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ABSTRACT

HYPERGRAPH-BASED
DATA PARTITIONING

Enver Kayaaslan

Ph.D. in Computer Engineering

Supervisor: Prof. Dr. Cevdet Aykanat

September, 2013

A hypergraph is a general version of graph where the edges may connect any

number of vertices. By this flexibility, hypergraphs has a larger modeling power

that may allow accurate formulaion of many problems of combinatorial scientific

computing. This thesis discusses the use of hypergraph-based approaches to solve

problems that require data partitioning. The thesis is composed of three parts. In

the first part, we show how to implement hypergraph partitioning efficiently using

recursive graph bipartitioning. The remaining two parts show how to formulate

two important data partitioning problems in parallel computing as hypergraph

partitioning. The first problem is global inverted index partitioning for parallel

query processing and the second one is row-columnwise sparse matrix partitioning

for parallel matrix vector multiplication, where both multiplication and sparse

matrix partitioning schemes has novelty. In this thesis, we show that hypergraph

models achieve partitions with better quality.

Keywords: hypergraph, data partitioning, combinatorial algorithms.
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ÖZET

HİPERÇİZGE TABANLI VERİ BÖLÜMLEME

Enver Kayaaslan

Bilgisayar Mühendisliği, Doktora

Tez Yöneticisi: Prof. Dr. Cevdet Aykanat

Eylül, 2013

Hiperçizgeler, bir kenarın herhangi bir sayıda düğümü bağlayabilme özelliği

oldugu, çizgelerin genelleştirilmiş bir versiyonudur. Bu genelleme ile hiperçizgeler

yüksek bir modelleme gücüne sahiptir öyle ki kombinatöriyel bilimsel hesaplama

alanında birçok önemli problem hiperçizgeler ile güçlü bir şekilde model-

lenebilmektedir. Bu tez ise hiperçizge tabanlı yöntemler kullanılarak veri

bölümleme problemlerinin çözülmesini araştırmaktadır. Bu tez üç ana bölümden

oluşmaktadır. Birinci bölümde, özyinelemeli çizge ikiye-bölümleme kullanarak,

verimli bir hiperçizge bölümleme aracının nasıl oluşturulduğu gösterilmektedir.

İkinci ve üçüncü bölümlerde, paralel hesaplamadaki iki önemli veri bölümleme

probleminin hiperçizge bölümleme ile nasıl modellendiği gösterilmektedir. Bir-

inci problem paralel sorgu hesaplama için indeksin terim-tabanlı bölümlenmesi

problemidir. İkincisi ise yeni önerilen bir paralel matriks vektör carpiminda kul-

lanılmak üzere yine yeni önerilen bir seyrek matriks bölümleme problemidir. Bu

tezde, hiperçizge tabanlı modelleri ile daha kaliteli veri bölümleme elde edildiği

gösterilmektedir.

Anahtar sözcükler : hiperçizge, veri bölümleme, kombinatöriyel algoritmalar.
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Chapter 1

Introduction

A hypergraph is a generalization of a graph, since it replaces edges that con-

nect only two vertices, with hyperedges (nets) that can connect multiple vertices.

This generalization provides a critical modeling flexibility that allows accurate

formulation of many important problems in combinatorial scientific computing.

After their introduction in [1,2], the modeling power of hypergraphs appealed to

many researchers and they were applied to a wide variety of many applications

in scientific computing [3–23]. Hypergraphs and hypergraph partitioning are now

standard tools of combinatorial scientific computing. Increasing popularity of

hypergraphs has been accompanied with the development of effective hypergraph

partitioning (HP) tools: wide applicability of hypergraphs motivated development

of fast HP tools, and availability of effective HP tools motivated further appli-

cations. This virtuous cycle produced sequential HP tools such as hMeTiS [24],

PaToH [25] and Mondriaan [21], and parallel HP tools such as Parkway [26] and

Zoltan [27], all of which adopt the multilevel framework successfully.

While the hypergraph partitioning tools provide good performances both in

terms of solution quality and processing times, they are hindered by the inherent

complexity of dealing with hypergraphs. Algorithms on hypergraphs are more

difficult both in terms of computational complexity and runtime performance,

since operations on nets are performed on sets of vertices as opposed to pairs

of vertices as in graphs. The wide interest over the last decade has proven the
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modeling flexibility of hypergraphs to be essential, but the runtime efficiency of

graph algorithms cannot be overlooked, either. Therefore, we believe that the

new research thrust should be how to cleverly trade-off between the modeling

flexibility of hypergraphs and the practicality of graphs.

In Chapter 3, we investigate solving the HP problem by finding vertex sepa-

rators on the net intersection graph (NIG) of the hypergraph. In the NIG of a

hypergraph, each net is represented by a vertex and each vertex of the hypergraph

is replaced with a clique of the nets connecting that vertex. A vertex separator

on this graph defines a net separator for the hypergraph. This model has been

initially studied for circuit partitioning [34]. While faster algorithms can be de-

signed to find vertex separators on graphs, the NIG model has the drawback of

attaining unbalanced partitions. Once vertices of the hypergraphs are replaced

with cliques, it will be impossible to preserve the vertex weight information accu-

rately. Therefore, we can view the NIG model as a way to trade off computational

efficiency with exact modeling power.

As we will show in the experiments, the NIG model can effectively be em-

ployed for these applications to achieve high quality solutions in a shorter time.

We show that it is easy to enforce a balance criterion on the internal nets of hy-

pergraph partitioning by enforcing vertex balancing during the partitioning of the

NIG. However, the NIG model cannot completely preserve the vertex balancing

information of the hypergraph. We propose a weighting scheme in NIG, which

is quite effective in attaining fairly vertex-balanced partitions of the hypergraph.

The proposed vertex balancing scheme for the NIG partitioning can be easily

enhanced to improve the balancing quality of the hypergraph partitions in a sim-

ple post-processing phase. The recursive bipartitioning (RB) paradigm is widely

used for multiway HP and known to produce good solution qualities [24, 25]. At

each RB step, cutnet removal and cutnet splitting techniques [6] are adopted

to optimize the cutsize according to the cutnet and connectivity metrics, respec-

tively, which are the most commonly used cutsize metrics in scientific and parallel

computing [6,35] as well as VLSI layout design [33,34]. In this work, we propose

separator-vertex removal and separator-vertex splitting techniques for RB-based

partitioning of the NIG, which exactly correspond to the cutnet removal and

2



cutnet splitting techniques, respectively. We also propose an implementation for

our GPVS-based HP formulations by adopting and modifying a state-of-the-art

GPVS tool used in fill-reducing sparse matrix ordering.

In Chapters 4 and 5, we respectively show how to model a data partitioning

problem as a hypergraph partitioning problems, on parallel query processing and

parallel sparse matrix vector multiplication. The large-scale search engines has to

process queries in a reasonable amount of time. Parallelism is the remedy of this

requirement. To process queries efficiently, an inverted index on the document

collection is built [47], where an inverted index contains a list of document ids for

each term in the vocabulary. For each term-document pair, some other auxiliary

information, such as the frequency of the term in the document, can be held.

There are two common approaches for parallel query processing: doc-parallel

and term-parallel. Term-parallel query processing has an advantage in number of

disk accesses. The quest is to distribute the terms to processors such that query

processing load is evenly shared and the total inter-processor communication is

low in a batch-mode processing scenario. We formulate the term partitioning

problem with a hypergraph partitioning problem where the vertices are terms

and the nets are queries.

Chapter 5 investigates sparse matrix vector multiplication (SpMxV), which is

a kernel operation repeatedly performed in iterative linear system solvers. There

are mainly three types of parallel SpMxV algorithms used in the scientific com-

munity: row-parallel, column-parallel and row-column-parallel. The row-parallel

algorithm involves expand-type point-to-point communication operations on the

local input vector entries before the local SpMxV operations, whereas column-

parallel algorithm involves fold-type point-to-point communication operations on

the local output vector results after the local SpMxV operations. The row-

column-parallel algorithm necesitates two-phase communication: expand opera-

tion before local SpMxVs and fold operation after the local SpMxVs. 1D rowwise

and columnwise partitioning of the coefficiant matrix are used for row-parallel and

column-parallel SpMxV algorithms, respectively, whereas 2D-nonzero partition-

ing of the coefficiant matrix is used for row-column-parallel SpMxV algorithms.

Several hypergraph partitioning models and methods have been successfully used

3



for sparse matrix partitioning for efficient row-parallel, column-parallel and row-

column-parallel SpMxV operations. In all these models the partitioning objec-

tive is to minimize the total volume of communication whereas the partitioning

constraint is to minimize the computational load balance. 2D nonzero based par-

titioning models are both more scalable and perform considerably better than

the 1D partitioning models in terms of communication volume metric. However,

1D models perform considerably better than 2D models in terms of speedup val-

ues due to the increased number of messages in the row-column-parallel SpMxV

algorithm.

In Chapter 5, we propose a single-phase row-column-parallel SpMxV algo-

rithm to address this bottleneck of the row-column-parallel SpMxV operation.

This new parallel multiplication scheme introduced row-columnwise partitioning

of sparse matrices where a nonzero is assigned to either the receiver or the sender

processor associated with the related input- or output-vector entries. We model

this partitioning with hypergraph partitioning problem where cooccurrence rela-

tions are introduced, which in turn causes a restriction of the solution space but

providing larger modeling flexibility. Unfortunately, there is currently no tool

implementing this new version of hypergraph partitioning. Thus, we solved the

row-columnwise partitioning problem resorting on the one-dimensional partition-

ing methods. After obtaining a rowwise partitioning, we relax the assignments

the nonzeros of the off-diagonal blocks using Dulmage-Mendhelson decomposition

on those blocks, separately. Using this decomposition, we obtain assignment of

nonzeros that accurately minimizes the communication volume in this framework.
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Chapter 2

Background

In this chapter, we give some combinatorial background that is required for the

rest of the thesis. Specifically, we define graph and hypergraph partitioning prob-

lems, and give the definition of net intersection graph of a hypergraph.

2.1 Graph Partitioning

An undirected graph G = (V , E) is defined as a set V of vertices and a set E
of edges. Every edge eij ∈ E connects a pair of distinct vertices vi and vj. We

use the notation Adj(vi) to denote the set of vertices adjacent to vertex vi. We

extend this operator to include the adjacency set of a vertex subset V ′⊂V , i.e.,

Adj(V ′) = {vj ∈ V −V ′ : vj ∈ Adj(vi) for some vi ∈ V ′}. Two disjoint vertex

subsets Vk and V` are said to be adjacent if Adj(Vk) ∩ V` 6= ∅ (equivalently

Adj(V`) ∩ Vk 6= ∅) and non-adjacent otherwise. The degree d(vi) of a vertex vi

is equal to the number of edges incident to vi, i.e., d(vi) = |Adj(vi)|. A weight

w(vi) ≥ 0 is associated with each vertex vi.

An edge subset ES is a K-way edge separator if its removal disconnects the

graph into at least K connected components. That is, ΠES(G)={V1,V2, . . . ,VK}
is a K-way vertex partition of G by edge separator ES ⊂ E if each part Vk is
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non-empty; parts are pairwise disjoint; and the union of parts gives V . Edges

between the vertices of different parts belong to ES, and are called cut (external)

edges and all other edges are called uncut (internal) edges.

A vertex subset VS is a K-way vertex separator if the subgraph induced by

the vertices in V−VS has at least K connected components. That is, ΠV S(G) =

{V1,V2, . . . ,VK ;VS} is a K-way vertex partition of G by vertex separator VS⊂V if

each part Vk is non-empty; all parts and the separator are pairwise disjoint; parts

are pairwise non-adjacent; and the union of parts and the separator gives V .

The non-adjacency of the parts implies that Adj(Vk) ⊆ VS for each Vk. The

connectivity λ(vi) of a vertex vi denotes the number of parts connected by vi,

where a vertex that is adjacent to any vertex in a part is said to connect that

part. A vertex vi∈Vk is said to be a boundary vertex of part Vk if it is adjacent

to any vertex in VS. A vertex separator is said to be narrow if no subset of it

forms a separator, and wide, otherwise.

The objective of graph partitioning is finding a separator of smallest size

subject to a given balance criterion on the weights of the K parts. The weight

W (Vk) of a part Vk is defined as the sum of the weights of the vertices in Vk, i.e.,

W (Vk) =
∑
vi∈Vk

w(vi) (2.1)

and the balance criterion is defined as

max
1≤k≤K

W (Vk) ≤ (1 + ε)Wavg , where (2.2)

Wavg =

∑K
k=1W (Vk)

K
.

Here, Wavg is the weight each part must have in the case of perfect balance, and

ε is the maximum imbalance ratio allowed. We proceed with formal definitions

for the GPES and GPVS problems, both of which are known to be NP-hard [31].

Definition 1 (Problem GPES) Given a graph G= (V , E), an integer K, and

a maximum allowable imbalance ratio ε, GPES problem is finding a K-way vertex

partition ΠES(G) = {V1,V2, . . . ,VK} of G by edge separator ES that satisfies the
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balance criterion given in Equation 2.2 while minimizing the cutsize, which is

defined as

cutsize(ΠES) =
∑

eij∈ES

c(eij), (2.3)

where c(eij) ≥ 0 is the cost of edge eij = (vi, vj).

Definition 2 (Problem GPVS) Given a graph G= (V , E), an integer K, and

a maximum allowable imbalance ratio ε, GPVS problem is finding a K-way vertex

partition ΠV S(G)={V1,V2, . . . ,VK ;VS} of G by vertex separator VS that satisfies

the balance criterion given in Equation 2.2 while minimizing the cutsize, which

is defined as one of

a) cutsize(ΠV S) =
∑
vi∈VS

c(vi) (2.4)

b) cutsize(ΠV S) =
∑
vi∈VS

c(vi)(λ(vi)− 1) (2.5)

where c(vi) ≥ 0 is the cost of vertex vi.

In the cutsize definition given in Equation 2.4, each separator vertex incurs

its cost to the cutsize, whereas in Equation 2.5, the connectivity of a vertex is

considered while incurring its cost to the cutsize. In the general GPVS definition

given above, both a weight and a cost are associated with each vertex. The

weights are used in computing loads of parts for balancing, whereas the costs are

utilized in computing the cutsize.

The techniques for solving GPES and GPVS problems are closely related. An

indirect approach to solve the GPVS problem is to first find an edge separator

through GPES, and then translate it to any vertex separator. After finding an

edge separator, this approach takes vertices adjacent to separator edges as a wide

separator to be refined to a narrow separator, with the assumption that a small

edge separator is likely to yield a small vertex separator. The wide-to-narrow

refinement problem [32] is described as a minimum vertex cover problem on the
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bipartite graph induced by the cut edges. A minimum vertex cover can be taken

as a narrow separator for the whole graph, because each cut edge will be adjacent

to a vertex in the vertex cover.

2.2 Hypergraph Partitioning

A hypergraph H= (U ,N ) is defined as a set U of nodes (vertices) and a set N
of nets among those vertices. We refer to the vertices of H as nodes, to avoid

the confusion between graphs and hypergraphs. Every net ni ∈ N connects a

subset of nodes, i.e., ni ⊆ U . The nodes connected by a net ni are called pins

of ni and denoted as Pins(ni). We extend this operator to include the pin list

of a net subset N ′ ⊂ N , i.e., Pins(N ′) =
⋃

ni∈N ′ Pins(ni). The size s(ni) of a

net ni is equal to the number of its pins, i.e., s(ni)= |Pins(ni)|. The set of nets

that connect a node uj is denoted as Nets(uj). We also extend this operator to

include the net list of a node subset U ′ ⊂ U , i.e., Nets(U ′) =
⋃

uj∈U ′ Nets(uj).

The degree d(uj) of a node uj is equal to the number of nets that connect uj,

i.e., d(uj)= |Nets(uj)|. The total number of pins, p, denotes the size of H where

p=
∑

ni∈N s(ni) =
∑

uj∈U d(uj). A graph is a special hypergraph such that each

net has exactly two pins. A weight w(uj) is associated with each node uj, whereas

a cost c(ni) is associated with each net ni. A weight w(ni) can also be associated

with each net ni as we will discuss later in this section.

A net subset NS is a K-way net separator if its removal disconnects the hyper-

graph into at least K connected components. That is, ΠU(H)={U1,U2, . . . ,UK}
is a K-way node partition of H by net separator NS⊂N if each part Uk is non-

empty; parts are pairwise disjoint; and the union of parts gives U . In a partition

ΠU(H), a net that connects any node in a part is said to connect that part.

The connectivity λ(ni) of a net ni denotes the number of parts connected by ni.

Nets connecting multiple parts belong to NS, and are called cut (external) (i.e.,

λ(ni) > 1), and uncut (internal) otherwise (i.e., λ(ni) = 1). The set of internal

nets of a part Uk is denoted as Nk, for k = 1, . . . , K. So, although ΠU(H) is

defined as a K-way partition on the node set of H, it can also be considered as
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inducing a (K+1)-way partition ΠN (H) = {N1, . . . ,NK ;NS} on the net set.

As in the GPES and GPVS problems, the objective of the hypergraph parti-

tioning (HP) problem is finding a net separator of smallest size subject to a given

balance criterion on the weights of the K parts. The weight W (Uk) of a part Uk
is defined either as the sum of the weights of nodes in Uk, i.e.,

W (Uk) =
∑
uj∈Uk

w(uj) (2.6)

or as the sum of weights of internal nets of part Uk, i.e.,

W (Uk) =
∑

ni∈Nk

w(ni). (2.7)

The former and latter part-weight computation schemes together with the load

balancing criterion given in Equation 2.2 will be referred to here as node and net

balancing, respectively. We proceed with a formal definition for the HP problem,

which is also known to be NP-hard [33].

Definition 3 (Problem HP) Given a hypergraph H = (U ,N ), an integer K,

and a maximum allowable imbalance ratio ε, HP problem is finding a K-way node

partition ΠU(H)={U1,U2, . . . ,UK} of H that satisfies the balance criterion given

in Equation 2.2 while minimizing the cutsize, which is defined as one of

a) cutsize(ΠU) =
∑

ni∈NS

c(ni) (2.8)

b) cutsize(ΠU) =
∑

ni∈NS

c(ni)(λ(ni)− 1). (2.9)

The cutsize metrics given in Equation 2.8 and Equation 2.9 are referred to as the

cut-net and connectivity metrics, respectively, [6, 9, 33].
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Figure 2.1: (a) A sample hypergraph H and (b) the corresponding NIG represen-
tation G.

2.3 Net Intersection Graph

In the NIG representation G = (V , E) of a given hypergraph H = (U ,N ), each

vertex vi of G corresponds to net ni of H, and we will use notation vi ≡ ni to

represent this correspondence. Two vertices vi, vj ∈ V of G are adjacent if and

only if respective nets ni, nj ∈N of H share at least one pin, i.e., eij ∈ E if and

only if Pins(ni) ∩ Pins(nj) 6= ∅. So,

Adj(vi) = {vj ≡ nj | nj ∈ N and Pins(ni) ∩ Pins(nj) 6= ∅}. (2.10)

Note that for a given hypergraph H, NIG G is well-defined, however there is no

unique reverse construction [34]. Figures 2.1(a) and 2.1(b), respectively, display

a sample hypergraph H and the corresponding NIG representation G. In the

figure, the sample hypergraph H contains 18 nodes and 15 nets, whereas the

corresponding NIG G contains 15 vertices and 30 edges.
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Chapter 3

Fast Hypergraph Partitioning

based on Recursive Graph

Bipartitioning

How can we solve problems that are most accurately modeled with hypergraphs

using graph algorithms without sacrificing too much from what is really important

for the application? This question has been asked before, and the motivation was

either theoretical [28] or practical [29, 30] when the absence of HP tools behest

these attempts. This earlier body of work investigated the relation between HP

and graph partitioning by edge separator (GPES), and achieved little success.

Today, we are facing a more difficult task, as effectiveness of available HP tools

sets high standards for novel approaches. On the other hand, we can draw upon

the progress on related problems, in particular the advances in tools for graph

partitioning by vertex separator (GPVS). In this chapter, we present how the

hypergraph partitioning problem can be implemented using recursive two-way

GPVS efficiently and support our discussion with a detailed emprical study.
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3.1 Background

In [39] the authors propose a net-partitioning based K-way HP algorithm that

avoids the module contention problem (which we will also refer to as contention-

free) by describing the HP problem as a GPVS problem through the NIG model.

The following theorem lays down the basis for the proposed GPVS-based HP

formulation. Let G = (V , E) denote the NIG of a given hypergraph H = (U ,N ).

The cost of each net ni of H is assigned as the cost of the respective vertex vi of G,

i.e., c(vi) = c(ni). For brevity of the presentation we assume unit net costs here,

but all proposed models and methods generalize to hypergraphs with non-unit

net costs.

Theorem 1 [39] A K-way vertex partition ΠV S(G) = {V1, . . . ,VK ;VS} of G
by a narrow vertex separator VS induces a K-way contention-free net partition

ΠN (H) = {N1 ≡ V1,N2 ≡ V2, . . . ,NK ≡ VK ;NS ≡ VS} of H by a net separator

NS.

AK-way contention-free net partition ofH by a net separatorNS

ΠN (H) = {N1≡V1, . . . ,NK≡VK ;NS≡VS} (3.1)

induces a K-way partial node partition

Π′U(H) = {U ′1 =Pins(N1) , . . . , U ′K =Pins(NK)}. (3.2)

Figure 3.1(a) shows a 3-way GPVS ΠV S(G) of the sample NIG G given in

Figure 2.1(b). Figure 3.1(b) shows the 3-way partial and complete node partition

Π′U(H) of the sample H, which is induced by ΠV S(G). Partial node partition

is displayed with nodes drawn with solid lines, and complete node partition is

achieved by adding 2 free nodes (drawn with dashed lines). The sample H given

in Figure 2.1(a) contains only 2 free nodes, which are u17 and u18. Comparison

of Figures 3.1(a) and 3.1(b) illustrates that the separator vertices v1, v8 and v15

of ΠV S(G) induce the cut nets n1, n8, and n15 of Π′U(H), respectively.

12
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Figure 3.1: (a) A 3-way GPVS of the sample NIG given in Figure 2.1(b) and (b)
corresponding partitioning of the hypergraph.

We can construct a complete node partition in the following form,

ΠU(H) = {U1 ⊇ U ′1,U2 ⊇ U ′2, . . . ,UK ⊇ U ′K}. (3.3)

Note that any K-way node partition of H inducing the (K+1)-way net partition

ΠN (H) has to be in the form above.

Theorem 2 [39] Given a K-way vertex partition ΠV S(G) of G by a narrow

vertex separator VS, any node partition ΠU(H) of H as constructed according to

Equation 3.3 induces the (K+1)-way net partition ΠN (H) = {N1≡V1, . . . ,NK≡
VK ;NS≡VS} such that the connectivity of each cut net in NS is greater than or

equal to the connectivity of the corresponding separator vertex in VS.

Corollary 1 [39] Given a K-way vertex partition ΠV S(G) of G by a narrow

vertex separator VS, the separator size of ΠV S(G) is equal to the cutsize of node

partition ΠU(H) induced by ΠV S(G) according to the cutnet metric, whereas the

separator size of ΠV S(G) approximates the cutsize of node partition ΠU(H) in-

duced by ΠV S(G) according to the connectivity metric.
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Comparison of Figures 3.1(a) and 3.1(b) illustrates that the connectivities of

separator vertices in ΠV S are exactly equal to those of the cut nets of induced par-

tial node partition Π′U(H). Figure 3.1(b) shows a 3-way complete node partition

ΠU(H) obtained by assigning the free nodes (shown with dashed lines) u17 and

u18 to parts U3 and U1, respectively. This free node assignment does not increase

the connectivities of the cut nets. However a different free node assignment might

increase the connectivities of the cut nets. For example, assigning free node u17

to part U2 instead of U3 will increase the connectivity of net n15 by 1.

3.2 Recursive-bipartitioning-based Partitioning

In the recursive bipartitioning (RB) paradigm, a hypergraph is first partitioned

into 2 parts. Then, each part of the bipartition is further bipartitioned recursively

until the desired number of parts, K is achieved.

