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ABSTRACT 
 

DISTORTION RISK MEASURES AND ALLOCATION METHODOLOGIES 

 

Kurtulan, Ali Burak 

M.A., Department of Economics 

Supervisor: Asst. Prof. Dr. Taner Yiğit 

 

September 2009 

 

 

 This study reviews the commonly used risk measures and allocation 

methodologies for risk capital. The method proposed by Tsanakas (2004) about 

dynamic capital allocation with distortion risk measures analyzed and for the cases 

when the events on which the liability processes are conditioned have zero 

probability, a new k-number approach is proposed which helps to behave risk-averse 

when correlations among liabilities are not accurate. 

 

 

Keywords: Risk Capital, Capital Allocation, Distortion Risk Measures 
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ÖZET 
 

DİSTORSİYON RİSK ÖLÇÜMLERİ VE DAĞITIM YÖNTEMLERİ 

 

Kurtulan, Ali Burak 

Yüksek Lisans, Ekonomi Bölümü 

Tez Yöneticisi: Yrd. Doç. Dr. Taner Yiğit 

 

Eylül 2009 

 

 

 Bu çalışmada, yaygın olarak kullanılan risk ölçümleri ve risk sermayesinin 

dağıtım metotları gözden geçirilmektedir. Tsanakas (2004) tarafından sunulan 

distorsiyon ölçümleriyle dinamik sermaye dağıtımı yöntemi incelendi ve yükümlülük 

süreçlerinin şartlı olduğu olayların sıfır ihtimali olduğundaki durumlar için, 

yükümlülükler arası korelasyonunun kesin olmadığı zamanda riskten kaçınmaya 

yardımcı olan yeni bir k-sayısı yaklaşımı önerildi. 

  

 

Anahtar Kelimeler: Risk Sermayesi, Sermaye Dağıtımı, Distorsiyon Risk Ölçümleri
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CHAPTER I 

 

INTRODUCTION 

 

 

Financial institutions are obligated to hold a buffer capital in order to prevent 

insolvency by regulator. This buffer capital is called as risk capital or economic 

capital, which generally exceeds the minimum set by the regulator. This risk capital 

has to be determined optimally by taking two conflicting effects into account: 

holding risk capital incurs costs for the company and the more risk capital reduces 

the probability of ruining of the company (Hancock et al. 2001). Furthermore, the 

risk capital held by the company is an indicator for rating agencies as a measure of 

the company’s capacity to bear risks. 

 

The determination of risk capital depends on choosing a proper risk measure. 

Tsanakas (2007) emphasizes that a risk measure is a function that specifies real 

numbers to random variables representing uncertain pay-offs, e.g. insurance loss. 

However, as Dowd and Blake (2006) mentioned, it is hard to give a good assessment 

of financial risk except the cases in which we specify what a measure of financial 

risk actually means. They elucidate by this example, “the notion of temperature is 

difficult to conceptualize without a clear notion of a thermometer, which tells us how 
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temperature should be measured (Dowd and Blake, 2006).” Hence, in order to clarify 

the notion of risk itself, Artzner et al. (1999) proposed several axioms that will be 

argued later on in chapter II. 

 

Tsanakas (2007) divided the main applications of risk measures into three 

main areas; as demonstration of risk aversion in asset pricing models, as tools for the 

calculation of the insurance premium corresponding to a risk and as quantifiers of the 

risk capital that the holder of a specific portfolio or risks should safely invest in e.g. 

Artzner et al. (1999). 

 

In this study, the issue of being able to fairly divide the total capital 

requirement of a diversified (insurance) company across its various business units is 

examined. Dhaene et al. (2005) defined capital allocation as a term referring to the 

subdivision of the aggregate capital held by the firm across its various constituents, 

e.g. business lines, types of exposure, territories or even individual products in a 

portfolio of insurance policies. There is a diversification benefit at risk capital, which 

means that the amount of reserve capital that should be held for a pool of liabilities is 

less than the sum of the corresponding amounts for the liabilities taken separately. 

The capital allocation problem is how to allocate the benefits of diversification 

across the business lines. 

 

Given that most financial firms write several lines of business, most of the 

time it is necessary to allocate risk capital across these lines. Firstly, there is a cost 

associated with holding capital and the financial firm may want to exactly reveal this 

cost by line of business so as to redistribute this cost equitably across the lines 
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(Valdez and Chernih, 2003). Secondly, the allocation of costs across lines of business 

is a compulsory activity for financial reporting purposes (Dhaene, 2009). Lastly, 

capital allocation formulas provide a useful device for fair assessment of 

performance of the different lines of business by determining the return on allocated 

capital for each line (Valdez and Chernih, 2003). Valdez and Chernih (2003) 

mentioned that capital allocation is supposed to be helpful in accomplishing the goals 

of competitive pricing of insurance contracts and making optimal capital budgeting 

decisions. 

 

The interest on capital allocation has been increasing during last decade. 

There are many capital allocation algorithms proposed. Dhaene et al. (2009) listed 

some studies from the literature in their paper. The mostly used tools are RAROC, 

marginal contribution, game theory, solvency exchange options. Tsanakas (2004) 

studies allocations where the relevant risk measure belongs to the class of distortion 

risk measures, while Tsanakas (2008) extends these allocation principles to the more 

general class of convex risk measures including the exponential risk measures. In 

chapter III, the study of Tsanakas (2004) will be examined in more detail. 

 

Capital allocation is a very complicated issue, and closed-form solutions for 

component risks are known only for special cases (Dowd and Blake, 2006). The 

determination of capital allocation with distortion risk measures is very difficult 

except using simulation methods. 

 

The capital allocation problem is a developing new concept. However, most 

of the studies are not applicable into practice. As Valde and Chernih (2003) 
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mentioned, there are more useful studies that are required in reaching the insurer’s 

goals: “prioritizing new capital budgeting projects,” “deciding which lines of 

business to expand or to contract,” and “fair assessment of performance of managers 

of various business units” (Gründl and Schmeiser, 2005). 

 

The thesis provides a wide literature search about risk measures and gives 

clear path about how to use dynamic capital allocations by using distortion risk 

measures. The rest of the paper is organized as follows: in Chapter II, risk measures 

and their desired properties are discussed. Chapter III explains how to allocate the 

risk capital with distortion risk measures. In Chapter IV, a numerical example is 

given and Chapter V summarizes the key results in this paper and concludes. 
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CHAPTER II 
 

RISK MEASURES 
 

 

 

Generally, a risk 𝑋𝑋 ∈ 𝜒𝜒 is defined as a real-valued random variable 

representing losses at a fixed time horizon T. If under a particular state of the world 

𝜔𝜔 the variable 𝑋𝑋(𝜔𝜔) > 0 then this will be a loss, while negative outcomes will be 

considered as gains. Artzner et al. (1999) defines the risk measure as follows: a risk 

measure is a real-valued functional, 𝜌𝜌, defined on a set of random variables 𝜒𝜒, 

standing for risky portfolios of assets and/or liabilities. For a portfolio with risk X, its 

risk measure, 𝜌𝜌(𝑋𝑋), represents the amount of safely invested capital that a regulator 

would oblige the owner of X to hold. In particular, ρ(X) is interpreted as “the 

minimum extra cash that the agent has to add to the risky position X, and to invest 

‘prudently’, to be allowed to proceed with his plans” (Artzner et al., 1999). 

 

If a financial firm has X aggregated net risk exposure and risk capital 

corresponds to ρ(X), then the ruin occurs when X >ρ(X). Here, ρ(X) is known as risk 

capital and regulatory authorities demand strong economic capital. Therefore, the 

measure of risk is an essential issue that one might be careful in order to prevent 

insolvency. In the next chapter, some of the proposed and commonly used risk 

measures are explained in more detail.  
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2.1 Examples of Risk Measures 
 

Some of the risk measures proposed in the financial literatures are as follows. 

 

2.1.1 Expected Value Pr inciple 
 

The first use of risk measures in actuarial science and insurance was the 

development of premium principles. The risk measures such as expected value 

principle and standard deviation principle were applied to a loss distribution to 

determine a proper premium to charge for the risk. As a consequence a premium 

calculation principle can be directly interpreted as a risk measure. First, these 

traditional premium principles will be explained. 

