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ABSTRACT

VARIABLE CAPACITOR BASED
MECHANICAL ENERGY-TO-ELECTRICAL

ENERGY CONVERTER

Elif Aydoğdu

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Abdullah Atalar

and Prof. Dr. Ergin Atalar

August 2007

Today miniature stand-alone systems highly benefit from the improvements in

IC technology. Shrinking dimensions to submicron technologies and reduced

power consumption in the order of nano-watts open possibilities for new power

applications[1–3]. Such systems demand integrated, long lasting micro energy

sources, and at that power level, ambient energy scavenging arises as an alterna-

tive solution, as energy harvesting units can be integrated conveniently through

MEMS(micro electromechanical systems) technology.

This thesis offers one such solution. A novel generator design with electro-

static approach is presented. The generator creates new electrical charge, thus

it can be used to recharge a reservoir. It is composed of variable capacitors

and switches. As it does not employ inductive components, it is suitable for

environments in which magnetic fields should be avoided. Throughout the the-

sis the design is further improved to overcome the restriction on the achievable

electrostatic field given the dimensions and voltage level. A third electret with

permanent charge is embedded in between the plates of the capacitor creating
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extra field inside the capacitor at the same potential. On the mechanical side,

more work is done against increased electrostatic force; and on the electrical side

more charge accumulation and a greater charge gain is achieved.

The system is simulated using PSpice and the results are consistent with

the theoretical expectations. An experiment utilizing macro elements is also

carried out with 81% efficiency; when source voltage is 40V, frequency is 1Hz,

and Cmax = 1500pF the power gain is 880nW. For micro applications 1500pF is

achievable, but 40V is very high; so lower voltage sources should be used and

power gain will be much smaller. The electret idea may solve this problem, and

one other considerable solution is to increase the maximum capacitance. For the

future, our purpose is to reach higher capacitance in limited volumes through

new capacitor designs and making use of microfluidics technology.

Keywords: Self-powered systems, mechanical-to-electrical energy conversion,

electrostatic energy conversion, variable capacitors.
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ÖZET

ORTAMDAKİ MEKANİK ENERJİYİ ELEKTRİK ENERJİSİNE

ÇEVİREN KAPASİTÖR TABANLI DEVRE TASARIMI

Elif Aydoğdu

Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Abdullah Atalar

ve Prof. Dr. Ergin Atalar

Ağustos 2007

Günümüzde minyatür bağımsız sistemler entegre devre teknolojisindeki ilerlemel-

erden büyük ölçüde faydalanmaktadırlar. Micronaltı teknolojilere ulaşan boyut-

lar ve nanowattlara düşen güç tüketimi, yeni besleme uygulamalarına imkan

tanımaktadır. Bu gibi sistemler entegre, uzun ömürlü mikro enerji kaynaklarına

ihtiyaç duyarlar ve bu noktada, ortam enerjisini kullanma fikri iyi bir alter-

natif oluşturmaktadır. Mikroelektromekanik sistemler (MEMS) teknolojisi, en-

erji dönüştürücüleri tümleşik devrelerle aynı yongalar üzerine üretebilmektedir.

Bu tezde ortamdaki mekanik enerjiyi elektrik enerjisine çeviren yeni bir ka-

pasitif devre tasarımı sunulmaktadır. Tasarım elektriksel yük üretebilmekte,

dolayısıyla bir kaynağı yükleyebilmektedir. Değişken kapasitörlerden ve anahtar-

lardan oluşan tasarım endüktif elemanlar içermemektedir ve bu yönüyle manyetik

etkilerden sakınılması gerekenler ortamlar için de uygundur. Ayrıca bu tasarım

alan ve voltaja bağlı elektrostatik alan kısıtlamalarına karşı daha da geliştirilmiş,

kapasitör plakaları arasına sabit yük tutan ve içeride ilave elektrik alan oluşturan

üçüncü bir elektret yerleştirilmiştir. Mekanik anlamda artan elektrostatik
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kuvvete karşı daha çok iş yapılmakta, elektrik anlamda da daha çok yük birikimi

sağlanmakta ve daha yüksek yük kazancına erişilmektedir.

