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ABSTRACT

DOPPLER FREQUENCY ESTIMATION IN PULSE

DOPPLER RADAR SYSTEMS

Hamza Soğancı

M.S. in Electrical and Electronics Engineering

Supervisor: Assist. Prof. Dr. Sinan Gezici

August 2009

Pulse Doppler radar systems are one of the most common types of radar sys-

tems, especially in military applications. These radars are mainly designed to

estimate two basic parameters of the targets, range and Doppler frequency. A

common procedure of estimating those parameters is matched filtering, followed

by pulse Doppler processing, and finally one of the several constant false alarm

rate (CFAR) algorithms. However, because of the structure of the waveform

obtained after pulse Doppler processing, CFAR algorithms cannot always find

the Doppler frequency of a target accurately. In this thesis, two different algo-

rithms, maximum selection and successive cancelation, are proposed and their

performances are compared with the optimal maximum likelihood (ML) solution.

These proposed algorithms both utilize the advantage of knowing the waveform

structure of a point target obtained after pulse Doppler processing in the Doppler

frequency domain. Maximum selection basically chooses the Doppler frequency

cells with the largest amplitudes to be the ones where there is a target. On the

other hand, successive cancelation is an iterative algorithm. In each iteration,

it finds a target that minimizes a specific cost function, until there are no more
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targets. The performances of these algorithms are investigated for several dif-

ferent point target scenarios. Moreover, the performances of the algorithms are

tested on some realistic target models. Based on all those observations, it is

concluded that maximum selection is a good choice for high SNR values when

a low-complexity algorithm is needed, on the other hand, successive cancelation

performs almost as well as the optimal solution at all SNR values.

Keywords: Pulse Doppler Radar, Doppler Frequency, Matched Filtering, Pulse

Doppler Processing, CFAR, Maximum Likelihood.
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ÖZET

DARBE DOPPLER RADAR SİSTEMLERİNDE DOPPLER

FREKANSI KESTİRİMİ

Hamza Soğancı

Elektrik ve Elektronik Mühendisliḡi Bölümü Yüksek Lisans

Tez Yöneticisi: Yard. Doç. Dr. Sinan Gezici

Ağustos 2009

Darbe Doppler radar sistemleri özellikle askeri uygulamalarda sıkça kullanılan

radar sistemlerinden biridir. Bu radarlar temelde hedeflerin iki önemli parame-

tresi olan mesafe ve Doppler frekanslarını kestirmek için tasarlanmıştır. Bunu

yapmanın en genel yolu, önce uyumlu filtreleme, sonra darbe Doppler işleme ve

son olarak da pek çok farklı Sabit Yanlış Alarm Oranlı (SYAO) algoritmalardan

birinin uygulanmasıdır. Ancak darbe Doppler işlemeden sonra elde edilen sinyal

yapısı yüzünden, SYAO algoritmaları hedeflerin Doppler frekanslarını hassas bir

şekilde kestiremezler. Bu tezde Maksimum Seçim ve Ardışık Çıkarma adıyla iki

değişik algoritma önerildi ve bu algoritmaların performası optimal çözüm olan

Maksimum Olabilirlik çözümüyle karşılaştırıldı. Önerilen bu algoritmaların her

ikisi de nokta bir hedeften gelen sinyalin darbe Doppler işlemeden sonra elde

edilen yapısının bilinmesi avantajını kullanmaktadır. Maksimum Seçim algorit-

ması en yüksek değerli Doppler frekans hücrelerini hedeflerin bulunduğu hücreler

olarak seçer. Ardışık Çıkarma algoritması ise tekrarlanan bir algoritmadır. Her

tekrarda bir maliyet fonksiyonunun en küçük değerini veren bir hedef bulur ve

bunu hiçbir hedef kalmayana kadar tekrar eder. Bu algoritmaların performansları

pek çok değişik nokta hedef senaryosu için analiz edildi. Ayrıca bu algoritmaların
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performansları bazı gerçekçi hedef modelleri üzerinde de test edildi. Bütün bu

gözlemlerin sonucunda, Maksimum Seçim algoritmasının yüksek sinyal gürültü

oranlarında (SGO) ve basit algoritmalara ihtiyaç duyulduğu durumlarda kul-

lanılabileceği görüldü. Diğer taraftan, Ardışık Çıkarma algoritmasının bütün

SGO değerlerinde optimal çözüme yakın bir performans gösterdiği saptandı.

Anahtar Kelimeler: Darbe Doppler Radarı, Doppler Frekansı, Uyumlu Fil-

treleme, Darbe Doppler İşleme, SYAO, Maksimum Olabilirlik.
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thesis, and to Dr. Fatma Çalışkan for sharing the realistic target models with

me for the studies in Chapter 5.

I wish to thank to all my colleagues in EE-514, M. Burak Güldoğan, Y.Kemal
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Chapter 1

INTRODUCTION

1.1 Objectives and Contributions of This Work

“Radio Detection And Ranging”, which is the acronym for the word radar actu-

ally implies the function of a radar. All Radars are typically designed to detect

targets and to find their ranges. Pulse Doppler radars, which is a special type

of radar, are designed to not only provide range estimates but also to provide

Doppler velocities of the detected targets. The Doppler velocity is the radial ve-

locity of the detected target and hence provides important information for both

the classification and the tracking of the detected targets.

Using a multi pulsed waveform facilitates the estimation of the Doppler fre-

quency. The reflection after each pulse comes with the same delay basically,

which determines the range of the targets, but the spectral analysis of each

pulse’s corresponding range bin gives the Doppler frequency of the target at that

range [1].

A general detection procedure of pulse Doppler radars consists of three steps.

The first step of this procedure is matched filtering. It is known that matched
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filters are the receivers that maximizes the signal-to-noise ratio (SNR) [2]. In the

second step, pulse Doppler processing is performed, which is simply taking the

discrete Fourier transform (DFT) of the same range bins of each pulse. After

these two steps, a detection matrix is obtained. Each element of this matrix

corresponds to a specific range and Doppler frequency pair. At the final step,

each of these elements is tested to determine whether there is a target at that

specific range and Doppler frequency pair. This test is generally performed by

using one of the several different constant false alarm rate (CFAR) algorithms.

After pulse Doppler processing, the observed waveform in the Doppler domain

has a sinc shape with high side lobes [1]. These high side lobes cause the CFAR

algorithms to make mistakes, and also they can be detected as targets. Therefore,

the Doppler frequency of the target at that range may not be found. The most

common solution to this problem is windowing the data before pulse Doppler

processing. But this solution comes with its own problems. Even though win-

dowing reduces the side lobes, it also reduces the main lobe, which decreases

the detection performance of the CFAR algorithms. Also, windowing causes an

increase in the main lobe width, which decreases the accuracy of Doppler fre-

quency estimation [3]. Therefore, using these traditional algorithms, it is very

difficult to perform effective Doppler frequency estimation.

The waveform obtained after the pulse Doppler processing in the Doppler

domain is well-known for a point target except the amplitude of the received

signal and the Doppler frequency caused by the velocity of the target. In this

thesis, we propose solutions based on this known waveform structure. Since the

waveform is known except for some of its parameters and the noise is modeled as

Gaussian, the optimal solution can be obtained as the maximum likelihood (ML)

estimator [2], [4]. Since the optimal solution is very complex, we also propose

two suboptimal solutions. The first one is successive cancelation, which finds the

Doppler frequencies of the targets one by one in an iterative manner. In each

iteration, it finds one target that minimizes a cost function and then recreates
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the signal coming from that target and subtracts it from the received signal. It

repeats doing this until there are no more targets. The second algorithm is called

maximum selection, which simply uses the fact that the known waveform for a

point target achieves its maximum at the Doppler frequency of the target; hence,

it chooses the Doppler frequency bins with the largest amplitudes to be the ones

where there is a target. Both of these solutions yield promising results. Maxi-

mum selection is an algorithm with very low complexity. At high SNR values,

it performs very close to the optimal solution. Successive cancelation is a more

complex algorithm but it performs almost as well as the optimal solution at all

SNR values. These algorithms use the waveform model for a point target. How-

ever, they can still have reasonable performance for real targets, as investigated

in Chapter 5.