 

For the expected premium principle, we have: 

 

𝜌𝜌(𝑋𝑋) = 𝜆𝜆𝜆𝜆[𝑋𝑋], 𝜆𝜆 ≥ 1. 

𝜆𝜆 = 𝜃𝜃 + 1 ⇒  𝜌𝜌(𝑋𝑋) = 𝐸𝐸[𝑋𝑋] + 𝜃𝜃𝜃𝜃[𝑋𝑋] 

 

It represents a proportional safety loading, 𝜃𝜃𝜃𝜃[𝑋𝑋], which means the amount 

left in addition to expected losses. Moreover, this risk measure in fact underlies 

simple regulatory minimum requirements, such as the current EU Solvency rules, 

which determine risk capital as a proportion of an exposure measure such as 

premium (Tsanakas, 2007). 

 

Bühlmann (1970) used expected value principle as one of the frequently 
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encountered principle of premium calculation for insurance. Expected value principle 

is widely used risk measure especially in life insurance. Nevertheless, it is only 

seldom used in property and casualty insurance. Bühlmann (1970) explained this 

reason as probably the heterogeneity of the claims which occur in non-life insurance. 

For example, extreme events such as earthquake, fire, flood has a high volatility with 

a high claim does not permit an “average calculation”. 

 

Daniel Bernoulli figured out that using the expected value leads to the so 

called “St.Petersburg paradox”; in other words, the expected value principle 

corresponds to a risk-neutral individual, and works poorly for the more common case 

of risk-averse individuals (Novosyolov, 2003). Thus the expected value turns out to 

not be a proper risk measure. 

 

 

2.1.2 Standard Deviation Pr inciple 
 

𝜌𝜌(𝑋𝑋) = 𝐸𝐸[𝑋𝑋] + 𝜅𝜅𝜅𝜅[𝑋𝑋], 𝜅𝜅 ≥ 0. 

 

In this case the safety loading, 𝜅𝜅𝜅𝜅[𝑋𝑋], is risk-sensitive, as it is a proportion of 

the standard deviation. This principle is mostly used by reinsurance pricing and also 

related to Markowitz portfolio theory. 

 

Standard deviation principle is most likely the most commonly used approach 

in property and casualty insurance (Bülhmann, 1970). It is linear due to a 

proportional change in the claims experience, and this is most likely the reason for its 



8 
 

popularity. In addition, if the probability distribution of X is normal, then all 

premiums stand an equal chance of being exceeded by related claims experience: 

 

𝜎𝜎[𝑋𝑋] = 1 ⇒  𝜌𝜌(𝑋𝑋) = 𝐸𝐸[𝑋𝑋] + 𝜅𝜅 

 

Since the individual premium which differs widely from the normal distribution, it is 

not that important to take into account that argument. 

 

The more volatile portfolios require more capital and so it makes this measure 

more realistic in comparison to expected value principle, which does not distinguish 

the volatilities among assets. However, a risk-averse individual for sure would take 

into account of volatility in her investments. 

 

In the literature there is a discussion from Denneberg (1990) who proposed 

that standard deviation should be replaced by absolute deviation. Laeven and 

Goovaerts (2007) mentioned in their paper that dynamic versions of the standard 

deviation principles in an economic environment are studied by Schweizer (2001) 

and Moller (2001). 

 

For both expected value and standard deviation principles, these measures 

have some things in common; each requires a premium which is bigger than the 

expected loss (Hardy, 2006). The difference between expected loss and premium, 

which is called premium loading, acts as a buffer against adverse experience. 
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2.1.3 Exponential Premium Pr inciple 
 

𝜌𝜌(𝑋𝑋) =
1
𝑎𝑎

ln𝐸𝐸[𝑒𝑒𝑎𝑎𝑎𝑎 ], 𝑎𝑎 > 0. 

 

Exponential premium principle, which is also known as the entropic risk 

measure (see e.g. Föllmer and Schied (2002)) is termed by Gerber (1974). 

 

This principle is widely accepted in the actuarial and insurance literature in 

order to determine the ruin probabilities, see for example Bühlmann (1985). The ruin 

is defined as 𝑆𝑆𝑡𝑡  becoming negative at some time 𝑡𝑡 > 0 where 𝑆𝑆𝑡𝑡  is the surplus 

between the total premiums and the total claims. Hence, the ruin probability, 𝜓𝜓, is 

 

𝜓𝜓 = 𝑃𝑃(𝑆𝑆𝑡𝑡 :  𝑆𝑆𝑡𝑡 < 0 and 𝑡𝑡 > 0) 

 

Assuming that X has exponentially bounded tails, the probability of ruin, 𝜓𝜓, is 

bounded by: 

 

𝜓𝜓 ≤ 𝑒𝑒−𝜆𝜆𝑆𝑆0  

 

where λ is called the “adjustment coefficient” and is the solution of the following 

equation: 

 

𝑒𝑒𝜆𝜆𝜆𝜆 = 𝐸𝐸�𝑒𝑒𝜆𝜆𝜆𝜆 �       ⟹       𝑐𝑐 =
1
𝜆𝜆

ln𝐸𝐸[𝑒𝑒𝜆𝜆𝜆𝜆 ] 
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where c is the premium required. So, calculating premium, c, by the exponential 

principle introduces an upper bound of 𝑒𝑒−𝜆𝜆𝑆𝑆0  on the probability of ruin. It can be 

observed that the higher λ is, the lower the probability of ruin.  

 

In comparison to exponential premium principle, the expected value and 

standard deviation principles can be handled easily. 

 

 

2.1.4 Value-at-Risk 
 

𝜌𝜌(𝑋𝑋) = 𝑉𝑉𝑉𝑉𝑉𝑉𝑝𝑝(𝑋𝑋) = 𝐹𝐹𝑋𝑋−1(𝑝𝑝), 𝑝𝑝 ∈ (0,1), 

 

where 𝐹𝐹𝑋𝑋  is the cumulative probability distribution of X. VaRp(X) is easily 

understood as the amount of capital that, when added to the risk X, limits the 

probability of default to 1 − 𝑝𝑝. VaR has become more and more popular 

methodology for the measurement and reporting of risk since the early 1990s, 

especially among banks. The Market Risk Amendment of the Basel Accord, 

represented in 1995, permitted the use of VaR to set regulatory capital for market risk. 

  

More practically, it can be expressed as: 

 

VaRi = vi × α × σi × �(t 365⁄ ) 

 

where vi  is the market value of the ith asset, 𝜎𝜎𝑖𝑖  is the annualised volatility of that 
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asset, t is the number of days in the chosen holding period, and 𝛼𝛼 represents the 

desired level of confidence. This structure uses the market value of the position 

denominated in local currency, and as a result the standard deviation parameter is a 

dimensionless, annualized volatility. 

 

 

2.1.5 Expected Shor tfall 
 

𝜌𝜌(𝑋𝑋) = 𝐸𝐸𝐸𝐸𝑝𝑝[𝑋𝑋] = � 𝐹𝐹𝑋𝑋−1(𝑞𝑞)𝑑𝑑𝑑𝑑, 𝑝𝑝 ∈ (0,1).
1

𝑝𝑝
 

 

Expected Shortfall is also called Conditional Value-at-Risk (CVaR) and 

Expected Tail Loss (ETL). This measure has been proposed in the literature as a risk 

measure to correct some of the theoretical defects of Value-at-Risk (Wirch and 

Hardy 1999).  Expected shortfall is better to obtain extreme events for fat tailed 

distributions. It has a difficult interpretation and does not provide a clear link to 

companies. 

 

VaR assesses the worst case loss, where worst case is defined as the event 

with a 1 − 𝑝𝑝 probability. However, it does not take into consideration what the loss 

will be if that 1 − 𝑝𝑝 worst case event actually realized. Expected Shortfall addresses 

these problems by measuring the loss in tails. In other words, Expected Shortfall is 

the expected loss given that the loss falls in the worst 1 − 𝑝𝑝 part of the loss 

distribution. 

Hardy (2006) mentions that Expected shortfall has become very important 
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risk measure in actuarial practice. It is intuitive, easy to understand and to apply with 

simulation output. As a mean, it is more robust with respect to sampling error than 

the VaR. 