Sistem PSpice kullanılarak modellenmiş ve teorik hesaplamalarla tutarlı

sonuçlar elde edilmiştir. Makro elemanlarla oluşturulan bir deneyde de %81

verim elde edilmistir. Bu deneyde 40V enerji kaynağı ve 1500pF’lık iki kapa-

sitör kullanılmış, 1Hz’lik operasyonda 880nW güç kazancı sağlanmıştır. Mikro

uygulamalarda da 1500pF kapasitansa ulaşılabilir, ancak 40V oldukça yüksek bir

değer olup yerine çok daha düşük güç kaynakları kullanılmalıdır ve bu da enerji

kazancının daha az olacağı anlamına gelir. Elektret kullanma fikri düşük en-

erji problemine bir çözüm oluşturmaktadır, bir başka etkin çözüm de kapasitans

değerini artırmaktır. Gelecek için hedefimiz kısıtlı bir alan içerisinde daha yüksek

kapasitans değerlerine ulaşabilecek yeni kapasitör tasarımları oluşturmak, bunun

için de mikroakışkanlar teknolojisi gibi yeni yöntemlerden faydalanmaktır.

Anahtar kelimeler: Kendi gücünü sağlayan sistemler, mekanik-elektrik enerji

dönüşümü, elektrostatik enerji dönüşümü, değişken kapasitörler.
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Chapter 1

INTRODUCTION

The rapid progress in integrated circuit (IC) technology lowered the power re-

quired by the systems so drastically that it may be plausible to provide mobile

power by means other than a battery. This progress, which in turn means shrink-

age in dimension, requires the power supply to get smaller and even be integrated

to the rest of the circuit when the interconnections, electronic noise and control

complexity are considered. As a solution, integrated chemical batteries may be

improved, but the shelf life and replacement accessibility arise as a limiting fac-

tor especially in medical and wireless sensor-actuator applications. At that point

self-powered-system designs harvesting the environmental energy can emerge as

smart alternatives. It may be possible to feed small stand-alone systems through

continuous energy scavenging from the environment by means of an integrated

energy conversion unit. The MEMS technology which improves in parallel with

IC industry is the enabling tool for integrating the energy harvesting methods

on the same chip with the functional electrical circuits.

1



1.1 Mechanical-to-Electrical Energy Conver-

sion Mechanisms

One strategy of building a self-powered system is to harvest the required elec-

trical energy from the ambient mechanical energy, which manifests itself mostly

in vibrational form. Towards this direction, various kinds of generators (energy

converters) have been devised as discussed in [4, 5]. A class of such genera-

tors capture the ambient mechanical energy through induced motion of movable

plates of capacitors and use it against the electrostatic force [6–9]. Another work

is on exploiting magnetic effects and in particular Faraday’s law of induction

after the conventional large scale generators [10, 11]. Yet another class relies on

piezoelectric effects where ambient mechanical energy sustains a pressure field

on the piezoelectric material [12,13]. Electromagnetic and piezoelectric convert-

ers can give power output at the order of mW/cm3, while this value is at most

100µW/cm3 for electrostatic converters; but although it gives the lowest power

output, our choice is electrostatic (capacitive) energy generation due to MEMS

compatibility of such designs, and ease of manufacture. In addition, electrostatic

power generators can function in high static and electromagnetic fields.

1.2 Electrostatic Energy Generation

Electrostatic energy generation is based on electrostatic field alteration under

the effect of physical force. Work done by the mechanical force opposing the

electrostatic force is transformed into electrical energy. Circuitry of such a sys-

tem involves variable capacitors, physical attributes of which can be varied by

mechanical energy; and control and energy transfer elements.

The main advantage of generators that employ only variable capacitors is that

they can be manufactured completely in MEMS processes where the building
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material is pure silicon. On the other hand, most of the designs that make use

merely of variable capacitors proposed so far have a major disadvantage: unless

an inductor is included, they can not be used to recharge a single battery, or a

reservoir, because they do not produce charge. The associated mechanism for

each generation cycle is to deliver an amount of charge picked from the reservoir

to a load at a voltage higher than that could be provided by the reservoir itself [8].

A different design makes use of the current resulting from the charge between

a fixed value capacitor and a variable capacitor potential of which fluctuates as

its capacitance is mechanically altered [7]. In this design, it is assumed that the

initially embedded charge which is flowing between the capacitors is constant

without any leakage, but actually it will leak through the capacitors as time

passes and in order to keep the energy gain constant in time this charge should

be periodically replenished by an external source. These designs are incapable

of producing new charge, they can only take the charge from one reservoir and

charge another reservoir with a larger voltage. If an inductor is included to the

design, the required inductance value is so high that it is impossible to integrate

it on a single chip [6,9]. In many cases, an external inductor is not very desirable

because of the increase in required space and also difficulties in manufacturing

process. On the other hand, our generator consists of only variable capacitors and

switches and it can produce new charge. Hence, it can be used to store electrical

power to a reservoir for further use, while it can easily be manufactured fully in

an integrated form. The same design is patented by Gimlan in 2005 [14], but he

did not prove its functionality through theoretical analysis or simulations.