3.2.1 Separator-vertex Removal and Splitting

The following corollary forms the basis for the use of RB-based GPVS for RB-

based HP according to the connectivity and the cut-net metrics.

Corollary 2 Let ΠV S(G)={V1,V2;VS} be a partition of G by a vertex separator

VS, and let ΠU(H) = {U1,U2} be a node partition of H that induces the net

partition ΠN (H) = {N1 ≡ V1,N2 ≡ V2;NS ≡ VS}. The connectivity of a net ni

in ΠU(H) is equal to the connectivity of the corresponding vertex vi in ΠV S(G).

3.2.1.1 Separator-vertex Removal

In RB-based multiway HP, the cut-net metric is formulated by cut-net removal

after each RB step. In this method, after each hypergraph bipartitioning step,

each cut net is discarded from further RB steps. That is, a node bipartition

14



ΠU(H) = {U1,U2} of the current hypergraphH, which induces the net bipartition

ΠN (H) = {N1,N2;NS}, is decoded as generating two sub-hypergraphs H1 =

(U1,N1) and H2 = (U2,N2) for further RB steps. Hence, the total cutsize of the

resulting multiway partition of H according to the cut-net metric will be equal to

the sum of the number of cut nets of the bipartition obtained at each RB step.

The cut-net metric can be formulated in the RB-GPVS-based multiway HP

by separator-vertex removal so that each separator vertex is discarded from fur-

ther RB steps. That is, at each RB step, a 2-way vertex separator ΠV S(G) =

{V1,V2;VS} of G is decoded as generating two sub-graphs G1 = (V1, E1) and

G2 = (V2, E2), where E1 and E2 denote the internal edges of vertex parts V1 and

V2, respectively. In other words, G1 and G2 are the sub-graphs of G induced by

the vertex parts V1 and V2, respectively. G1 and G2 constructed in this way be-

come the NIG representations of hypergraphs H1 and H2, respectively. Hence,

the sum of the number of separator vertices of the 2-way GPVS obtained at each

RB step will be equal to the total cutsize of the resulting multiway partition of

H according to the cut-net metric.

3.2.1.2 Separator-vertex Splitting

In RB-based multiway HP, the connectivity metric is formulated by adapting

the cut-net splitting method after each RB step. In this method, each RB step,

ΠU(H) = {U1,U2} is decoded as generating two sub-hypergraphs H1 = (U1,N1)

and H2 = (U2,N2) as in the cut-net removal method. Then, each cut net ns

of ΠU(H) is split into two pin-wise disjoint nets n1
s and n2

s with Pins(n1
s) =

Pins(ns) ∩ U1 and Pins(n2
s) = Pins(ns) ∩ U2, where n1

s and n2
s are added to the

net lists of H1 and H2, respectively. In this way, the total cutsize of the resulting

multiway partition according to the connectivity metric will be equal to the sum

of the number of cut nets of the bipartition obtained at each RB step [6].

The connectivity metric can be formulated in the RB-GPVS-based multiway

HP by separator-vertex splitting, which is not as easy as the separator-vertex
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removal method and it needs special attention. In a straightforward implementa-

tion of this method, a 2-way vertex separator ΠV S(G) = {V1,V2;VS} is decoded

as generating two subgraphs G1 and G2 which are the sub-graphs of G induced by

the vertex sets V1 ∪ VS and V2 ∪ VS, respectively. That is, each separator vertex

vs ∈ VS is split into two vertices v1s and v2s with Adj(v1s) = Adj(vs) ∩ (V1 ∪ VS)

and Adj(v2s) = Adj(vs) ∩ (V2 ∪ VS). Then, the split vertices v1s and v2s are added

to the subgraphs (V1, E1) and (V2, E2) to form G1 and G2, respectively.

This straightforward implementation of separator-vertex splitting method can

be overcautious because of the unnecessary replication of separator edges in both

subgraphs G1 and G2. Here an edge is said to be a separator edge if two vertices

connected by the edge are both in the separator VS. Consider a separator edge

(vs1 , vs2) ∈ E in a given bipartition ΠV S(G) = {V1,V2;VS} of G, where ΠU(H) =

{U1,U2} is a bipartition of H induced by ΠV S(G) according to construction given

in Equation 3.3. If both U1 and U2 contain at least one node that induces the

separator edge (vs1 , vs2) of G then the replication of (vs1 , vs2) in both subgraphs

G1 and G2 is necessary. If, however, all hypergraph nodes that induce the edge

(vs1 , vs2) of G remain in only one part of ΠU(H) then the replication of (vs1 , vs2)

on the graph corresponding to the other part is unnecessary. For example, if all

nodes connected by both nets ns1 and ns2 of H remain in U1 of ΠU(H) then the

edge (vs1 , vs2) should be replicated in only G1. G1 and G2 constructed in this way

become the NIG representations of hypergraphs H1 and H2, respectively. Hence,

the sum of the number of separator vertices of the 2-way GPVS obtained at each

RB step will be equal to the total cutsize of the resulting multiway partition of

H according to the connectivity metric.

Figure 3.2 illustrates three separator vertices vs1 , vs2 and vs3 in a 2-way vertex

separator and their splits into vertices v1s1 ,v
1
s2

,v1s3 and v2s1 ,v
2
s2

,v2s3 . The three sep-

arator vertices vs1 , vs2 and vs3 are connected with each other by three separator

edges (vs1 , vs2), (vs1 , vs3) and (vs2 , vs3) in order to show three distinct cases of

separator edge replication in the accurate implementation. The figure also shows

four hypergraph nodes ux,uy,uz and ut which induce the three separator edges,

where ux,uz are assigned to part U1 and uy,ut are assigned to part U2. Since only

ux induces the separator edge (vs1 , vs2) and ux is assigned to U1, it is sufficient
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Figure 3.2: Separator-vertex splitting.

to replicate the separator edge (vs1 , vs2) in only V1. Symmetrically, since only uy

induces the separator edge (vs1 , vs3) and uy is assigned to U2, it is sufficient to

replicate the separator edge (vs1 , vs3) in only V2. However, since uz and ut both

induce the separator edge (vs2 , vs3) and uz and ut are respectively assigned to U1
and U2, it necessary to replicate the separator edge (vs2 , vs3) in both V1 and V2.

This accurate implementation of the separator-vertex splitting method de-

pends on the availability of both H and its NIG representation G at the begin-

ning of each RB step. Hence, after each RB step, the sub-hypergraphs H1 and

H2 should be constructed as well as the subgraphs G1 and G2. We briefly summa-

rize the details of the proposed implementation method performed at each RB

step. A 2-way GPVS is performed on G to obtain a vertex separator ΠV S(G).

Then, a node bipartition ΠU(H) of H is constructed according to Equation 3.3

by decoding the vertex separator ΠV S(G) of G. Then, the 2-way vertex separator

ΠV S(G) is used together with the node bipartition ΠU(H) to generate subgraphs

G1 and G2 as described above. The sub-hypergraphs H1 and H2 are also con-

structed for use in subsequent RB steps. An alternative implementation could
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be first generating sub-hypergraphs H1 and H2 from ΠU(H) and then construct-

ing subgraphs G1 and G2 from H1 and H2, respectively, using NIG construction.

However, this alternative implementation method is quite inefficient compared to

the proposed implementation, since construction of the NIG representation from

a given hypergraph is computationally expensive.

3.2.2 Vertex Weighting Scheme

Consider a node partition ΠU(H) = {U1,U2, . . . , UK} of H constructed from the

vertex partitioning ΠV S(G) = {V1,V2, . . . ,VK ;VS} of NIG G according to Equa-

tion 3.3. Since the vertices of G correspond to the nets of the given hypergraphH,

it is easy to enforce a balance criterion on the nets of H by setting w(vi) = w(ni).

For example, assuming unit net weights, the partitioning constraint of balancing

on the vertex counts of parts of ΠV S(G) infers balance among the internal net

counts of node parts of ΠU(H).

However, balance on the nodes of H can not be directly enforced during the

GPVS of G, because the NIG model suffers from information loss on hypergraph

nodes. Here, we propose a vertex-weighting model for estimating the cumulative

weight of hypergraph nodes in each vertex part Vk of the vertex separator ΠV S(G).

In this model, the objective is to find appropriate weights for the vertices of G so

that vertex-part weight W (Vk) computed according to Equation 2.1 approximates

the node-part weight W (Uk) computed according to Equation 2.6.

The NIG model can also be viewed as a clique-node model since each node uh

of the hypergraph induces an edge between each pair of vertices corresponding to

the nets that connect uh. So, the edges of G implicitly represent the nodes of H.

Each hypergraph node uh of degree dh induces
(
dh
2

)
clique edges among which the

weight w(uh) is distributed evenly. That is, every clique edge induced by node

uh can be considered as having a uniform weight of w(uh)/
(
dh
2

)
. Multiple edges

between the same pair of vertices are collapsed into a single edge whose weight is

equal to the sum of the weights of its constituent edges. Hence, the weight w(eij)

18



of each edge eij of G becomes,

w(eij) =
∑

uh∈Pins(ni)∩Pins(nj)

w(uh)(
dh
2

) . (3.4)

Then, the weight of each edge is uniformly distributed between the pair of vertices

connected by that edge. That is, edge eij contributes w(eij)/2 to both vi and vj.

Hence, in the proposed model, the weight w(vi) of vertex vi becomes,

w(vi) =
1

2

∑
vj∈Adj(vi)

w(eij)

=
∑

uh∈Pins(ni)

w(uh)

dh
. (3.5)

Consider an internal hypergraph node uh of part Uk of ΠU(H). Since all graph

vertices corresponding to the nets that connect uh are in part Vk of ΠV S(G), uh

will contribute w(uh) to W (Vk). Consider a boundary hypergraph node uh of

part Uk with an external degree δh < dh, i.e., uh is connected by δh cut nets.

Thus, uh will contribute by an amount of (1− δh/dh)w(uh) to W (Vk) instead of

w(uh). So, vertex-part weight W (Vk) of Vk in ΠV S(G) will be less than the actual

node-part weight W (Uk) of Uk in ΠU(H). As the vertex-part weights of different

parts of ΠV S(G) will involve similar errors, the proposed method can be expected

to produce a sufficiently good balance on the node-part weights of ΠU(H).

The free nodes can easily be exploited to improve the balance during the com-

pletion of partial node partition. For the cut-net metric in Equation 2.8, we per-

form free-node-to-part assignment after obtaining K-way GPVS, since arbitrary

assignments of free nodes do not disturb the cutsize by Corollary 2. However,

for the connectivity metric in Equation 2.9, free-node-to-part assignment needs

special attention if it is performed after obtaining a K-way GPVS. According to

Theorem 2, arbitrary assignments of free nodes may increase the connectivity of

cut nets. So, for the connectivity cutsize metric, we perform free-node-to-part

assignment after each RB step to improve the balance. Note that free-node-to-

part assignment performed in this way does not increase the connectivity of cut

nets in the RB-GPVS-based by Corollary 2. For both cutsize metrics, the best-

fit-decreasing heuristic [40] used in solving the bin-packing problem is adapted to
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obtain a complete node partition/bipartition. Free nodes are assigned to parts

in decreasing weight, where the best-fit criterion corresponds to assigning a free

node to a part that currently has the minimum weight. Initial part weights are

taken as the weights of the two parts in partial node bipartition.

3.3 Adapted Multilevel Implementation of GPVS

The state-of-the-art graph and hypergraph partitioning tools that adopt the

multilevel framework, consist of three phases: coarsening , initial partitioning ,

and uncoarsening. In the first phase, a multilevel clustering is applied starting

from the original graph/hypergraph by adopting various matching heuristics un-

til the number of vertices in the coarsened graph/hypergraph reduces below a

predetermined threshold value. Clustering corresponds to coalescing highly in-

teracting vertices to supernodes. In the second phase, a partition is obtained

on the coarsest graph/hypergraph using various heuristics including FM, which

is an iterative refinement heuristic proposed for graph/hypergraph partitioning

by Fiduccia and Mattheyses [41] as a faster implementation of the KL algo-

rithm proposed by Kernighan and Lin [42]. In the third phase, the partition

found in the second phase is successively projected back towards the original

graph/hypergraph by refining the projected partitions on the intermediate level

uncoarserned graphs/hypergraphs using various heuristics including FM.

One of the most important applications of GPVS is George’s nested–dissection

algorithm [43,44], which has been widely used for reordering of the rows/columns

of a symmetric, sparse, and positive definite matrix to reduce fill in the fac-

tor matrices. Here, GPVS is defined on the standard graph model of the given

symmetric matrix. The basic idea in the nested dissection algorithm is to re-

order a symmetric matrix into a 2-way DB form so that no fill can occur in the

off-diagonal blocks. The DB form of the given matrix is obtained through a sym-

metric row/column permutation induced by a 2-way GPVS. Then, both diagonal

blocks are reordered by applying the dissection strategy recursively. The per-

formance of the nested-dissection reordering algorithm depends on finding small
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vertex separators at each dissection step.

In this work, we adapted and modified the onmetis ordering code of MeTiS [45]

for implementing our GPVS-based HP formulation. onmetis utilizes the RB

paradigm for obtaining multiway GPVS. Since K is not known in advance for or-

dering applications, recursive bipartitioning operations continue until the weight

of a part becomes sufficiently small. In our implementation, we terminate the

recursive bipartitioning process whenever the number of parts becomes K.

The separator refinement scheme used in the uncoarsening phase of onmetis

considers vertex moves from vertex separator ΠV S(G) to both V1 and V2 in

ΠV S = {V1,V2;VS}. During these moves, onmetis uses the following feasibility

constraint, which incorporates the size of the separator in balancing, i.e.,

max{W (V1),W (V2)} ≤ (1 + ε)
W (V1)+W (V2)+W (VS)

2
= Wmax. (3.6)

However, this may become a loose balancing constraint compared to Equation 2.2

for relatively large separator sizes which is typical during refinements of coarser

graphs. This loose balancing constraint is not an important concern in onmetis ,

because it is targeted for fill-reducing sparse matrix ordering which is not very

sensitive to the imbalance between part sizes. Nevertheless, this scheme degrades

the load balancing quality of our GPVS-based HP implementation, where load

balancing is more important in the applications for which HP is utilized. We

modified onmetis by computing the maximum part weight constraint as

Wmax = (1 + ε)
W (V1) +W (V2)

2
. (3.7)

at the beginning of each FM pass, whereas onmetis computes Wmax according to

Equation 3.6 once for all FM passes, in a level. Furthermore, onmetis maintains

only one value for each vertex which denotes both the weight and the cost of the

vertex. We added a second field for each vertex to hold the weight and the cost

of the vertex separately. The weights and the costs of vertices are accumulated

independently during vertex coalescings performed by matchings at the coarsen-

ing phases. Recall that weight values are used for maintaining the load balancing

criteria, whereas cost values are used for computing the size of the separator.
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That is, FM gains of the separator vertices are computed using the cost values of

those vertices.

The GPVS-based HP implementation obtained by adapting onmetis as de-

scribed in this subsection will be referred to as onmetisHP .

3.4 Experimental Results

We test the performance of our GPVS-based HP formulation by partitioning ma-

trices from the linear-programming (LP) and the positive definite (PD) matrix

collections of the University of Florida matrix collection [46]. Matrices in the

latter collection are square and symmetric, whereas the matrices in the former

collection are rectangular. The row-net hypergraph models [6, 9] of the test ma-

trices constitute our test set. In these hypergraphs, nets are associated with unit

cost. To show the validity of our GPVS-based HP formulation, test hypergraphs

are partitioned by both PaToH and onmetisHP and default parameters are uti-

lized in both tools. In general, the maximum imbalance ratio ε was set to be

10%.

We excluded small matrices that have less than 1000 rows or 1000 columns.

In the LP matrix collection, there were 190 large matrices out of 342 matrices.

Out of these 190 large matrices, 5 duplicates, 1 extremely large matrix and 5

matrices, for which NIG representations are extremely large were excluded. We

also excluded 26 outlier matrices which yield large separators1 to avoid skewing

the results. Thus, 153 test hypergraphs are used from the LP matrix collec-

tion. In the PD matrix collection, there were 170 such large matrices out of

223 matrices. Out of these 170 large matrices, 2 duplicates, 2 matrices, for

which NIG representations are extremely large and 7 matrices with large sepa-

rators were excluded. Thus, 159 test hypergraphs are used from the PD matrix

collection. We experimented with K-way partitioning of test hypergraphs for

K = 2, 4, 8, 16, 32, 64, and 128. For a specific K value, K-way partitioning of a

1Here, a separator is said to be large if it includes more than 33% of all nets.
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test hypergraph constitutes a partitioning instance. For the LP collection, in-

stances in which min{|U|, |N |} < 50K are discarded as the parts would become

too small. So, 153, 153, 153, 153, 135, 100, and 65 hypergraphs are partitioned

for K = 2, 4, 8, 16, 32, 64, and 128, respectively, for the LP collection. Similarly

for the PD collection, instances in which |U| < 50K are discarded. So, 159, 159,

159, 159, 145, 131, and 109 hypergraphs are partitioned for K = 2, 4, 8, 16, 32, 64,

and 128, respectively for the PD collection. In this section, we summarize our

findings in these experiments.

In our first set of experiments, the hypergraphs obtained from the LP ma-

trix collection are used for permuting the matrices into singly-bordered (SB)

block-angular-form for coarse-grain parallelization of linear-programming appli-

cations [35]. Here, minimizing the cutsize according to the cut-net metric Equa-

tion 2.4 corresponds to minimizing the size of the row border in the induced SB

form. In these applications, nets are either have unit weights or weights that are

equal to the nonzeros in the respective rows. In the former case, net balancing

corresponds to balancing the row counts of the diagonal blocks, whereas in the

latter case, net balancing corresponds to balancing the nonzero counts of the di-

agonal blocks. Experimental comparisons are provided only for the former case,

because PaToH does not support different cost and weight associations to nets.

In our second set of experiments, the hypergraphs obtained from the PD

matrix collection are used for minimizing communication overhead in a column-

parallel matrix-vector multiply algorithm in iterative solvers. Here, minimizing

the cutsize according to the connectivity metric Equation 2.5 corresponds to min-

imizing the total communication volume when the point-to-point inter-processor

communication scheme is used [6]. Minimizing the cutsize according to the cut-

net metric Equation 2.4 corresponds to minimizing the total communication vol-

ume when the collective communication scheme is used [9]. In these applications,

nodes have weights that are equal to the number of nonzeros in the respective

columns. So, balancing part weights corresponds to computational load balanc-

ing. All experiments are conducted sequentially on a 24-core PC equipped with

quad 2.1Ghz 6-core AMD Opteron processors with 6 128 KB L1, and 512 KB

L2 caches, and a single 6MB L3 cache. The system is 128 GB memory and runs
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Debian Linux v5.0.5.

In the following tables, the performance figures are computed and displayed

as follows. Since both PaToH and onmetisHP tools involve randomized heuris-

tics, 10 different partitions are obtained for each partitioning instance and the

geometric average of the 10 resultant partitions are computed as the representa-

tive results for both HP tools on the particular partitioning instance. For each

partitioning instance, the cutsize value is normalized with respect to the total

number of nets in the respective hypergraph. Recall that all test hypergraphs

have unit-cost nets. So, for the cut-net metric, these normalized cutsize values

show the fraction of the cut nets. For the connectivity metric, these normalized

cutsize values show the average net connectivity. For each partitioning instance,

the running time of PaToH is normalized with respect to that of onmetisHP ,

thus showing the speedup obtained by onmetisHP for that partitioning instance.

These normalized cutsize values and speedup values as well as percent load im-

balance values are summarized in the tables by taking the geometric averages for

each K value.

Table 3.1: Performance averages on the LP matrix collection for the cut-net
metric with net balancing.

PaToH onmetisHP
K cutsize %LI cutsize %LI speedup
2 0.02 1.2 0.03 0.3 2.04
4 0.02 1.9 0.05 2.6 2.45
8 0.07 3.1 0.09 6.9 2.64

16 0.09 5.2 0.14 13.0 2.78
32 0.13 8.8 0.18 23.1 2.83
64 0.15 11.5 0.21 27.8 2.83

128 0.16 13.5 0.21 31.3 2.76

Table 3.1 displays overall performance averages of onmetisHP compared to

those of PaToH for the cut-net metric (see Equation 2.8) with net balancing on

the LP matrix collection. As seen in Table 3.1, onmetisHP obtains hypergraph

partitions of comparable cutsize quality with those of PaToH . However, load

balancing quality of partitions produced by onmetisHP is worse than those of

PaToH , especially with increasing K. As seen in the table, onmetisHP runs
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significantly faster than PaToH for each K. For example, onmetisHP runs 2.83

times faster than PaToH for 32-way partitionings on the average.

Table 3.2: Performance averages on the PD matrix collection for the cut-net
metric with node balancing.

PaToH onmetisHP
K cutsize %LI cutsize exp%LIp act%LIp act%LIc speedup
2 0.01 0.1 0.01 0.2 0.2 0.1 1.40
4 0.03 0.3 0.03 0.9 1.5 1.1 1.75
8 0.05 0.4 0.05 2.8 3.7 2.7 1.96

16 0.08 0.6 0.08 6.7 7.4 5.4 1.98
32 0.12 0.9 0.12 13.4 12.8 9.2 2.17
64 0.17 1.2 0.16 22.1 19.8 13.5 2.27

128 0.25 1.6 0.24 32.5 28.8 17.9 2.25

Table 3.2 displays overall performance averages of onmetisHP compared to

those of PaToH for the cut-net metric with node balancing on the PD matrix

collection. In the table, exp%LIp and act%LIp respectively denote the expected

and actual percent load imbalance values for the partial node partitions of the hy-

pergraphs induced by K-way GPVS. act%LIc denotes the actual load imbalance

values for the complete node partitions obtained after free-node-to-part assign-

ment. The small discrepancies between the exp%LIp and act%LIp values show

the validity of the approximate weighting scheme proposed in Section 3.1 for

the vertices of the NIG. As seen in the table, for each K, the act%LIc value

is considerably smaller than the act%LIp value. This experimental finding con-

firms the effectiveness of the free-node-to-part assignment scheme mentioned in

Section 3.1. As seen in Table 3.2, onmetisHP obtains hypergraph partitions of

comparable cutsize quality with those of PaToH . However, load balancing quality

of partitions produced by onmetisHP is considerably worse than those of PaToH .

As seen in the table, onmetisHP runs considerably faster than PaToH for each

K.

Table 3.3 is constructed based on the PD matrix collection to show the valid-

ity of the accurate vertex splitting formulation proposed in Section 3.2.1 for the

connectivity cutsize metric (see Equation 2.9). In this table, speedup, cutsize and

load imbalance values of onmetisHP that uses the straightforward (overcautious)
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Table 3.3: Comparison of accurate and overcautious separator-vertex splitting
implementations with averages on the PD matrix collection for the connectivity
metric with node balancing.

overcautious / accurate
K cutsize %LI speedup
2 1.00 0.63 1.07
4 1.02 0.79 1.13
8 1.10 0.79 1.16

16 1.29 0.70 1.19
32 1.56 0.64 1.21
64 1.84 0.69 1.22

128 2.09 0.60 1.21

separator-vertex splitting implementation are normalized with respect to those

of onmetisHP that uses the accurate implementation. In the straightforward im-

plementation, free-node-to-part assignment is performed after obtaining a K-way

GPVS, since hypergraphs are not carried through the RB process. Free nodes are

assigned to parts in decreasing weight, where the best-fit criterion corresponds

to assigning a free node to a part which increases connectivity cutsize by the

smallest amount with ties broken in favor of the part with minimum weight. As

seen in the table, the overcautious implementation leads to slightly better load

balance than accurate implementation, because overcautious implementation per-

forms free-node-to-part assignment on the K-way partial node partition induced

by the K-way GPVS. As also seen in the table, the overcautious implementation,

as expected, leads to slightly better speedup than the accurate implementation.

However, the accurate implementation leads to significantly less cutsize values.