 

Example: (VaR vs Expected Shor tfall) 

 

A simple discrete example is provided in order to show how to calculate VaR 

and Expected Shortfall. Assume X is a loss random variable with probability 

function: 

 

𝑋𝑋 = �
0

100
1000

�
    with probability 0.9

    with probability 0.06
    with probability 0.04

 

 

For 90% confidence interval: 

𝑉𝑉𝑉𝑉𝑉𝑉90%(𝑋𝑋) = 0 

𝐸𝐸𝐸𝐸%90(𝑋𝑋) = 𝐸𝐸[𝑋𝑋|𝑋𝑋 > 0] =
0.06 × 100 + 0.04 × 1000

0.10
= 460 

 

For 95% confidence interval: 

𝑉𝑉𝑉𝑉𝑉𝑉95%(𝑋𝑋) = 100 

𝐸𝐸𝐸𝐸%95(𝑋𝑋) =
0.01 × 100 + 0.04 × 1000

0.05
= 820 

 

For 99% confidence interval: 

𝑉𝑉𝑉𝑉𝑉𝑉99%(𝑋𝑋) = 𝐸𝐸𝐸𝐸%99(𝑋𝑋) = 1000 

The Expected Shortfall increases as confidence interval increases. For a given 
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portfolio the Expected Shortfall ESp  is worse than (or equal) to the Value-at-Risk 

VaRp  at the same confidence level. 

 

 

2.1.6 Distor tion Risk Measure 
 

𝜌𝜌(𝑋𝑋) = −� �1 − 𝑔𝑔�1 − 𝐹𝐹𝑋𝑋(𝑥𝑥)��𝑑𝑑𝑑𝑑 + � 𝑔𝑔�1 − 𝐹𝐹𝑋𝑋(𝑥𝑥)�𝑑𝑑𝑑𝑑,
∞

0

0

−∞
 

 

where 𝑔𝑔 is called as a distortion function such that 𝑔𝑔: [0,1] ⟼ [0,1] is increasing and 

concave (Wang, 1996). Distortion risk measure can be interpreted as an expectation 

under a distortion of the probability distribution affected by the function 𝑔𝑔 

(Tsanakas, 2007). Distortion risk measures can be seen as Choquet integrals 

(Denneberg, 1990), which are broadly used in the economics of uncertainty, e.g. 

Schmeidler (2003). An equivalent class of risk measures defined in the finance 

literature is known as spectral risk measures, which will not be discussed in this 

paper (Acerbi 2002). 

 

Hürlimann (2004) argued that, “despite of being coherent, a lot of distortion 

risk measures, do not always provide incentive for risk management because they 

lack of giving a capital relief in some simple two scenarios situations of reduced 

risk”. Additionally, Darkiewicz et al. (2003) also mentioned that distortion risk 

measures do not always preserve the correlation order. 
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2.2 Coherent Risk Measures 
 

Artzner et al. (1999) postulates a set of axioms in order to classify how a 

good risk measure should be. A coherent risk measure is defined by Artzner et al. 

(1999) as a functional ρ(X) on a collection of random cash flows that satisfies the 

following properties: 

 

(Axiom M) Monotonicity: If 𝑋𝑋 ≤ 𝑌𝑌 then 𝜌𝜌(𝑋𝑋) ≤ 𝜌𝜌(𝑌𝑌). 

(Axiom S) Subadditivity: 𝜌𝜌(𝑋𝑋 + 𝑌𝑌) ≤ 𝜌𝜌(𝑋𝑋) + 𝜌𝜌(𝑌𝑌). 

(Axiom PH) Positive Homogeneity: If 𝑎𝑎 ∈ ℝ+ then 𝜌𝜌(𝜆𝜆𝜆𝜆) = 𝜆𝜆𝜆𝜆(𝑋𝑋). 

(Axiom T) Translation Invariance: If 𝑎𝑎 ∈ ℝ then 𝜌𝜌(𝑎𝑎 + 𝑋𝑋) = 𝑎𝑎 + 𝜌𝜌(𝑋𝑋). 

 

𝜌𝜌(𝑋𝑋) is interpreted as “the minimum extra cash that the agent has to add to 

the risky position X, and to invest ‘prudently’ (with zero interest), to be allowed to 

proceed with his plans” (Artzner et al., 1999).  

 

Axiom M indicates the losses that are always higher should also attract a 

higher capital requirement. Axiom S states that the merging of risks should yield a 

decrease in risk capital due to diversification effect. Axiom PH claims that the risk of 

a portfolio consisting of 𝜆𝜆 risky asset X  should be same as 𝜆𝜆 portfolios with each has 

X risky assets, and finally Axiom T postulates that adding a constant loss to a 

portfolio raises the necessary risk capital by the same amount. Table 1 classifies the 

risk measures with respect to axioms of coherence. Also Tsanakas (2007) mentioned 

that all risk measures in Table 1 are “law invariant”, which means 𝜌𝜌(𝑋𝑋) only depends 

on the distribution function of X (Wang et al., 1997).  
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Coherent risk measures are criticized widely in the financial literature since 

the axioms are too strict. For example, Axiom PH does not take illiquidity risk into 

account. Also, the most commonly used risk measure in financial sector, Value-at-

Risk, generally fails the Axiom S, due to its disregard for the extreme tails of 

distribution. 

 

For example, Dhaene et al. (2003) gives the following example about 

subadditivity axiom. In earthquake risk insurance, it is better, in the sense that a lower 

total price is possible, to insure two independent risks than two positively dependent 

risks, like two buildings in the same area. For insuring both buildings, the premium 

should be more than twice the premium for insuring only a single building because 

these buildings are highly dependent to each other and in case of an earthquake, the 

weaker one may cause the other building to collapse. So, ρ(X + Y) ≥ ρ(X) + ρ(Y) 

should be. 

 

An additional property for risk measures is additivity for comonotonic risks: 

 

Comonotonic Additivity: If X, Y comonotonic then  𝜌𝜌(𝑋𝑋 + 𝑌𝑌) = 𝜌𝜌(𝑋𝑋) + 𝜌𝜌(𝑌𝑌).1

 

 

Comonotonicity indicates the strongest form of positive dependence between 

random variables among which there is not a diversification benefit. Table 1 classifies 

the risk measures with respect to properties provided above. 

 
 

                                                 
1 Two random variables X, Y are called comonotonic if there is a random variable U and non-
decreasing real functions e, d such that 𝑋𝑋 = 𝑒𝑒(𝑈𝑈), 𝑌𝑌 = 𝑑𝑑(𝑈𝑈) (Denneberg, 1994). 
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Table 1: The properties of risk measures (Tsanakas, 2007) 

 
 Axiom M Axiom S Axiom PH Axiom T Coherent 

Expected 
value p. √ √ √   

Standard 
deviation p.  √ √ √  

Exponential 
premium p. √ √  √  

Value-at-
Risk √  √ √  

Expected 
shortfall √ √ √ √ √ 

Distortion 
risk m. √ √ √ √ √ 
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CHAPTER III 
 

CAPITAL ALLOCATION WITH DISTORTION RISK 
MEASURES 

 

 

 

Consider a portfolio of n individual losses X1, X2,..., Xn at the end of a single 

period. Let (X1, X2,..., Xn) be a random vector on a well-defined probability space 

(Ω,ℱ,ℙ) and Xi has a finite mean. Then the total company loss is the random 

variable: 

𝑍𝑍 = �𝑋𝑋𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

 

where, Dhaene et al. (2009) proposed several interpretations for this aggregate loss Z 

as follows: 

 

i. the total loss of a corporate, e.g. an insurance company, with the individual 

losses corresponding to the losses of the related business units; 

ii. the loss from an insurance portfolio, with the individual losses being those 

coming up from different policies; 

iii. the loss suffered by a financial conglomerate, while the different individual 

losses stand for the losses suffered by its subsidiaries; or  
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iv. the total loss across an insurance/financial market, with the individual losses 

being the ones from different firms in this market. 

 

The risk capital required for the aggregate loss Z can be determined by using 

a risk measure 𝜌𝜌:𝑍𝑍 ↦ ℝ as 𝜌𝜌(𝑍𝑍) = 𝐾𝐾 where K is the risk capital. 

 

 

3.0.1 Diversification Benefit 
 

Pooling of different risk types acquires diversification. The success of the 

diversification benefits depend on the degree of dependence between the pooled 

risks. Risk capital should reflect the diversification benefit. 