The energy gain of all the electrostatic designs converge to the maximum

energy of the variable capacitor, 0.5 Cmax V 2, and power gain is determined

together with frequency of operation, 0.5 Cmax V 2 f . So, the power gain of

an electrostatic system varies depending on the variable capacitor design and

the application frequency. For body implant applications the frequency of input

mechanical motion is very low, in the order of Hz, but for other applications it
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may rise up to KHz level. In the literature some achieved power values are as

follows; converter of [6] works at 2.5 KHz and 3.6µW/cm3 power gain is expected,

converter of [29] works at 50Hz giving 120nW power output at 21% efficiency,

converter of [7] is simulated at 1.2KHz giving 100µW power, and converter of

[9] is expected to work at 10Hz with 24µW power output (for the last three

converters exact dimensions are not mentioned). On the other side, the power

consumption of a micropower programmable DSP [3] is 560nW, a pacemaker is

60µW, and a watch is 5µW which all seem to be achievable.

In the subsequent chapter, following a discussion of the theory of the genera-

tor, we provide SPICE simulation results of the electrical behavior of the design

and an experiment. In the third chapter, an improvement on the design is sug-

gested together with the theoretical analysis and SPICE simulations. The fourth

chapter discusses the implementation considerations including mechanical design

issues, restrictions on physical parameters and fabrication constraints; summary

and discussions follow in the conclusion chapter.
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Chapter 2

SWITCHED-CAPACITOR

ENERGY CONVERTER

2.1 Introduction: Capacitor as an Energy Con-

verter

Mechanical-to-electrical energy conversion can be accomplished through an elec-

trical component, energy of which can be increased by altering its physical param-

eters under the effect of mechanical force. Capacitor, inductor and piezoelectric

materials are such components. Among those, capacitor is the most suitable one

for micro-scale applications as it is easily fabricated in a MEMS process. So, we

focused on capacitive energy conversion, as the aim is to come up with an energy

unit integrated in an IC.

Voltage on a parallel plate capacitor is related to charge with the equation,

q = C V (2.1)

V =
q d

ε A
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where d is the distance between the plates of the capacitor, q is the amount of

charge on each of the plates, A is the area of the plates and ε is the permittivity

of the dielectric between the plates. While the capacitor is at a fixed state with

nonzero charge on it, if we increase d, or decrease ε or A this will increase the

voltage —and the energy stored on the capacitor. So, any applied mechanical

force working against the electrostatic force between the plates, alters one of these

parameters raising the electrical energy. The design presented in this thesis aims

to convert the energy increase on a capacitor into charge accumulation in the

system.

The basic idea of our design is to use more than one capacitor and make use

of all the charge induced at the plates of the capacitors in serial connection. The

circuit will consist of an electrical energy storage unit (reservoir) which supplies

the initial charge for the capacitors and receives the harvested energy; and a

mechanical energy harvesting system utilizing variable capacitors together with

switches that are capable of uniting the capacitors either in series or in parallel

configuration. When the switches are properly operated in synchrony with the

motion of the capacitor plates, the system charges the reservoir.

This sort of circuitry is familiar from charge pumps that rely on switching

between serial and parallel connected capacitor configurations [17–19]. However,

the operation principle is actually the dual —or inverse— of what is done in

charge pump circuits. Charge pumps raise the potential to high levels making

use of switching, while this system sacrifices potential difference in return for

extra charge and compensate the potential drop through use of mechanical energy

input.

The aim is to charge the capacitors up with the highest amount of charge

possible while they are in serial connection (Figure 2.1a), and then separate the

capacitors —keeping the charge on their plates— to connect them in parallel

(Figure 2.1b). This way, at the terminals of the composite structure we will
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Figure 2.1: Circuit diagram of a two capacitor energy harvesting system. It
consists of variable capacitors and switches that connect the capacitors either in
serial as in (a) or in parallel as in (b).

have n (number of capacitors) times the amount of charge we had when they

were serially connected, meaning a gain in charge. This increased amount of

charge should be sent to the reservoir. To do this large enough potential should

be maintained on the capacitors to pump greater amount of charge back to the

reservoir. This is achieved through use of mechanical energy that decreases the

capacitance; capacitors discharge to the reservoir until their capacitance reaches

minimum value. As long as Cmax > n2

n−1Cmin, this system gives back more charge

than it took and there is a net charge gain in every cycle.