1.2 Organization of the Thesis

The organization of the thesis is as follows. In Chapter 2, basics of target detec-

tion in pulse Doppler radars are presented. First, general radar waveforms are

explained and then signal processing steps for pulse Doppler radars are discussed.

Finally, some CFAR detection algorithms are explained in detail.

In Chapter 3, the reasons that make the Doppler frequency estimation difficult

for traditional CFAR algorithms are listed. Then, the optimal solution for the

estimation of the Doppler frequency of a point target is obtained. Finally, two

suboptimal solutions, namely, successive cancelation and maximum selection, are

proposed.

Simulation results for five different scenarios of point targets are provided in

Chapter 4. For each of these scenarios, the performances of the optimal solution,

successive cancelation and maximum selection are compared.

3



In Chapter 5, some realistic target models are given and the performance of

the proposed algorithms are tested on those realistic target models.

Finally, Chapter 6 concludes the thesis by highlighting the main contributions

and listing possible topics for future research.
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Chapter 2

BASICS OF TARGET

DETECTION IN PULSE

DOPPLER RADAR SYSTEMS

In this chapter, radar waveforms are briefly introduced first. Then, basics of

matched filtering and pulse Doppler processing, which are the most common

procedures for processing pulse burst waveforms, are explained. Finally, fun-

damentals of target detection and constant false alarm rate (CFAR) detection

algorithms are studied.

2.1 Radar Waveforms

A generic radar waveform can be modeled as

x̃(t) = a(t) ej[Ωt+θ(t)] (2.1)

where Ω is the radio frequency (RF) carrier frequency, a(t) is the amplitude

modulation of the RF carrier, and θ(t) is the phase or frequency modulation of

5



the carrier [1]. The complex envelope of this waveform can be written as

x(t) = a(t) ejθ(t) . (2.2)

Radar waveforms can be categorized according to the two variables, a(t) and

θ(t), in equation (2.2). The amplitude modulating signal a(t) determines whether

the waveform is continuous or pulsed.For continuous wave (CW) waveforms, a(t)

is a constant, hence x(t) in equation (2.2) is in the form of a complex exponential.

For single pulse waveforms, a(t) is a pulse with a finite support; that is, signal

x(t) is nonzero only for the duration of the pulse. For pulse burst waveforms,

a(t) is the sum of shifted pulses. Various types of radar waveforms are illustrated

in Figure 2.1.
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Figure 2.1: a) CW waveform. b) Single pulse waveform. c) Pulse burst waveform.

Most of the radar systems achieve transmission and reception with the same

antenna. For such systems, pulsed waveforms are preferred as they facilitate

time multiplexing of transmission and reception at a single antenna. In that

case, the transmission is performed when a(t) is non-zero, and the radar gets

into reception mode when a(t) is zero. To achieve better Doppler resolution,
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pulse burst waveforms are used [1]-[8]. For single pulse waveforms, it is not

possible to obtain any Doppler resolution at all.

The radar waveforms can also be categorized according to θ(t). There are

significant variations according to the characteristics of θ(t). For example, the

waveform can be frequency modulated, and in general the modulation can be

linear or nonlinear. Phase modulation can also be used, which can be biphase

or polyphase. In addition, there can be no phase or frequency modulation at all

(cf. Figure 2.2).
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Figure 2.2: a) Waveform with no modulation. b) Frequency modulated wave-
form. c) Phase modulated waveform.

The main reason for applying frequency or phase modulation in radar wave-

forms is to achieve a better range resolution [1]-[8]. Without using these modu-

lations, the range resolution is limited to the duration of the transmitted pulses.

But due to concerns of energy and bandwidth, pulse durations cannot be smaller

than certain limits.
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2.2 Matched Filtering and Pulse Doppler Pro-

cessing

In order to achieve better detection performance, it is desired to have a higher

signal-to-noise ratio (SNR). Thus, it is important to have a receiver that maxi-

mizes the SNR. When the interference is modeled as white noise, the maximum

SNR is achieved with the well-known matched filter. For a transmitted waveform

x(t), the corresponding matched filter is given by

h(t) = x∗(TM − t) , (2.3)

where x∗(t) denotes the complex conjugate of x(t), and TM is the time instant

at which the SNR is maximized.

In this case, the output of the matched filter is the result of the following

convolution:

y(t) =

∫ ∞

−∞
r(s)h(t− s)ds =

∫ ∞

−∞
r(s)x∗(s + TM − t)ds , (2.4)

where r(t) is the received signal. From equation (2.4), it is observed that the

matched filter is actually a correlator that uses the transmitted waveform as the

reference signal. Therefore, the output of the matched filter is a replica of the

autocorrelation function of the transmitted waveform [1].

In the previous section, it was mentioned that frequency or phase modulated

waveforms are used to achieve better range resolution. This is due to the fact that

these waveforms have narrower autocorrelation functions than the waveforms

without any frequency or phase modulation [1]-[8].

The matched filter uses the whole transmitted waveform as the reference

signal. For pulse burst waveforms, the implementation of the matched filter can

be easily performed since it is enough to use only one pulse as the reference signal
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[1]. As it can be seen in Figure 2.3, the reflection signals after each transmitted

pulse is matched filtered with just one transmitted pulse.… … . … … .
....

T r a n s m i t t e d S i g n a lR e c e i v e d S i g n a lR e c e i v e dS i g n a l s A f t e rE a c hT r a n s m i t t e dP u l s e i sM a t c h F i l t e r e dw i t h t h eT r a n s m i t t e dP u l s e

A m p l i t u d eA m p l i t u d e T i m eT i m e

Figure 2.3: Match filtering process for pulse burst waveforms.

After this filtering operation, an M × N matrix is obtained, where M is

the number of pulses and N is the number of samples collected between the

transmission of consecutive pulses. This matrix will be used in pulse Doppler

processing.

The pulse Doppler processing is a technique for the spectral analysis of each of

the N columns of the matrix obtained after matched filtering [1]-[8]. Each of these

N columns corresponds to a delay (equivalently, range). For each of these range

bins, pulse Doppler processing makes an explicit spectral analysis, commonly

using the discrete Fourier transform (DFT). After this spectral analysis, the

9



resulting matrix becomes the input for a target detection unit. N bins in each row

of this new matrix correspond to range values, whereas M bins in each column

correspond to Doppler frequencies (velocities). The pulse Doppler processing can

be summarized as in Figure 2.4.

D F T i st a k e n f o re a c h r a n g eb i n
D a t a M a t r i x a f t e rM a t c h e d F i l t e r i n g D a t a M a t r i x a f t e rP u l s e D o p p l e rP r o c e s s i n g

R a n g eR a n g e
D o p p l e rF r e q u e n c y

Figure 2.4: Pulse Doppler processing.

