyl acetate. Organic layer was dried with 

sodium sulfate and after evaporation silica gel column chromatography was applied 

with Hexane/Ethyl Acetate (3/1; v/v) as eluent. Solvent of the fraction that contain 

compound 5 was removed and product was obtained. (1.79 g, 11.6 mmol, 45%) 1H 

NMR (CDCl3, 400 MHz, δ ppm) 3.90 (t, 4H, J = 5.84 Hz; OCH2), 7.30 (t, 4H, J = 

5.88 Hz; SCH2). 13C NMR (CDCl3, 400 MHz, δ ppm) 60.4, 41.3.  

Compound 19 

1 g (6.48 mmol) of compound 18 was dissolved in DCM/Et3N solvent system (10/1; 

v/v). As the solution was being cooled with ice bath 1.22 g (12,96 mmol) of p-

toluene sulfonyl chloride was dissolved in 10 ml DCM and added dropwise to the 

solution. The mixture was stirred for 12 h. Extraction was done with DCM and 

water. Organic phase was dried with sodium sulphate and evaporated. Silica gel 

column chromatography was applied with CHCl3 as eluent. Fraction that contained 

product was evaporated and a white solid was obtained. (2.82 g, 6.1 mmol, 94%) 1H 

NMR (CDCl3, 400 MHz, δ ppm) 7.83 (d, 4H, J = 8.04 Hz; ArH), 7.38 (d, 4H, J = 

7.93 Hz; ArH), 4.21 (t, 4H, J = 6.61 Hz; OCH2), 2.85 (t, 4H, J = 6.53 Hz; SCH2), 
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2.48 (s, 6H, ArCH3). 13C NMR (CDCl3, 400 MHz, δ ppm) 145.2, 130.0, 128.0, 67.5, 

36.9, 21.7.  HRMS (TOF-ESI): m/z calcd for C18H22NaO6S4
+ 485.0191 [M+Na]+, 

found: 485.0104 [M+Na]+, Δ = 17.94 ppm. 

Compound 20 

1 g (2.16 mmol) of compound 19 was dissolved in 10 ml DMSO. Then 0.648 g of 

(9.98 mmol) sodium azide was added to the solution. The reaction mixture was 

stirred at 60 0C for 2 hours. Extraction was done with ethyl acetate and water after 

cooling the reaction mixture to room temperature. Organic layer was dried with 

Na2SO4 and evaporated under vacuum. The yellow oily product was obtained. (0.42 

g, 2.05 mmol, 95%) 1H NMR (CDCl3, 400 MHz, δ ppm) 3.63 (t, 4H, J = 6.76 Hz; 

NCH2), 2.89 (t, 4H, J = 6.76 Hz; SCH2). 13C NMR (CDCl3, 400 MHz, δ ppm) 49.9, 

37.6.  
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CHAPTER 5 

5 CONCLUSION 

In this thesis we focused on the two different projects. The first project was the 

design and synthesis of a PEGylated Calix[4]arene as a carrier for a Bodipy that is 

substituted by heavy atoms and has complementary water soluble units. It is obvious 

that calix[4]arene molecule can be functionalized with two Bodipy units having a 

high tendency to intersystem crossing property due to heavy iodine atoms. Some 

hydrophobic character was gained due the long alkyl chains on the lower rim of the 

calixarene. There are two PEG groups that adds hydrophilic character which then 

make the compound amphiphilic. The styryl group make long wavelength absorption 

ensured.. In the second project, we designed and synthesized the modules of 

molecular logic gate, DEMUX.  There are three main compounds for this kind of 

molecular logic gates geared for theranostic potential, these are, photosensitizer, 

fluorophore and a analyte responsive linker between them. The synthesis part was 

completed successfully. It will be a significant progress for future work. 

To conclude, we can say that PDT is a promising area for scientists and when it is 

coupled with logic gate concepts, the potetial for information processing therapeutic 

agents is enormous.  
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APPENDIX 

A.1 PEGylated Calix[4]arene as a Carrier for a Bodipy-based 

Photosensitizer 

A.1.1   1H NMR and 13C NMR Spectra 

 

 

Figure 29. 1H NMR of Compound 5 (Copyright ©, 2014, Elsevier. Reprinted with 

permission from Ref. 72) 
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Figure 30. 13C NMR of Compound 5 (Copyright ©, 2014, Elsevier. Reprinted with 

permission from Ref. 72) 

 

Figure 31. 1H NMR of Compound 6 (Copyright ©, 2014, Elsevier. Reprinted with 

permission from Ref. 72) 
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Figure 32. 13C NMR of Compound 6 (Copyright ©, 2014, Elsevier. Reprinted with 

permission from Ref. 72) 