 

Value-at-Risk (VaR) is a widely used risk measure in order to determine the  

risk capital required by banks, insurance and pension companies. Below in detail the 

diversification benefits will be explained by using VaR as a practical example. From 

section 2.1.4 recall that the basic formula for VaR is: 

 

VaRi = vi × α × σi × �(t 365⁄ ) 

 

where: 

• vi  is the market value of the ith asset 

• 𝜎𝜎𝑖𝑖  is the annualised volatility of the ith asset 

• t is the number of days in the chosen holding period 
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• 𝛼𝛼 represents the desired level of confidence 

 

Examining the formula for the variance of the portfolio returns is essential 

because it reveals how the correlations of the returns of the assets in the portfolio 

affect volatility. The variance formula is: 

 

 

 
where: 

• 𝜎𝜎𝑃𝑃2 = the variance of the portfolio returns 

• 𝑤𝑤𝑖𝑖 = the portfolio weight invested in position i 

• 𝜎𝜎𝑖𝑖 = the standard deviation of the return in position i 

• 𝜌𝜌𝑖𝑖 ,𝑗𝑗 = the correlation between the returns of asset i  and asset i 

 

So, the standard deviation, denoted by σP , is: 

 

 
 

 
and the total VaR of the portfolio becomes: 
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where V is the vector of N current market values of each assets and Σ is their 

covariance matrix. For example, in case of there are two assets: 

 

 

 
VaR for uncor related assets i.e. when σ1,2 = 0 is: 

 

 

 

VaR for per fectly cor related assets i.e. when σ1,2 = 1  is: 

 

 

 
Perfectly correlated assets can also be called as undiversified VaR since the 

aggregate sum of total risks is equal to sum of individual risks. In this situation, 

instead of investing in a single asset, using two uncorrelated or less than perfectly 

correlated assets achieves a diversification benefit which is the difference between 

summation of individual risks and aggregated risks: 

 

 

 
Diversification arises because not all risks realize in the same period. For 

example an insurance company insuring cars and ships would not expect claims from 

accidents in cars and ships to be interlinked. Similarly, a major motor accident 

(insurance risk) would not necessarily coincide with turbulence in the financial 
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markets (financial risk). As a result, since it is unlikely that different types of events 

occur at same time, the company may not need to hold capital for all events going 

wrong at the same time. 

 

 

3.1 Marginal cost approaches 
 
 

As the correlation between two random variables decreases, it achieves more 

diversification benefit because volatility of total portfolio lessens. Therefore, it 

generally is  

 

𝜌𝜌(𝑍𝑍) ≤�𝜌𝜌(𝑋𝑋𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

. 

 

 After determining the risk capital K, the company aims to allocate K across its 

various business units as d1, d2,..., dn satisfying the full allocation requirement: 

 

�𝑑𝑑𝑖𝑖 = 𝐾𝐾.
𝑛𝑛

𝑖𝑖=1

 (1) 

 

Given the risk capital K, there are countless number of ways to allocate. This 

allocation must be done in a reasonable framework such that the allocated capital 

amounts Ki to be ‘close’ to their corresponding losses Xi. In actuarial literature, early 

papers dealt with cost allocation problems in insurance. Bühlmann (1996) used a risk 

theoretical view and Lemaire (1984) used the perspective of cooperative game 

theory. Valdez and Chenih (2003) proposed a “fair allocation” methodology by using 
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the three properties: no undercut, symmetry and consistency. 

 

Marginal cost approaches are used to check the marginal effect of sub-

portfolios on aggregate capital. Let 𝑤𝑤 ∈ [0,1]𝑛𝑛 , 

 

𝑍𝑍𝑤𝑤 = �𝑤𝑤𝑖𝑖𝑋𝑋𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

 

Then the marginal cost of each sub-portfolio is given by (Tsanakas, 2007): 

 

MC(𝑋𝑋𝑖𝑖 ;𝑍𝑍) = �𝜕𝜕𝜕𝜕(𝑍𝑍𝑤𝑤)
𝜕𝜕𝑤𝑤𝑖𝑖

�
𝑤𝑤 = 1

 

 

subject to related differentiability assumptions. Given that the risk measure satisfies 

Axiom PH, then by Euler’s theorem it is derived that 

 

�MC(𝑋𝑋𝑖𝑖 ;𝑍𝑍) = 𝜌𝜌(𝑍𝑍)
𝑛𝑛

𝑖𝑖=1

 

 

consequently, the marginal costs 𝑑𝑑𝑖𝑖 = MC(𝑋𝑋𝑖𝑖 ;𝑍𝑍) can be used as the capital 

allocation. Furthermore, if the risk measure is subadditive then it follows (Aubin, 1981): 

 

𝑑𝑑𝑖𝑖 = MC(𝑋𝑋𝑖𝑖;𝑍𝑍) ≤ 𝜌𝜌(𝑋𝑋𝑖𝑖), 

 

which indicates that the stand-alone risks of each subportfolio are greater than their 
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risks in the pooled portfolio.  

 

If no such strong assumptions such as Axiom PH and Axiom S are made with 

respect to the risk measure, then marginal costs will in general not satisfy that their 

sum is equal to aggregate risk. Hence, Tsanakas (2004) also proposed to use 

“Aumann-Shapley value” (Aumann and Shapley, 1974) as a generalization of 

marginal costs 

 

AC(𝑋𝑋𝑖𝑖;𝑍𝑍)=� MC(𝑋𝑋𝑖𝑖; 𝛾𝛾𝛾𝛾)
1

0
𝑑𝑑𝑑𝑑. 

 

So, by assigning 𝑑𝑑𝑖𝑖 = AC(𝑋𝑋𝑖𝑖 ;𝑍𝑍), ∑ 𝑑𝑑𝑖𝑖 = 𝜌𝜌(𝑍𝑍)𝑛𝑛
𝑖𝑖=1  is attained and for the ones 

which satisfies Axiom PH, Aumann-Shapley allocation reduces to marginal costs. 

Table 2 reveals some examples of capital allocations. 
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Table 2: Capital allocations of the risk measures used in Table 1 by using marginal 
costs / Aumann-Shapley: 

 
 Allocated capital amount Notes 

Expected 
value p. 𝑑𝑑𝑖𝑖 = 𝜆𝜆𝜆𝜆[𝑋𝑋𝑖𝑖]  

Standard 
deviation p. 𝑑𝑑𝑖𝑖 = 𝐸𝐸[𝑋𝑋𝑖𝑖] + 𝜅𝜅

𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑖𝑖 ,𝑍𝑍)
𝜎𝜎[𝑍𝑍]   

Exponential 
premium p. 𝑑𝑑𝑖𝑖 = �

𝐸𝐸[𝑋𝑋𝑖𝑖 exp(𝛾𝛾𝛾𝛾𝛾𝛾)]
𝐸𝐸[exp(𝛾𝛾𝛾𝛾𝛾𝛾)]

1

0
𝑑𝑑𝑑𝑑  

Value-at-
Risk 𝑑𝑑𝑖𝑖 = 𝐸𝐸[𝑋𝑋𝑖𝑖|𝑍𝑍 = 𝑉𝑉𝑉𝑉𝑉𝑉𝑝𝑝(𝑍𝑍)] under suitable assumptions on the joint probability 

distribution of (𝑋𝑋𝑖𝑖 ,𝑍𝑍) (Tasche, 2004). 

Expected 
shortfall 𝑑𝑑𝑖𝑖 = 𝐸𝐸[𝑋𝑋𝑖𝑖|𝑍𝑍 > 𝑉𝑉𝑉𝑉𝑉𝑉𝑝𝑝(𝑍𝑍)] under suitable assumptions on the joint probability 

distribution of (𝑋𝑋𝑖𝑖 ,𝑍𝑍) (Tasche, 2004). 

Distortion 
risk m. 𝑑𝑑𝑖𝑖 = 𝐸𝐸[𝑋𝑋𝑖𝑖𝑔𝑔′(1 − 𝐹𝐹𝑍𝑍(𝑍𝑍))] under suitable assumptions on cumulative distribution 

function FZ and the distortion function g (Tasche, 2004). 