In the previous section, it was mentioned that pulse burst waveforms are used

to improve the Doppler resolution. This is due to the fact that taking the DFT

of each column yields a spectrum that is periodic with a period of the pulse

repetition frequency (PRF) [1]-[8]. No matter what the number of pulses is, the

spectrum is always periodic with this same period. Therefore, if there are more

rows in the detection matrix, which corresponds to a larger number of pulses in

the waveform, the principal period of this spectrum will be sampled with more

points. As a result, if the same interval is sampled with more points, then the

Doppler resolution will be higher.

2.3 Target Detection and CFAR Algorithms

After matched filtering and pulse Doppler processing, the received signal takes

a form which is ready for target detection. As explained in the previous section,

10



after these processes an M ×N matrix is obtained. Each element of this matrix

corresponds to a specific range and Doppler frequency pair. Each of these ele-

ments is a candidate for possible targets. Using statistical hypothesis testing, a

decision is made for each of these elements, stating whether there is a target at

that range and Doppler frequency or not [2], [4].

Most of the common detection algorithms employ the observed signal to ob-

tain a threshold for the hypothesis testing of each of the elements in the detection

matrix. For the case in which the statistical distribution of the observed signal is

known, it is possible to choose the threshold such that the false alarm rate of the

hypothesis testing is constant. These algorithms are generally known as CFAR

detection algorithms. But in real life applications, the statistical distribution of

the observed signal is not known exactly. It is possible that the observed signal

consists of pure noise and clutter, or there can be a target in the environment

and the observed signal consists of noise, clutter and target. In such cases it is

necessary to estimate the power of noise and clutter, and to use that information

for setting the threshold [1]-[14].

There are various versions of CFAR algorithms, each of which has a different

way of estimating the power of noise and clutter. Basically, each of those algo-

rithms employs some of the cells in the detection matrix to obtain a threshold

for each and every cell in this matrix. After finding the threshold for each cell,

a decision is made for that cell. This procedure can be summarized as in Figure

2.5.

Different versions of CFAR algorithms differ basically in the choice of the

reference cells. One of the most common and basic types of CFAR algorithms

is cell averaging CFAR (CA-CFAR). This algorithm uses all the reference cells

as in Figure 2.5 to estimate the interference (noise+clutter) power. Using these

reference cells, an average for the interference power at the test cell is found.

Based on this average, a threshold is determined to make the false alarm rate
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Figure 2.5: General CFAR algorithm.

constant, and the decision is made according to that threshold [1]-[15]. All the

CFAR algorithms assume a basic distribution for the interference. For CA-CFAR,

the most common distributions are Gaussian and Weibull [16], [17].

For the cases in which all the reference cells are coming from a homogeneous

set, CA-CFAR performs well. Otherwise this algorithm needs to be modified.

For example, if there is another target in the reference cells, this causes the

estimated interference power to be higher than it really is. As a result, a higher

threshold is found, which may result in a miss detection. To solve this problem,

the smallest of cell averaging CFAR (SOCA-CFAR) algorithm is used. In this

algorithm, the reference cells are divided into two groups. Then, the group with

the smallest average power is used to determine the threshold [1], [15].

Another case of heterogeneous reference cells is the one with clutter edges.

When there is a clutter edge in the reference cells, SOCA-CFAR can produces

many false alarms. Since SOCA-CFAR uses the reference cells with the smaller

average, this may cause the threshold to be low and as a result clutter edges

can be detected as targets. To solve this problem, another similar algorithm, the
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greatest of cell averaging CFAR (GOCA-CFAR), is used. In this algorithm, again

the reference cells are divided into two groups, but this time the group with the

higher average power is used to determine the threshold. This algorithm reduces

the false alarms caused by clutter edges. However, the main problem with this

algorithm is that it is possible to miss detect two close targets as the threshold

is determined by using the reference cells that contain the other target [1], [15].

Another algorithm to solve the problem of two close targets is the trimmed

mean CFAR (TM-CFAR). This algorithm does not use a number of reference

cells with the highest power. In this way, it avoids setting a high threshold

because of another close target [1]. Another dynamic version of this algorithm is

the variably trimmed mean CFAR (VTM-CFAR). In that algorithm, the number

of reference cells that are used is not constant. Instead, the number of ignored

reference cells is decided after a preprocessing [18]-[20].

Another CFAR algorithm that performs well in the cases of close targets and

clutter edges is switching CFAR (S-CFAR). In this algorithm, in the first step,

all the reference cells are compared to a threshold. After that, if the number of

reference cells higher than this threshold is larger than a number, all the reference

cells are used to find the threshold for the test cell. Otherwise, only the reference

cells with power higher than the threshold are used [21].

The order statistics CFAR (OS-CFAR) is another algorithm, which performs

well in the case of two close targets. In this algorithm, all the reference cells are

sorted according to their powers. Then, the cell that corresponds to a specified

order is chosen and the power of this cell is used as the interference power at the

test cell [12], [15], [22].

In the case of heterogeneous interference at the reference cells, the adaptive

CFAR (A-CFAR) can be employed. In this algorithm, a homogeneous group
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of reference cells is found first. After that, only the cells that belong to the

homogeneous group are used to determine the threshold [23]-[25].
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Chapter 3

ESTIMATION OF TARGET

DOPPLER FREQUENCY

In this chapter, the signal model of a point target in the Doppler domain is

presented, and the difficulties for the CFAR algorithms to estimate the Doppler

frequencies of targets are explained based on that signal model. In addition,

the optimal solution for Doppler frequency estimation is obtained. Finally, two

suboptimal solutions are studied: First one is called the maximum selection

algorithm, which uses the cells with highest amplitudes to estimate the Doppler

frequencies of the targets; the second one is successive cancelation, which tries

to estimate the Doppler frequency of targets consecutively.

3.1 Signal Model of a Point Target in Doppler

Domain

In order to understand the basics of Doppler frequency estimation, it is essential

to write down the signal model of a point target at some specified range bin.

First of all, after matched filtering, if the velocity of the target is such that the
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there is no Doppler shift (i.e., no relative motion of the target with respect to

the radar), the received signal at the target’s range bin, which is known as slow

time received signal, is a constant; that is,

y[m] = A , m = 0, 1, . . . , M − 1 , (3.1)

where M is the number of pulses. The Fourier transform of this constant is

Y (f) = A
sin[πfMT ]

sin[πfT ]
e−jπ(M−1)fT , f ∈ [−PRF/2, +PRF/2) (3.2)

where T is the pulse repetition interval [1], [6], which is equal to 1/PRF . If the

velocity of the point target is such that there is a Doppler shift of fD, the slow

time received signal and its Fourier transform become

y[m] = Aej2πfDmT , m = 0, 1, . . . , M − 1 , (3.3)

Y (f − fD) = A
sin[π(f − fD)MT ]

sin[π(f − fD)T ]
e−jπ(M−1)(f−fD)T , f ∈ [−PRF/2, +PRF/2).

(3.4)

This waveform creates two problems decreasing the performance of traditional

CFAR algorithms. The first problem is the fact that this waveform has very

strong side lobes, especially when the number of pulses is small. Most pulse

Doppler radar systems transmit a signal with a number of pulses such as 16, 32,

64, 128. For example, the waveform in the Doppler domain for 32 pulses can

be seen in Figure (3.1), where A = 1 and fD = 0. The high side lobes of this

waveform cause the CFAR algorithms to result in a lot of false alarms. Also,

these side lobes make it very difficult to find the exact Doppler frequency of the

target since most of the cells at the range of the target is detected as possible

targets.