Table 3.4 displays overall performance averages of onmetisHP compared to

those of PaToH for the connectivity metric with node balancing on the PD ma-

trix collection. In contrast to Table 3.2, load imbalance values are not displayed

for partial node partitions in Table 3.4, because free-node-to-part assignments

are performed after each 2-way GPVS operation for the sake of accurate imple-

mentation of the separator-vertex splitting method as mentioned in Section 3.1.

So, %LI values displayed in Table 3.4 show the actual percent imbalance values

for the K-way node partitions obtained. As seen in Table 3.4, similar to results

of Table 3.2, onmetisHP obtains hypergraph partitions of comparable cutsize
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Table 3.4: Performance averages on the PD matrix collection for the connectivity
metric with node balancing.

PaToH onmetisHP
K cutsize %LI cutsize %LI speedup
2 1.03 0.1 1.03 0.2 1.29
4 1.08 0.3 1.08 0.8 1.50
8 1.15 0.5 1.15 1.7 1.61

16 1.26 0.7 1.25 4.1 1.63
32 1.37 1.0 1.36 7.9 1.61
64 1.49 1.5 1.47 11.8 1.60

128 1.63 1.9 1.60 16.5 1.54

quality with those of PaToH , whereas load balancing quality of partitions pro-

duced by onmetisHP is considerably worse than those of PaToH . As seen in

Table 4, onmetisHP still runs considerably faster than PaToH for each K for

the connectivity metric. However, the speedup values in Table 3.4, are consider-

able smaller compared to those displayed in Table 3.2, which is due to the fact

that onmetisHP carries hypergraphs during the RB process for the sake of ac-

curate implementation of the separator-vertex splitting method as mentioned in

Section 3.1.

A common observation about Tables 3.1, 3.2, and 3.4, is the increasing

speedup of onmetisHP compared to PaToH with increasing K values. This ex-

perimental finding stems from the fact that the initial NIG construction overhead

amortizes with increasing K. Another common observation is that onmetisHP

runs significantly faster than PaToH , while producing partitions of comparable

cutsize quality with, however, worse load balancing quality. These experimental

findings justify our GPVS-based hypergraph partitioning formulation for effec-

tive parallelization of applications in which computational balance definition is

not very precise and preprocessing overhead due to partitioning overhead is im-

portant.
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Table 3.5: Hypergraph and NIG properties for matrices of LP and

PD matrix collections.

LP Collection PD Collection

name |N | |U| |E| name |U| |E|
lp truss 1000 8806 25122 msc01050 1050 136594

rosen2 1032 3080 31800 bcsstm08 1074 0

lp ship12s 1042 2869 10690 bcsstm09 1083 0

lp ship12l 1042 5533 21346 bcsstk09 1083 70206

lp sctap2 1090 2500 11010 bcsstk10 1086 53418

lp woodw 1098 8418 40842 1138 bus 1138 10004

lp osa 07 1118 25067 104932 bcsstk27 1224 136882

qiulp 1192 1900 12144 mhd1280b 1280 26362

lp sierra 1227 2735 9872 plbuckle 1282 79330

lp ganges 1309 1706 15312 msc01440 1440 149808

model4 1337 4962 87914 bcsstk11 1473 92714

lp pilot 1441 4860 123076 bcsstm11 1473 0

lp sctap3 1480 3340 14772 bcsstm12 1473 52142

lp degen3 1503 2604 100356 bcsstk12 1473 92714

fxm2-6 1520 2845 26656 ex33 1733 59050

cep1 1521 4769 196152 bcsstk14 1806 193848

primagaz 1554 10836 21658 ex3 1821 193498

pcb1000 1565 2820 32902 nasa1824 1824 140442

model3 1609 4565 43084 plat1919 1919 98990

progas 1650 1900 26210 bcsstm26 1922 0

model5 1744 11802 173646 bcsstk26 1922 90608

scrs8-2b 1820 3499 203016 bcsstk13 2003 394770

lp cycle 1890 3371 55428 nasa2146 2146 189396

deter0 1923 5468 12466 ex10 2410 191524

lp pilot87 2030 6680 236594 Chem97ZtZ 2541 88824

rosen10 2056 6152 47160 ex10hs 2548 202682

model6 2094 5289 62046 ex13 2568 277316

p6000 2095 7947 8964 nasa2910 2910 887840

lp stocfor2 2157 3045 25476 bcsstk23 3134 217498

lp d2q06c 2171 5831 53982 bcsstm23 3134 0

lp 80bau3b 2262 11934 20148 mhd3200b 3200 30944

nemspmm2 2301 8734 101804 bibd 81 2 3240 0

lp bnl2 2324 4486 26914 ex9 3363 370452

lp osa 14 2337 54797 227686 bcsstm24 3562 0

Continued on next page
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Table 3.5 – continued from previous page

LP Collection PD Collection

name |N | |U| |E| name |U| |E|
nemspmm1 2362 8903 111902 bcsstk24 3562 442912

lp greenbea 2389 5598 67682 bcsstk21 3600 89472

lpi greenbea 2390 5596 67694 bcsstm21 3600 0

lp ken 07 2426 3602 11956 bcsstk15 3948 523740

scagr7-2c 2447 3479 257282 sts4098 4098 1085428

lpi gran 2604 2525 194708 t2dal e 4257 0

lpi bgindy 2671 10880 124076 bcsstk28 4410 591662

l30 2701 16281 53428 msc04515 4515 265404

model9 2787 10939 101082 nasa4704 4704 356788

model8 2896 6464 53908 mhd4800b 4800 46552

lp pds 02 2953 7716 20328 crystm01 4875 395322

lp22 2958 16392 221064 bcsstk16 4884 1033898

lp cre c 2986 6411 37810 s3rmt3m3 5357 540084

lpi cplex1 3005 5224 2262516 s3rmt3m1 5489 573546

plddb 3069 5049 19586 s2rmq4m1 5489 749964

rat 3136 9408 1245198 s1rmt3m1 5489 573546

lp maros r7 3136 9408 660944 s1rmq4m1 5489 749964

delf 3170 5598 30338 s2rmt3m1 5489 573546

stat96v4 3173 63076 51540 s3rmq4m1 5489 749964

deter4 3235 9133 86758 ex15 6867 259938

lpl2 3294 10881 36762 Kuu 7102 1555534

model7 3358 9560 94080 Muu 7102 774216

sctap1-2c 3390 7458 273912 bcsstk38 8032 1660234

lp cre a 3428 7248 41496 aft01 8205 426542

lpi ceria3d 3576 4400 1959730 fv1 9604 224652

ch 3700 8291 50464 fv3 9801 229320

aircraft 3754 7517 2834250 fv2 9801 229320

lpi gosh 3790 13455 202218 bundle1 10581 24062342

deter8 3831 10905 34624 ted B 10605 479178

fxm2-16 3900 7335 70906 ted B unscaled 10605 479178

nemsemm1 3945 75310 393474 msc10848 10848 6174798

pcb3000 3960 7732 84924 bcsstk17 10974 1395962

pgp2 4034 13254 1347842 t2dah e 11445 602052

rlfddd 4050 61521 376536 bcsstk18 11948 701260

deter6 4255 12113 40868 cbuckle 13681 2255450

large 4282 7297 46414 crystm02 13965 1294602

Continued on next page
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Table 3.5 – continued from previous page

LP Collection PD Collection

name |N | |U| |E| name |U| |E|
lp osa 30 4350 104374 432388 Pres Poisson 14822 2235694

stormg2-8 4393 11322 50684 bcsstm25 15439 0

model10 4400 16819 288860 bcsstk25 15439 1153480

nsir 4453 10057 469684 Dubcova1 16129 981872

seymourl 4944 6316 1208040 olafu 16146 3372106

cq5 5048 11748 112872 gyro m 17361 1908612

p05 5090 9590 219438 gyro 17361 5760558

deter5 5103 14529 54796 bodyy4 17546 314540

scsd8-2b 5130 35910 1408030 bodyy5 18589 333146

r05 5190 9690 400968 bodyy6 19366 346860

bas1lp 5411 9825 2591680 raefsky4 19779 5322790

deter1 5527 15737 62480 LFAT5000 19994 129928

co5 5774 12325 125918 LF10000 19998 179956

stat96v1 5995 197472 69024 t3dl e 20360 0

lp dfl001 6071 12230 76196 msc23052 23052 3623204

deter2 6095 17313 120428 bcsstk36 23052 3611816

fxm3 6 6200 12625 105616 crystm03 24696 2388726

deter7 6375 18153 79288 smt 25710 19418850

lp cre d 6476 73948 363340 thread 29736 24648426

ulevimin 6590 46937 198008 wathen100 30401 1627220

nemswrld 6647 28550 354774 ship 001 34920 25565618

nemsemm2 6943 48878 138470 nd12k 36000 90870894

nl 7039 15325 98050 wathen120 36441 1953940

lp cre b 7240 77137 389158 obstclae 40000 472820

deter3 7647 21777 108100 jnlbrng1 40000 476004

rlfdual 8052 74970 714646 minsurfo 40806 486844

scsd8-2r 8650 60550 3896670 bcsstm39 46772 0

cq9 9278 21534 212312 vanbody 47072 8006490

pf2177 9728 9908 715416 gridgena 48962 1638710

scagr7-2b 9743 13847 3928898 cvxbqp1 50000 1049432

lp pds 06 9881 29351 78122 ct20stif 52329 9964622

p010 10090 19090 438228 crankseg 1 52804 75044100

ge 10099 16369 102030 nasasrb 54870 8279516

lp osa 60 10280 243246 1006074 Andrews 60000 5451632

co9 10789 22924 238416 crankseg 2 63838 104526330

lpl3 10828 33686 116590 Dubcova2 65025 4027504

Continued on next page
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Table 3.5 – continued from previous page

LP Collection PD Collection

name |N | |U| |E| name |U| |E|
fome11 12142 24460 152392 qa8fm 66127 7285062

scrs8-2r 14364 27691 12404296 cfd1 70656 8088220

stormg2-27 14387 37485 205610 nd24k 72000 189118604

lp ken 11 14694 21349 67760 oilpan 73752 11536112

sctap1-2b 15390 33858 5245512 finan512 74752 4522496

car4 16384 33052 182624 apache1 80800 1776124

lp pds 10 16558 49932 133100 shallow water1 81920 737280

lp stocfor3 16675 23541 218144 shallow water2 81920 737280

ex3sta1 17443 17516 662414 thermal1 82654 1519688

testbig 17613 31223 3274430 denormal 89400 3540180

dbir1 18804 45775 2419194 s3dkt3m2 90449 10025526

dbir2 18906 45877 2618552 s3dkq4m2 90449 13192104

scfxm1-2b 19036 33047 519242 m t1 97578 36435564

route 20894 43019 1273910 2cubes sphere 101492 8873034

ts-palko 22002 47235 8149338 thermomech TK 102158 1866380

fxm4 6 22400 47185 504136 thermomech TC 102158 1866380

fome12 24284 48920 304784 x104 108384 38593344

e18 24617 38601 780314 shipsec8 114919 22608304

pltexpa 26894 70364 242842 ship 003 121728 32654210

baxter 27441 30733 1196786 cfd2 123440 13295204

lp ken 13 28632 42659 133172 boneS01 127224 25388478

stat96v2 29089 957432 323660 shipsec1 140874 23945538

lp pds 20 33798 108175 286322 bmw7st 1 141347 23432912

stat96v3 33841 1113780 375972 Dubcova3 146689 17334072

world 34506 67147 547558 bmwcra 1 148770 49534938

mod2 34774 66409 570136 G2 circuit 150102 1852894

sc205-2r 35213 62423 12948830 shipsec5 179860 32159300

scfxm1-2r 37980 65943 1593802 thermomech dM 204316 3732760

fxm3 16 41340 85575 724186 pwtk 217918 32554318

dbic1 43200 226317 2721302 hood 220542 34021638

fome13 48568 97840 609568 BenElechi1 245874 36015470

pds-30 49788 158489 418478 offshore 259789 23096456

rlfprim 58866 62712 9060730 F1 343791 224140612

stormg2-125 65935 172431 1887584 msdoor 415863 62406596

pds-40 66641 217531 571226 af 2 k101 503625 46968400

fome21 67596 216350 572644 af 5 k101 503625 46968400

Continued on next page
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Table 3.5 – continued from previous page

LP Collection PD Collection

name |N | |U| |E| name |U| |E|
pds-50 82837 275814 719666 af 1 k101 503625 46968400

pds-60 99204 336421 873016 af 4 k101 503625 46968400

pds-70 114717 390005 1008932 af 3 k101 503625 46968400

pds-80 128954 434580 1120120 af 0 k101 503625 46968400

pds-90 142596 475448 1221102 inline 1 503712 252580926

pds-100 156016 514577 1314672 af shell8 504855 47055520

watson 1 201155 386992 1736008 af shell3 504855 47055520

sgpf5y6 246077 312540 2530568 af shell4 504855 47055520

watson 2 352013 677224 3038266 af shell7 504855 47055520

stormG2 1000 526185 1377306 82461084 parabolic fem 525825 9434110

cont11 l 1468599 1961394 16595662 apache2 715176 15848148

tmt sym 726713 13776468

boneS10 914898 222646668

ldoor 952203 144470732

ecology2 999999 11979976

thermal2 1228045 22790012

G3 circuit 1585478 19681656

Table 3.6: 2-way partitioning performance of the LP matrix collec-

tion for cut-net metric with net balancing.

PaToH onmetisHP

name cutsize %LI cutsize %LI speedup

lp truss 0.05 9.9% 0.04 2.2% 4.81

rosen2 0.01 0.0% 0.01 0.0% 1.50

lp ship12s 0.02 0.1% 0.01 0.0% 2.47

lp ship12l 0.01 0.1% 0.01 0.0% 3.63

lp sctap2 0.04 1.0% 0.04 1.6% 2.17

lp woodw 0.05 0.6% 0.06 1.6% 8.81

lp osa 07 0.07 0.1% 0.06 1.1% 2.85

qiulp 0.11 7.2% 0.13 0.0% 2.63

lp sierra 0.04 2.1% 0.03 0.1% 2.26

lp ganges 0.02 0.1% 0.02 0.0% 2.74

Continued on next page
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Table 3.6 – continued from previous page

PaToH onmetisHP

name cutsize %LI cutsize %LI speedup

model4 0.08 4.6% 0.07 3.2% 4.36

lp pilot 0.16 7.9% 0.18 0.0% 2.91

lp sctap3 0.03 1.4% 0.03 1.3% 2.45

lp degen3 0.12 5.6% 0.16 4.7% 2.85

fxm2-6 0.03 6.9% 0.03 0.0% 1.76

cep1 0.28 0.9% 0.55 0.5% 0.35

primagaz 0.00 0.1% 0.00 99.0% 0.45

pcb1000 0.03 0.1% 0.03 0.0% 5.16

model3 0.02 9.8% 0.05 0.0% 2.11

progas 0.02 2.0% 0.02 1.8% 1.65

model5 0.00 0.1% 0.00 0.1% 13.15

scrs8-2b 0.13 11.8% 0.14 5.7% 0.41

lp cycle 0.02 5.3% 0.03 2.9% 1.74

deter0 0.07 8.4% 0.07 0.2% 1.97

lp pilot87 0.19 6.3% 0.31 2.1% 3.05

rosen10 0.00 0.0% 0.00 40.7% 1.06

model6 0.02 2.0% 0.04 3.2% 3.27

p6000 0.00 0.0% 0.00 47.4% 0.71

lp stocfor2 0.00 0.9% 0.00 1.5% 1.17

lp d2q06c 0.05 3.0% 0.06 0.0% 2.82

lp 80bau3b 0.04 9.8% 0.03 0.3% 4.14

nemspmm2 0.05 2.0% 0.03 3.1% 10.49

lp bnl2 0.05 3.8% 0.05 2.1% 2.25

lp osa 14 0.03 1.5% 0.03 0.0% 5.95

nemspmm1 0.07 3.2% 0.03 4.2% 5.69

lp greenbea 0.03 0.0% 0.04 0.0% 2.81

lpi greenbea 0.04 1.3% 0.04 0.0% 3.07

lp ken 07 0.01 2.0% 0.01 2.0% 1.63

scagr7-2c 0.11 9.5% 0.45 6.0% 0.21

lpi gran 0.00 6.4% 0.09 1.1% 0.43

lpi bgindy 0.08 7.9% 0.07 1.1% 17.59

l30 0.04 5.6% 0.03 1.7% 4.06

model9 0.01 0.0% 0.03 3.6% 3.70

model8 0.05 4.7% 0.05 0.0% 3.34

lp pds 02 0.03 1.4% 0.03 0.0% 2.29

lp22 0.32 6.7% 0.50 3.6% 2.75

Continued on next page
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Table 3.6 – continued from previous page

PaToH onmetisHP

name cutsize %LI cutsize %LI speedup

lp cre c 0.02 0.0% 0.02 1.2% 3.06

lpi cplex1 0.31 9.8% 0.70 9.7% 0.25

plddb 0.00 6.9% 0.00 0.0% 1.27

rat 0.22 9.2% 0.18 0.0% 1.67

lp maros r7 0.09 3.5% 0.09 0.0% 1.32

delf 0.01 9.0% 0.01 0.6% 1.77

stat96v4 0.01 8.3% 0.01 0.0% 20.74

deter4 0.15 9.5% 0.10 0.0% 1.01

lpl2 0.04 3.0% 0.07 3.2% 3.62

model7 0.02 6.2% 0.00 0.1% 2.55

sctap1-2c 0.07 0.0% 0.17 0.0% 0.35

lp cre a 0.02 0.0% 0.02 0.5% 2.76

lpi ceria3d 0.29 1.9% 0.65 11.8% 0.20

ch 0.06 0.0% 0.15 1.9% 2.33

aircraft 0.20 0.0% 0.11 6.5% 0.06

lpi gosh 0.05 3.2% 0.06 0.0% 4.64

deter8 0.07 9.9% 0.07 0.0% 1.87

fxm2-16 0.02 9.8% 0.02 2.4% 1.48

nemsemm1 0.00 5.0% 0.02 4.5% 44.06

pcb3000 0.02 5.8% 0.02 0.0% 7.17

pgp2 0.29 3.0% 0.65 0.5% 0.21

rlfddd 0.04 6.9% 0.06 0.9% 12.82

deter6 0.07 9.5% 0.07 0.0% 1.72

large 0.01 0.7% 0.01 0.0% 1.75

lp osa 30 0.02 0.0% 0.02 2.0% 0.98

stormg2-8 0.01 0.6% 0.01 2.0% 1.83

model10 0.05 4.2% 0.09 6.7% 4.42

nsir 0.09 3.6% 0.13 7.9% 3.91

seymourl 0.28 9.8% 0.42 3.8% 0.30

cq5 0.02 1.0% 0.04 1.3% 6.40

p05 0.02 7.2% 0.07 0.0% 15.81

deter5 0.07 9.8% 0.07 0.0% 1.61

scsd8-2b 0.25 6.7% 0.84 0.9% 0.51

r05 0.04 7.0% 0.10 0.0% 17.39

bas1lp 0.07 5.4% 0.12 0.0% 1.78

deter1 0.07 9.6% 0.07 0.0% 1.53

Continued on next page
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Table 3.6 – continued from previous page

PaToH onmetisHP

name cutsize %LI cutsize %LI speedup

co5 0.02 5.6% 0.05 0.7% 6.21

stat96v1 0.01 2.1% 0.01 0.0% 21.38

lp dfl001 0.09 9.6% 0.20 1.8% 2.52

deter2 0.10 9.4% 0.09 0.0% 1.24

fxm3 6 0.00 1.9% 0.00 1.9% 1.74

deter7 0.07 9.4% 0.07 0.0% 1.44

lp cre d 0.05 0.0% 0.15 0.8% 18.10

ulevimin 0.04 3.8% 0.11 1.7% 3.28

nemswrld 0.08 0.0% 0.05 1.8% 7.93

nemsemm2 0.00 0.5% 0.00 3.6% 7.90

nl 0.04 0.0% 0.07 1.3% 3.48

lp cre b 0.05 0.2% 0.09 1.3% 17.46

deter3 0.07 9.9% 0.08 0.0% 1.49

rlfdual 0.05 8.3% 0.06 0.0% 5.85

scsd8-2r 0.25 8.0% 0.91 0.0% 0.37

cq9 0.02 8.2% 0.05 0.0% 6.73

pf2177 0.23 0.1% 0.70 0.5% 0.37

scagr7-2b 0.11 9.8% 0.47 4.0% 0.07

lp pds 06 0.03 5.8% 0.04 2.7% 2.49

p010 0.01 0.0% 0.02 0.0% 0.36

ge 0.02 0.4% 0.02 0.0% 1.52

lp osa 60 0.01 0.0% 0.01 7.3% 0.85

co9 0.02 6.8% 0.14 0.0% 6.58

lpl3 0.01 1.1% 0.07 2.2% 7.28

fome11 0.00 0.0% 0.00 0.0% 2.99

scrs8-2r 0.30 40.4% 0.14 10.3% 0.13

stormg2-27 0.01 0.5% 0.01 3.5% 1.81

lp ken 11 0.00 0.8% 0.00 3.9% 2.44

sctap1-2b 0.07 0.0% 0.54 5.3% 0.13

car4 0.00 0.0% 0.00 0.0% 0.13

lp pds 10 0.03 8.8% 0.05 0.0% 2.80

lp stocfor3 0.00 0.2% 0.00 0.2% 0.95

ex3sta1 0.07 8.4% 0.07 1.4% 1.12

testbig 0.09 9.9% 0.09 3.2% 0.12

dbir1 0.06 10.0% 0.30 22.6% 5.11

dbir2 0.06 8.0% 0.37 6.8% 4.82
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Table 3.6 – continued from previous page

PaToH onmetisHP

name cutsize %LI cutsize %LI speedup

scfxm1-2b 0.03 9.2% 0.04 0.0% 0.67

route 0.01 0.0% 0.01 0.0% 2.21

ts-palko 0.12 9.9% 0.94 18.6% 2.08

fxm4 6 0.00 0.5% 0.00 0.5% 1.78

fome12 0.00 0.0% 0.00 0.0% 2.91

e18 0.23 9.8% 0.68 1.2% 1.18

pltexpa 0.00 0.7% 0.00 0.7% 1.90

baxter 0.01 4.3% 0.00 1.6% 0.66

lp ken 13 0.00 0.6% 0.00 2.7% 3.35

stat96v2 0.00 1.1% 0.00 0.0% 22.45

lp pds 20 0.02 0.9% 0.03 0.0% 3.04

stat96v3 0.00 6.3% 0.00 0.0% 11.82

world 0.00 6.3% 0.02 4.9% 2.11

mod2 0.00 6.9% 0.01 4.9% 1.97

sc205-2r 0.06 9.2% 0.20 3.6% 0.07

scfxm1-2r 0.03 9.8% 0.11 0.3% 0.56

fxm3 16 0.00 0.4% 0.00 0.5% 1.72

dbic1 0.01 0.0% 0.01 0.5% 9.51

fome13 0.00 0.0% 0.00 0.0% 2.74

pds-30 0.03 9.0% 0.02 0.0% 3.05

rlfprim 0.06 4.8% 0.08 2.2% 0.25

stormg2-125 0.02 8.9% 0.01 0.7% 1.25

pds-40 0.02 1.1% 0.02 0.9% 3.35

fome21 0.00 0.0% 0.00 0.0% 3.18

pds-50 0.03 0.3% 0.01 1.2% 3.28

pds-60 0.02 1.8% 0.01 0.4% 3.37

pds-70 0.02 6.9% 0.01 0.0% 3.44

pds-80 0.02 0.1% 0.01 0.4% 3.43

pds-90 0.02 6.2% 0.01 0.0% 3.19

pds-100 0.01 0.6% 0.01 0.0% 3.20

watson 1 0.00 0.0% 0.00 0.0% 2.91

sgpf5y6 0.00 4.1% 0.00 3.7% 1.67

watson 2 0.00 4.7% 0.00 4.8% 2.86

stormG2 1000 0.01 4.4% 0.03 3.3% 0.36

cont11 l 0.00 0.0% 0.00 0.0% 1.06
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Table 3.7: 2-way partitioning performance of the PD matrix col-

lection for cut-net metric with node balancing.