 

 

3.2 Change of probability measure 
 

Artzner et al. (1999) states that coherent risk measures can be represented by 

 

𝜌𝜌(𝑋𝑋) = supℙ∈𝒫𝒫𝐸𝐸ℙ[𝑋𝑋] 

 

where 𝒫𝒫 is a set of probability measures. Here, the distribution of random variable X 

is redistributed with respect to a measure which makes E[X] maximum. This can be 

regarded as worst case scenario. By including comonotonic additivity, one obtains 

the more specific structure of 𝒫𝒫 = {ℙ:ℙ(𝐴𝐴) ≤ 𝑔𝑔(ℙ0(𝐴𝐴)) for all event sets 𝐴𝐴}, 

where ℙ0 is some given measure, and 𝑔𝑔 is a continuous, increasing, and concave 

function satisfying 𝑔𝑔(0) = 0 and 𝑔𝑔(1) = 1. Such a function must satisfy 𝑔𝑔(𝑝𝑝) ≥ 𝑝𝑝 
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for 0 ≤ 𝑝𝑝 ≤ 1. The set function 𝑔𝑔(ℙ0(. ))  is called a distorted probability measure, 

and the corresponding risk measures are called distortion risk measures. Here, 𝑔𝑔 is a 

concave distortion function (Wang et al. 1997).2

 

 

Distortion risk measures are good candidates since they are coherent, 

comonotonic additive and law invariant. In Table 3, some examples of distortion 

functions are given. Most of them were introduced in Wang (1996). The name 

distortion is used since the non-linear function 𝑔𝑔 “distorts” the physical probability 

measure ℙ0. 

 

  

                                                 
2 A continuous increasing function 𝑔𝑔: [0,1] ↦ [0,1] such that 𝑔𝑔(0) = 0 and 𝑔𝑔(1) = 1 is called 
distortion function. 
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Table 3: Examples of distortion functions where 𝒑𝒑 ∈ (𝟎𝟎,𝟏𝟏). 2F

3 

 

Value-at-Risk 𝑔𝑔𝑝𝑝(𝑥𝑥) = 1(𝑝𝑝 ,1][𝑥𝑥] 

Tail Value-at-Risk 𝑔𝑔𝑝𝑝(𝑥𝑥) = min �
𝑥𝑥
𝑝𝑝

, 1� 

Proportional hazard transform 𝑔𝑔𝑝𝑝(𝑥𝑥) = 𝑥𝑥𝑝𝑝  

Dual-power transform 𝑔𝑔𝑝𝑝(𝑥𝑥) = 1 − (1 − 𝑥𝑥)
1
𝑝𝑝  

Dennensberg’s absolute deviation 
principle 𝑔𝑔𝑝𝑝(𝑥𝑥) = �

(1 + 𝑝𝑝)𝑥𝑥     for 0 ≤ 𝑥𝑥 ≤
1
2

𝑝𝑝 + (1 − 𝑝𝑝)𝑥𝑥     for 
1
2
≤ 𝑥𝑥 ≤ 1

� 

Gini’s principle 𝑔𝑔𝑝𝑝(𝑥𝑥) = (1 + 𝑝𝑝)𝑥𝑥 − 𝑝𝑝𝑥𝑥2 

Square-root transform 𝑔𝑔𝑝𝑝(𝑥𝑥) =
�1 − ln(𝑝𝑝) 𝑥𝑥 − 1
�1 − ln(𝑝𝑝) − 1

 

Exponential transform 𝑔𝑔𝑝𝑝(𝑥𝑥) =
1 − 𝑒𝑒−

𝑥𝑥
𝑝𝑝

1 − 𝑒𝑒−
1
𝑝𝑝
 

Logarithmic transform 𝑔𝑔𝑝𝑝(𝑥𝑥) =
ln(1 − ln𝑝𝑝 𝑥𝑥)
ln(1 − ln 𝑝𝑝)

 

 

As Tsanakas (2007) mentioned, new risk measures can be generated by re-

weighting the probability distribution of the underlying risk 

 

𝜌𝜌(𝑋𝑋) = 𝐸𝐸[𝑋𝑋𝑋𝑋(𝑋𝑋)], (2) 

 

where ξ  is an increasing function with 𝐸𝐸[𝜉𝜉(𝑋𝑋)] = 1 and hence the expression (2) can 

be viewed as an expectation under a change of measure. 
                                                 
3 Source: Darkiewicz et al., 2003 
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Let a distortion risk measure be given by 

 

𝜌𝜌(𝑋𝑋) = supℙ∈𝒫𝒫𝐸𝐸ℙ[𝑋𝑋] 

𝒫𝒫 = {ℙ|ℙ(𝐴𝐴) ≤ 𝑔𝑔�ℙ0(𝐴𝐴)� for all A}. 

 

Given a risk Z, there exists ℚ ∈ 𝒫𝒫 such that 𝐸𝐸ℚ𝑍𝑍 = 𝜌𝜌(𝑍𝑍) (the “worst-case measure”). 

In the case of continuous cumulative density and differentiable distortion, the worst-

case measure corresponding to Z is given by 

 

𝑑𝑑ℚ
𝑑𝑑ℙ0

= 𝑔𝑔′�1 − 𝐹𝐹𝑍𝑍(𝑍𝑍)�. 

 

Here, the random variable 𝑔𝑔′�1 − 𝐹𝐹𝑍𝑍(𝑍𝑍)� is nonnegative, and satisfies 

 

𝐸𝐸ℙ0�𝑔𝑔
′�1 − 𝐹𝐹𝑍𝑍(𝑍𝑍)�� = −� 𝑔𝑔′�1 − 𝐹𝐹𝑍𝑍(𝑍𝑍)�−𝐹𝐹𝑧𝑧′𝑑𝑑𝑑𝑑 = −𝑔𝑔�1 − 𝐹𝐹(𝑍𝑍)�|−∞∞ = 1

∞

−∞
 

 

Tsanakas and Barnett (2003) showed that the risk measure 𝜌𝜌(𝑍𝑍) corresponding to a 

reference probability measure ℙ0 and a distortion function 𝑔𝑔 can be computed as the 

“Choquet integral” 

 

𝜌𝜌(𝑍𝑍) = � �𝑔𝑔�ℙ0(𝑍𝑍 > 𝑡𝑡)� − 1�𝑑𝑑𝑑𝑑 + � 𝑔𝑔�ℙ0(𝑍𝑍 > 𝑡𝑡)�𝑑𝑑𝑑𝑑.
∞

0

∞

−∞
 

 

In case 𝑔𝑔 is differentiable and the cumulative distribution function 𝐹𝐹𝑋𝑋  is 

continuous, the risk measure may also be computed as 
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𝜌𝜌(𝑋𝑋) = 𝐸𝐸ℙ0 [𝑋𝑋𝑋𝑋′(1 − 𝐹𝐹𝑋𝑋(𝑋𝑋))] = 𝐸𝐸ℚ[𝑋𝑋]. (3) 

 

Where ℚ is the worst-case measure relating to Z. Now, an explicit formula is found 

for risk measure with distortion functions, which will be used later on. 

 

 

3.3 Dynamic Capital Allocation with Using Distor tion Risk Measures 
 

As it is discussed in Chapter 3.1, no incentive is produced for any 

subportfolio to leave the pool. Therefore, Tsanakas (2004) formulised the 

requirement via the concept of the “fuzzy core” (Aubin, 1981) as: 

 

𝐶𝐶 = �𝑑𝑑 ∈ ℝ𝑛𝑛��𝑑𝑑𝑗𝑗 = 𝜌𝜌(𝑍𝑍)  and  𝜌𝜌(𝑍𝑍𝑢𝑢) ≥�𝑢𝑢𝑗𝑗𝑑𝑑𝑗𝑗∀𝑢𝑢 ∈ [0,1]𝑛𝑛
𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑗𝑗=1

� 

 

where the fuzzy core, C, will consist of all allocations, dC, that satisfy (1) and do not 

allocate more capital to any portfolio than its individual risk assessment, were it not 

part of the pool. In case of a coherent risk measure, the fuzzy core is convex, 

compact and non-empty (Aubin, 1981). In addition, if 𝜌𝜌(𝑍𝑍𝑤𝑤) is differentiable at the 

n-vector of ones, 𝑢𝑢 = 𝟏𝟏, then the fuzzy core consists only of the gradient vector of 