The most common solution to the side lobe problem is to window the slow

time received signal. Windowing reduces the side lobes effectively but they also

present new problems. Each window function has different characteristics but, in

general, these windows cause a decrease in the peak amplitude and SNR, which
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Figure 3.1: Magnitude of the Fourier transform of slow time received signal for
a point target.

decrease the detection performance. Also, windowing causes an increase in the

main lobe width, which decreases the accuracy of Doppler frequency estimation

[3]. These effects of windowing can be seen in Figure 3.2, which is the Doppler

spectrum of the same data in Figure 3.1, except that a Hamming window is

applied.

The second problem that the waveform given by equation (3.4) causes is the

fact that in practice this waveform is never observed. Since the frequency variable

in this waveform is continuous, the discrete time Fourier transform (DTFT) of

the slow time received signal is not computed. Instead of this, the discrete Fourier

transform (DFT), which is the sampled version of the DTFT, of the slow time

received signal is computed commonly [26]. The problem with computing the

DFT is that, since the DFT is the sampled version of the DTFT, it is possible that

this sampling process can miss the peak value of the DTFT. The DFT samples the

peak value as in Figure 3.3 when the Doppler frequency of the target coincides
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Figure 3.2: The magnitude of the Fourier transform of the windowed slow time
received signal from a point target.

with the frequency of one of the DFT samples. However, when the Doppler

frequency of the target does not coincide with one of the DFT sample frequencies,

the expected peak value is missed. Especially, when the Doppler frequency of the

target is exactly the halfway between two consecutive DFT sample frequencies,

the smallest amplitudes are observed as in Figure 3.4. Since it is not always

possible that the Doppler frequency of the target coincides with one of the DFT

sample frequencies, most of the time the peak value is missed, which decreases

the performance of the traditional CFAR algorithms. Also another problem is

that there are commonly two samples with larger amplitudes than the others

as in Figure 3.4, which makes it difficult to obtained a precise estimate of the

target’s Doppler frequency.

The most common solution to these problems is to increase the length of the

DFT. In that way, the frequency range is sampled with more points and this

decreases the possibility of missing the peak value [1]. The problem with this
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Figure 3.3: The magnitude of the DTFT of the slow time received signal from
a point target and the DFT samples when the Doppler frequency of the target
coincides with one of the DFT sample frequencies.
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Figure 3.4: The magnitude of the DTFT of the slow time received signal from a
point target and the DFT samples when the Doppler frequency of the target is
halfway between the two consecutive DFT sample frequencies.
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solution is that it increases the computational cost. Also, the number of cells in

the detection matrix is increased, which means that the number of times that

the CFAR algorithm is executed increases. Another solution is again windowing

the slow time received signal. As explained above, windowing increases the

width of the main lobe, which decreases the possibility of missing the peak value.

However, as discussed before, windowing decreases the SNR; hence, the detection

performance.

3.2 Optimal Solution for the Estimation of Tar-

get Doppler Frequency

The optimal solution for the estimation of target Doppler frequency is studied in

this section. First, the optimal solution for the case of one target is introduced.

Then, the optimal solution for multiple targets is derived. Finally, the optimal

solution without the knowledge of the number of targets is proposed.

3.2.1 Optimal Solution for One Target

As studied before, the Fourier transform of the slow time ideal received signal

for one point target is given by

Y (f −fD) = A
sin[π(f − fD)MT ]

sin[π(f − fD)T ]
e−jπ(M−1)(f−fD)T , f ∈ [−PRF/2, +PRF/2),

(3.5)

where M is the number of pulses, PRF is the radar’s pulse repetition frequency,

T is the pulse repetition interval, and fD is the Doppler shift caused by the

velocity of the target.

The ideal signal in (3.5) is not what we observe after pulse Doppler processing

in practice. Since the DFT is used instead of the DTFT, what we observe is the
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sampled version of equation (3.5). The observed signal in the absence of noise

can be expressed as

yA,fD
(i) = A

sin[π(fi − fD)MT ]

sin[π(fi − fD)T ]
e−jπ(M−1)(fi−fD)T for i = 1, 2, 3, . . . , M , (3.6)

where fi = −PRF/2 + (i− 1)(PRF/M).

Let s define the signal that would be observed in the absence of noise. In the

case of one target, s is equal to yA,fD
. The noise is modeled as complex Gaussian

noise with unit variance,

n ∼ CN (0, σ2I) , (3.7)

and the observed signal in the presence of noise is the sum of the ideal signal and

noise; that is,

r = s + n . (3.8)

In addition to noise, there are two unknown parameters in vector r. These two

parameters are A and fD that are defined in equation (3.5). An optimal solution

for estimating these parameters is the maximum likelihood (ML) solution [2].

The likelihood function in this case can be written as

L(r) =

1
2πMσ2M exp

{
−∑M

i=1
|r(i)−s(i)|2

2σ2

}

1
2πMσ2M exp

{
−∑M

i=1
|r(i)|2
2σ2

} . (3.9)

Then, after some manipulation, the log-likelihood function can be obtained as

log L(r) = k − 1

2σ2

{
M∑
i=1

|s(i)|2 − 2
M∑
i=1

Re{s∗(i)r(i)}
}

, (3.10)

where k represents a constant that does not depend on the unknown parameters.

The maximization of the log-likelihood function in equation (3.10) results in

arg max
A,fD

{
2

M∑
i=1

Re{s∗(i)r(i)} −
M∑
i=1

|s(i)|2
}

. (3.11)

Equation (3.11) finds the optimum values of A and fD that maximize the log-

likelihood function. The value of fD calculated via this equation is the result

of the optimal solution for estimating the Doppler frequency in the case of one

target.

21



3.2.2 Optimal Solution for Multiple Targets

In the case of one target, signal s, defined as the signal that would be observed

in the absence of noise, is equal to yA,fD
as discussed in Section 3.2.1. In equa-

tion (3.6), yA,fD
is defined to be the observed signal from just one point target

with amplitude A and whose velocity causes a Doppler shift of fD. In the case

of multiple, say k, targets, the definition of s needs to be generalized. Since

the signals coming from the targets will have different amplitudes and different

Doppler shifts, s can be written as

s =
k∑

i=1

AiyfDi
, (3.12)

where Ai and fDi
are the amplitude and the Doppler shift of ith target, respec-

tively.

The structure of the (log-)likelihood equations in (3.9)-(3.11) remains the

same for the case of k targets except that s is changed as in equation (3.12).

Then, the ML solution can be expressed as

arg max
A,fD

{
2

M∑
i=1

Re{s∗(i)r(i)} −
M∑
i=1

|s(i)|2
}

. (3.13)

The main difference of this equation from the one target case is that, in (3.13),

the maximization is performed over two vectors A and fD, which are both k

dimensional. For the one target case, the solution is the result of a 2 dimen-

sional optimization problem but for the case of k targets the dimension of the

optimization problem is 2k. It is straightforward to observe that the complexity

of the solution increases with the increasing number of targets.

3.2.3 Optimal Solution for Unknown Number of Targets

In the previous cases, the only unknown parameters are the Doppler shifts and

the amplitudes of the target signals, since the number of targets is assumed to be
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known. When the number of targets is unknown, another unknown parameter is

introduced into the estimation problem and the optimization procedure should be

performed accordingly. In this scenario, s, the signal component in the absence

of noise, should be indexed by the number of targets; that is,

sk =
k∑

i=1

AiyfDi
, k = 1, 2, . . . ,M . (3.14)

Again the equations in (3.9)-(3.11) can be employed to obtain the ML solu-

tion:

arg max
A,fD,k

{
2

M∑
i=1

Re{s∗k(i)r(i)} −
M∑
i=1

|sk(i)|2
}

, (3.15)

which now includes the number of targets as another unknown parameter. In-

cluding a new variable increases the complexity of this optimization problem

extremely, since the optimal parameter values need to be searched for all pos-

sible numbers of targets. In the case of one target, it was sufficient to solve an

optimization problem with only 2 parameters. Increasing the number of targets

increases the computational complexity in such a way that when there are k

targets, 2k parameters needed to be optimized. But when the number of targets

is unknown, the optimization problem must be solved for each possible number

of targets. For example, when M = 32, first an optimization problem with 2 pa-

rameters, then with 4 parameters, then with 6 parameters must be solved. And

this goes all the way up to 64 parameters. However instead of solving the opti-

mization problem in equation (3.15) for each posible number of targets we can

consider the largest possible number of targets for k and solve the optimization

problem. Then among these k targets the ones with their amplitudes larger than

a threshold can be selected as the detected targets. By doing this computational

complexity of the optimal solution can be decreased and also the algorithm can

avoid to match very weak targets to pure noise.