PaToH onmetisHP

name cutsize %LI cutsize exp%LIp act%LIp act%LIc speedup

msc01050 0.21 2.3% 0.30 1.7% 3.2% 3.1% 1.27

bcsstm08 0.00 0.0% 0.00 0.0% 0.0% 0.0% 2.45

bcsstm09 0.00 0.1% 0.00 0.1% 0.1% 0.1% 2.39

bcsstk09 0.11 3.7% 0.12 0.2% 0.2% 0.2% 1.94

bcsstk10 0.03 1.3% 0.03 1.3% 1.3% 1.3% 1.66

1138 bus 0.02 0.0% 0.02 0.9% 1.0% 0.9% 1.91

bcsstk27 0.06 2.8% 0.06 3.0% 2.8% 2.8% 1.97

mhd1280b 0.01 0.4% 0.01 0.1% 0.4% 0.2% 1.14

plbuckle 0.00 2.6% 0.00 2.6% 2.6% 2.6% 1.65

msc01440 0.11 0.3% 0.11 0.3% 0.2% 0.2% 1.74

bcsstk11 0.04 3.6% 0.04 4.0% 3.8% 3.8% 1.64

bcsstm11 0.00 0.1% 0.00 0.1% 0.1% 0.1% 2.56

bcsstm12 0.05 0.0% 0.05 0.1% 0.1% 0.1% 1.64

bcsstk12 0.04 3.6% 0.04 4.0% 3.8% 3.8% 1.64

ex33 0.04 6.0% 0.05 2.0% 2.1% 2.1% 1.64

bcsstk14 0.11 0.0% 0.12 0.2% 0.2% 0.1% 1.49

ex3 0.06 0.0% 0.06 0.8% 0.8% 0.0% 1.59

nasa1824 0.11 0.2% 0.12 0.1% 0.1% 0.1% 1.31

plat1919 0.04 2.1% 0.04 1.4% 1.8% 1.4% 1.42

bcsstm26 0.00 0.0% 0.00 0.0% 0.0% 0.0% 2.49

bcsstk26 0.07 1.0% 0.08 0.3% 0.8% 0.8% 1.42

bcsstk13 0.22 1.6% 0.26 1.4% 2.7% 2.7% 1.39

nasa2146 0.07 2.3% 0.07 3.3% 3.2% 3.2% 1.70

ex10 0.02 0.9% 0.02 1.4% 1.3% 0.8% 1.28

Chem97ZtZ 0.00 0.0% 0.00 0.1% 0.1% 0.1% 0.50

ex10hs 0.02 0.3% 0.02 0.6% 0.6% 0.0% 1.27

ex13 0.04 0.0% 0.04 0.1% 0.1% 0.0% 1.26

nasa2910 0.17 0.0% 0.18 1.7% 3.6% 0.1% 1.38

bcsstk23 0.18 0.0% 0.18 0.0% 0.4% 0.4% 1.71

bcsstm23 0.00 0.0% 0.00 0.0% 0.0% 0.0% 2.58

mhd3200b 0.00 0.0% 0.00 1.9% 1.9% 1.8% 1.18

bibd 81 2 0.00 0.0% 0.00 0.0% 0.0% 0.0% 2.62
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Table 3.7 – continued from previous page

PaToH onmetisHP

name cutsize %LI cutsize exp%LIp act%LIp act%LIc speedup

ex9 0.03 0.9% 0.03 1.6% 1.5% 0.6% 1.28

bcsstm24 0.00 0.0% 0.00 0.0% 0.0% 0.0% 2.63

bcsstk24 0.08 0.0% 0.11 0.0% 0.0% 0.0% 1.66

bcsstk21 0.00 0.0% 0.00 0.0% 0.0% 0.0% 1.25

bcsstm21 0.00 0.0% 0.00 0.0% 0.0% 0.0% 2.62

bcsstk15 0.10 2.7% 0.10 1.5% 1.3% 1.3% 1.36

sts4098 0.11 0.0% 0.19 3.7% 19.7% 18.9% 0.68

t2dal e 0.00 0.0% 0.00 0.0% 0.0% 0.0% 2.64

bcsstk28 0.05 6.5% 0.05 4.0% 4.3% 4.3% 1.63

msc04515 0.04 1.7% 0.04 2.3% 2.6% 2.6% 1.20

nasa4704 0.08 0.1% 0.08 0.1% 0.1% 0.1% 1.23

mhd4800b 0.00 0.0% 0.00 4.3% 4.3% 4.3% 1.16

crystm01 0.03 1.4% 0.03 1.4% 1.4% 1.4% 1.24

bcsstk16 0.05 0.0% 0.05 0.0% 0.0% 0.0% 1.51

s3rmt3m3 0.06 0.0% 0.06 0.0% 0.0% 0.0% 1.54

s3rmt3m1 0.07 0.0% 0.07 0.1% 0.1% 0.1% 1.52

s2rmq4m1 0.07 0.3% 0.07 1.3% 1.2% 1.2% 1.55

s1rmt3m1 0.07 0.0% 0.07 0.1% 0.1% 0.1% 1.45

s1rmq4m1 0.07 1.2% 0.07 2.2% 2.0% 2.0% 1.54

s2rmt3m1 0.07 0.0% 0.07 0.0% 0.0% 0.0% 1.55

s3rmq4m1 0.07 0.4% 0.07 1.3% 1.2% 1.2% 1.54

ex15 0.01 0.3% 0.01 0.3% 0.3% 0.3% 1.21

Kuu 0.06 0.1% 0.06 3.6% 3.4% 0.8% 1.19

Muu 0.00 0.0% 0.00 0.0% 0.0% 0.0% 0.98

bcsstk38 0.03 3.1% 0.04 2.5% 2.1% 2.1% 1.17

aft01 0.03 0.0% 0.03 3.6% 3.6% 3.1% 1.17

fv1 0.02 0.0% 0.02 0.0% 0.0% 0.0% 1.42

fv3 0.02 0.0% 0.02 0.6% 0.6% 0.6% 1.42

fv2 0.02 0.0% 0.02 0.6% 0.6% 0.6% 1.42

bundle1 0.13 0.2% 0.10 3.4% 10.1% 1.9% 0.22

ted B 0.00 0.0% 0.00 0.1% 0.1% 0.0% 0.64

ted B unscaled 0.00 0.0% 0.00 0.1% 0.1% 0.0% 0.64

msc10848 0.09 0.0% 0.09 3.8% 1.3% 0.0% 1.82

bcsstk17 0.04 0.0% 0.04 2.5% 2.5% 2.5% 1.30

t2dah e 0.02 0.0% 0.02 1.0% 1.0% 0.7% 1.10

bcsstk18 0.04 0.0% 0.04 1.0% 0.9% 0.9% 1.00
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Table 3.7 – continued from previous page

PaToH onmetisHP

name cutsize %LI cutsize exp%LIp act%LIp act%LIc speedup

cbuckle 0.05 1.2% 0.05 4.0% 2.4% 2.4% 1.33

crystm02 0.02 1.3% 0.02 1.0% 1.0% 1.0% 1.11

Pres Poisson 0.03 0.5% 0.03 0.7% 0.7% 0.7% 1.41

bcsstm25 0.00 0.0% 0.00 0.0% 0.0% 0.0% 2.61

bcsstk25 0.02 4.4% 0.02 0.6% 0.8% 0.8% 1.05

Dubcova1 0.03 0.0% 0.02 1.6% 1.6% 1.0% 1.10

olafu 0.05 0.1% 0.04 0.5% 0.8% 0.8% 1.50

gyro m 0.00 0.2% 0.00 0.4% 0.6% 0.4% 0.88

gyro 0.01 0.1% 0.01 0.3% 0.4% 0.1% 1.27

bodyy4 0.01 0.0% 0.01 0.0% 0.0% 0.0% 1.30

bodyy5 0.01 0.0% 0.01 0.0% 0.0% 0.0% 1.32

bodyy6 0.01 0.0% 0.01 0.0% 0.0% 0.0% 1.31

raefsky4 0.05 1.5% 0.05 1.8% 1.7% 1.7% 1.46

LFAT5000 0.00 0.0% 0.00 0.0% 0.0% 0.0% 1.14

LF10000 0.00 0.0% 0.00 0.0% 0.0% 0.0% 1.09

t3dl e 0.00 0.0% 0.00 0.0% 0.0% 0.0% 2.65

msc23052 0.03 2.7% 0.03 2.5% 2.3% 2.3% 1.52

bcsstk36 0.03 1.0% 0.03 2.0% 1.8% 1.8% 1.44

crystm03 0.01 1.8% 0.01 0.7% 0.7% 0.7% 1.19

smt 0.07 0.3% 0.06 1.4% 1.1% 0.1% 1.87

thread 0.10 0.0% 0.10 0.3% 0.3% 0.0% 1.87

wathen100 0.02 0.0% 0.02 0.4% 0.4% 0.2% 0.99

ship 001 0.03 2.5% 0.03 1.0% 1.0% 0.7% 1.83

nd12k 0.31 1.0% 0.29 0.9% 0.9% 0.7% 2.58

wathen120 0.02 0.0% 0.01 0.5% 0.5% 0.3% 1.01

obstclae 0.01 0.0% 0.01 0.0% 0.0% 0.0% 1.29

jnlbrng1 0.01 0.0% 0.01 0.0% 0.0% 0.0% 1.28

minsurfo 0.01 0.0% 0.01 0.0% 0.0% 0.0% 1.30

bcsstm39 0.00 0.0% 0.00 0.0% 0.0% 0.0% 2.86

vanbody 0.02 1.5% 0.02 1.9% 1.8% 1.7% 1.42

gridgena 0.01 0.0% 0.01 1.0% 1.0% 1.0% 1.08

cvxbqp1 0.02 0.0% 0.02 0.0% 0.0% 0.0% 1.48

ct20stif 0.04 4.4% 0.04 3.4% 3.5% 3.3% 1.40

crankseg 1 0.04 0.0% 0.03 2.4% 1.9% 1.2% 1.94

nasasrb 0.01 0.5% 0.01 0.2% 0.2% 0.2% 1.46

Andrews 0.07 0.5% 0.10 1.5% 1.5% 1.5% 1.21
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Table 3.7 – continued from previous page

PaToH onmetisHP

name cutsize %LI cutsize exp%LIp act%LIp act%LIc speedup

crankseg 2 0.04 2.0% 0.03 1.0% 0.1% 0.0% 1.97

Dubcova2 0.01 0.0% 0.01 0.1% 0.1% 0.0% 1.05

qa8fm 0.01 0.1% 0.01 0.0% 0.0% 0.0% 1.16

cfd1 0.02 0.8% 0.03 1.7% 1.7% 1.7% 1.14

nd24k 0.24 0.9% 0.23 1.7% 1.6% 0.0% 2.56

oilpan 0.02 1.0% 0.02 0.2% 0.2% 0.0% 1.42

finan512 0.00 0.0% 0.00 0.0% 0.0% 0.0% 0.81

apache1 0.02 0.0% 0.02 0.0% 0.0% 0.0% 1.48

shallow water1 0.01 0.0% 0.01 0.0% 0.0% 0.0% 1.32

shallow water2 0.01 0.0% 0.01 0.0% 0.0% 0.0% 1.32

thermal1 0.00 0.0% 0.00 0.2% 0.2% 0.2% 1.24

denormal 0.01 0.0% 0.01 0.0% 0.0% 0.0% 1.12

s3dkt3m2 0.01 0.0% 0.01 0.0% 0.0% 0.0% 1.36

s3dkq4m2 0.01 0.0% 0.01 0.7% 0.7% 0.7% 1.56

m t1 0.02 4.0% 0.02 0.4% 0.7% 0.1% 1.92

2cubes sphere 0.04 6.5% 0.04 1.9% 1.8% 0.0% 1.11

thermomech TK 0.00 0.0% 0.00 0.9% 0.9% 0.9% 1.42

thermomech TC 0.00 0.6% 0.00 0.3% 0.4% 0.3% 1.42

x104 0.03 0.0% 0.03 0.1% 0.3% 0.0% 1.82

shipsec8 0.03 3.0% 0.03 0.1% 0.3% 0.3% 1.52

ship 003 0.02 0.9% 0.02 2.3% 2.3% 2.3% 1.52

cfd2 0.02 1.1% 0.02 0.7% 0.9% 0.9% 1.11

boneS01 0.04 0.3% 0.03 1.5% 1.7% 1.4% 1.43

shipsec1 0.02 0.1% 0.02 0.3% 0.5% 0.5% 1.59

bmw7st 1 0.01 2.3% 0.01 0.4% 0.6% 0.5% 1.52

Dubcova3 0.01 0.0% 0.01 0.0% 0.0% 0.0% 1.04

bmwcra 1 0.01 3.5% 0.01 0.0% 0.0% 0.0% 1.42

G2 circuit 0.00 0.0% 0.00 0.0% 0.0% 0.0% 1.42

shipsec5 0.01 5.4% 0.02 0.7% 1.1% 1.1% 1.56

thermomech dM 0.00 0.0% 0.00 0.0% 0.0% 0.0% 1.56

pwtk 0.01 0.1% 0.01 0.1% 0.1% 0.1% 1.56

hood 0.01 0.6% 0.01 0.7% 0.8% 0.6% 1.48

BenElechi1 0.01 0.0% 0.01 1.0% 1.0% 1.0% 1.57

offshore 0.02 4.3% 0.02 2.5% 2.4% 1.7% 1.17

F1 0.01 0.0% 0.01 1.0% 1.0% 0.0% 1.21

msdoor 0.00 0.5% 0.00 0.2% 0.2% 0.1% 1.48
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Table 3.7 – continued from previous page

PaToH onmetisHP

name cutsize %LI cutsize exp%LIp act%LIp act%LIc speedup

af 2 k101 0.00 0.0% 0.00 0.0% 0.0% 0.0% 1.27

af 5 k101 0.00 0.0% 0.00 0.0% 0.0% 0.0% 1.28

af 1 k101 0.00 0.0% 0.00 0.0% 0.0% 0.0% 1.28

af 4 k101 0.00 0.0% 0.00 0.0% 0.0% 0.0% 1.27

af 3 k101 0.00 0.0% 0.00 0.0% 0.0% 0.0% 1.28

af 0 k101 0.00 0.0% 0.00 0.0% 0.0% 0.0% 1.28

inline 1 0.01 2.1% 0.01 1.3% 1.3% 0.9% 1.26

af shell8 0.00 0.0% 0.00 0.0% 0.0% 0.0% 1.28

af shell3 0.00 0.0% 0.00 0.0% 0.0% 0.0% 1.28

af shell4 0.00 0.0% 0.00 0.0% 0.0% 0.0% 1.28

af shell7 0.00 0.0% 0.00 0.0% 0.0% 0.0% 1.28

parabolic fem 0.00 0.0% 0.00 0.0% 0.0% 0.0% 1.67

apache2 0.01 0.0% 0.01 0.0% 0.0% 0.0% 1.47

tmt sym 0.00 0.9% 0.00 0.0% 0.1% 0.1% 1.22

boneS10 0.01 3.1% 0.01 0.5% 0.5% 0.0% 1.46

ldoor 0.00 0.0% 0.00 0.3% 0.3% 0.3% 1.47

ecology2 0.00 0.0% 0.00 0.0% 0.0% 0.0% 1.29

thermal2 0.00 1.7% 0.00 0.2% 0.2% 0.2% 1.30

G3 circuit 0.00 0.0% 0.00 0.0% 0.0% 0.0% 1.39

Table 3.8: 2-way partitioning performance of the PD matrix col-

lection for connectivity metric with node balancing.

PaToH onmetisHP

name cutsize %LI cutsize %LI speedup

msc01050 1.21 3.1% 1.29 0.0% 0.77

bcsstm08 1.00 0.0% 1.00 0.0% 2.31

bcsstm09 1.00 0.1% 1.00 0.1% 2.30

bcsstk09 1.11 5.4% 1.12 0.1% 1.71

bcsstk10 1.03 1.3% 1.03 1.3% 1.49

1138 bus 1.02 0.0% 1.02 1.4% 1.77

bcsstk27 1.07 2.7% 1.06 2.8% 1.78

mhd1280b 1.01 0.2% 1.01 0.1% 1.03
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Table 3.8 – continued from previous page

PaToH onmetisHP

name cutsize %LI cutsize %LI speedup

plbuckle 1.00 2.6% 1.00 2.6% 1.53

msc01440 1.11 0.2% 1.11 0.1% 1.49

bcsstk11 1.04 3.6% 1.04 3.7% 1.46

bcsstm11 1.00 0.1% 1.00 0.1% 2.38

bcsstm12 1.05 0.0% 1.05 0.1% 1.49

bcsstk12 1.04 3.6% 1.04 3.7% 1.46

ex33 1.04 3.4% 1.04 3.2% 1.48

bcsstk14 1.11 0.0% 1.11 0.2% 1.27

ex3 1.06 0.1% 1.06 0.9% 1.45

nasa1824 1.11 0.1% 1.13 0.1% 1.15

plat1919 1.04 4.3% 1.04 2.8% 1.31

bcsstm26 1.00 0.0% 1.00 0.0% 2.32

bcsstk26 1.07 1.5% 1.08 0.0% 1.26

bcsstk13 1.22 3.7% 1.29 1.8% 0.81

nasa2146 1.07 2.0% 1.07 2.3% 1.55

ex10 1.02 1.2% 1.02 1.1% 1.20

Chem97ZtZ 1.00 0.0% 1.00 0.0% 0.48

ex10hs 1.02 0.7% 1.02 0.0% 1.19

ex13 1.04 0.1% 1.04 0.9% 1.19

nasa2910 1.18 0.0% 1.16 3.2% 1.06

bcsstk23 1.18 0.0% 1.18 0.5% 1.43

bcsstm23 1.00 0.0% 1.00 0.0% 2.39

mhd3200b 1.00 0.0% 1.00 4.3% 1.08

bibd 81 2 1.00 0.0% 1.00 0.0% 2.41

ex9 1.03 0.5% 1.03 0.6% 1.20

bcsstm24 1.00 0.0% 1.00 0.0% 2.40

bcsstk24 1.08 0.0% 1.11 0.1% 1.37

bcsstk21 1.00 0.0% 1.00 0.0% 1.19

bcsstm21 1.00 0.0% 1.00 0.0% 2.42

bcsstk15 1.09 1.4% 1.09 3.5% 1.15

sts4098 1.10 0.3% 1.11 6.3% 0.46

t2dal e 1.00 0.0% 1.00 0.0% 2.44

bcsstk28 1.05 5.7% 1.05 3.8% 1.51

msc04515 1.04 3.1% 1.04 3.8% 1.11

nasa4704 1.08 0.2% 1.08 0.3% 1.11

mhd4800b 1.00 0.0% 1.00 1.6% 1.09
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PaToH onmetisHP

name cutsize %LI cutsize %LI speedup

crystm01 1.03 1.4% 1.03 1.4% 1.17

bcsstk16 1.05 0.0% 1.05 0.0% 1.39

s3rmt3m3 1.06 0.0% 1.06 0.0% 1.39

s3rmt3m1 1.07 0.0% 1.07 0.0% 1.38

s2rmq4m1 1.07 0.3% 1.07 0.7% 1.40

s1rmt3m1 1.07 0.0% 1.07 0.1% 1.39

s1rmq4m1 1.07 0.4% 1.07 1.2% 1.39

s2rmt3m1 1.07 0.0% 1.07 0.1% 1.37

s3rmq4m1 1.07 0.2% 1.07 1.0% 1.39

ex15 1.01 0.3% 1.01 0.2% 1.16

Kuu 1.07 0.0% 1.06 2.1% 1.10

Muu 1.00 0.0% 1.00 0.0% 0.97

bcsstk38 1.04 3.3% 1.04 2.0% 1.10

aft01 1.03 0.0% 1.03 2.6% 1.16

fv1 1.02 0.0% 1.02 0.0% 1.33

fv3 1.02 0.1% 1.02 1.0% 1.33

fv2 1.02 0.1% 1.02 1.0% 1.33

bundle1 1.14 0.1% 1.11 18.8% 0.17

ted B 1.00 0.0% 1.00 0.0% 0.63

ted B unscaled 1.00 0.0% 1.00 0.1% 0.63

msc10848 1.09 0.0% 1.09 0.4% 1.51

bcsstk17 1.04 0.0% 1.04 1.0% 1.20

t2dah e 1.02 0.0% 1.02 0.7% 1.06

bcsstk18 1.04 1.7% 1.04 0.3% 0.93

cbuckle 1.05 2.3% 1.05 2.4% 1.19

crystm02 1.02 1.3% 1.02 1.0% 1.08

Pres Poisson 1.03 0.8% 1.03 0.7% 1.35

bcsstm25 1.00 0.0% 1.00 0.0% 2.36

bcsstk25 1.02 1.4% 1.02 0.8% 1.04

Dubcova1 1.03 0.0% 1.02 1.0% 1.10

olafu 1.05 0.1% 1.05 0.7% 1.34

gyro m 1.00 0.0% 1.00 0.1% 0.86

gyro 1.01 0.0% 1.01 0.7% 1.25

bodyy4 1.01 0.0% 1.01 0.0% 1.22

bodyy5 1.01 0.0% 1.01 0.0% 1.22

bodyy6 1.01 0.0% 1.01 0.0% 1.24
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Table 3.8 – continued from previous page

PaToH onmetisHP

name cutsize %LI cutsize %LI speedup

raefsky4 1.05 1.0% 1.05 1.4% 1.33

LFAT5000 1.00 0.0% 1.00 0.0% 1.06

LF10000 1.00 0.0% 1.00 0.0% 1.03

t3dl e 1.00 0.0% 1.00 0.0% 2.41

msc23052 1.03 1.7% 1.03 2.4% 1.44

bcsstk36 1.03 2.5% 1.03 1.8% 1.36

crystm03 1.01 1.6% 1.01 0.7% 1.15

smt 1.07 2.8% 1.06 0.9% 1.63

thread 1.10 0.4% 1.10 1.0% 1.40

wathen100 1.02 0.0% 1.02 0.7% 0.97

ship 001 1.03 2.0% 1.03 0.7% 1.71

nd12k 1.30 1.2% 1.29 2.1% 0.99

wathen120 1.02 0.0% 1.01 0.6% 0.97

obstclae 1.01 0.0% 1.01 0.0% 1.23

jnlbrng1 1.01 0.0% 1.01 0.0% 1.22

minsurfo 1.01 0.0% 1.01 0.0% 1.23

bcsstm39 1.00 0.0% 1.00 0.0% 2.60

vanbody 1.02 2.1% 1.02 1.7% 1.37

gridgena 1.01 0.0% 1.01 0.1% 1.03

cvxbqp1 1.02 0.0% 1.02 0.0% 1.40

ct20stif 1.04 2.3% 1.04 3.0% 1.27

crankseg 1 1.04 0.0% 1.03 1.8% 1.71

nasasrb 1.01 1.6% 1.01 0.2% 1.41

Andrews 1.07 1.8% 1.11 2.8% 1.13

crankseg 2 1.04 2.0% 1.03 0.5% 1.68

Dubcova2 1.01 0.0% 1.01 0.7% 1.02

qa8fm 1.01 0.3% 1.01 0.0% 1.14

cfd1 1.02 0.2% 1.03 1.7% 1.08

nd24k 1.24 2.6% 1.23 1.1% 1.13

oilpan 1.02 0.0% 1.02 0.1% 1.35

finan512 1.00 0.0% 1.00 0.0% 0.79

apache1 1.02 0.0% 1.02 0.0% 1.38

shallow water1 1.01 0.0% 1.01 0.0% 1.28

shallow water2 1.01 0.0% 1.01 0.0% 1.26

thermal1 1.00 0.9% 1.00 0.8% 1.19

denormal 1.01 0.0% 1.01 0.0% 1.09
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PaToH onmetisHP

name cutsize %LI cutsize %LI speedup

s3dkt3m2 1.01 0.0% 1.01 0.0% 1.29

s3dkq4m2 1.01 0.0% 1.01 0.2% 1.48

m t1 1.03 1.5% 1.02 0.9% 1.81

2cubes sphere 1.04 6.4% 1.04 0.7% 1.05

thermomech TK 1.00 1.6% 1.00 0.7% 1.38

thermomech TC 1.00 1.5% 1.00 0.1% 1.39

x104 1.03 0.0% 1.03 0.9% 1.69

shipsec8 1.03 0.1% 1.03 0.4% 1.41

ship 003 1.02 0.7% 1.02 1.2% 1.44

cfd2 1.02 0.6% 1.02 0.6% 1.08

boneS01 1.04 0.0% 1.04 0.8% 1.30

shipsec1 1.02 0.2% 1.02 0.4% 1.52

bmw7st 1 1.01 1.2% 1.01 0.7% 1.46

Dubcova3 1.01 0.0% 1.01 0.4% 1.02

bmwcra 1 1.01 3.5% 1.01 0.2% 1.36

G2 circuit 1.01 0.0% 1.00 0.4% 1.36

shipsec5 1.01 4.1% 1.02 0.7% 1.48

thermomech dM 1.00 0.0% 1.00 0.0% 1.50

pwtk 1.01 0.2% 1.01 0.1% 1.51

hood 1.01 0.4% 1.01 0.3% 1.42

BenElechi1 1.01 0.0% 1.01 0.2% 1.52

offshore 1.02 2.9% 1.02 1.6% 1.18

F1 1.01 0.0% 1.01 0.5% 1.16

msdoor 1.00 0.3% 1.00 0.3% 1.43

af 2 k101 1.00 0.0% 1.00 0.0% 1.24

af 5 k101 1.00 0.0% 1.00 0.0% 1.23

af 1 k101 1.00 0.0% 1.00 0.0% 1.24

af 4 k101 1.00 0.0% 1.00 0.0% 1.23

af 3 k101 1.00 0.0% 1.00 0.0% 1.23

af 0 k101 1.00 0.0% 1.00 0.0% 1.23

inline 1 1.01 0.0% 1.01 0.9% 1.22

af shell8 1.00 0.0% 1.00 0.0% 1.24

af shell3 1.00 0.0% 1.00 0.0% 1.23

af shell4 1.00 0.0% 1.00 0.0% 1.24

af shell7 1.00 0.0% 1.00 0.0% 1.23

parabolic fem 1.00 0.0% 1.00 0.0% 1.60
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PaToH onmetisHP

name cutsize %LI cutsize %LI speedup

apache2 1.01 0.0% 1.01 0.0% 1.43

tmt sym 1.00 0.9% 1.00 0.1% 1.18

boneS10 1.01 3.0% 1.01 0.4% 1.42

ldoor 1.00 0.4% 1.00 0.4% 1.44

ecology2 1.00 0.0% 1.00 0.0% 1.24

thermal2 1.00 1.6% 1.00 0.3% 1.25

G3 circuit 1.00 0.0% 1.00 0.0% 1.36

Table 3.9: 64-way partitioning performance of the LP matrix col-

lection for cut-net metric with net balancing.