𝜌𝜌(𝑍𝑍𝑤𝑤) at 𝑢𝑢 = 𝟏𝟏 (Aubin, 1981): 

 

𝑑𝑑𝑖𝑖𝐶𝐶 = �𝜕𝜕𝜕𝜕(𝑍𝑍𝑤𝑤)
𝜕𝜕𝑤𝑤𝑖𝑖

�
𝑤𝑤𝑗𝑗 = 1 ∀𝑗𝑗
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In the case of distortion risk measures, assuming that conditional densities are 

continuous, then using quantile derivatives (Tasche, 2000b) and using the quantile 

representation of the Choquet integral (Denneberg, 1994), Tsanakas and Barnett 

(2003) revealed that 𝜌𝜌(𝑍𝑍𝑤𝑤) is differentiable in 𝑢𝑢 and, by direct calculation, attained 

the following formula for the unique allocation in the fuzzy core: 

 

𝑑𝑑𝑖𝑖𝐶𝐶 = 𝐸𝐸[𝑋𝑋𝑖𝑖𝑔𝑔′(1 − 𝐹𝐹𝑍𝑍(𝑍𝑍))] (4) 

 

 

3.4 Updating Capital Allocation of Distor tion Risk Measures 
 

Distorted probability measures can be interpreted in at least two following 

ways as an expression of risk aversion (Yaari, 1987) and as an expression of 

ambiguity (Ellsberg, 1961). These interpretations direct to different “updating rules”, 

i.e. rules for revising risk capital when circumstances change (for instance, part of 

the business is reinsured; a subsidiary is sold or added, etc.). 

 

The allocation rule for risk capital is based on the collection of probability 

measures 𝒫𝒫 described by  

 

𝒫𝒫 = �ℙ�ℙ(𝐴𝐴) ≤ 𝑔𝑔�ℙ0(𝐴𝐴)� for all event sets 𝐴𝐴�. 

 

Upon the arrival of new information represented by an event set B, the collection 𝒫𝒫 

may be adjusted to  
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𝒫𝒫′ = {ℙ(∙ |𝐵𝐵)|ℙ ∈ 𝒫𝒫}   (“Ellsberg”) 
or to 

 

𝒫𝒫′′ = �ℙ�ℙ(𝐴𝐴) ≤ 𝑔𝑔�ℙ0(𝐴𝐴|𝐵𝐵)�  for all event sets 𝐴𝐴� (“Yaari”) 
 

In the case of Ellsberg-type conditioning, the rule is 𝒫𝒫′ = {ℙ(∙ |𝐵𝐵)|ℙ ∈ 𝒫𝒫}. 

The updated risk capital is determined by a Choquet integral in which instead of 

𝑔𝑔(𝑆𝑆𝑋𝑋(𝑥𝑥)) the following term: 

 

𝑔𝑔 �𝑆𝑆𝑋𝑋|𝐵𝐵(𝑥𝑥);ℙ0(𝐵𝐵)� 

 

will be used where 𝑆𝑆𝑋𝑋 = 1 − 𝐹𝐹𝑋𝑋  decumulative distribution function ie, 

 

𝑆𝑆𝑋𝑋|𝐵𝐵(𝑥𝑥) = ℙ0(𝑋𝑋 > 𝑥𝑥|𝐵𝐵) 

 

and the updated distortion function is 

 

𝑔𝑔𝑢𝑢(𝑠𝑠, 𝑝𝑝) =
𝑔𝑔(𝑠𝑠𝑠𝑠)

1 + 𝑔𝑔(𝑠𝑠𝑠𝑠) − 𝑔𝑔(1 − 𝑝𝑝 + 𝑠𝑠𝑠𝑠)
, 𝑝𝑝 = ℙ0(𝐵𝐵). 

 

The updated distortion function has the same characteristics with the original 

distortion function. It is continuous, nondecreasing, concave, and satisfies 𝑔𝑔𝑢𝑢(0,𝑝𝑝) =

0 and 𝑔𝑔𝑢𝑢(1,𝑝𝑝) = 1. Additionally, more distortion is observed since 𝑔𝑔𝑢𝑢(𝑠𝑠;𝑝𝑝) ≥ 𝑔𝑔(𝑠𝑠) 

for all 𝑝𝑝 ∈ [0,1] and all 𝑠𝑠 ∈ [0,1]. 
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If the distortion risk measures are conditioned on an event of probability zero, 

a limit argument proposed that (Tsanakas, 2004) 

 

𝑔𝑔𝑢𝑢(𝑠𝑠; 0) = lim
𝑝𝑝↓0

𝑔𝑔𝑢𝑢(𝑠𝑠;𝑝𝑝)
𝑠𝑠

𝑠𝑠 + (𝑔𝑔′(1) 𝑔𝑔′(0)⁄ )(1 − 𝑠𝑠)
. (5) 

 

𝑔𝑔𝑢𝑢(𝑠𝑠; 0) in equation (5) is a new class of distortion functions determined by 

𝑔𝑔′(1) 𝑔𝑔′(0)⁄ ≤ 1. Furthermore, when conditioning a distorted probability on a zero 

probability event, for any type of differentiable distortion function the updated 

distortion function will fit in the same class. Also note that, the updated distortion 

function only depends on the values of the first derivative of the original distortion 

function at 0 and 1 (Tsanakas, 2004). 

 

 

3.5 k-number  Approach 
 

For the cases when the events on which the liability processes are conditioned 

have zero probability, the updated distortion function (5) can be rewritten as 

 

𝑔𝑔𝑢𝑢(𝑠𝑠; 0) = 𝑔𝑔𝑘𝑘(𝑠𝑠; 𝑘𝑘) =
𝑠𝑠

𝑠𝑠 + 𝑘𝑘(1 − 𝑠𝑠)
 

 

where 𝑘𝑘 = 𝑔𝑔′(1) 𝑔𝑔′(0)⁄ . For the cases when 𝑔𝑔′(1) ≠ 0 and 𝑔𝑔′(0) ≠ ∞, 𝑘𝑘 ∈ (0,1) 

must be. This is because 𝑔𝑔′(1) ∈ [0,1] and 𝑔𝑔′(0) ∈ [1,∞] as the property of all 

distortion functions. 
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 In a dynamic capital allocation model, to measure the risk of the portfolio and 

the allocation of risk capital, updating distortion functions must be used in equation 

(3) and (4). In case the liability processes are conditioned have zero probability: 

 

𝜌𝜌(𝑋𝑋𝑖𝑖) = 𝐸𝐸�𝑋𝑋𝑖𝑖𝑔𝑔′𝑢𝑢(𝑠𝑠; 0)� 

𝑑𝑑𝑖𝑖𝐶𝐶 = 𝐸𝐸[𝑋𝑋𝑖𝑖𝑔𝑔′𝑢𝑢(𝑧𝑧; 0)] 

 

where 𝑠𝑠 = 𝑆𝑆𝑋𝑋𝑡𝑡|𝐵𝐵
𝑖𝑖 (𝑋𝑋𝑇𝑇) and 𝑧𝑧 = 𝑆𝑆𝑍𝑍𝑇𝑇 |𝐵𝐵

(𝑍𝑍𝑇𝑇). Then, for these derivatives of updated 

distortion functions, one can use the derivative of 𝑔𝑔𝑘𝑘(𝑠𝑠; 𝑘𝑘): 

 

𝑔𝑔′𝑘𝑘(𝑠𝑠; 𝑘𝑘) =
𝑘𝑘

(𝑠𝑠 + 𝑘𝑘(1 − 𝑠𝑠))2 

 

and hence, 

 

𝜌𝜌(𝑋𝑋𝑖𝑖) = 𝐸𝐸 �𝑋𝑋𝑖𝑖
𝑘𝑘

(𝑠𝑠 + 𝑘𝑘(1 − 𝑠𝑠))2� 

𝑑𝑑𝑖𝑖𝐶𝐶 = 𝐸𝐸 �𝑋𝑋𝑖𝑖
𝑘𝑘

�𝑧𝑧 + 𝑘𝑘(1 − 𝑧𝑧)�
2� 

 

So, in general, without selecting any specific distortion function, 𝑔𝑔′𝑘𝑘(𝑠𝑠; 𝑘𝑘) 

can be used to determine the risk measure 𝜌𝜌(𝑋𝑋𝑖𝑖) and the dynamic capital allocation, 