Since in practical applications, the number of targets is generally unknown

and the number of pulses is generally high, such as 32, 64 or 128, the optimal

solution is quite impractical to use due to its high computational complexity.
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3.3 Suboptimal Solutions

Since the high computational complexity of the optimal solution makes it quite

impractical, suboptimal solutions that are easier to implement are needed. Here

two suboptimal solutions will be proposed. Both of these solutions use the fact

that the waveform given by equation (3.6) is known except for some of its param-

eters. The first solution is very simple to implement and its complexity is very

low. The second one is a more complex solution but its performance is supposed

to be better and its complexity is still significantly lower than that of the optimal

solution in the previous section.

3.3.1 Maximum Selection

As discussed before, the signal model of a point target in the Doppler domain,

given by equation (3.4), is in the form of a sinc function. The nice property of

this signal model is that it achieves its maximum value at the target’s Doppler

frequency as it can be seen in Figure 3.1. Based on this fact, it can be concluded

that the Doppler cells with large amplitudes are more likely to be the ones that

include a target. The maximum selection algorithm relies on this observation

and results in the following simple two step algorithm.

1. Assume it is known that there are k targets.

2. Choose the k cells with the largest amplitudes to be the ones with the

targets.

This is a technique with very low complexity. Of course, the tradeoff is that

there are some weaknesses of this approach that needs extra attention. First

of all, as studied in Section 3.1, the observed signal is not the same as the one

in Figure 3.1, but a sampled version of it. When the Doppler frequency of
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Figure 3.5: The magnitude of the DTFT of the slow time received signal from
two point targets and the DFT samples.

the target does not coincide with one of the DFT sample frequencies, the peak

value is not sampled. The worst possible scenario in this situation is that the

Doppler frequency of the target is exactly the halfway between two consecutive

DFT sample frequencies. But even in that case two sample frequencies with the

largest amplitudes are very close to the actual Doppler frequency of the target as

can be seen in Figure 3.4. The problem in such a situation is that lower values

are observed, since the peak value is missed, and it is possible to miss these lower

values especially at low SNRs.

Another problem with this approach is that when there are more than one

target, a stronger target may block the detection of weaker targets. For example,

in Figure (3.5), if it is known that there are two targets, two cells with the largest

amplitudes are chosen and those two cells belong to the same target; hence the

weaker target is missed.
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3.3.2 Successive Cancelation

The successive cancelation technique uses the fact that, given A and fD, the

signal coming from a point target is completely known as it is given by equation

(3.6). This approach obtains the unknown parameters for one target first, and

using these parameters recreates the signal coming from that target. Then, it

subtracts the recreated signal from the observed signal. The technique repeats

this procedure until there are no more targets. The steps of the algorithm can

be listed as follows:

1. Assume it is known that there are k targets in the same range bin.

2. Find A and fD satisfying:

[Â f̂D] = arg min
A, fD

|r− yA,fD
|, fD ε [−PRF/2, +PRF/2] . (3.16)

3. Assume A and fD are the magnitude and the Doppler frequency of a target.

4. Generate vector yÂ,f̂D
according to equation (3.6).

5. Subtract yÂ,f̂D
from r in equation (3.8).

6. Repeat these steps k times.

The second step of the algorithm is actually the same as the maximization of

the likelihood function for the optimal solution for one target given by equation

(3.11). So this algorithm uses the optimal solution for one target successively as

long as there are no more remaining targets in the observed signal. The advantage

of this approach is that its complexity is lower than the optimal solution. In this

approach, when there are k targets, k different optimization problems with 2

parameters need to be solved. But as it is mentioned in Subsection 3.2.3, the

optimal solution requires to solve M different optimization problems. The first of

these optimization problems has 2 parameters, the second one has 4 parameters

and this goes all the way up to 2M parameters.
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3.3.3 Suboptimal Solutions with Unknown Number of

Targets

The suboptimal solutions in the previous sections assume that the number of

targets is known. However, in practical applications, it is not always possible to

know the number of targets. To handle this problem, it is necessary to find a

condition to stop the iterations.

For both suboptimal solutions, a threshold that satisfies a specific constant

false alarm rate is required. In order to obtain such a threshold, the assumption

of complex Gaussian noise with zero mean and unit variance, given by equation

(3.7), will be used. Consider independent and identically distributed (iid) noise

as

Z = X + iY (3.17)

where both X and Y are Gaussian random variables with standard deviation

σ. In this case, |Z|, which is equal to
√

X2 + Y 2, is Rayleigh distributed with

parameter σ:

|Z| ∼ Rayleigh(σ) (3.18)

For this distribution, the probability of false alarm can be defined as

PFA =

∫ ∞

γ

r

σ2
exp

{−r2

2σ2

}
dr , (3.19)

which can be further simplified as

PFA = exp

{−γ2

2σ2

}
. (3.20)

The assumption of unit variance, that is σ = 1/
√

2, simplifies PFA to

PFA = exp
{−γ2

}
. (3.21)

From equation (3.21), the threshold for a specified PFA can be written as

γ =
√
− ln(PFA) . (3.22)
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Using this threshold, the proposed suboptimal solutions can be used without

knowing the number of targets. The algorithms for the suboptimal solutions for

the cases of a known number of targets can be updated by using this threshold in

the case of an unknown number of targets. Then, the algorithm for the maximum

selection technique becomes

1. Check if there are any cells with amplitudes larger than γ.

2. Choose the cells with the amplitudes that are larger than γ to be the ones

with the targets.

On the other hand, the algorithm for successive cancelation can be formulated

as

1. Check if there are any cells with amplitudes larger than γ.

2. Find A and fD satisfying:

[Â f̂D] = arg min
A, fD

|r− yA,fD
|, fD ε [−PRF/2, +PRF/2] . (3.23)

3. Assume that Â and f̂D are the magnitude and the Doppler frequency of a

target.

4. Generate the vector yÂ,f̂D
according to equation (3.6).

5. Subtract yÂ,f̂D
from r in equation (3.8).

6. Repeat these steps as long as there is a cell with an amplitude that is larger

than γ.
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Chapter 4

PERFORMANCE

EVALUATION

In this chapter, detailed performance analysis of the methods described in Chap-

ter 3 is presented. First, some useful definitions are given. Then, the performance

of the proposed methods are investigated for various scenarios.

4.1 Definition of System Parameters

In order to make fair performance analysis of the proposed algorithms, the pa-

rameters that are used in the simulations must be defined properly. One of the

most important parameters in these simulations is the target SNR. Throughout

all the simulations, the target SNR is defined as

SNR = 10 log

{∑i=M
i=1 |s(i)|2

σ2

}
, (4.1)

where s is the noiseless received signal from a target and σ is the standard

variation of the complex Gaussian noise.