PaToH onmetisHP

name cutsize %LI cutsize %LI speedup

deter4 0.33 7.0% 0.85 338.5% 1.60

lpl2 0.12 13.1% 0.15 14.0% 3.93

model7 0.28 37.9% 0.32 36.1% 3.25

sctap1-2c 0.32 16.9% 0.39 22.9% 0.78

lp cre a 0.09 6.0% 0.09 18.6% 2.22

lpi ceria3d 0.54 24.5% 0.98 189.6% 0.32

ch 0.17 16.9% 0.30 12.9% 3.02

aircraft 0.00 2460.0% 1.00 1180.0% 0.12

lpi gosh 0.24 17.9% 0.33 41.7% 5.29

deter8 0.20 11.0% 0.22 14.3% 2.33

fxm2-16 0.22 19.8% 0.20 26.9% 2.26

nemsemm1 0.53 55.5% 0.80 204.3% 98.13

pcb3000 0.22 8.4% 0.22 13.0% 4.93

pgp2 0.57 13.7% 0.99 52.3% 0.53

rlfddd 0.83 310.3% 0.84 290.7% 13.01

deter6 0.21 4.5% 0.22 12.9% 2.32

large 0.17 11.1% 0.18 14.7% 2.35

lp osa 30 0.02 0.4% 0.02 3.4% 3.26

stormg2-8 0.25 28.2% 0.25 25.8% 2.79

model10 0.44 68.9% 0.65 97.9% 6.38
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PaToH onmetisHP

name cutsize %LI cutsize %LI speedup

nsir 0.28 17.2% 0.58 35.0% 5.57

seymourl 0.86 362.4% 0.93 279.1% 1.07

cq5 0.15 12.8% 0.16 22.7% 4.47

p05 0.18 10.8% 0.22 15.8% 8.00

deter5 0.20 5.5% 0.21 13.4% 2.35

scsd8-2b 0.52 18.4% 0.96 169.3% 1.76

r05 0.20 9.2% 0.24 18.0% 9.84

bas1lp 0.65 1289.7% 0.86 296.0% 3.84

deter1 0.20 7.6% 0.20 16.4% 2.33

co5 0.14 13.4% 0.16 21.9% 4.50

stat96v1 0.18 10.5% 0.17 10.2% 59.23

lp dfl001 0.37 17.3% 0.47 14.1% 3.25

deter2 0.22 5.9% 0.24 20.2% 1.79

fxm3 6 0.09 9.2% 0.08 14.0% 2.93

deter7 0.16 9.2% 0.15 12.6% 2.60

lp cre d 0.23 11.5% 0.48 47.2% 13.96

ulevimin 0.17 7.6% 0.24 18.3% 5.77

nemswrld 0.30 7.3% 0.58 68.7% 6.25

nemsemm2 0.16 13.9% 0.17 21.0% 12.29

nl 0.12 7.1% 0.15 17.9% 3.03

lp cre b 0.20 31.8% 0.36 34.6% 11.63

deter3 0.16 2.4% 0.16 15.9% 2.31

rlfdual 0.81 184.1% 0.79 184.7% 5.53

scsd8-2r 0.50 16.1% 0.98 205.9% 1.18

cq9 0.11 13.7% 0.16 19.9% 4.97

pf2177 0.81 36.3% 0.98 119.3% 1.97

scagr7-2b 0.26 126.6% 0.86 118.5% 0.26

lp pds 06 0.14 8.9% 0.17 21.3% 3.25

p010 0.11 9.9% 0.16 15.9% 1.11

ge 0.11 10.8% 0.12 19.3% 2.08

lp osa 60 0.01 0.4% 0.01 10.1% 2.29

co9 0.11 11.7% 0.23 21.0% 5.24

lpl3 0.04 3.5% 0.10 15.2% 5.71

fome11 0.33 18.9% 0.43 16.7% 3.47

scrs8-2r 0.75 798.7% 0.99 321.9% 0.14

stormg2-27 0.15 7.9% 0.15 20.0% 2.71
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PaToH onmetisHP

name cutsize %LI cutsize %LI speedup

lp ken 11 0.02 7.8% 0.02 21.6% 2.58

sctap1-2b 0.30 7.5% 0.83 84.1% 0.33

car4 0.02 2.6% 0.05 5.0% 0.41

lp pds 10 0.14 8.9% 0.18 20.5% 3.16

lp stocfor3 0.05 4.6% 0.04 8.2% 1.65

ex3sta1 0.43 16.8% 0.44 30.7% 1.42

testbig 0.23 12.3% 0.88 262.1% 0.26

dbir1 0.17 12.6% 0.84 23.0% 8.76

dbir2 0.17 11.6% 0.86 24.4% 7.94

scfxm1-2b 0.06 4.8% 0.06 10.6% 1.39

route 0.18 8.5% 0.20 17.6% 5.17

ts-palko 0.60 139.1% 0.99 290.2% 8.47

fxm4 6 0.05 4.9% 0.04 16.0% 2.90

fome12 0.24 14.6% 0.40 15.1% 3.60

e18 0.62 12.6% 0.85 14.9% 3.64

pltexpa 0.15 4.0% 0.21 20.7% 2.35

baxter 0.28 27.3% 0.43 47.4% 0.87

lp ken 13 0.02 5.1% 0.02 15.4% 2.92

stat96v2 0.07 3.0% 0.07 8.1% 70.20

lp pds 20 0.14 9.0% 0.18 17.8% 3.81

stat96v3 0.06 2.4% 0.07 8.3% 45.83

world 0.11 9.4% 0.16 15.6% 2.27

mod2 0.12 6.5% 0.16 16.5% 2.14

sc205-2r 0.23 10.1% 0.97 65.6% 0.15

scfxm1-2r 0.06 4.3% 0.24 17.3% 1.25

fxm3 16 0.05 5.1% 0.05 7.9% 2.89

dbic1 0.04 2.7% 0.04 13.6% 9.43

fome13 0.20 13.2% 0.38 15.7% 3.59

pds-30 0.13 10.0% 0.16 15.9% 3.44

rlfprim 0.63 56.5% 0.80 173.6% 0.45

stormg2-125 0.13 8.0% 0.29 44.2% 1.90

pds-40 0.12 8.3% 0.17 16.9% 3.92

fome21 0.12 8.4% 0.16 15.1% 3.85

pds-50 0.12 9.0% 0.16 15.3% 3.70

pds-60 0.12 10.1% 0.16 15.3% 3.82

pds-70 0.11 6.5% 0.16 15.7% 3.94
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PaToH onmetisHP

name cutsize %LI cutsize %LI speedup

pds-80 0.11 6.2% 0.15 15.1% 4.03

pds-90 0.10 6.7% 0.14 13.6% 3.79

pds-100 0.10 7.9% 0.13 14.7% 4.04

watson 1 0.02 1.0% 0.01 4.2% 3.95

sgpf5y6 0.03 7.2% 0.03 25.8% 1.97

watson 2 0.01 3.6% 0.01 16.4% 3.80

stormG2 1000 0.13 11.9% 0.54 113.3% 0.57

cont11 l 0.01 3.2% 0.01 5.9% 1.21

Table 3.10: 64-way partitioning performance of the PD matrix col-

lection for cut-net metric with node balancing.

PaToH onmetisHP

name cutsize %LI cutsize exp%LIp act%LIp act%LIc speedup

bcsstk13 0.94 1.8% 0.98 375.6% 664.8% 78.3% 3.06

Chem97ZtZ 0.20 3.5% 0.20 79.2% 55.2% 33.9% 0.93

mhd3200b 0.09 1.2% 0.08 13.4% 10.1% 8.1% 2.46

bibd 81 2 0.00 0.7% 0.00 0.7% 0.7% 0.7% 4.19

ex9 0.81 1.3% 0.81 222.1% 99.3% 31.1% 2.02

bcsstm24 0.00 0.6% 0.00 0.6% 0.6% 0.6% 4.14

bcsstk24 0.87 1.5% 0.85 307.7% 191.4% 98.9% 2.73

bcsstm21 0.00 1.3% 0.00 1.3% 1.3% 1.3% 4.19

bcsstk21 0.58 2.0% 0.61 34.4% 33.1% 25.6% 1.89

bcsstk15 0.92 2.7% 0.94 401.2% 157.2% 36.0% 1.94

sts4098 0.67 11.3% 0.72 156.6% 271.8% 175.8% 1.18

t2dal e 0.00 0.7% 0.00 0.7% 0.7% 0.7% 4.23

bcsstk28 0.86 2.3% 0.80 225.7% 121.0% 69.8% 2.81

msc04515 0.61 2.8% 0.59 70.9% 61.4% 57.2% 1.96

nasa4704 0.65 2.8% 0.67 113.0% 82.1% 62.0% 1.86

mhd4800b 0.06 1.6% 0.06 10.1% 8.7% 7.4% 2.38

crystm01 0.72 4.7% 0.74 114.6% 59.7% 45.9% 1.97

bcsstk16 0.91 2.2% 0.91 420.4% 214.2% 76.9% 2.87

s3rmt3m3 0.73 1.5% 0.69 92.7% 83.6% 61.4% 2.53
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PaToH onmetisHP

name cutsize %LI cutsize exp%LIp act%LIp act%LIc speedup

s2rmq4m1 0.83 2.3% 0.78 121.7% 72.0% 58.1% 2.93

s1rmt3m1 0.77 1.4% 0.75 93.8% 67.6% 45.1% 2.53

s1rmq4m1 0.83 2.4% 0.77 134.6% 72.0% 58.9% 2.91

s3rmt3m1 0.77 1.4% 0.75 94.5% 73.7% 50.2% 2.52

s3rmq4m1 0.83 1.9% 0.77 130.1% 75.6% 61.0% 2.92

s2rmt3m1 0.77 1.4% 0.75 93.1% 75.0% 53.0% 2.53

ex15 0.40 2.9% 0.39 42.1% 32.4% 31.2% 2.25

Muu 0.59 0.9% 0.60 84.1% 52.2% 5.8% 1.60

Kuu 0.77 0.9% 0.79 248.7% 112.5% 14.5% 2.17

bcsstk38 0.72 2.5% 0.73 165.1% 111.9% 68.5% 2.08

aft01 0.45 0.8% 0.43 27.5% 27.7% 16.8% 1.69

fv1 0.29 3.3% 0.28 14.5% 14.6% 14.4% 2.43

fv3 0.29 3.2% 0.28 11.6% 12.8% 12.6% 2.42

fv2 0.29 3.1% 0.28 12.2% 12.9% 12.8% 2.41

bundle1 1.00 2.9% 1.00 1458.9% 974.9% 258.9% 0.31

ted B 0.18 1.2% 0.16 21.8% 51.2% 35.1% 1.26

ted B unscaled 0.18 1.1% 0.16 20.3% 47.7% 31.8% 1.25

msc10848 0.88 0.2% 0.91 592.1% 238.4% 73.4% 3.64

bcsstk17 0.61 3.2% 0.62 86.9% 53.3% 44.7% 2.47

t2dah e 0.39 0.9% 0.37 15.5% 17.6% 9.3% 1.89

bcsstk18 0.44 4.9% 0.47 80.7% 56.4% 42.7% 1.50

cbuckle 0.60 2.9% 0.56 36.0% 32.5% 31.4% 2.81

crystm02 0.54 4.9% 0.54 49.6% 52.2% 49.9% 1.89

Pres Poisson 0.60 3.6% 0.57 42.2% 32.1% 31.0% 2.81

bcsstk25 0.54 2.2% 0.57 50.0% 37.0% 28.4% 1.62

bcsstm25 0.00 0.3% 0.00 0.3% 0.3% 0.3% 4.09

Dubcova1 0.36 0.3% 0.32 15.2% 13.6% 2.9% 1.81

olafu 0.60 3.0% 0.57 106.8% 66.4% 56.0% 3.05

gyro 0.57 1.1% 0.60 301.4% 118.4% 57.0% 2.09

gyro m 0.31 2.6% 0.30 61.5% 55.1% 39.7% 1.37

bodyy4 0.20 1.7% 0.20 9.1% 9.2% 8.8% 2.18

bodyy5 0.20 1.5% 0.20 8.6% 8.5% 8.1% 2.20

bodyy6 0.20 1.3% 0.20 8.2% 7.8% 7.4% 2.26

raefsky4 0.69 3.6% 0.68 138.1% 61.1% 51.4% 2.77

LFAT5000 0.01 0.1% 0.01 0.9% 0.8% 0.8% 1.89

LF10000 0.01 0.5% 0.01 0.7% 1.0% 1.0% 1.85
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PaToH onmetisHP

name cutsize %LI cutsize exp%LIp act%LIp act%LIc speedup

t3dl e 0.00 0.3% 0.00 0.3% 0.3% 0.3% 4.14

bcsstk36 0.49 3.2% 0.47 35.2% 34.1% 31.7% 2.70

msc23052 0.49 2.4% 0.47 36.0% 32.4% 29.9% 2.90

crystm03 0.45 4.8% 0.43 24.6% 36.2% 35.8% 1.85

smt 0.85 0.1% 0.87 394.0% 136.6% 50.4% 3.83

thread 0.86 0.3% 0.89 313.3% 112.3% 38.5% 3.72

wathen100 0.26 0.2% 0.22 6.5% 8.7% 4.3% 1.61

ship 001 0.79 1.2% 0.81 367.6% 107.1% 41.9% 3.72

nd12k 0.99 0.3% 1.00 459.7% 461.2% 2.2% 5.13

wathen120 0.24 0.3% 0.20 8.6% 10.5% 6.6% 1.59

obstclae 0.12 1.5% 0.12 8.0% 8.6% 8.5% 2.06

jnlbrng1 0.12 1.4% 0.12 8.9% 9.3% 9.3% 2.06

minsurfo 0.12 1.4% 0.12 8.6% 9.4% 9.4% 2.06

bcsstm39 0.00 0.0% 0.00 0.0% 0.0% 0.0% 4.22

vanbody 0.33 3.6% 0.32 32.6% 30.4% 28.8% 2.58

gridgena 0.17 1.8% 0.16 10.0% 12.7% 12.3% 1.76

cvxbqp1 0.13 2.3% 0.16 11.3% 12.6% 12.3% 2.03

ct20stif 0.37 3.0% 0.35 30.4% 48.1% 45.5% 2.50

crankseg 1 0.83 0.0% 0.86 522.3% 120.2% 23.3% 4.02

nasasrb 0.34 3.0% 0.31 14.9% 17.8% 17.6% 2.72

Andrews 0.65 5.0% 0.70 66.3% 53.6% 31.2% 1.50

crankseg 2 0.80 0.2% 0.84 482.2% 123.2% 32.1% 4.19

Dubcova2 0.19 0.0% 0.16 10.7% 6.0% 0.4% 1.65

qa8fm 0.42 4.3% 0.40 15.5% 27.8% 27.5% 1.73

cfd1 0.40 5.0% 0.39 22.7% 27.3% 27.1% 1.69

nd24k 0.97 0.8% 0.99 600.6% 273.2% 8.7% 5.54

oilpan 0.29 1.8% 0.28 15.0% 16.5% 13.5% 2.62

finan512 0.16 1.4% 0.12 5.0% 5.3% 1.8% 1.14

apache1 0.24 1.8% 0.23 12.2% 13.2% 13.1% 2.02

shallow water2 0.08 0.7% 0.08 7.3% 6.9% 6.8% 1.98

shallow water1 0.08 1.2% 0.08 7.2% 6.8% 6.7% 1.98

thermal1 0.09 2.3% 0.09 10.9% 10.8% 10.8% 1.91

denormal 0.17 1.8% 0.15 9.7% 10.9% 10.9% 1.78

s3dkt3m2 0.23 0.6% 0.22 6.8% 8.6% 8.1% 2.57

s3dkq4m2 0.26 1.9% 0.22 10.4% 11.6% 11.6% 3.00

m t1 0.42 1.4% 0.39 25.8% 29.1% 20.0% 3.88
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Table 3.10 – continued from previous page

PaToH onmetisHP

name cutsize %LI cutsize exp%LIp act%LIp act%LIc speedup

2cubes sphere 0.43 1.4% 0.44 18.5% 17.6% 9.0% 1.54

thermomech TK 0.08 2.4% 0.08 12.3% 12.0% 11.9% 2.07

thermomech TC 0.08 2.2% 0.08 12.8% 12.7% 12.7% 2.07

x104 0.34 1.1% 0.33 29.4% 31.2% 22.8% 3.63

shipsec8 0.32 2.6% 0.31 22.5% 23.1% 22.5% 2.71

ship 003 0.41 2.4% 0.40 22.4% 23.8% 22.4% 2.66

cfd2 0.29 3.7% 0.27 19.7% 21.0% 20.9% 1.66

boneS01 0.33 2.5% 0.31 17.4% 27.3% 24.2% 2.47

shipsec1 0.27 2.5% 0.26 15.5% 19.1% 18.9% 2.83

bmw7st 1 0.20 3.6% 0.19 18.9% 21.4% 21.2% 2.75

Dubcova3 0.18 0.1% 0.14 10.3% 8.6% 1.5% 1.54

bmwcra 1 0.39 4.8% 0.38 27.7% 34.9% 34.3% 2.44

G2 circuit 0.10 1.0% 0.10 9.0% 9.1% 9.0% 1.81

shipsec5 0.25 3.2% 0.24 18.9% 18.7% 18.6% 2.81

thermomech dM 0.05 1.9% 0.05 11.0% 11.1% 11.1% 2.13

pwtk 0.18 1.7% 0.16 10.7% 9.5% 9.5% 2.99

hood 0.14 1.6% 0.14 15.3% 14.9% 13.3% 2.67

BenElechi1 0.15 1.4% 0.13 10.9% 11.8% 11.8% 2.96

offshore 0.23 3.3% 0.23 17.2% 18.6% 14.5% 1.51

F1 0.31 0.4% 0.31 25.2% 28.1% 15.3% 1.84

msdoor 0.08 2.7% 0.08 12.0% 13.1% 12.7% 2.70

af 2 k101 0.09 0.5% 0.09 5.6% 5.8% 5.8% 2.19

af 3 k101 0.09 0.6% 0.09 5.1% 6.0% 5.9% 2.20

af 5 k101 0.09 1.0% 0.09 5.6% 6.3% 6.2% 2.17

af 0 k101 0.09 0.4% 0.09 5.9% 6.0% 5.9% 2.17

af 1 k101 0.09 0.7% 0.09 6.2% 6.7% 6.7% 2.20

af 4 k101 0.09 0.5% 0.09 5.7% 6.2% 6.1% 2.17

inline 1 0.18 1.0% 0.17 15.8% 18.5% 13.0% 2.04

af shell4 0.09 0.7% 0.08 6.3% 6.3% 6.3% 2.18

af shell7 0.09 1.0% 0.08 5.8% 6.2% 6.2% 2.19

af shell8 0.09 0.9% 0.08 6.3% 6.9% 6.8% 2.18

af shell3 0.09 0.7% 0.08 5.5% 6.4% 6.3% 2.18

parabolic fem 0.04 0.2% 0.04 6.8% 7.0% 6.9% 2.05

apache2 0.09 0.3% 0.08 7.7% 8.1% 8.1% 1.74

tmt sym 0.03 2.2% 0.03 9.6% 9.6% 9.5% 1.63

boneS10 0.08 3.3% 0.08 16.5% 16.1% 15.8% 2.50
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Table 3.10 – continued from previous page

PaToH onmetisHP

name cutsize %LI cutsize exp%LIp act%LIp act%LIc speedup

ldoor 0.06 2.2% 0.06 11.3% 11.2% 10.9% 2.67

ecology2 0.03 0.0% 0.03 4.7% 4.8% 4.8% 1.59

thermal2 0.02 2.2% 0.02 7.6% 7.7% 7.7% 1.79

G3 circuit 0.03 0.6% 0.02 6.5% 6.3% 6.3% 1.67

Table 3.11: 64-way partitioning performance of the PD matrix col-

lection for connectivity metric with node balancing.