 

 

Figure 33. 1H NMR of Compound 8 (Copyright ©, 2014, Elsevier. Reprinted with 

permission from Ref. 72) 
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Figure 34. 13C NMR of Compound 8 (Copyright ©, 2014, Elsevier. Reprinted with 

permission from Ref. 72) 

 

 

Figure 35. 1H NMR of Compound 9 (Copyright ©, 2014, Elsevier. Reprinted with 

permission from Ref. 72) 
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Figure 36. Aromatic part of the 1H NMR of Compound 9 (Copyright ©, 2014, 

Elsevier. Reprinted with permission from Ref. 72) 

 

 

Figure 37. Aliphatic part of the 1H NMR of Compound 9 (Copyright ©, 2014, 

Elsevier. Reprinted with permission from Ref. 72) 
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Figure 38. Detailed aliphatic part of the 1H NMR of Compound 9 (Copyright ©, 

2014, Elsevier. Reprinted with permission from Ref. 72) 

 

Figure 39. 13C NMR of Compound 9 (Copyright ©, 2014, Elsevier. Reprinted with 

permission from Ref. 72) 
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Figure 40.1H NMR of Compound 10 (Copyright ©, 2014, Elsevier. Reprinted with 

permission from Ref. 72) 

 

 

Figure 41.Aromatic part of the 1H NMR of Compound 10 (Copyright ©, 2014, 

Elsevier. Reprinted with permission from Ref. 72) 
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Figure 42. Aliphatic part of the 1H NMR of Compound 10 (Copyright ©, 2014, 

Elsevier. Reprinted with permission from Ref. 72) 

 

Figure 43. Detailed aliphatic part of the 1H NMR of Compound 10 (Copyright ©, 

2014, Elsevier. Reprinted with permission from Ref. 72) 
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A.1.2 MASS Spectra 

 

 

Figure 44. MALDI Spectrum of compound 5 (Copyright ©, 2014, Elsevier. 

Reprinted with permission from Ref. 72) 

 

 

Figure 45. MALDI Spectrum of compound 6 (Copyright ©, 2014, Elsevier. 

Reprinted with permission from Ref. 72) 
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Figure 46. MALDI Spectrum of compound 8 (Copyright ©, 2014, Elsevier. 

Reprinted with permission from Ref. 72) 

 

 

 

Figure 47. MALDI Spectrum of compound 9 (Copyright ©, 2014, Elsevier. 

Reprinted with permission from Ref. 72) 
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Figure 48. MALDI Spectrum of compound 10 (Copyright ©, 2014, Elsevier. 

Reprinted with permission from Ref. 72) 

 

 

 

Figure 49. Detailed MALDI Spectrum of compound 10 (Copyright ©, 2014, 

Elsevier. Reprinted with permission from Ref. 72) 
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A.2   Synthesis of Molecular Demultiplexer Modules 

A.2.1   1H NMR and 13C NMR Spectra 

 

Figure 50. 1H NMR of Compound 11 
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Figure 51. 13C NMR of Compound 11 

 

Figure 52. 1H NMR of Compound 12 
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Figure 53. 13C NMR of Compound 12 

 

Figure 54. 1H NMR of Compound 13 
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Figure 55. 13C NMR of Compound 13 

 

Figure 56.1H NMR of Compound 14 
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Figure 57. 13C NMR of Compound 14 

 

Figure 58. 1H NMR of Compound 15 
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Figure 59. 13C NMR of Compound 15 

 

Figure 60. 1H NMR of Compound 16 
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Figure 61.13C NMR of Compound 16 

 

Figure 62. 1H NMR of Compound 17 

79 

 

 

 



 

Figure 63. 1H NMR of Compound 18 

 

Figure 64. 13C NMR of Compound 18 
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Figure 65. 1H NMR of Compound 19 

 

Figure 66. 1H NMR of Compound 20 
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Figure 67. 13C NMR of Compound 20 

A.2.2    Mass Spectra 

 

Figure 68. Mass Spectrum of Photosensitizer (Compound 14) 
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Figure 69. Mass Spectrum of Compound 16 

 

 

Figure 70. Mass Spectrum of Fluorophore (Compound 17) 
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A.2.3    Literature Examples 

 

Figure 71. Literature example for PS (Copyright ©, 2012, Elsevier. Reprinted with 
permission from Ref. 78) 

 
 

 

Figure 72. Literature example for FL (Copyright ©, 2012, Elsevier. Reprinted with 
permission from Ref. 79) 
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