2.2 Application Of The Principle

The development of the circuit design can be divided into two stages. The initial

design employs n variable capacitors, n− 1 switches for connecting capacitors in

series, 2(n− 1) switches for connecting capacitors in parallel; and these switches

are controlled via a feedback circuitry that synchronizes the switch operation to
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mechanical motion. A second design evolved, as it was realized that the switches

can be replaced with diodes.

The most advantageous design in the sense of fabrication, operation and

efficiency is the second design, as it employs only diodes in addition to variable

capacitors and there is no need for any feedback control circuitry. Going through

a brief description of the earlier stage in this section, in the next section the

final design will be explained in detail with supporting analysis, simulation and

experimental data.

2.2.1 Feedback-Controlled Energy Converter Design

The first attempt towards implementation was direct application of the idea

“charge while capacitor energy decreases, discharge while capacitor energy in-

creases”. So the initial design utilizes switches (which can be MOSFET or other

transistors) that are controlled through an external signal that gets feedback

from the circuit to know the phase of the capacitor motion. Diagram of such a

circuit is given in Figure 2.2. The control signals S1 and S2, one controlling serial

connections and the other controlling parallel connections, turn the serialization

switches on and parallelization switches off while capacitance increases, and they

turn the serialization switch off and parallelization switches on while capacitance

decreases as given in the sinusoidally varying capacitance case in Figure 2.3. This

way, they discharge in parallel connection while mechanical energy is captured

by the system and they are charged up in serial connection.

The disadvantage of this design is that an additional circuitry is needed for

control purposes, which consumes a part of harvested energy. Also this external

control may cause mismatch in timing which will in turn cause a loss in energy

conversion efficiency.
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Figure 2.2: Feedback-Controlled Energy Converter Model.

capacitance(C) vs. time

parallelization switch behavior vs. time

serialization switch behavior vs. time
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Figure 2.3: Time plots of the switch behaviors relative to the capacitor motion
which is sinusoidal in this case.

2.2.2 Self-Controlled Energy Converter Design

The simpler and better implementation of the idea utilizes diodes substituting

the switches. There exist 3(n − 1) diodes each replacing one of the switches.

There are two main paths for current in this configuration. When current tends

to flow out of reservoir it has to pass through the diode connecting the capacitors

in serial, and when it tends to flow into the reservoir it has to pass through the

diodes connecting the capacitors in parallel. So, the reservoir delivers charge to

capacitors in serial connection and receives charge in parallel connection.
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Figure 2.4 shows the positions of the diodes in the circuit model for two

capacitor case: D1 and D3 (which serve as the parallelization switches) let the

current flow in the C2 - reservoir direction which enables parallel connection

when the capacitors start to capture external energy and their potentials are

forced to raise. This way the energy is transferred to the reservoir by charging

it up. D2 (the serialization switch) enables serial connection by letting current

flow from the negative terminal of C1 to the positive terminal of C2 when the

capacitor potentials are forced to decrease and this way the reservoir charges the

capacitors up. There exists a continuous charge transfer between the capacitors

and the voltage source to compensate for the capacitance changes.

Figure 2.4: Self-controlled energy converter model, utilizing diodes in place of
switches.

The reservoir of this circuit can be either a voltage source or simply a capac-

itor. These two cases are separately analyzed in the following sections. For both

cases two-capacitor models are used for convenience.

2.3 Self-Controlled Energy Converter Design

Utilizing Voltage Source

For the case a voltage source is used as the reservoir, the equivalent capacitor

formed by either parallel or serial connected capacitors has the same potential

with reservoir, V on it all the time. Whenever mechanical variation forces the

10



potential on the capacitors to get larger or smaller than V , a charge transfer

occurs between the source and the capacitors, to balance out the potential dif-

ference. The following is the analysis of the charge transfer behavior during a

full cycle of operation. We calculate the amount of charge gain and converted

energy.

The values of C1 and C2 will be assumed to be exactly equal to each other and

will be referred as C. The voltage applied by the voltage source is represented

by V . It is assumed that all the diodes are ideal with turn-on voltage Vt. The

amount of charge seen by the reservoir will be referred as Qeq which is equal to the

charge on one of the capacitors when the capacitors are in serial connection and to

the summation of charges on both capacitors when the capacitors are in parallel

connection. Voltage on each capacitor is (V − Vt)/2 when the capacitors are in

series connection and voltage on each capacitor is V + Vt when the capacitors

are in parallel connection.

We use the assumption that the movable capacitor plate is in sinusoidal mo-

tion. In Fig. 2.5, (a) is the plot of C (capacitance of each of the variable ca-

pacitors) vs. time, (b) is the plot of voltage seen on each of the parallelization

switches (D1, D3); (c) is the plot of voltage seen on the serialization switch (D2)

and (d) is the plot of voltage seen on each of the variable capacitors vs. time.