PaToH onmetisHP

name cutsize %LI cutsize %LI speedup

bcsstk13 5.23 4.2% 5.01 111.7% 0.61

Chem97ZtZ 1.21 3.5% 1.22 42.1% 0.85

mhd3200b 1.10 1.1% 1.08 5.9% 2.12

bibd 81 2 1.00 0.7% 1.00 0.7% 3.28

ex9 2.41 1.8% 2.39 42.3% 1.14

bcsstm24 1.00 0.6% 1.00 0.6% 3.26

bcsstk24 2.69 3.3% 2.56 46.5% 1.31

bcsstm21 1.00 1.3% 1.00 1.3% 3.30

bcsstk21 1.75 1.9% 1.79 9.2% 1.69

bcsstk15 2.75 4.1% 2.75 35.6% 1.06

sts4098 2.54 11.3% 2.71 111.2% 0.43

t2dal e 1.00 0.7% 1.00 0.7% 3.30

bcsstk28 2.50 3.8% 2.35 50.2% 1.48

msc04515 1.84 3.8% 1.83 23.9% 1.51

nasa4704 2.10 3.6% 2.11 38.0% 1.24

mhd4800b 1.06 1.5% 1.06 6.0% 2.04

crystm01 2.10 4.5% 2.10 33.7% 1.34

bcsstk16 3.24 4.3% 3.25 61.8% 0.95

s3rmt3m3 2.07 2.7% 2.04 31.4% 1.57

s2rmq4m1 2.37 3.2% 2.28 35.3% 1.60

s1rmt3m1 2.13 2.4% 2.10 31.4% 1.57

s1rmq4m1 2.38 3.0% 2.26 32.5% 1.62

s3rmt3m1 2.14 2.7% 2.10 34.0% 1.57
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Table 3.11 – continued from previous page

PaToH onmetisHP

name cutsize %LI cutsize %LI speedup

s3rmq4m1 2.38 2.9% 2.26 32.2% 1.62

s2rmt3m1 2.14 2.3% 2.11 28.7% 1.57

ex15 1.48 3.1% 1.50 15.7% 1.80

Muu 1.84 1.1% 1.82 27.0% 1.13

Kuu 2.35 1.1% 2.31 44.4% 1.08

bcsstk38 2.29 3.9% 2.26 72.5% 1.06

aft01 1.56 1.2% 1.53 12.3% 1.48

fv1 1.33 3.7% 1.33 7.6% 2.04

fv3 1.33 3.1% 1.32 8.6% 2.03

fv2 1.33 3.2% 1.33 8.6% 2.03

bundle1 6.16 7.0% 4.49 275.0% 0.17

ted B 1.20 1.5% 1.16 30.4% 1.11

ted B unscaled 1.20 1.4% 1.17 32.5% 1.11

msc10848 3.05 1.2% 2.74 73.4% 1.14

bcsstk17 1.87 4.3% 1.82 27.1% 1.58

t2dah e 1.47 0.9% 1.44 8.7% 1.48

bcsstk18 1.64 5.1% 1.66 34.8% 1.14

cbuckle 1.79 3.2% 1.76 15.5% 1.73

crystm02 1.72 4.6% 1.70 17.3% 1.41

Pres Poisson 1.80 3.2% 1.77 16.3% 1.82

bcsstk25 1.77 2.6% 1.79 13.0% 1.17

bcsstm25 1.00 0.3% 1.00 0.3% 3.26

Dubcova1 1.42 0.4% 1.37 7.7% 1.48

olafu 1.86 3.5% 1.79 29.0% 1.75

gyro 1.91 1.8% 1.82 75.3% 1.00

gyro m 1.34 2.7% 1.30 30.4% 1.10

bodyy4 1.22 1.9% 1.22 6.2% 1.92

bodyy5 1.22 1.6% 1.22 6.2% 1.93

bodyy6 1.22 1.5% 1.22 7.1% 1.91

raefsky4 2.16 4.5% 2.11 29.9% 1.43

LFAT5000 1.01 0.2% 1.01 0.3% 1.60

LF10000 1.01 0.5% 1.01 0.5% 1.57

t3dl e 1.00 0.3% 1.00 0.3% 3.33

bcsstk36 1.65 3.8% 1.63 18.8% 1.85

msc23052 1.65 3.9% 1.63 16.9% 1.95

crystm03 1.55 4.1% 1.54 16.3% 1.45
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Table 3.11 – continued from previous page

PaToH onmetisHP

name cutsize %LI cutsize %LI speedup

smt 2.86 1.0% 2.67 57.8% 1.11

thread 3.09 1.0% 2.90 40.7% 1.14

wathen100 1.29 0.8% 1.25 4.9% 1.37

ship 001 2.30 1.3% 2.23 31.8% 1.51

nd12k 5.33 4.2% 5.69 64.5% 0.57

wathen120 1.26 0.8% 1.23 4.8% 1.40

obstclae 1.13 1.6% 1.12 6.9% 1.79

jnlbrng1 1.13 1.8% 1.12 5.9% 1.78

minsurfo 1.13 1.7% 1.12 6.4% 1.78

bcsstm39 1.00 0.0% 1.00 0.0% 3.40

vanbody 1.40 3.8% 1.38 22.3% 1.96

gridgena 1.18 1.8% 1.17 9.2% 1.50

cvxbqp1 1.16 2.2% 1.18 8.7% 1.77

ct20stif 1.48 4.0% 1.45 22.5% 1.80

crankseg 1 2.70 0.2% 2.45 39.5% 1.10

nasasrb 1.39 2.8% 1.38 8.3% 2.10

Andrews 2.06 6.8% 2.24 30.7% 1.11

crankseg 2 2.65 0.1% 2.39 51.6% 1.14

Dubcova2 1.21 0.2% 1.17 4.7% 1.46

qa8fm 1.56 3.6% 1.54 13.9% 1.38

cfd1 1.50 4.7% 1.50 17.6% 1.38

nd24k 4.08 3.7% 4.16 52.2% 0.80

oilpan 1.32 2.0% 1.32 10.3% 2.11

finan512 1.18 1.5% 1.13 4.3% 1.05

apache1 1.26 1.7% 1.25 10.3% 1.73

shallow water2 1.08 0.9% 1.08 8.9% 1.74

shallow water1 1.08 0.7% 1.08 8.3% 1.74

thermal1 1.10 2.2% 1.09 10.4% 1.68

denormal 1.18 1.5% 1.17 7.7% 1.53

s3dkt3m2 1.24 0.6% 1.25 4.5% 2.07

s3dkq4m2 1.28 1.5% 1.25 9.5% 2.44

m t1 1.52 1.5% 1.46 12.0% 2.73

2cubes sphere 1.55 2.3% 1.57 8.4% 1.22

thermomech TK 1.08 2.3% 1.08 11.1% 1.83

thermomech TC 1.08 2.0% 1.08 11.9% 1.83

x104 1.43 1.0% 1.39 12.1% 2.63
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PaToH onmetisHP

name cutsize %LI cutsize %LI speedup

shipsec8 1.38 3.1% 1.36 13.4% 2.06

ship 003 1.51 3.1% 1.48 16.3% 1.90

cfd2 1.34 3.4% 1.32 14.8% 1.40

boneS01 1.40 3.0% 1.37 13.9% 1.85

shipsec1 1.31 2.5% 1.30 12.5% 2.26

bmw7st 1 1.22 3.7% 1.20 15.5% 2.28

Dubcova3 1.19 0.1% 1.15 4.1% 1.37

bmwcra 1 1.48 5.5% 1.49 22.3% 1.73

G2 circuit 1.10 1.3% 1.10 8.4% 1.60

shipsec5 1.28 3.5% 1.27 13.8% 2.26

thermomech dM 1.06 2.0% 1.05 11.2% 1.90

pwtk 1.19 2.0% 1.18 9.9% 2.53

hood 1.15 1.8% 1.15 10.8% 2.28

BenElechi1 1.16 1.2% 1.14 9.9% 2.55

offshore 1.28 4.1% 1.28 11.5% 1.32

F1 1.40 0.7% 1.40 14.6% 1.33

msdoor 1.08 2.2% 1.09 12.9% 2.39

af 2 k101 1.09 0.3% 1.09 5.7% 1.92

af 3 k101 1.09 0.4% 1.09 5.8% 1.92

af 5 k101 1.09 0.6% 1.09 5.4% 1.94

af 0 k101 1.09 0.6% 1.09 6.4% 1.92

af 1 k101 1.09 0.3% 1.09 6.4% 1.93

af 4 k101 1.09 0.3% 1.09 6.1% 1.92

inline 1 1.19 1.2% 1.18 11.0% 1.73

af shell4 1.09 0.3% 1.09 6.2% 1.94

af shell7 1.09 0.3% 1.09 5.9% 1.93

af shell8 1.09 0.2% 1.09 6.2% 1.93

af shell3 1.09 0.6% 1.09 5.6% 1.93

parabolic fem 1.04 0.1% 1.04 6.9% 1.87

apache2 1.09 0.3% 1.09 7.8% 1.58

tmt sym 1.03 2.3% 1.03 8.6% 1.46

boneS10 1.09 3.7% 1.08 15.0% 2.28

ldoor 1.06 2.2% 1.06 11.7% 2.43

ecology2 1.03 0.0% 1.03 5.1% 1.44

thermal2 1.03 2.3% 1.02 8.9% 1.65

G3 circuit 1.03 0.3% 1.03 6.2% 1.53
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Table 3.12: 128-way partitioning performance of the LP matrix

collection for cut-net metric with net balancing.

PaToH onmetisHP

name cutsize %LI cutsize %LI speedup

lp cre d 0.27 24.3% 0.50 59.1% 12.01

ulevimin 0.23 28.1% 0.30 28.9% 5.76

nemswrld 0.34 36.3% 0.61 81.3% 6.06

nemsemm2 0.21 14.3% 0.24 26.9% 10.63

nl 0.17 13.5% 0.20 24.9% 3.09

lp cre b 0.25 33.5% 0.41 59.4% 10.32

deter3 0.21 8.1% 0.22 20.8% 2.28

rlfdual 0.87 276.1% 0.90 290.7% 5.57

scsd8-2r 0.53 21.8% 0.98 268.3% 1.33

cq9 0.18 21.3% 0.21 32.2% 4.67

pf2177 0.90 104.8% 0.98 157.7% 2.16

scagr7-2b 0.29 153.3% 0.87 147.1% 0.31

lp pds 06 0.17 9.1% 0.20 23.1% 3.21

p010 0.18 9.3% 0.19 19.5% 1.43

ge 0.19 17.3% 0.21 34.9% 2.24

lp osa 60 0.01 0.4% 0.01 8.1% 2.57

co9 0.17 16.3% 0.28 26.8% 4.91

lpl3 0.07 4.8% 0.13 19.7% 5.95

fome11 0.38 23.5% 0.45 17.5% 3.35

scrs8-2r 0.76 1783.4% 0.99 276.7% 0.14

stormg2-27 0.20 14.7% 0.20 24.6% 2.84

lp ken 11 0.04 9.4% 0.03 17.0% 2.64

sctap1-2b 0.31 12.3% 0.86 79.2% 0.41

car4 0.03 2.9% 0.06 6.9% 0.45

lp pds 10 0.16 8.9% 0.22 26.3% 3.04

lp stocfor3 0.11 5.9% 0.09 11.9% 1.80

ex3sta1 0.48 28.6% 0.49 33.6% 1.46

testbig 0.23 12.5% 0.85 194.4% 0.30

dbir1 0.19 17.7% 0.83 32.1% 8.94

dbir2 0.19 16.6% 0.84 25.6% 8.63

scfxm1-2b 0.07 4.6% 0.07 17.1% 1.61

route 0.43 37.8% 0.54 77.9% 4.67
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Table 3.12 – continued from previous page

PaToH onmetisHP

name cutsize %LI cutsize %LI speedup

ts-palko 0.85 1195.9% 1.00 576.4% 8.88

fxm4 6 0.07 5.6% 0.07 20.3% 3.08

fome12 0.33 17.0% 0.44 19.6% 3.63

e18 0.66 10.3% 0.85 21.8% 3.63

pltexpa 0.19 8.1% 0.23 25.9% 2.42

baxter 0.31 40.6% 0.47 70.0% 0.94

lp ken 13 0.03 5.5% 0.03 16.5% 2.89

stat96v2 0.11 3.8% 0.10 9.0% 72.51

lp pds 20 0.16 7.7% 0.21 21.5% 3.43

stat96v3 0.10 2.9% 0.10 9.4% 49.37

world 0.14 9.2% 0.19 22.2% 2.19

mod2 0.15 12.1% 0.20 23.2% 2.16

sc205-2r 0.23 11.2% 0.97 82.4% 0.17

scfxm1-2r 0.06 4.7% 0.17 16.5% 1.31

fxm3 16 0.07 5.7% 0.05 10.1% 2.93

dbic1 0.05 4.1% 0.04 15.8% 9.22

fome13 0.25 15.3% 0.42 24.9% 3.68

pds-30 0.15 9.6% 0.20 22.6% 3.54

rlfprim 0.72 97.6% 0.87 243.0% 0.51

stormg2-125 0.15 11.7% 0.29 44.0% 2.03

pds-40 0.15 10.3% 0.19 20.6% 3.72

fome21 0.14 9.4% 0.18 19.0% 3.62

pds-50 0.15 9.1% 0.18 18.7% 3.77

pds-60 0.15 13.0% 0.17 17.6% 3.72

pds-70 0.14 10.3% 0.18 18.6% 3.91

pds-80 0.13 9.6% 0.17 18.7% 4.03

pds-90 0.13 9.7% 0.17 18.8% 3.79

pds-100 0.12 10.0% 0.15 20.8% 3.84

watson 1 0.04 2.7% 0.02 8.7% 3.89

sgpf5y6 0.03 7.7% 0.04 27.8% 1.87

watson 2 0.02 3.2% 0.02 18.4% 3.79

stormG2 1000 0.14 11.3% 0.55 114.6% 0.58

cont11 l 0.02 2.7% 0.02 8.2% 1.21
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Table 3.13: 128-way partitioning performance of the PD matrix

collection for cut-net metric with node balancing.

PaToH onmetisHP

name cutsize %LI cutsize exp%LIp act%LIp act%LIc speedup

bcsstk13 0.97 1.6% 0.98 931.4% 1480.7% 353.6% 2.43

Chem97ZtZ 0.49 75.6% 0.56 216.7% 187.0% 79.1% 0.94

sts4098 0.79 38.7% 0.84 321.0% 326.9% 136.4% 1.20

ex15 0.57 3.1% 0.54 76.3% 61.8% 57.6% 2.08

Muu 0.77 1.2% 0.78 203.9% 98.4% 12.3% 1.60

Kuu 0.91 0.9% 0.91 1008.2% 244.6% 12.8% 2.24

bcsstk38 0.85 2.3% 0.87 460.8% 237.6% 88.2% 2.10

aft01 0.62 1.6% 0.60 52.6% 48.6% 28.3% 1.65

fv1 0.42 3.1% 0.43 17.5% 18.9% 18.3% 2.25

fv2 0.42 3.4% 0.43 16.2% 20.0% 19.4% 2.30

fv3 0.42 3.3% 0.43 16.2% 20.0% 19.4% 2.30

bundle1 1.00 5.9% 1.00 3222.4% 1918.4% 621.5% 0.34

ted B unscaled 0.38 1.5% 0.35 180.0% 98.1% 48.4% 1.24

ted B 0.38 1.5% 0.34 175.1% 64.9% 24.1% 1.23

msc10848 0.97 0.4% 0.96 1372.4% 440.5% 89.9% 3.71

bcsstk17 0.79 3.0% 0.78 238.4% 126.7% 78.6% 2.49

t2dah e 0.54 0.9% 0.52 33.7% 37.3% 22.5% 1.90

bcsstk18 0.53 3.6% 0.57 131.5% 117.6% 80.7% 1.57

cbuckle 0.80 2.6% 0.74 94.2% 56.6% 50.6% 2.80

crystm02 0.70 5.5% 0.71 69.8% 65.4% 54.1% 1.95

Pres Poisson 0.81 3.6% 0.76 71.4% 54.3% 47.9% 2.80

bcsstm25 0.00 0.3% 0.00 0.3% 0.3% 0.3% 4.18

bcsstk25 0.66 2.0% 0.70 91.3% 66.8% 44.4% 1.69

Dubcova1 0.50 0.6% 0.48 33.5% 27.8% 10.2% 1.84

olafu 0.81 2.5% 0.79 309.3% 136.6% 80.8% 3.13

gyro m 0.45 2.0% 0.49 160.4% 92.7% 52.9% 1.45

gyro 0.72 1.0% 0.81 790.8% 255.5% 70.1% 2.14

bodyy4 0.29 1.8% 0.30 11.7% 14.1% 13.1% 2.28

bodyy5 0.29 1.7% 0.29 11.3% 12.4% 11.4% 2.38

bodyy6 0.29 1.6% 0.29 10.8% 11.9% 11.0% 2.44

raefsky4 0.85 3.6% 0.83 264.8% 107.9% 71.5% 2.87

LFAT5000 0.02 0.8% 0.02 2.0% 1.1% 1.1% 2.20

LF10000 0.03 1.2% 0.03 1.8% 2.4% 2.4% 2.14

t3dl e 0.00 0.6% 0.00 0.6% 0.6% 0.6% 4.22
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Table 3.13 – continued from previous page

PaToH onmetisHP

name cutsize %LI cutsize exp%LIp act%LIp act%LIc speedup

bcsstk36 0.65 2.8% 0.62 85.1% 58.7% 49.4% 2.80

msc23052 0.65 2.6% 0.62 72.9% 61.9% 53.7% 2.98

crystm03 0.61 4.5% 0.61 45.8% 47.0% 43.6% 1.93

smt 0.94 0.4% 0.97 1277.2% 298.9% 54.4% 3.92

thread 0.95 0.5% 0.97 882.5% 282.9% 54.8% 3.74

wathen100 0.36 0.9% 0.35 12.8% 15.2% 7.6% 1.67

ship 001 0.90 0.6% 0.94 712.7% 265.4% 55.5% 3.81

nd12k 1.00 0.6% 1.00 701.4% 937.0% 101.7% 5.11

wathen120 0.34 0.8% 0.31 11.6% 13.9% 7.2% 1.64

obstclae 0.18 1.7% 0.16 11.3% 11.1% 11.0% 2.17

jnlbrng1 0.18 1.8% 0.17 11.6% 12.4% 12.4% 2.16

minsurfo 0.17 1.5% 0.17 11.8% 13.0% 12.9% 2.17

bcsstm39 0.00 0.2% 0.00 0.2% 0.2% 0.2% 4.30

vanbody 0.48 3.2% 0.46 45.6% 54.3% 49.6% 2.69

gridgena 0.25 1.8% 0.24 12.8% 16.0% 15.2% 1.87

cvxbqp1 0.17 2.2% 0.19 18.1% 17.7% 16.6% 2.13

ct20stif 0.50 3.2% 0.47 50.4% 71.2% 65.4% 2.60

crankseg 1 0.91 0.1% 0.95 932.0% 293.2% 26.2% 4.11

nasasrb 0.49 3.2% 0.45 24.9% 26.7% 26.2% 2.85

Andrews 0.77 4.3% 0.85 162.6% 98.9% 31.1% 1.53

crankseg 2 0.90 0.4% 0.94 800.4% 298.9% 48.5% 4.31

Dubcova2 0.27 0.2% 0.25 13.1% 9.2% 0.8% 1.72

qa8fm 0.53 4.7% 0.51 25.0% 37.1% 36.2% 1.79

cfd1 0.52 5.2% 0.51 30.5% 39.0% 38.2% 1.77

nd24k 0.99 0.5% 1.00 615.4% 454.5% 0.3% 5.56

oilpan 0.41 1.5% 0.39 23.1% 22.3% 17.5% 2.70

finan512 0.31 1.8% 0.25 9.4% 11.0% 3.9% 1.16

apache1 0.33 2.0% 0.32 18.6% 17.8% 17.4% 2.00

shallow water1 0.11 1.3% 0.11 10.1% 10.0% 9.8% 2.12

shallow water2 0.11 0.9% 0.11 11.7% 11.1% 10.9% 2.11

thermal1 0.14 2.5% 0.13 15.2% 14.9% 14.8% 2.03

denormal 0.23 1.6% 0.22 12.7% 12.7% 12.6% 1.89

s3dkt3m2 0.33 0.8% 0.32 9.5% 10.7% 9.4% 2.68

s3dkq4m2 0.37 2.1% 0.32 11.4% 13.3% 13.2% 3.09

m t1 0.57 1.0% 0.52 45.3% 51.6% 35.9% 4.05

2cubes sphere 0.53 1.7% 0.54 25.5% 24.1% 11.4% 1.56

Continued on next page
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Table 3.13 – continued from previous page

PaToH onmetisHP

name cutsize %LI cutsize exp%LIp act%LIp act%LIc speedup

thermomech TK 0.12 2.2% 0.12 15.2% 15.4% 15.2% 2.18

thermomech TC 0.12 2.2% 0.12 15.6% 15.3% 15.2% 2.17

x104 0.47 0.8% 0.46 39.6% 60.4% 45.4% 3.79

shipsec8 0.43 2.6% 0.42 33.9% 36.6% 34.6% 2.81

ship 003 0.53 2.9% 0.53 40.1% 34.9% 31.5% 2.74

cfd2 0.39 4.4% 0.37 25.8% 29.8% 29.6% 1.72

boneS01 0.42 2.0% 0.40 27.5% 35.4% 30.7% 2.56

shipsec1 0.36 2.8% 0.35 24.0% 30.7% 30.3% 2.95

bmw7st 1 0.29 3.5% 0.27 28.6% 28.7% 28.1% 2.82

Dubcova3 0.26 0.2% 0.22 12.3% 12.4% 1.5% 1.58

bmwcra 1 0.52 5.0% 0.50 47.7% 49.3% 48.0% 2.53

G2 circuit 0.14 1.3% 0.14 9.4% 11.9% 11.8% 1.90

shipsec5 0.34 3.3% 0.33 22.2% 26.5% 26.2% 2.90

thermomech dM 0.08 2.3% 0.08 13.4% 13.2% 13.2% 2.19

pwtk 0.25 2.1% 0.23 15.3% 16.0% 15.9% 3.11

hood 0.21 1.5% 0.21 18.9% 18.4% 15.8% 2.77

BenElechi1 0.23 1.8% 0.20 14.7% 16.0% 16.0% 3.09

offshore 0.32 3.4% 0.32 24.8% 27.6% 21.0% 1.55

F1 0.43 0.8% 0.43 43.4% 56.6% 33.9% 1.90

msdoor 0.12 2.4% 0.12 17.7% 17.4% 16.8% 2.78

af 3 k101 0.13 0.9% 0.13 7.6% 7.2% 7.1% 2.26

af 1 k101 0.13 0.8% 0.13 7.2% 7.7% 7.5% 2.27

af 2 k101 0.13 0.9% 0.13 6.7% 7.5% 7.4% 2.27

af 4 k101 0.13 0.8% 0.13 7.2% 7.8% 7.7% 2.25

af 0 k101 0.13 0.9% 0.13 7.2% 7.7% 7.6% 2.26

af 5 k101 0.13 0.8% 0.13 7.9% 8.1% 8.0% 2.25

inline 1 0.27 0.8% 0.26 25.0% 26.0% 16.8% 2.09

af shell7 0.13 1.0% 0.12 7.2% 7.6% 7.4% 2.26

af shell3 0.13 1.0% 0.12 7.8% 8.2% 8.1% 2.27

af shell4 0.13 0.9% 0.12 8.2% 8.8% 8.6% 2.25

af shell8 0.13 1.1% 0.12 9.3% 9.8% 9.6% 2.25

parabolic fem 0.06 0.6% 0.06 10.1% 10.2% 10.1% 2.10

apache2 0.13 1.0% 0.12 12.2% 12.0% 11.9% 1.79

tmt sym 0.05 2.3% 0.05 12.2% 12.3% 12.3% 1.66

boneS10 0.13 3.7% 0.12 20.6% 23.3% 22.8% 2.58

ldoor 0.09 2.3% 0.09 13.8% 13.2% 12.8% 2.75

Continued on next page
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Table 3.13 – continued from previous page

PaToH onmetisHP

name cutsize %LI cutsize exp%LIp act%LIp act%LIc speedup

ecology2 0.04 0.3% 0.04 8.0% 8.0% 8.0% 1.63

thermal2 0.04 2.3% 0.04 10.2% 10.1% 10.1% 1.80

G3 circuit 0.04 0.6% 0.04 7.6% 7.2% 7.2% 1.68

Table 3.14: 128-way partitioning performance of the PD matrix

collection for connectivity metric with node balancing.