29



Another important parameter is related to the Doppler frequency bins of the

target. As discussed before, the received signal in the Doppler domain is a vector

of length M , where M is the number of pulses in the transmitted signal. Each of

these Doppler frequency bins corresponds to one of the DFT sample frequencies.

During the simulations it is assumed that a target belongs to the ith Doppler

frequency bin if its Doppler frequency is between fi − fs/2 and fi + fs/2, where

fi is the frequency of the ith DFT sample and fs is the frequency difference

between two consecutive DFT samples.

Detection probabilities of the algorithms will be the key parameter to com-

pare their performances with each other. We will accept a decision as a correct

detection if a target in the ith Doppler frequency bin is detected exactly at the

ith Doppler frequency bin. Otherwise, that decision will be assumed to be a false

alarm. But this is different from the conventional definition of the probability of

false alarm, which is commonly defined in the presence of background noise only.

As it is mentioned in the previous chapter, optimal solution and successive

cancellation requires to solve an optimization problem. In the simulations parti-

cle swarm optimization (PSO), is used to solve the optimization problems. PSO

is a widely used method for global optimization [27].

4.2 Simulation Scenarios

Five different scenarios are considered for the simulations. Each of these simu-

lations is performed for the case of a transmitted signal with 32 pulses, which

is a common number in pulse Doppler radar systems. In each simulation, there

are three targets. Three targets at the same range may seem as a large number,

but it is important to have more than one targets at the same range to test the

algorithms in difficult scenarios. In first four scenarios, targets with the same
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SNR are used, but their locations are different in each case. For the last scenario

targets with different SNRs are used.

4.2.1 Scenario I

In this scenario, the three targets are placed at equal distances in the sense

that the first target is at the 13th, the second one is at the 16th and the last

one is at the 19th Doppler frequency bin. The distance of three frequency bins

between the targets is important here. Because of the fact that the actual Doppler

frequency of a target is most probably different from the DFT sample frequency

corresponding to its Doppler frequency bin, the main lobe of the received signal

from that target may extend to two neighbor Doppler frequency bins. In this

situation, a three-bin distance is safe enough to distinguish the targets from each

other.

First, performances of the algorithms are investigated under the assumption

of a known number of targets. As can be observed from Figure 4.1, the perfor-

mances of the optimal solution and successive cancelation is very close to each

other at all SNR values, whereas the maximum selection algorithm performs

worse than the others for all SNRs, even though its performance is closer to the

other ones at high SNRs. In the case of a known number of targets, there is

no need to investigate the probability of false alarm separately since it is simply

equal to 1− PD.

Next, the performances of the algorithms are compared for the case of an

unknown number of targets. In this case, the following observations are impor-

tant for fair a comparison. As explained in Chapter 3, the optimal solution in

the case of an unknown number of targets does not use a specific probability of

false alarm, whereas the successive cancelation and maximum selection need a

probability of false alarm to determine when to stop the iterations. In order to
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Figure 4.1: Probability of detection for optimal solution, successive cancelation
and maximum selection with a known number of targets for scenario I.

make a fair comparison of these algorithms, the probability of false alarm ob-

served from the simulations for the optimal solution will be found first, and then

that probability of false alarm for different SNR values will be used as inputs for

the successive cancelation and maximum selection algorithms.

For the case of an unknown number of targets, performance of the optimal

solution can be seen in Figure 4.2. It is observed that at high SNR values

the detection performance of the optimal solution is almost same as the case

of a known number of targets. At low SNR values, it can be seen that the

probability of detection is also higher than that in the case of a known number

of targets; however, the probability of false alarm is also higher. In Figure 4.3,

the probabilities of detection for each algorithm are illustrated. As discussed

before, the probability of false alarm for each algorithm is chosen to be the same.

In this case, the performances of the optimal solution and successive cancelation

are almost the same at all SNR values. On the other hand, maximum selection
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Figure 4.2: Probability of detection and false alarm for the optimal solution with
an unknown number of targets for scenario I.
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Figure 4.3: Probability of detection for the optimal solution, successive cance-
lation and maximum selection with an unknown number of targets for scenario
I.
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performs worse at low SNRs, but its performance gets closer to the other two

algorithms as SNR increases.

4.2.2 Scenario II

In this scenario, all the three targets are again placed at an equal distance in

the Doppler domain. However, this time they are closer to each other. The first

target is at the 14th, the second one is at the 16th and the last one is at the 18th

Doppler frequency bin. The distance of two frequency bins between the targets

is critical. As explained before, the main lobe of the received signal from a target

may extend to two neighbor Doppler frequency bins. In this situation, two bin

distance makes it difficult to detect the targets successfully, because it is possible

that two neighboring targets can increase the amplitude of the bin between them

where there is no target.

First, the performances of the algorithms are investigated under the assump-

tion of a known number of targets. As can be seen in Figure 4.4, the performances

of the optimal solution and successive cancelation are very close to each other

at all SNR values. However, unlike scenario I, successive cancelation performs a

little worse than the optimal solution at high SNRs. The reason of this can be

the iterative approach of the algorithm. Since it finds targets one by one, it is

possible to make a wrong decision when the targets are very close to each other.

Maximum selection performs worse than the others at all SNR values, and at

high SNRs its performance is closer to the other algorithms.

For the case of an unknown number of targets, the performance of the opti-

mal solution can be investigated in Figure 4.5, which reveals that the detection

performance of the optimal solution is almost the same as the case of a known

number of targets at high SNRs. At low SNRs, it can be seen that the probability

of detection is also higher than the case of a known number of targets; however,
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Figure 4.4: Probability of detection for the optimal solution, successive cancela-
tion and maximum selection with a known number of targets for scenario II.
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Figure 4.5: Probability of detection and false alarm for the optimal solution with
an unknown number of targets for scenario II.
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Figure 4.6: Probability of detection for the optimal solution, successive cance-
lation and maximum selection with an unknown number of targets for scenario
II.

the probability of false alarm is also higher. In Figure 4.6, the probabilities of

detection for each algorithm are given. As explained before, the probability of

false alarm for each algorithm is chosen to be the same. In this case, the perfor-

mances of the optimal solution and successive cancelation are almost the same

at all SNR values, but at high SNRs the performance of successive cancelation

is a little worse. As it is explained in the previous paragraph, this is because of

the nature of the scenario. On the other hand, maximum selection performs the

worst and its performance does not improve at all after an SNR of 10 dB.

4.2.3 Scenario III

Since estimating the Doppler frequency of close targets is a difficult task, it will

be the most difficult scenario when two targets are at adjacent Doppler frequency

bins. In this scenario, the first target is at the 14th, the second one is at the 16th

and the last one is at the 17th Doppler frequency bin. The targets at the 16th
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Figure 4.7: Probability of detection for the optimal solution, successive cancela-
tion and maximum selection with a known number of targets for scenario III.

and the 17th bins make the detection challenging. Since they are very close to

each other, it is possible that they can be detected as just one target and this

can decrease the performance of the algorithms.