𝑑𝑑𝑖𝑖𝐶𝐶 . This representation is simpler in notations. It is no more necessary to deal with 

distortion functions. All distortion function such that 𝑔𝑔(1) ≠ 0 and 𝑔𝑔′(0) ≠ ∞, can 

be mapped into a k-number. 
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Another observation about 𝑘𝑘 ∈ (0,1) is that it can be regarded as the risk 

aversion in sense of diversification benefit. As 𝑘𝑘 → 1  

 

𝐸𝐸 �𝑋𝑋𝑖𝑖
𝑘𝑘

(𝑠𝑠 + 𝑘𝑘(1 − 𝑠𝑠))2� − 𝐸𝐸 �𝑋𝑋𝑖𝑖
𝑘𝑘

�𝑧𝑧 + 𝑘𝑘(1 − 𝑧𝑧)�
2� → 0 

�𝜌𝜌(𝑋𝑋𝑖𝑖) − 𝑑𝑑𝑖𝑖𝐶𝐶� → 0 

 

The diversification benefit, which is the difference between measured risk of 

the liability and the capital allocated to that liability, decreases. This indicates that 

the company uses a conservative approach towards diversification benefit. A higher 

k-number reflects that the degree of distortion is lower. In the numerical example, 

this concept would be more clear. 

 

What should be the optimal k-number? It depends on the information about 

liabilities in the portfolio. In case, the dependence structure between the liabilities are 

unknown or the regulatory authorizes requires more risk capital, then the company 

should choose a higher k-number. For example, it is not always attainable to have 

correlations of liabilities in a portfolio. Then one might consult for an expert opinion. 

At that point, more conservative approach towards the diversification benefit would 

be convenient since correlations are not accurate. 
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CHAPTER IV 
 

NUMERICAL EXAMPLE 
 

 

 

The financial firms such as pension, insurance, etc. collect their liabilities 

from different business lines into a common pool and then determine their risk 

capital by using different risk measures such as VaR. 

 

This example is an application of distortion risk measures. Dynamic capital 

allocation methodology will be applied to the pooled instruments (liabilities) 

corresponds to correlated Brownian motions with drift, which means a continuous 

time stochastic process with a trend. As Tsanakas (2004) suggests, by simulating 

paths of the liability processes, the relationship between liabilities’ correlation and 

capital allocation can be demonstrated. Since Brownian motions’ increments are 

multi-normally distributed, an explicit calculation of the aggregate liability process is 

possible. 

 

 

4.1 The Distor tion Function 
 

The exponential distortion function that will be used is (see table 3): 
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𝑔𝑔(𝑥𝑥) =
1 − exp(−𝑥𝑥 𝑝𝑝⁄ )
1 − exp(−1 𝑝𝑝⁄ )

. (6) 

 

The function has the following derivative: 

 

𝑔𝑔′(𝑥𝑥) =
(1 𝑝𝑝⁄ )exp(−𝑥𝑥 𝑝𝑝⁄ )
1 − exp(−1 𝑝𝑝⁄ )

. 

 

and since the events on which the liability processes has zero probability, the updated 

distortion function (5) becomes 

 

𝑔𝑔𝑢𝑢(𝑠𝑠; 0) =
𝑠𝑠

𝑠𝑠 + exp(−1 𝑝𝑝⁄ )(1 − 𝑠𝑠)
 

 

Figure 1 shows the functions 𝑔𝑔(𝑠𝑠) and 𝑔𝑔𝑢𝑢(𝑠𝑠; 0) for 𝑝𝑝 = 1.4

 

  

 

4.2 Application 
 

For this application by using the distortion function (6), the example of 

Tsanakas (2004) is reviewed by using different parameters. The pool consists of 

three liabilities 𝑋𝑋𝑡𝑡 = [𝑋𝑋𝑡𝑡1 𝑋𝑋𝑡𝑡2 𝑋𝑋𝑡𝑡3]′ : 

 

𝑋𝑋𝑡𝑡 = 𝛼𝛼𝛼𝛼𝛼𝛼 + 𝛽𝛽𝑊𝑊𝑡𝑡 , (7) 
 

where 𝑊𝑊𝑡𝑡 = [𝑊𝑊𝑡𝑡
1 𝑊𝑊𝑡𝑡

2 𝑊𝑊𝑡𝑡
3]′ is a three-dimensional Brownian motion such that 

 
                                                 
4 Note that for exponential distortion functions 𝑝𝑝 = 1 can be chosen. 
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Figure 1: Exponential and updated exponential distortion functions (𝐩𝐩 = 𝟏𝟏). 
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�
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�. 

 

Equation (7) means, three liabilities follows a stochastic process where 𝛼𝛼 is the drift 

term indicating the trend through time and 𝛽𝛽 indicates the volatility effect. In case 

𝛽𝛽 = 0 there exists no randomness. 

 

Hence, each of the individual liability processes 𝑋𝑋𝑡𝑡𝑖𝑖  is a Brownian motion 

with volatility {2/3, 2/3, √3/3} and drift {0.2, 0.3, 0.4}, respectively. The 

correlations between each individual liability 𝑋𝑋𝑡𝑡𝑖𝑖  and the aggregate liability 𝑍𝑍𝑡𝑡 =

∑𝑋𝑋𝑡𝑡𝑖𝑖  at T are (See Tsanakas, 2004) 
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𝑟𝑟1 = 0.6786,   𝑟𝑟2 = 0.2811,   𝑟𝑟3 = 0.9459. 

 

Applying the equation (3) and (4) by the exponential distortion function with 

𝑝𝑝 = 1, the risk and the capital allocated to each liability 𝑋𝑋𝑡𝑡𝑖𝑖  can be determined as 

follows: 

 

𝜌𝜌�𝑋𝑋𝑡𝑡𝑖𝑖� = 𝐸𝐸 �𝑋𝑋𝑡𝑡𝑖𝑖𝑔𝑔′ 𝑢𝑢 �𝑆𝑆𝑋𝑋𝑡𝑡𝑖𝑖|𝐵𝐵𝑡𝑡(𝑋𝑋𝑇𝑇); 0� �𝐵𝐵𝑡𝑡�, 

𝑑𝑑𝑡𝑡𝑖𝑖 = 𝐸𝐸�𝑋𝑋𝑡𝑡𝑖𝑖𝑔𝑔′𝑢𝑢�𝑆𝑆𝑍𝑍𝑇𝑇 |𝐵𝐵𝑡𝑡(𝑍𝑍𝑇𝑇); 0��𝐵𝐵𝑡𝑡�. 

 

where 𝐵𝐵𝑡𝑡  is the information known at time t (Tsanakas, 2004). 

 

. The path of each liability 𝑋𝑋𝑡𝑡𝑖𝑖   is simulated with respect to equation (7) with 

time horizon 𝑇𝑇 = 5.  The variables 𝜌𝜌𝑡𝑡�𝑋𝑋𝑡𝑡𝑖𝑖� and 𝑑𝑑𝑡𝑡𝑖𝑖  are very difficult to calculate 

directly. So, a simulation approach is used in order to determine the capital allocation 

and risk measure.5

                                                 
5 See Appendix for the codes of process. 

 In Figure 2 paths of the individual liability processes 𝑋𝑋𝑡𝑡1, 𝑋𝑋𝑡𝑡2, 𝑋𝑋𝑡𝑡3 

are illustrated. In Figure 3 the risk measure of the aggregate liability, 𝜌𝜌|𝐵𝐵𝑡𝑡(𝑍𝑍𝑡𝑡) and the 

sum of the risks of the individual liabilities, ∑𝜌𝜌|𝐵𝐵𝑡𝑡(𝑋𝑋𝑡𝑡
𝑖𝑖) are examined where the 

benefit of pooling can be observed as the difference between the two lines. Finally, 

in Figures 4-6, the capital allocated of liability, 𝑑𝑑𝑡𝑡𝑖𝑖 , is compared with the risk of the 

liability 𝑋𝑋𝑡𝑡𝑖𝑖 , 𝜌𝜌|𝐵𝐵𝑡𝑡(𝑋𝑋𝑡𝑡
𝑖𝑖). The difference between each line indicates the pooling benefit 

of each liability. The plots also reveal that lower correlation of 𝑋𝑋𝑡𝑡𝑖𝑖  with 𝑍𝑍𝑡𝑡  derives 

better benefit from pooling because of diversification effect.  
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Figure 2: Simulated path of individual liabilities, 𝑋𝑋𝑡𝑡1, 𝑋𝑋𝑡𝑡2, 𝑋𝑋𝑡𝑡3. 