PaToH onmetisHP

name cutsize %LI cutsize %LI speedup

bcsstk13 7.65 7.7% 6.92 151.5% 0.55

Chem97ZtZ 1.52 75.6% 1.53 230.4% 0.75

sts4098 3.41 38.7% 3.45 141.8% 0.43

ex15 1.79 3.1% 1.77 30.1% 1.70

Muu 2.32 1.4% 2.30 43.6% 1.01

Kuu 3.21 1.4% 3.06 75.0% 0.91

bcsstk38 2.99 3.7% 2.88 94.4% 0.94

aft01 1.86 1.3% 1.83 25.2% 1.41

fv1 1.52 2.8% 1.54 9.7% 2.00

fv2 1.51 3.0% 1.53 10.3% 1.99

fv3 1.51 3.0% 1.53 11.0% 1.99

bundle1 10.02 16.5% 5.71 484.2% 0.15

ted B unscaled 1.42 1.9% 1.34 42.1% 1.03

ted B 1.42 2.6% 1.34 48.2% 1.03

msc10848 4.33 1.3% 3.80 133.1% 0.92

bcsstk17 2.37 3.9% 2.32 47.9% 1.39

t2dah e 1.71 1.2% 1.68 17.7% 1.47

bcsstk18 1.97 4.7% 2.02 40.3% 1.13

cbuckle 2.23 3.6% 2.16 35.2% 1.60

crystm02 2.19 4.6% 2.20 32.0% 1.33

Pres Poisson 2.29 3.2% 2.24 31.5% 1.65

bcsstm25 1.00 0.3% 1.00 0.3% 3.28

bcsstk25 2.11 2.9% 2.15 23.6% 1.16

Dubcova1 1.64 1.0% 1.61 15.5% 1.49

Continued on next page
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Table 3.14 – continued from previous page

PaToH onmetisHP

name cutsize %LI cutsize %LI speedup

olafu 2.38 3.6% 2.30 56.5% 1.48

gyro m 1.63 2.4% 1.62 51.3% 1.04

gyro 2.52 1.5% 2.47 105.0% 0.82

bodyy4 1.33 2.2% 1.34 7.9% 2.04

bodyy5 1.33 1.8% 1.33 8.8% 2.02

bodyy6 1.32 1.6% 1.33 6.9% 2.02

raefsky4 2.82 4.7% 2.81 39.6% 1.22

LFAT5000 1.02 0.8% 1.02 1.1% 1.85

LF10000 1.03 1.1% 1.03 1.6% 1.81

t3dl e 1.00 0.6% 1.00 0.6% 3.35

bcsstk36 1.98 4.0% 1.92 35.5% 1.74

msc23052 1.97 3.7% 1.93 34.7% 1.84

crystm03 1.89 4.2% 1.88 21.8% 1.41

smt 3.86 1.2% 3.62 67.4% 0.91

thread 4.05 1.3% 3.82 62.3% 0.93

wathen100 1.43 1.2% 1.41 6.6% 1.38

ship 001 3.02 1.4% 2.95 60.4% 1.21

nd12k 7.60 4.1% 8.38 106.1% 0.47

wathen120 1.39 1.3% 1.36 6.4% 1.40

obstclae 1.18 1.6% 1.18 9.6% 1.87

jnlbrng1 1.19 2.2% 1.18 8.7% 1.86

minsurfo 1.19 1.8% 1.18 7.7% 1.86

bcsstm39 1.00 0.2% 1.00 0.2% 3.45

vanbody 1.64 4.3% 1.60 26.3% 1.88

gridgena 1.27 1.9% 1.27 9.4% 1.57

cvxbqp1 1.23 1.9% 1.26 12.2% 1.81

ct20stif 1.71 3.8% 1.66 31.8% 1.73

crankseg 1 3.65 0.7% 3.39 73.3% 0.82

nasasrb 1.60 3.2% 1.57 10.2% 2.04

Andrews 2.50 5.9% 2.76 43.8% 1.05

crankseg 2 3.59 0.6% 3.28 93.7% 0.84

Dubcova2 1.31 0.7% 1.28 5.9% 1.48

qa8fm 1.79 4.3% 1.75 17.2% 1.37

cfd1 1.74 5.1% 1.73 20.5% 1.38

nd24k 5.60 4.7% 5.95 80.5% 0.64

oilpan 1.48 2.0% 1.47 11.5% 2.08

Continued on next page
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Table 3.14 – continued from previous page

PaToH onmetisHP

name cutsize %LI cutsize %LI speedup

finan512 1.34 2.2% 1.25 8.2% 1.06

apache1 1.38 2.1% 1.36 11.0% 1.77

shallow water1 1.12 1.3% 1.12 9.6% 1.84

shallow water2 1.12 0.9% 1.12 9.2% 1.84

thermal1 1.14 2.1% 1.14 13.2% 1.76

denormal 1.26 1.5% 1.24 9.3% 1.59

s3dkt3m2 1.37 1.3% 1.37 6.2% 2.09

s3dkq4m2 1.42 1.9% 1.38 9.0% 2.42

m t1 1.77 1.4% 1.70 26.1% 2.53

2cubes sphere 1.74 2.3% 1.76 9.6% 1.23

thermomech TK 1.13 2.2% 1.12 13.7% 1.90

thermomech TC 1.13 2.4% 1.12 14.5% 1.89

x104 1.65 1.0% 1.60 22.6% 2.48

shipsec8 1.55 3.3% 1.53 18.3% 2.02

ship 003 1.72 3.3% 1.71 20.9% 1.82

cfd2 1.50 4.0% 1.47 20.8% 1.42

boneS01 1.55 2.6% 1.51 18.5% 1.82

shipsec1 1.44 2.8% 1.43 17.4% 2.25

bmw7st 1 1.34 3.8% 1.32 19.4% 2.25

Dubcova3 1.28 0.5% 1.24 7.5% 1.38

bmwcra 1 1.71 5.0% 1.71 30.0% 1.65

G2 circuit 1.15 1.4% 1.14 8.8% 1.66

shipsec5 1.42 3.7% 1.41 16.0% 2.22

thermomech dM 1.08 2.3% 1.08 13.3% 1.94

pwtk 1.28 2.5% 1.26 9.9% 2.54

hood 1.23 1.7% 1.23 14.2% 2.28

BenElechi1 1.24 1.5% 1.22 12.6% 2.58

offshore 1.40 3.9% 1.40 16.2% 1.31

F1 1.61 0.7% 1.60 22.4% 1.25

msdoor 1.13 2.7% 1.13 16.1% 2.42

af 3 k101 1.14 0.5% 1.14 7.1% 1.96

af 1 k101 1.14 0.8% 1.14 7.7% 1.96

af 2 k101 1.14 0.7% 1.14 7.0% 1.96

af 4 k101 1.14 0.5% 1.14 6.8% 1.96

af 0 k101 1.14 0.6% 1.14 8.2% 1.96

af 5 k101 1.14 0.7% 1.14 8.3% 1.96

Continued on next page
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Table 3.14 – continued from previous page

PaToH onmetisHP

name cutsize %LI cutsize %LI speedup

inline 1 1.30 1.0% 1.29 13.8% 1.68

af shell7 1.13 0.7% 1.13 7.7% 1.95

af shell3 1.13 0.7% 1.13 8.4% 1.97

af shell4 1.13 1.0% 1.13 7.5% 1.95

af shell8 1.13 0.9% 1.13 7.6% 1.96

parabolic fem 1.06 0.5% 1.06 9.9% 1.88

apache2 1.13 1.0% 1.12 10.9% 1.61

tmt sym 1.05 2.5% 1.05 11.1% 1.50

boneS10 1.14 3.6% 1.12 17.3% 2.27

ldoor 1.10 2.4% 1.10 14.3% 2.45

ecology2 1.04 0.2% 1.04 8.6% 1.47

thermal2 1.04 2.2% 1.04 11.3% 1.66

G3 circuit 1.04 0.6% 1.04 6.3% 1.55

3.5 Conclusions

We have presented how the hypergraph partitioning problem can be efficiently

and effectively implemented through recursive graph bipartitioning by vertex sep-

arators. Our empirical study on a wide set of test matrices showed that runtimes

can be as much as 4.17 times faster, where the cutsize quality is preserved on

average (and improved in many cases), while balance was achieved when the

number of parts is small and remained acceptable when the number of parts is

large. Moreover, we proposed techniques that can trade off cutsize and runtime

against balance, showing that balance can be achieved even when the number of

parts is very large.

What motivates us to investigate NIGs to solve HP problems arising in sci-

entific computing applications is that in many applications, definition of balance

cannot be very precise [2, 35, 36] or there are additional constraints that cannot
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be easily incorporated into partitioning algorithms and tools [37]; or partitioning

is used as part of a divide-and-conquer algorithm [38]. For instance, hypergraph

models can be used to permute a linear program (LP) constraint matrix to a

block angular form for parallel solution with decomposition methods. Load bal-

ance can be achieved by balancing subproblems during partitioning. However,

it is not possible to accurately predict solution time of an LP, and equal sized

subproblems only increase the likelihood of computational balance.

Hypergraph models have recently been used to find null-space bases that have

a sparse inverse [38]. This application requires finding a column-space basis B

as a submatrix of a sparse matrix A, so that B−1 is sparse. Choosing B to have

a block angular form limits the fill in B−1, but merely a block angular form for

B will not be sufficient, since B has to be nonsingular to be a column-space

basis for A. Enforcing numerical or even structural nonsingularity of subblocks

during partitioning is a nontrivial task, if at all possible, and thus partitioning is

used as part of a divide-and-conquer paradigm, where the partitioning phase is

followed by a correction phase, if subblocks are non-singular. Both of these cases

present examples of applications, where hypergraphs provide effective models,

but balance among parts is only weakly defined.

Overall results prove that the proposed hypergraph partitioning through ver-

tex separators on graphs is ideal for applications where balance is not well-defined,

which is the main motivation for our work, and competitive for applications where

balance is important.
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Chapter 4

Term-based Inverted Index

Partitioning based on

Hypergraph Partitioning

There are two main parallelism of query processing based on the partitioned

object which can be either documents or terms. The comparisons between term-

based and doc-based inverted index partitioned query processing can be found

in [48–51]. In document-based index partitioning [52–54], each index server is

assigned a subset of documents and a local inverted index is built upon this

subset. Query processing is realized as follows. A query is processed in all local

indexes in a parallel manner and the partial results are merged by a central broker.

The biggest drawback of this system is the large number of disk accesses while

achieving good load balance.

In term-based index partitioning [52,53,55–58], the global index over the whole

document collection is partitioned among the index servers. That is, each index

server gets the responsibility of processing a subset of terms of the vocabulary.

The main objective of this work is to come up with a term-based index partition-

ing model that captures both load imbalance and the communication overhead

incurred during query processing. In this work, this objective is satisfied by a
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hypergraph partitioning model. The closest works are [55] and [58], but these

works does not make use of query logs.

4.1 Background

4.1.1 Term-based Index Partitioning

An inverted index L contains a set of term and corresponding inverted list pairs,

i.e., L={(t1, I1), (t2, I2), . . . , (tT , IT )}, where T = |T | is the size of vocabulary T
of the indexed document collection. Each posting p∈Ii keeps information about

a document in which term ti appears. Typically, this information includes the

document’s id and term’s frequency in the document.

In a distributed text retrieval system with K nodes, postings of an index are

partitioned on a set S={S1, S2, . . . , SK} of K index servers. A term-based index

partition Φ={T1, T2, . . . , TK} is a partition of T such that

T =
⋃

1≤k≤K

Tk (4.1)

with the condition that

Tk ∩ T` = ∅, for 1 ≤ k, ` ≤ K and k 6= `. (4.2)

Based on partition Φ, every term subset Tk is uniquely assigned to an index server

Sk, and each index server Sk constructs a subindex Lk as

Lk = {(ti, Ii) : ti ∈ Tk}, (4.3)

i.e., index servers are responsible for maintaining only their own sets of terms and

hence all postings of an inverted list are assigned together to the same server. Typ-

ically, the partitioning is performed such that the computational load distribution

on index servers is balanced.
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Figure 4.1: Query processing architecture with a central broker and a number of
index servers

4.1.2 Parallel Query Processing

Given a term-based-partitioned index, the query processing scheme [48–50, 52]

performs as follows. The architecture, as shown in Figure 5.5, is composed of a

central broker and a number of index servers. The central broker is responsible for

preprocessing the query and issuing it to index servers in the search cluster. Query

processing is performed as follows. First, the broker divides the original query

q={t1, t2, . . . , t|q|} into a set {q̂1, q̂2, . . . , q̂K} of K subqueries, in compliance with

the way the index is partitioned. Each subquery q̂k contains the query terms

whose responsibility is assigned to index server Sk, i.e., q̂k = {ti ∈ q : (ti, Ii) ∈
Lk}. Then, the central broker issues each subquery to its respective index server.

Depending on the terms in the query, it is possible to have q̂k =∅, in which case

no subquery is issued to Sk. Each index server Sk accesses its disk and reads the
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inverted lists associated with the terms in q̂k, i.e., for each query term ti ∈ q̂k,

inverted list Ii is fetched from the disk. There are two typical matching criteria.

In the conjunctive mode which is based on the AND logic, a document is said

to be a match whenever it appears in all inverted lists associated with the query

terms. On the other hand, in the disjunctive mode which is based on the OR

logic, a document is said to be a match whenever it appears in any inverted

lists associated with the query terms. The matching documents are sorted in

decrasing order of scores and this sorted document list constitutes the partial

ranking of documents by the index server, and this partial ranking is transferred

to the central broker for final ranking.

High computational load imbalance causes high skewness in sizes of inverted

lists and the access frequencies. A solution to this problem is to replicate a small

fraction of load-intensive term inverted lists accross all index servers [56,57]. This

approach introduces server selection problem during the query processing. Since

a replicated list is available to all servers, for a query that contains a term with

replicated list, the central broker should decide which server should be responsible

for the processing of the term. The technique in [57] restricts the set of responsible

servers to those that hold at least one non-replicated term of the same query, thus

ensuring that the coherency of list accesses is not disturbed.

4.2 Problem Formulation

Given an invertex index L = {(t1, I1), (t2, I2), . . .} that contains the vocabulary

set T = {t1, t2, . . .} of terms and a stream Q={q1, q2, . . .} of queries. Each query

qj ∈Q is composed of terms in the vocabulary, i.e., qj ⊆T . Each term ti ∈T is

associated with an inverted list Ii and a query frequency pi. We are also a given

a set S={S1, S2, . . . , SK} of K index servers. Given these, we provide a number

of definitions before we formally state our problem.

Definition 4 (Hitting set of a query) For a term partition Φ, the hitting set

h(qj,Φ) of a query qj ∈Q is defined as the set of index servers that hold at least
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one term of qj [57], i.e.,

h(qj,Φ) = {Sk ∈ S : qj ∩ Tk 6= ∅}. (4.4)

Let c(qj,Φ) denote the communication overhead incurred when processing qj

under term partition Φ. Also, let q̂jk denote the subquery to be processed by

index server Sk for a query qj∈Q, i.e., q̂jk =qj ∩Tk. Depending on the properties

of the distributed system, the communication overhead may be determined by

the number of network messages sent by index servers or the volume of data

communicated over the network. The number of network messages is proportional

to the size of the hitting set of the query. In this case, we have

c(qj,Φ) = 2|h(qj,Φ)|, (4.5)

independent of the query processing scheme. The communication volume, how-

ever, depends on the query processing scheme. In case of the traditional query

processing scheme, the communication overhead can be written as

c(qj,Φ) =

0, |h(qj,Φ)| = 1;∑
k |f(q̂jk)|, otherwise.

(4.6)

Here and hereafter, f denotes a matching function that maps a query/subquery

to a set of documents, i.e., f(qj)/f(q̂jk) represents the set of documents (in the

collection) that match qj/q̂jk.

In processing of every subquery, we can assume that each term t∈ q̂j incurs a

workload proportional to its inverted list size [59]. This implies that each term

ti ∈ T introduces a workload pi×|Ii|. Hence, the overall workload Lk(Φ) of a

server Sk with respect to a given term partition Φ becomes

Lk(Φ) =
∑
ti∈Tk

pi × |Ii|. (4.7)

Definition 5 (ε-balanced partition) Given an inverted index L, a query

stream Q, and a server set S, a term partition Φ is said to be ε-balanced if

the workload Lk(Φ) of each server Sk satisfies the constraint

Lk(Φ) ≤ Lavg(Φ)(1 + ε), (4.8)
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where Lavg(Φ) refers to the average workload of index servers.

Problem 1 (Term-based index partitioning problem) Given an inverted

index L, a query stream Q, a server set S, and a parameter ε ≥ 0, find an

ε-balanced term partition Φ = {T1, T2, . . . , TK} that induces an index partition

{L1,L2, . . . ,LK} such that the total communication overhead Ψ(Φ) is minimized,

where

Ψ(Φ) =
∑
qj∈Q

c(qj,Φ). (4.9)

4.3 The Hypergraph Model

In our model, we represent the interaction between the queries in a query set Q
and the inverted lists in an inverted index L by means of a hypergraphH=(V ,N ).

In H, each term ti∈T is represented by a vertex vi∈V , and each query qj∈Q is

represented by a net nj∈N . Each net nj connects the set of vertices representing

the terms that constitute query qj. That is,

Pins(nj) = {vi : ti ∈ qj}. (4.10)

Each vertex vi is associated with a weight wi = fi×|Ii| which represents the

computational load that is estimated to be incurred by ti.

A K-way vertex partition Π={V1,V2, . . . ,VK} of hypergraph H is decoded as

a K-way term partition Φ={T1, T2, . . . , TK} of T . That is, each vertex part V` in

Π corresponds to the subset T` of terms assigned to index server S`. Due to the

adopted vertex weighting scheme, balancing the part weights according to the

balance criterion in Eq. 2.2 effectively balances the computational load among

the index servers, satisfying the constraint in Eq. 4.8.

In a K-way vertex partition Π of H, consider a net nj with connectivity set

Λ(nj,Π). By definition, for each part V`∈Λ(nj,Π), we have Pins(nj)∩V` 6=∅, i.e.,

qj∩T` 6=∅. Thus, T`∈h(qj,Φ) if and only if V`∈Λ(nj,Π). This implies

h(qj,Φ) = {S` ∈ S : V` ∈ Λ(nj,Π)}, (4.11)
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Figure 4.2: A three-way partitioning of the hypergraph representing an inverted
index.

which shows the one-to-one correspondence between the connectivity set Λ(nj,Π)

of a net nj in Π and the hitting set h(qj,Φ) of query qj in Φ, induced by Π. Hence,

the minimization of the cutsize according to the connectivity metric (Eq. 2.9) ac-

curately captures the minimization of the total communication cost Ψ(Φ) when

c(qj,Φ) is modeled as Eq. 4.5. Moreover, the minimization of the cutsize accord-

ing to the cutnet (Eq. 2.8) metric approximates the minimization of the total

communication cost Ψ(Φ) when c(qj,Φ) is modeled as Eq. 4.6.

We demonstrate the model over an example, involving a toy inverted index

with vocabulary T = {t1, t2, . . . , t18} and a query set Q= {q1, q2, . . . , q17}, where

q1 = {t1, t2, t3}, q2 = {t2, t3}, q3 = {t3, t4, t5, t6}, q4 = {t3}, q5 = {t7, t8}, q6 =

{t8, t9}, q7 = {t7, t10, t11}, q8 = {t9, t10, t11, t12}, q9 = {t13, t14, t15}, q10 = {t15},
q11 = {t14, t15, t17}, q12 = {t15, t16}, q13 = {t16, t17, t18}, q14 = {t1, t2, t5, t14}, q15 =

{t5, t14, t17}, q16 = {t5, t7, t17, t18}, and q17 = {t7, t11, t18}. We assume that the

retrieval system has three index servers (S1, S2, and S3).

Figure 4.2 shows a three-way partition Π={V1,V2,V3} of the toy index. We

can interpret the figure as follows. Terms t1 to t6 are assigned to server S1; terms

t7 to t12 are assigned to server S2; and the remaining terms t13 to t18 are assigned
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Table 4.1: Fraction of queries with a particular length
Avg Uniq 1 2 3 4 ≥ 5

S2 2.76 0.15 0.12 0.36 0.31 0.14 0.08
S3 2.76 0.15 0.12 0.36 0.31 0.14 0.08

to server S3. According to this assignment, the queries in sets {q1, q2, q3, q4},
{q5, q6, q7, q8}, and {q9, q10, q11, q12} can be fully processed by servers S1, S2, and

S3, respectively. For these queries, the servers communicate only their final top

k result sets, i.e., the communication of the partial score information is not nec-

essary. However, the remaining queries q14, q15, q16, and q17 necessitate the com-

munication of partial scores. In particular, during the processing of q16, all three

servers communicate their partial scores. For queries q14 and q15, only servers

S1 and S3, and for query q17, only servers S2 and S3 need to communicate data.

Consequently, the number of queries that require communication of partial scores

is 4, whereas the number of messages needed to process all the queries (refer to

Eq. 4.5) is equal to 2× (13×1+3×2+1×3) =44.

4.4 Experimental Results

We sample 1.7 million web pages that are predicted by a proprietary classifier as

belonging to the .fr domain. We also sample about 6.3 million queries from the

French front-end of Yahoo! web search for three consecutive days (query sets S1,

S2, and S3, each containing queries of a different day). Queries in S2 are used in

model construction to obtain the co-occurrence relations of terms while queries

in S3 are used for performance evaluation.

To create a more realistic setup, we assume a query result cache with infinite

capacity [60], i.e., only unique queries are used in the model construction and

evaluation steps. In each of the two steps, the queries of the previous day (S1 and

S2, respectively) are used to warm up the result cache. We note that, although

filtered by the result cache, frequencies of terms in queries still follow a power-

low distribution as demonstrated in [61, Figure 5]. The query length distribution,

calculated over miss queries, is given in Table 4.1.
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To partition constructed hypergraphs, we use the PaToH tool [6] with its

default parameters (except for the imbalance constraint, which we set to 5%).

We vary the number of index servers (parts) such that K ∈ {4, 8, 12, 16} and

linearly scale the size of the document collection with increasing K. In particular,

K×100, 000 documents are used in a partitioning run with K servers.

Training set S2 is used to extract the popularity values of terms in order

to calculate estimated workloads. We assume that queries are processed in the

conjunctive (AND) mode. Hence, a query is processed only if all of its terms

occur in the vocabulary. The fraction of such queries ranges between 83% and

87% (over miss queries), depending on the collection size. All reported results

are given over miss and vocabulary queries. As the baseline index partitioning

technique, we use the bin packing approach, where inverted lists are assigned to

index servers in decreasing order of their sizes, as in greedy bin packing. The

baseline technique and the proposed hypergraph-partitioning-based model are

denoted as BIN and HP, respectively. Due to the randomized nature of heuristics

used in PaToH, experiments using HP are repeated five times and averages are

reported.

We couple the above-mentioned partitioning schemes with index replication.

In particular, we replicate the longest 100 lists on all servers [56] with an overhead

of 20%, 47%, 73%, and 100% increase in the total index size for K = 1, 2, 3,

and 4, respectively. We employ three different techniques to identify the server

responsible for processing a replicated list. The first technique selects the server

arbitrarily, referred as GLB, and is adopted from [56]. The second one uses a

server among the servers those are active due to a non-replicated term in the

query, referred as LOC, and is adopted from [57]. The third technique selects the

server that keeps the longest list of the terms of the current query, referred as

MAX, and is a novel approach.

In Figures 4.3 and 4.4, S3 identifies the worst-case scenario, that is, it rep-

resents the number of queries with single term in Figure 4.3 and the number of

queries with the number of terms equal to the number of servers in x-axis in Fig-

ure 4.4. Thus, S3 shows the worst-case scenario. Figure 4.3 displays the fraction
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Figure 4.3: Fraction of locally processed queries.

of queries that processed only on one index server. The BIN approach achieves

considerably better locality than this lower bound since the query lengths are

not sufficiently small relative to the number of index servers. This is supported

by the decreasing in the gap between the two with increasing number of index

servers. The locality decreases with increasing number of index servers, which

is expected since the query length remains the same while the number of index

servers increases. In the figure, HP refers to hypergraph partitioning according

to the cutnet metric as defined in Equation 2.8. As seen in the figure, the HP-

based approach effectively improves the locality. We also note that the locality

relative to the baseline also decreases. Figure 4.4 presents the fraction of queries

with a given number s of index servers among all queries, for s∈{1, 2, 3, 4}, and

s>4 when the number of index servers is equal to 16. In this figure, HP refers to

hypergraph partitioning according to the connectivity metric as defined in Equa-

tion 2.9. As seen in the figure, remarkably more queries are processed on fewer

index servers when the HP-based approach is used.

Figure 4.5 illustrates the savings (one figure for each cost model) in the com-

munication overhead, when modeled as Equation 4.6, as normalized by those of

the BIN approach with global randomization of replicated terms, referred to as
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Figure 4.4: Fraction of queries with a given number of active index servers (right)
among all queries.