First, the performances of the algorithms are investigated under the assump-

tion of a known number of targets. As can be seen in Figure 4.7, even the

performance of the optimal solution is lower than the first two scenarios. This

is because of the fact that it is a more difficult scenario as explained above. As

in Scenario II, at high SNR values, successive cancelation performs a little worse

than the optimal solution although their performances at low SNRs are very close

to each other. The reason of this is the same as the reason explained in Scenario

II. The iterative approach of successive cancelation can make mistakes when two

targets are very close to each other. Maximum selection performs worse than the

others at low SNR values but at high SNRs its performance gets closer to the

other algorithms.
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Figure 4.8: Probability of detection and false alarm for optimal solution with an
unknown number of targets for scenario III.
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Figure 4.9: Probability of detection for optimal solution, successive cancelation
and maximum selection with an unknown number of targets for scenario III.
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For the case of an unknown number of targets, the performance of the opti-

mal solution can be obtained as in Figure 4.8. It is observed that the detection

performance of the optimal solution is a slightly better than the case of a known

number of targets at high SNR values. Since in the case of a known number of

targets, the algorithm was restricted to find just three targets whereas in the case

of an unknown number of targets there is no such restriction, the probability of

detecting the close targets is increased. However, this also increases the probabil-

ity of false alarm. In Figure 4.9, the probability of detection for each algorithm

is given. As explained before, the probability of false alarm for each algorithm is

chosen to be the same. In this case, the performances of the optimal solution and

successive cancelation are almost the same at all SNR values, but at high SNRs

the performance of successive cancelation is slightly worse. As discussed in the

previous paragraph, this is because of the nature of the scenario. On the other

hand, maximum selection has the worst performance and it does not improve at

all after an SNR of 10 dB.

4.2.4 Scenario IV

This is the final scenario in which all the target have the same SNR. This time,

in the simulations, the targets are placed at random Doppler frequency bins for

each trial. Also, each Doppler frequency bin is allowed to have one target at

most.

First, the performances of the algorithms are investigated under the assump-

tion of a known number of targets. As can be seen in Figure 4.10, the perfor-

mances of the optimal solution and successive cancelation are very close to each

other at all SNRs. However, the optimal solution performs slightly better at high

SNRs. The reason of this is simply the same as that in scenarios II and III. Since

the targets are placed at the Doppler frequency bins randomly, it is possible in

some cases that there are very close targets, which decreases the performance
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Figure 4.10: Probability of detection for optimal solution, successive cancelation
and maximum selection with a known number of targets for scenario IV.
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Figure 4.11: Probability of detection and false alarm for optimal solution with
an unknown number of targets for scenario IV.
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Figure 4.12: Probability of detection for optimal solution, successive cancelation
and maximum selection with an unknown number of targets for scenario IV.

of successive cancelation. However, unlike scenario I, successive cancelation per-

forms slightly worse than the optimal solution at high SNR values. The main

reason of this is the iterative approach of the algorithm. Since it finds targets one

by one, it is possible to make a wrong decision when the targets are very close

to each other. Maximum selection performs worse than the others at all SNRs

even though its performance is closer to the other algorithms at high SNRs.

For the case of an unknown number of targets, the performance of the optimal

solution can be seen in Figure 4.11, which indicates that the detection perfor-

mance of the optimal solution is almost same as that in the case of a known

number of targets at high SNRs. At low SNRs, it can be observed that the

probability of detection is also higher than that in the case of a known number

of targets. However, the probability of false alarm is also higher. In Figure 4.12,

the probability of detection for each algorithm is given. As explained before, the

probability of false alarm for each algorithm is chosen to be the same. In this

case, the performances of the optimal solution and successive cancelation are
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almost the same at all SNR values, but at high SNRs the performance of succes-

sive cancelation is slightly worse. As explained in the previous paragraph, this

is because of the nature of the scenario. On the other hand, maximum selection

performs worse at low SNR values, but its performance gets closer to the other

two algorithms as SNR increases.

4.2.5 Scenario V

In this scenario, all the three targets are placed at an equal distance again. The

first target is at the 14th, the second one is at the 16th and the last one is at

the 18th Doppler frequency bin. But this time their SNR values are not same.

The SNR of the target at the 16th bin is 5 dB higher than the others. The

Doppler frequency bins of the targets are as in scenario II. Although scenario II

is a challenging one, it is simpler than this scenario since but since all the targets

have the same SNR in scenario II. In this scenario, the target in the middle has

the potential to shadow the other two targets.

Since the targets do not have the same SNR, plotting the performance of

the algorithms is not straightforward. For this scenario, the x-axis of the figures

corresponds to the SNR of the weaker targets. First, the performances of the

algorithms are investigated under the assumption of a known number of targets.

As can be observed from Figure 4.13, the performances of the optimal solution

and successive cancelation are very close to each other at all SNR values. Maxi-

mum selection performs worse than the others at all SNRs, and its performance

does not improve much at high SNRs, which is an expected problem with this

algorithm. When the targets have different SNRs, the side lobes of the strongest

target may be larger than the weaker targets, and since maximum selection

chooses the bins with the largest amplitudes to be the ones with the targets, it

can miss weaker targets.
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Figure 4.13: Probability of detection for optimal solution, successive cancelation
and maximum selection with a known number of targets for scenario V.

For the case of an unknown number of targets, the performance of the optimal

solution is illustrated in Figure 4.14. It is observed that at high SNR values the

detection performance of the optimal solution is almost same as the case of a

known number of targets. At low SNRs, it can be seen that the probability of

detection is also higher than that in the case of a known number of targets, but

the probability of false alarm is also higher. In Figure 4.15, the probabilities of

detection are plotted for all the algorithms. As explained before, the probability

of false alarm for each algorithm is chosen to be the same. In this case, the

performances of the optimal solution and successive cancelation are almost the

same at all SNR values. On the other hand, maximum selection performs the

worst, but its performance is better than the case with a known number of

targets.
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Figure 4.14: Probability of detection and false alarm for optimal solution with
an unknown number of targets for scenario V.
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Figure 4.15: Probability of detection for optimal solution, successive cancelation
and maximum selection with an unknown number of targets for scenario V.
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Chapter 5

PERFORMANCE OF

PROPOSED ALGORITHMS

WITH REALISTIC TARGET

MODELS

In the previous chapter, the detailed performance analysis of the proposed al-

gorithms are provided for various cases of point targets. In this chapter, more

realistic target models are presented, and the performances of the algorithms are

investigated based on those realistic models.

5.1 Realistic Target Models

The algorithms presented so far are based on the fact that the observed signal

model is known except for some of its parameters. However, this known model

is the signal model for a point target. In real life applications, there are more

complicated targets and the signal model for a point target cannot be observed
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Figure 5.1: T-62 tank.

exactly. In order to investigate if this model can be used for realistic targets

and, if not, what modifications can be done over this model, it is imperative to

consider signals from real targets first.

Since radar applications have confidential importance, especially for military

applications, it is very difficult to find real data. However, the in literature, there

are some measurements for radar cross section areas which can help us model

some realistic target models. Based on these measurements, three different real

targets are modeled.

The first model is a Russian T-62 tank with a length of 6.63m, width of 3.52m,

height of 2.4m and weight of 40, which is illustrated in Figure 5.1. In [28], radar

cross section measurements for this target were performed with a monopulsed

radar at 95 GHz. During the measurements, the tank was placed on a rotating

platform and there was a distance of 95 m between the tank and the radar.

In order to model this tank and the other targets, it is first assumed that the

targets are rectangular. Since the edges and the corners have the greatest cross

section areas, the average value of the cross section area is assigned to the edges,

the corners and the mid-point of the target, which make a total of 9 points.

Finally, the small cross section values are assigned to 60 random points in the
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A z i m u t h a n g l e ( d e g )
Figure 5.2: a) Measurement of radar cross section area values for the T-62 tank.
b) Radar cross section area values of the model for the T-62 tank.

rectangular area. Radar cross section changes with the angle of view. Until now,

the effect of this angle has not been defined in this model. In order to incorporate

that effect, radar cross section values corresponding to some angles are chosen

from the measurements and these values are matched to a polynomial function.