Figure 3: Risk measure of aggregate liability versus sum of risks of individual liabilities. 
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Figure 4: Risk measure, 𝝆𝝆|𝑩𝑩𝒕𝒕(𝑿𝑿𝒕𝒕
𝟏𝟏), and capital, 𝒅𝒅𝒕𝒕𝟏𝟏, allocated to the first liability, 𝑿𝑿𝒕𝒕𝟏𝟏.

Figure 5: Risk measure, 𝝆𝝆|𝑩𝑩𝒕𝒕(𝑿𝑿𝒕𝒕
𝟐𝟐), and capital, 𝒅𝒅𝒕𝒕𝟐𝟐, allocated to the second  liability, 𝑿𝑿𝒕𝒕𝟐𝟐. 
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Figure 6: Risk measure, 𝝆𝝆|𝑩𝑩𝒕𝒕(𝑿𝑿𝒕𝒕
𝟑𝟑), and capital, 𝒅𝒅𝒕𝒕𝟑𝟑, allocated to the third liability, 𝑿𝑿𝒕𝒕𝟑𝟑. 

 

For this example, the k-number approach could also be used that is 𝑘𝑘 =

0.3678 for the exponential distortion function. Then, one gets exactly the same 

results as above. In Figure 7 and 8, the liability process of Xt
1 is repeated for 𝑘𝑘 = 0.1 

and 𝑘𝑘 = 0.9 respectively. These figures reveal that when k increases the 

diversification benefit diminishes. Hence, for the cases when correlations among 

liabilities cannot be determined exactly, for the worst case scenario one can choose a 

higher k-number. 
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Figure 7: When 𝒌𝒌 = 𝟎𝟎.𝟏𝟏, risk measure and capital allocated to the first liability, 𝐗𝐗𝐭𝐭𝟏𝟏. 

 
Figure 8: When 𝒌𝒌 = 𝟎𝟎.𝟗𝟗, risk measure and capital allocated to the first liability, 𝐗𝐗𝐭𝐭𝟏𝟏. 
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CHAPTER V 
 

CONCLUSION 
 

 

 

In this study, the risk capital allocation problem of pooled instruments of 

risky positions was examined. Main risk measures and allocation methods that are 

used in the literature are reviewed. 

 

In the previous chapter, an application of distortion measures is studied. It is 

shown that the allocation amount of a liability strongly depends on its correlation 

with aggregate liability.  While the correlation increases, the benefit from pooling 

decreases. This means that when adding a risky portfolio into a pooled portfolio, the 

manager should seek the liabilities with low correlations (with aggregate portfolio) in 

order to get a diversification benefit. 

 

For the cases when the events on which the liability processes are 

conditioned have zero probability, the k-number approach could be used without 

considering any distortion function. The k-number can be seen as risk aversion from 

diversification benefit. Since in real life, determining correlations among liabilities is 

a difficult job, one can use a higher k-number for considering worst-case scenario. 
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APPENDIX 
 

The Matlab codes of the simulation process used in Chapter IV are provided. 

 
%   Dynamic Capital Allocation with Distortion Risk Measures 
%   X_t = alpha*dt + beta*W_t 
  
T=5; t(1)=0; 
alpha = [0.2;0.3;0.4];          % Drift 
beta = (1/3)*[sqrt(2) 0 sqrt(2);-sqrt(2) sqrt(2) 0;1 1 1];  % 
Volatility 
r = correl(beta)'               % Correlation r_i 
X = brownian(100,alpha,beta,T); % Simulated path of individual 
liabilities 
Z = sum(X,2);                   % Aggregate liability 
  
for i=1:100 
    Y(i,:) = allocate(X(i,:),Z(i),alpha,beta,T,t(i),i); 
    t(i+1) = i*0.05; 
end 
Y(101,:)=[X(101,1) X(101,1) X(101,2) X(101,2) X(101,3) X(101,3) 
sum(X(101,:))]; 
  
X1=[Y(:,1) Y(:,2)];             % The capital allocated to liability 
1 and its risk 
X2=[Y(:,3) Y(:,4)]; 
X3=[Y(:,5) Y(:,6)]; 
% The risk of aggregate liability and total risks of individual 
liabilities 
X4=[Y(:,7) X1(:,2)+X2(:,2)+X3(:,2)]; 
 
 
% Correlation r_i between XT and ZT 
  
function r = correl(b) 
for i=1:3 
    c = varcor(i,b,1,0) 
    r(i) = c(1,2)/sqrt(c(1,1)*c(2,2)); 
end 
 
 
% Variance-Covariance matrix 
  
function res = varcor(i,b,T,t) 
c(1,1)=sum(b(i,:).^2); c(1,2)=0; 
for j=1:3 
    for k=1:3 
        c(1,2)=c(1,2) + b(i,j)*b(k,j); 
    end 
end 
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c(2,1)=c(1,2); 
c(2,2)=sum(b(:,1)).^2+sum(b(:,2)).^2+sum(b(:,3)).^2; 
res = (T-t)*c; 
 
 
% brownian(N,b,sigma,T) simulates a one-dimensional Brownian motion 
on [0,1]  
% using normally distributed N steps 
  
function [B s] = brownian(N,a,s,T) 
  
t = (0:1:N)'/N;                         % t is the column vector [0 
1/N 2/N ... 1] 
W1 = [0; cumsum(randn(N,1))]/sqrt(N);   % Running sum of N(0,1/N) 
variables 
W2 = [0; cumsum(randn(N,1))]/sqrt(N); 
W3 = [0; cumsum(randn(N,1))]/sqrt(N); 
W=[W1 W2 W3]; 
t = t*T; 
W = W*sqrt(T); 
  
B = (a*t' + s*W')';                     % The Brownian Motion 
s = B(N+1,:);                           % The final value of B.M. 
 
 
% Capital Allocation 
  
function s = allocate(X,Z,a,b,T,t,i) 
  
az = sum(a);                            % Drift of Z 
c1 = varcor(1,b,T,t);                   % Covariance matrix of 
liability 1 
c2 = varcor(2,b,T,t); 
c3 = varcor(3,b,T,t); 
XT = (X'+a*(T-t))';                     % Mean Xi 
ZT = Z+az*(T-t);                        % Mean Z 
  
% Now, we simulate 10000 future scenarios for the movement of each 
% liabilities and use the final value to calculate the risk and 
allocated 
% capital for each of them 
s1=0;s2=0;s3=0;s4=0;s5=0;s6=0;s7=0; 
for q=1:1000 
    [B s] = brownian(101-i,a,b,T-(i-1)*0.05); 
    Rx = s + X;                         % Simulated XT value 
    Rz = sum(s) + Z;                    % Simulated ZT value 
    s1 = s1 + Rx(1)*g_u(Rz,ZT,sqrt(c1(2,2)));           % Allocation 
of L1 
    s2 = s2 + Rx(1)*g_u(Rx(1),XT(1),sqrt(c1(1,1)));     % Risk of L2 
    s3 = s3 + Rx(2)*g_u(Rz,ZT,sqrt(c1(2,2))); 
    s4 = s4 + Rx(2)*g_u(Rx(2),XT(2),sqrt(c2(1,1))); 
    s5 = s5 + Rx(3)*g_u(Rz,ZT,sqrt(c1(2,2))); 
    s6 = s6 + Rx(3)*g_u(Rx(3),XT(3),sqrt(c3(1,1))); 
    s7 = s7 + Rz*g_u(Rz,ZT,sqrt(c1(2,2)));              % Risk of 
aggregate Liability 
end 
s = [s1 s2 s3 s4 s5 s6 s7]/1000;           % Expected results of 
each X_t 
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% The derivative of updated exponential distortion function 
  
function g = g_u(Z,ZT,v) 
s = 1- normcdf(Z,ZT,v);         % Decumulative distribution function 
of Z 
g = (s+exp(-1)*(1-s))^(-1)-s*(1-exp(-1))*((1-exp(-1))*s+exp(-1))^(-2); 
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