BIN-GLB. The figures reveal that huge savings in the network overhead can be

obtained by preserving the coherency of query terms. The savings decreases with

increasing number of index servers for both the BIN and HP methods, which can

be explained by a reasoning similar to that of the locality. As seen in the fig-

ure, hypergraph-partitioning-based approaches achieve significant savings (about

25%–42%) in the communication overhead in this scenario.

The improved savings in the communication costs come at the cost of work-

load imbalance. Table 4.2 illustrates how much degradation is observed in the

workload balance. Each row represents experiments with different number of in-

dex servers (K). The first five columns contain the results related to the BIN

approach while the latter columns are those of the HP approach. For each of the

two groups, we present imbalance values for all four replicated-term assignment

strategies. The fifth column of each group represents the storage imbalance values

that are side results of assignments. As seen in the figure, GLB approaches achieve

perfect load balance independent of the method (at the cost of higher communi-

cation volumes), which also reflects the dominancy of the replicated terms. The

LOC method behaves similar to the GLB method in case of the BIN approach, with

conserving any locality that may occur for a query. Thanks to the balancing
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Figure 4.5: Savings in communication overhead where cost is modeled as in
Eq. 4.6 as normalized to those of BIN-GLB.

Table 4.2: Comparative query processing load imbalance values of BIN and HP.
BIN HP

K GLB LOC MAX Storage GLB LOC MAX Storage
4 1.00 1.00 1.03 1.05 1.00 1.04 1.11 1.12
8 1.00 1.00 1.03 1.08 1.00 1.06 1.13 1.26

12 1.00 1.00 1.05 1.11 1.00 1.06 1.19 1.32
16 1.00 1.00 1.09 1.16 1.00 1.08 1.19 1.32

constraint in the hypergraph model, we observe satisfactory workload balance

(less than 10%). Storage imbalances are important side results and observed at

admisable amounts, i.e., up to 16% and 32% for the BIN and HP approaches,

respectively.

4.5 Conclusion

In this chapter, we proposed a combinatorial model for term-based inverted in-

dex partitioning and showed that the proposed model accurately captures the
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communication costs incurred in query processing on term-based-partitioned in-

dexes. We empirically demonstrated that, relative to a standard bin-packing-

based partitioning strategy, the proposed model achieves higher savings in the

communication of partial scores.
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Chapter 5

Row-Columnwise Sparse Matrix

Partitioning based on

Hypergraph Partitioning with

Cooccurence

Given an n × n matrix A and a vector x, the sequential matrix vector multipli-

cation y = Ax performs as

yi =
∑

j: aij 6=0

xj × aij, ∀ 1 ≤ j ≤ n. (5.1)

In parallel matrix vector multiplication, each processor holds a separate sub-

set of x-vector entries and responsible for the computing of a separate subset of

y-vector entries. In many applications, the successive multiplication is required

where an x-vector entry of a multiplication is obtained by a linear transforma-

tion of the corresponding y-vector entry computed in the previous multiplication.

Thus, we investigate the parallel matrix vector multiplication where a processor

is responsible for the computation of a y-vector entry, say yi, whenever that pro-

cessor holds the corresponding x-vector entry, namely xi. This scheme requires

a row and column partition of matrix such that row ri and column ci are both
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partitioned into the same part for 1 ≤ i ≤ n, so called symmetric partition.

5.1 Background

There are three main parallel sparse matrix vector multiplication schemes exist in

the literature. These are row-parallel, column-parallel and row-column-parallel,

each of which is associated with a hypergraph model [6,7] where the objective and

balance accurately captures minimization of communication volume respecting

to the computational load balance on processors. In this section, we present the

three parallel multiplication schemes and the associated hypergraph models.

5.1.1 Row-parallel Sparse Matrix Vector Multiplication

Let K be the number of processors. Given a sparse matrix A, we obtain a

decomposition A = Ar +Ad, where Ar and Ad hold a separate subset of nonzeros,

and Ar is partitioned rowwise.

Ar =


Ar

1,∗

Ar
2,∗
...

Ar
K,∗

 =


0 Ar

1,2 . . . Ar
1,K

Ar
2,1 0 . . . Ar

2,K
...

...
. . .

...

Ar
K,1 Ar

K,2 . . . 0

 , Ad =


Ad

1

Ad
2

. . .

Ad
K

 .

For a given decomposition A = Ar + Ad, each processor Pk holds the row stripe

Ar
k,∗ and the diagonal Ad

k. The row and column partition is obtained with respect

to rowwise partition. In parallel matrix vector multiplication, each processor Pk

executes the following steps:

1. For each nonzero off-diagonal block Ar
`,k, form sparse vector x̂`k, which contains

only those entries of xk corresponding to the nonzero columns in Ar
`,k.
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Figure 5.1: Row-parallel sparse matrix vector multiplication.

2. (Expand) Send [x̂`k] to processor P`.

3. Compute the diagonal block product ykk = Ad
k × xk, and set yk = ykk .

4. For each nonzero off-diagonal block Ar
k,`, receive [x̂k` ] from processor P`, then

compute y`k = Ar
k,`×x̂k` , and update yk = yk + y`k

Figure 5.1 illustrates row-parallel matrix vector multiplication on a sample

4-way rowwise partitioned matrix. As seen in the figure, Processor 1 requires

input-vector entries x12 from Processor 2, x13, x19 from Processor 3, and x3, x5, x15

from Processor 4 in the expand phase.

The column-net hypergraphHCN(A) of the matrix A is constructed as follows.

We introduce a node ui and a net nj in HCN(A) for each row ri and column cj in

A, respectively. Each net nj connects nodes in {uk : akj 6= 0}. Each node ui has

a weight |{` : ai` 6= 0}| and each net has a unit cost. As a result, partitioning the

column-net hypergraph HCN(A) minimizing the cutsize according to the connec-

tivity metric regarding to node-weight balance constraint corresponds to row-wise
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partitioning of A minimizing communication volume regarding to computation

load balance of processors in row-parallel sparse matrix vector multiplication.

5.1.2 Column-parallel Sparse Matrix Vector Multiplica-

tion

Let K be the number of processors. Given a sparse matrix A, we obtain a

decomposition A = Ac +Ad, where Ac and Ad hold a separate subset of nonzeros,

Ac =
[
Ac
∗,1, A

c
∗,2, . . . , A

c
∗,K
]

is partitioned columnwise,

Ac =


0 Ac

1,2 . . . Ac
1,K

Ac
2,1 0 . . . Ac

2,K
...

...
. . .

...

Ac
K,1 Ac

K,2 . . . 0

 , Ad =


Ad

1

Ad
2

. . .

Ad
K

 .

position A = Ac + Ad, each processor Pk holds the column stripe Ac
∗,k, and

the diagonal Ad
k. The row and column partition is obtained with respect to

columnwise partition. In parallel matrix vector multiplication, each processor Pk

executes the following steps:

1. For each nonzero off-diagonal block Ac
`,k, form sparse vector ŷk` , which contains

only those results of yk` = Ac
`,k× xk corresponding to the nonzero rows in A`,k.

2. (Fold) Send [ŷk` ] to processor P`.

3. Compute the diagonal block product ykk = Ad
k × xk, and set yk = ykk .

4. For each nonzero off-diagonal block Ac
k,`, receive [ŷ`k] from processor P`, then

compute y`k = ŷ`k, and update yk = yk + y`k.

Figure 5.2 illustrates column-parallel matrix vector multiplication on a sample

4-way columnwise partitioned matrix. As seen in the figure, Processor 1 requires

output-vector entries, that is the partial results, of y11 from Processor 3 and 4, of

y1 from Processor 2 and 3, of y4 and y18 only from Processor 4, in the fold phase.
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Figure 5.2: Column-parallel sparse matrix vector multiplication.

The row-net hypergraph HRN(A) of the matrix A is constructed as follows.

We introduce a node ui and a net nj in HRN(A) for each column ci and row

rj in A, respectively. Each net nj connects nodes in {uk : ajk 6= 0}. Each

node ui has a weight |{` : a`i 6= 0}|, and each net has a unit cost. As a result,

partitioning the row-net hypergraphHRN(A) with the objective of minimizing the

cutsize according to the connectivity metric while satisfying node-weight balance

constraint corresponds to columnwise partitioning of A with the objective of

minimizing communication volume while satisfying to computation load balance

constraint of processors in column-parallel sparse matrix vector multiplication.

5.1.3 Row-column-parallel Sparse Matrix Vector Multi-

plication

Let K be the number of processors. Given a sparse matrix A, we obtain a K-way

decomposition A = A1 +A2 + . . .+AK , so called fine-grain partition, where each
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Ak holds a separate subset of nonzeros,

Ak =



Ak
1,1 Ak

1,2 . . . Ak
1,k . . . Ak

1,K

Ak
2,1 Ak

2,2 . . . Ak
2,k . . . Ak

2,K
...

...
. . .

...
. . .

...

Ak
k,1 Ak

k,2 . . . Ak
k,k . . . Ak

k,K
...

...
. . .

...
. . .

...

Ak
K,1 Ak

K,2 . . . Ak
K,k . . . Ak

K,K


(5.2)

For a given decomposition A = A1 + A2 + . . . + Ak, each processor Pk holds the

submatrix Ak. For a given row and column partition, in parallel matrix vector

multiplication, each processor Pk executes the following steps:

1. For each nonzero column-stripe [A`
∗,k], form sparse vector x̂`k, which contains

only those entries of xk corresponding to the nonzero columns in [A`
∗,k].

2. (Expand) Send [x̂`k] to processor P`.

3. Compute the product ykk = [Ak
∗,k]× xk, and set yk = ykk .

4. For each nonzero column-stripe [Ak
∗,`], receive [x̂k` ] from processor P`, then

compute the product yk` = [Ak
∗,`]×x̂k` , and update yk = yk + yk` .

5. For each nonzero row-stripe [Ak
`,∗], form sparse vector ŷk` , which contains only

those results of yk` corresponding to the nonzero rows in Ak
`,∗.

6. (Fold) Send [ŷk` ] to processor P`

7. For each nonzero off-diagonal block [A`
k,∗], receive [ŷ`k] from processor P`, then

compute y`k = ŷ`k, and update yk = yk + y`k.

Figure 5.3 illustrates row-column-parallel matrix vector multiplication on a

sample 4-way fine-grain partitioned matrix. As seen in the figure, Processor 1

requires input-vector entries x2, x19 from Processor 3, and x16, x5 from Processor 4

in the expand phase. Similarly, Processor 1 requires output-vector entries, that

is the partial results, of y11, y4, y8, y12, y2, y14, y13, y9, y15 from other processors in
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Figure 5.3: Row-column-parallel sparse matrix vector multiplication.

the fold phase. Note that partial results of y11 and y15 are required from multiple

parts.

The row-column-net hypergraph HRCN(A) of the matrix A is constructed as

follows. We introduce a node uij for each nonzero aij, and two nets nr
i and nc

i for

each row and column, respectively. Each net nr
i connects nodes in {uij : aij 6=

0}, and each net nc
j connects nodes in {uij : aij 6= 0}. Each node has a unit

weight and each net has a unit cost. As a result, partitioning the row-column-net

hypergraphHRCN(A) with the objective of minimizing the cutsize according to the

connectivity metric while satisfying node-weight balance constraint corresponds

to nonzero partitioning of A with the objective of minimizing communication

volume while satisfying to computation load balance constraint of processors in

row-column-parallel sparse matrix vector multiplication.
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5.2 Single-phased Row-column-parallel Sparse

Matrix Vector Multiplication

In this section, we define the proposed row-column-parallel sparse matrix vector

multiplication scheme that requires single communication phase. This scheme

can also be interpreted as row-column-parallel sparse matrix vector multiplication

where expand and fold phases are merged.

Let K be the number of processors. Given a sparse matrix A, we obtain

a decomposition A = Ar + Ad + Ac, also referred as row-columnwise partition

of A, where Ar, Ad and Ac holds a separate subset of nonzeros, Ar and Ac are

partitioned rowwise and columnwise, respectively,

Ar =


Ar

1,∗

Ar
2,∗
...

Ar
K,∗

 =


0 Ar

1,2 . . . Ar
1,K

Ar
2,1 0 . . . Ar

2,K
...

...
. . .

...

Ar
K,1 Ar

K,2 . . . 0

 , Ad =


Ad

1

Ad
2

. . .

Ad
K

 ,

Ac =
[
Ac
∗,1, A

c
∗,2, . . . , A

c
∗,K
]

=


0 Ac

1,2 . . . Ac
1,K

Ac
2,1 0 . . . Ac

2,K
...

...
. . .

...

Ac
K,1 Ac

K,2 . . . 0

 . (5.3)

For a given decomposition A = Ar + Ad + Ac, each processor Pk holds the row

stripe Ar
k,∗, the column stripe Ac

∗,k, and the diagonal Ad
k. The aforementioned

partition can be decoded as a nonzero partition A = A1 + A2 + . . . + Ak where

for each submatrix Ak; Ak
`,m = 0 for k 6∈ {`,m}, i.e.,

Ak =



0 0 . . . Ak
1,k . . . 0

0 0 . . . Ak
2,k . . . 0

...
...

. . .
...

. . .
...

Ak
k,1 Ak

k,2 . . . Ak
k,k . . . Ak

k,K
...

...
. . .

...
. . .

...

0 0 . . . Ak
K,k . . . 0


(5.4)

87



Thus, row-columnwise partition can be refered as a nonzero partition where each

task of nonzero multiplication aij × xj is held by either the processor that holds

input-vector entry xj, or the processor that is responsible for the computation of

output-vector entry yi, where such property is refered here as consistency prop-

erty. The row and column partition is obtained with respect to row-columnwise

partition. In parallel matrix vector multiplication, each processor Pk executes the

following steps:

1. For each nonzero off-diagonal block Ar
`,k, form sparse vector x̂`k, which contains

only those entries of xk corresponding to the nonzero columns in Ar
`,k.

2. For each nonzero off-diagonal block Ac
`,k, form sparse vector ŷk` , which contains

only those results of yk` = Ac
`,k× xk corresponding to the nonzero rows in Ac

`,k.

3. Send [x̂`k, ŷ
k
` ] to processor P`.

4. Compute the diagonal block product ykk = Ad
k × xk, and set yk = ykk .

5. For each nonzero off-diagonal block (Ar
k,`+A

c
k,`), receive [x̂k` , ŷ

`
k] from processor

P`, then compute y`k = ŷ`k + Ar
k,`×x̂k` , and update yk = yk + y`k.

Figure 5.4 illustrates single-phased row-column-parallel matrix vector multi-

plication on a sample 4-way row-columnwise partitioned matrix. As seen in the

figure, Processor 1 requires input-vector entries x13, x19, x5 from other processors,

requires partial results of y11 from Processor 4, of y1 from Processors 2 and 3,

and of y18 from Processor 4. Note that these input- and output-vector entries

are communicated together in the single communication phase.

5.3 The Hypergraph Model

LetH = (U ,N ) be a hypergraph. The hypergraph partitioning problem is finding

a K-way node partition Π(H) = {U1,U2, . . . ,UK} of H that satisfies the balance

criterion. In dependent hypergraph partitioning problem, there is one additional
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Figure 5.4: Single-phased row-column-parallel sparse matrix vector multiplica-
tion.

constraint which is referred as the cooccurance constraint. We are given a function

C : U → 2U−∅. The cooccurance constraint requires that π(ui)∈ {π(uk) : uk ∈
C(ui)}, for each ui ∈ U , where π(u`) = k : u` ∈ Uk.

Definition 6 (Hypergrph Partitioning with Cooccurence (HPc) Prob.)

Given a hypergraph H= (U ,N ), an integer K, a cooccurence function C : U →
2U −∅, and a maximum allowable imbalance ratio ε, the hypergraph partition-

ing with cooccurence (HPc) problem is finding a K-way node partition ΠU(H) =

{U1,U2, . . . ,UK} of H that both satisfies the ε-balance and the C-cooccurance cri-

teria while minimizing the cutsize.

The extended row-column-net hypergraph ĤRCN(A) of the matrix A is con-

structed as follows. We introduce a node uij for each nonzero aij, a row node uri

and a row net nr
i for each row ri, and a column node uci and a column net nc

i

for each column ci. Each net nr
i connects nodes in {uij : aij 6= 0}, and each net

nc
j connects nodes in {uij : aij 6= 0}. The row and column nodes are weightless,

89



Figure 5.5: A sample matrix A and the corresponding extended row-columnet
hypergraph ĤRCN(A).

whereas each net has a unit cost. We construct cooccurance relation C as,

C(uij) = {uri , ucj}, ∀uij ∈ ĤRCN(A) (5.5)

C(uri ) = {uci}, ∀1 ≤ i ≤ n (5.6)

C(uci) = {uri}, ∀1 ≤ i ≤ n (5.7)

Equation 5.5 ensures that a nonzero partition possesses the consistency prop-

erty, whereas Equations 5.6 and 5.7 together reinforce the symmetricity of the

partition.

As a result, partitioning the extended row-column-net hypergraph ĤRCN(A)

with the objective of minimizing the cutsize according to the connectivity metric

while satisfying node-weight balance constraint corresponds to row-columnwise

partitioning of A with the objective of minimizing communication volume while

satisfying to computation load balance constraint of processors in single-phased

row-column-parallel sparse matrix vector multiplication.
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5.4 Row-columnwise Partitioning Framework

We propose a two-step solution framework to find a row-columnwise partitioning

to a given n×n sparse symmetric matrix A. In the first step, we obtain a K-way

partition Π(HCN) = {UR
1 ,UR

2 , . . . ,UR
K} of the column-net hypergraph HCN of A.

Then, we decode Π(HCN) as a K-way partition Π(ĤRCN) = {U1,U2, . . . ,UK} of

the extended row-column hypergraph ĤRCN as,

Uk = {uij : uRi ∈ UR
k } ∪ {uri , uci : uRi ∈ UR

k }, ∀1 ≤ k ≤ K. (5.8)

In the second step, we refine the partititon Π(ĤRCN) with respect to C-
cooccurence criterion. First, we should define pair selecting problem.

Definition 7 (Pair Selecting Problem) Given an integer K, a set P ⊂
{(k, `) : 1 ≤ k, ` ≤ K}, a weight function W : P → R+, a value V : P → R+

function, an initial weight wk ∈ R+ for each 1 ≤ k ≤ K, and a value Wmax ∈ R+,

find a subset P ′ ⊂ P such that

max
1≤k≤K

{wk +
∑

(`,k)∈P ′

W (`, k)−
∑

(k,`)∈P ′

W (k, `)} ≤ Wmax

and the total gain Φ(P ′) is maximized, where

Φ(P ′) =
∑

(k,`)∈P ′

V (`, k).

Let Vk,` = {uij ∈ ĤRCN : uri ∈ Uk, ucj ∈ U`} for all 1 ≤ k, ` ≤ K. Let

P = {(k, `) : k 6= `, Vk,` 6= ∅}. Let the off-diagonal block Ak,` refers to the

submatrix regarding to Vk,`. Then, we find a subset V ′k,` ⊂ Vk,`, for each pair

(k, `) ∈ P using Dulmage-Mendhelson decomposition on the submatrix Ak,` as

Ak,` =


0 Ah

k,` Ahs
k,` Ahv

k,`

0 0 As
k,` Asv

k,`

0 0 0 Av
k,`

0 0 0 0

 , (5.9)
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where Ah
k,`, A

s
k,`, and Av

k,` represents the horizontal, square, and vertical blocks,

respectively. The horizontal block Ah
k,` is used to construct V ′k,` as

V ′k,` = {uij : aij ∈ Ah
k,`}, ∀(k, `) ∈ P (5.10)

We define the initial weight of a part in pair selecting problem as

wk = W (Uk) = |{uij ∈ ĤRCN}|, ∀1 ≤ k ≤ K (5.11)

and the values and weights of pairs as

V (k, `) = |{cj : uij ∈ V ′k,`}| − |{ri : uij ∈ V ′k,`}| (5.12)

W (k, `) = |V ′k,`| (5.13)

Note that V ′k,` is optimum in the sense that V (k, `) has the maximum value

among all possible subsets of Vk,`, for each (k, `) ∈ P , due to the property of

Dulmage-Mendhelson decomposition. We set Wmax = (1 + ε)|UA| /K. Finally,

we decode a solution to the pair selecting problem as a final row-columnwise

partition Πf (HA) = {Uf
1 ,U

f
2 , . . . ,U

f
K} as,

Uf
k = Uk ∪ {V ′`,k : (`, k) ∈ P ′} − {V ′k,` : (k, `) ∈ P ′}, ∀1 ≤ k ≤ K. (5.14)

5.5 Conclusion

In this chapter, we defined a novel parallel matrix vector multiplication scheme

which requires only one communication phase, and thus decreasing the latency

with respect to row-column-parallel vector multiplication scheme, and a corre-

sponding matrix partitioning method, called row-columnwise partitioning, which

does not restrict the solution space too much as in coarse-grain partitionings.

Secondly, we defined a novel version of hypergraph partitioning which has very

promising modeling power, and model the row-columnwise partitioning problem

as hypergraph partitioning with cooccurence. Lastly, we give a row-columnwise

partitioning solution that is based on one-dimensional partitioning and relaxing

the assignment of off-diagonal nonzeros with the use of Dulmage-Mendhelson
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decomposition on those off-diagonal blocks. With Dulmage-Mendhelson decom-

position we guarantee the optimality of selecting a subset of nonzeros, whose

multiplication tasks will be reassigned to sender processor, of a off-diagonal block

in terms of minimizing communication volume.
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Chapter 6

Conclusion and Future Research

The main theme of this thesis is hypergraph, more specifically hypergraph par-

titioning. Since hypergraphs are generalization of graphs, in the literature there

are many success stories those employing hypergraphs instead of graphs. The

contribution of this thesis is two folds. One is an effective and efficient implemen-

tation of a hypergraph partition tool that runs faster than the previous tools as

our tool make use of graph partitioning. The second contribution is to show the

modeling power of hypergraphs in two data partitioning problems encountered

on two separate domains of scientific and parallel computing.

In Chapter 3, we investigated and effective implementation of hypergraph

partitioning using recursive graph bipartioning and encountered very promising

results. We believe that the success of the proposed methods point to several

future research directions. First, better vertex weighting schemes to approxi-

mate the node balance is an area that can make a significant impact. We believe

exploiting domain specific information or devising techniques that can apply to

certain classes of graphs, as opposed to constructing generic approximations that

can work for all graphs, is a promising avenue to explore. Secondly, the algo-

rithms we have used in this study, were only slightly adjusted for the particular

problem we were solving. There is a lot of room for improvements in algorithms

for finding vertex separators with balanced hypergraph partitions, and we believe
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these algorithms can be designed and implemented within the existing partition-

ing graph partitioning frameworks, which means strong algorithmic ideas can be

translated into effective software tools with relatively little effort. Finally, this

study is only an example of the growing importance of graph partitioning and

the need for more flexible models for graph partitioning. Graph partitioning now

is an internal step for divide-and-conquer based methods, whose popularity will

only increase with the growing problem sizes. As such, requirements for graph

partitioning will keep growing and broadening. While, the state of the art for

graph partitioning has drastically improved from the days of merely minimizing

the number of cut edges, we believe there is still a lot of room for growth for more

general models for graph partitioning.

Chapters 4 and 5 propose hypergraph partitioning models for data partition-

ing on the domains of query processing and sparse matrix vector multiplication,

respectively. Despite of the fact that these two domains are very different from

each other, the data partitioning problems in those domains both can be pow-

erfully modeled by hypergraphs. Especially, our emprical study in Chapter 4

supported the use of hypergraphs to partition inverted-lists among to processors.

A possible extension to our work is a multi-constraint model, where the storage

load imbalance can also be formulated as a constraint within the model. Another

direction is to replace the replication heuristics we evaluated in this study with

the recently proposed techniques that couple hypergraph partitioning with repli-

cation. This may lead to further reduction in communication costs. We propose a

novel and more powerful hypergraph model in Chapter 5. As a research direction,

we may suggest an implementation of this model and investigation of modeling

other important problems in scientific computing with hypergraph partitioning

with cooccurences.
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