In this way, a function representing all the angles is obtained. In the final step,

the cross section values for all the 69 points are added, and this is multiplied

with the function value of the degree at which the tank is supposed to reside.

This gives a very realistic model as it can be seen in Figure 5.2.

The second target model is a French VAB armored vehicle with a length of

5.98m, width of 2.49m, height of 2.06m and weight of 13 tons, which is shown in

Figure 5.3. For this target, two different measurements were performed in [29].

The first one was at 89 GHz with the real target and the second one was done at
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890 GHz with a 1/10 model that corresponds to 89 GHz for the real size. Both

measurements gave similar results and our model yielded close results to both

measurements as it can be seen in Figure 5.4.

Figure 5.3: VAB armored vehicle.

The third model is another Russian tank, T-72, with a length of 6.67m, width

of 3.59m and height of 2.19m, which is shown in Figure 5.5. For this target two

different measurements were done in [30]. First one was at 359 GHz with a

1/35 model and the second one was done at 160 GHz with a 1/16 model which

corresponds to 10 GHz in real size. Both measurements gave similar results and

our model gave results close to both measurements as can be seen in Figure 5.6.

5.2 Optimal Solution and Successive Cancela-

tion with Real Targets

Idea behind the maximum selection algorithm was simply to choose the cells with

the largest amplitudes to be the ones with a target. Changing from point targets

to real targets actually does not change anything for this algorithm. Therefore,

in this chapter, only the optimal solution and successive cancelation are studied.
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A z i m u t h A n g l e ( d e g )
Figure 5.4: a) Measurement of radar cross section area values for VAB armored
vehicle. b) Radar cross section area values of the model for VAB armored vehicle.

Originally, the signal model that the optimal solution and successive cance-

lation uses is for a point target. In order to see how well this model matches

the signals coming real targets, the signals from the realistic target models are

considered here in the absence of noise. Since there is noise, performance of the

algorithms will not be presented as in Chapter 4 with figures of probability of

detection vs SNR. Instead to check the performance of the algorithms, expected

received signals will be recreated using the parameters estimated by these algo-

rithms and these signals will be compared with the signal coming from the real

targets.

First, the signals are produced for each target model such that there is just

one target at the same range bin. As studied in the previous chapters, when there

is one target, the optimal solution and successive cancelation perform almost the

same. Therefore, for this case, only one estimated signal for each target is given.

As observed from Figures 5.7, 5.8 and 5.9, the estimated signals are not exactly
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Figure 5.5: T-72 tank.

the same as the received signal, but they are still very close to each other, and,

most importantly, the Doppler frequencies of the targets are estimated correctly.

Since the waveform used in the algorithms are the waveforms of a point

target, it is expected to see that estimated signals are not exactly the same as

the received signals obtained from the realistic target models, even when there

is no noise at all. However, the signals are quite similar and the estimation of

the Doppler frequencies of the targets can be performed accurately.

Next, instead of one target, three targets for each model is placed at the

same range bin with different velocities (Doppler frequencies). First, the optimal

solution is obtained. As can be seen in Figures 5.10, 5.11 and 5.12, the Doppler

frequency estimation is generally accurate. The Doppler frequencies of only

one target for both T-62 and T-72 are estimated with an error of one Doppler

frequency bin only. The reason of this error can be the usage of a point target

signal model. But since the Doppler frequencies of the other targets are estimated

correctly, it is most probably because of the fact that the specific target’s Doppler

frequency is very close to the halfway between two adjacent Doppler frequency

bins, which causes the algorithm to make a mistake. But in practice this small

error is not so important because during tracking Kalman filter will fix it.
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A z i m u t h A n g l e ( d e g )
Figure 5.6: a) Measurement of radar cross section area values for the T-72 tank.
b) Radar cross section area values of the model for the T-62 tank.

After the optimal solution, successive cancelation is performed on the same

received signals. As can be observed from Figures 5.13, 5.14 and 5.15, the results

are very similar to those obtained by using the optimal solution. Again for T-62

and T-72, the same Doppler frequencies of the targets are estimated with an

error of one Doppler frequency bin.

These results show that, in the absence of noise, the point target model can

be used to estimate the Doppler frequencies of real targets as well, even though

the received signals cannot be estimated exactly by using this model. In other

words, the Doppler frequencies of the realistic targets are estimated successfully

for most of the time. Therefore, it is concluded that the proposed algorithms

can also be used for realistic scenarios.
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Figure 5.7: Received signal from one T-62 tank and estimated signal found by
using the optimal solution or successive cancelation.
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Figure 5.8: Received signal from one T-72 tank and estimated signal found by
using the optimal solution or successive cancelation.
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Figure 5.9: Received signal from one VAB armored vehicle and estimated signal
found by using the optimal solution or successive cancelation.
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Figure 5.10: Received signal from three T-62 tanks and estimated signal found
by using the optimal solution.
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Figure 5.11: Received signal from three T-72 tanks and estimated signal found
by using the optimal solution.

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

0.5

1

1.5

2

2.5

3

Normalized Doppler Frequency

A
m

pl
itu

de

 

 
received signal
estimated signal

Figure 5.12: Received signal from three VAB armored Vehicles and Estimated
Signal Found by Using the optimal solution.
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Figure 5.13: Received signal from three T-62 tanks and estimated signal found
by using successive cancelation.
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Figure 5.14: Received signal from three T-72 tanks and estimated signal found
by using successive cancelation.
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Figure 5.15: Received signal from three VAB armored vehicles and estimated
signal found by using successive cancelation.
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Chapter 6

CONCLUSIONS AND FUTURE

WORK

In this thesis, new algorithms have been proposed for the estimation of the

Doppler frequencies of targets in pulse Doppler radar systems. The main idea

behind the algorithms is that since the waveform structure of a point target in

the Doppler domain is known, it can be used to make more precise estimation

of its Doppler frequency. First, the optimal solution which is the maximum

likelihood (ML) estimator, has been derived. However, especially in the case of

an unknown number of targets, the computational complexity of this solution

is very high. Therefore, two suboptimal solutions with reasonable complexities

have been proposed. The first one is successive cancelation, which is an iterative

algorithm. In each iteration, a target that minimizes a cost function is specified,

and the signal coming from that target is recreated. This recreated signal is sub-

tracted from the received signal. In each iteration, these steps are repeated until

there are no more targets left. The second suboptimal solution is the maximum

selection algorithm, which uses the fact that the waveform of a point target in

the Doppler domain achieves its maximum at the target’s Doppler frequency;
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hence, the algorithm chooses the Doppler bins with the largest amplitudes to be

the ones with a target.

Several simulations have been performed to show that maximum selection

performs worse than the optimal solution and successive cancelation at low SNRs.

But at high SNR values, its performance gets closer to the other algorithms.

However, since its computational complexity is very low, it can be an appropriate

choice in some applications. On the other hand, successive cancelation provides

a more complex solution but its performance is very close to the optimal solution

at all SNR values. Also, it has been observed that successive cancelation can be

used for real targets even though it uses the waveform of a point target.

Future work will be focused on improving the performance of the successive

cancelation algorithm for real targets. Since there are no closed form expressions

for the waveforms of real targets, it is more suitable to use the waveform of a point

target with some additional parameters. Successive cancelation can also be used

to perform Doppler estimation with higher resolution. The Doppler resolution

of CFAR algorithms is limited with the number of pulses transmitted, whereas

successive cancelation can estimate any number in the range as the Doppler

frequency of a target. Furthermore, effects of ground clutter on this algorithm

will be analyzed and some possible updates to the algorithm will be offered in

order to perform better in the presence of clutter.
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