At t = 0, C = Cmax the capacitance value stops increasing and is going

to decrease for the subsequent duration of T/2. This causes the potential on

the capacitors to rise. The potential difference between the terminals of diode

2 becomes negative and it stops conducting, and hence the capacitors (which

were serially connected) stop receiving charge from the reservoir. The diodes 1

and 3 do not conduct either, until the voltage on each of the capacitors reach

V + Vt, which were (V − Vt)/2 during serial connection. When the voltage on

the capacitors reaches V + Vt, and C drops to Cmax(V − Vt)/(2(V + Vt)) (point

1 of Fig. 2.6), the diodes 1 and 3 start conducting to constitute a parallel

11



Figure 2.5: Time plots of the capacitance value (a), voltage on parallelization
diodes D1 and D3 (b), voltage on serialization diode D2 (c), and voltage on
capacitors C1 and C2 (d).

connected circuit, the current starts flowing towards the battery and the charge

is accumulated on the battery while the capacitor potentials are kept at V + Vt.

This charge transfer continues until C stops decreasing (point 2 of Fig. 2.6).

At t = T/2, C = Cmin, C starts increasing. This means the potential on

the capacitors will tend to decrease, they will go below V + Vt. Due to this

potential drop the potential difference across the terminals of diodes 1 and 3

becomes negative and they stop conducting. Until the sum of the potentials of

the capacitors become less than V − Vt, none of the diodes conducts. When

12



the potential on one of the capacitors is (V − Vt)/2, which happens when C =

2Cmin(V + Vt)/(V −Vt) (point 3 of Fig. 2.6), diode 2 conducts making the serial

path active and the capacitors receive charge from the battery until C reaches

Cmax again (point 4 of Fig. 2.6).

Figure 2.6: Plot of “Qeq” versus C for one period.

We can make use of the Qeq plot in Fig. 2.6 to calculate the charge trans-

ferred to battery in every step:

1 to 2:

Cmax(V − Vt)− 2Cmax(V + Vt)
γ

= CmaxV (
γ − 2

γ
) (2.2)

− CmaxVt(
γ + 2

γ
)

where γ =
Cmax

Cmin
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3 to 4: as “Qeq” halves when serialized

Cmax(V + Vt)
γ

− Cmax(V − Vt)
2

= CmaxV (
2− γ

2γ
) (2.3)

+ CmaxVt(
γ + 2

2γ
)

Summing up all charges:

Qnet/cycle = CmaxV (
γ − 2

γ
) + CmaxV (

2− γ

2γ
) (2.4)

−CmaxVt(
γ + 2

γ
) + CmaxVt(

γ + 2
2γ

)

= CmaxV (
γ − 2

2γ
)− CmaxVt(

γ + 2
2γ

)

The effect of γ on charge gain efficiency (on the net amount of stored charge)

is given in Fig. 2.7. Qnet/cycle/(0.5 Cmax V ) is plotted versus different γ values.

Here Vt is assumed to be equal to V/10. According to this plot, γ should be larger

than 2 for the system to harvest energy. Increasing input mechanical energy

will increase γ, and in turn stored energy; but beyond some point, increasing γ

(mechanical energy) will not make a significant change in charge gain. So, in

order not to waste input mechanical energy, we should set Cmax V factor (and

so the electrostatic force) to an optimum level to keep γ around 30. Regarding

the physical constraints, such as fraction limits, 30 is a reasonable value for a

variable capacitor. Actually γ = 100 is already achieved in [9].

As long as γ is large, we can approximately write this equation as:

Qnet/cycle =
1
2
Cmax(V − Vt) (2.5)

Hence energy gain is,

Enet/cycle =
1
2
Cmax V 2 − 1

2
Cmax V Vt (2.6)
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Figure 2.7: Plot of Qnet/cycle/(0.5 Cmax V ) vs. γ, showing dependence of charge
gain on γ.

2.3.1 Simulations

In order to confirm the theoretical calculations with simulations, the system is

modelled in SPICE as shown in Fig. 2.8. Here, other than the voltage source,

the diodes and the variable capacitor blocks; there exist an AC source (V 3)

and a measurement block containing two resistors, an amplifier and a voltage-

controlled voltage source. The AC source simulates the sinusoidally varying

capacitance value, and the measurement block is used to measure the amount of

charge entering the voltage source.

The variable capacitors are modelled using controlled sources as in Fig. 2.9.

Here E is a voltage-controlled voltage source, its output directly gives voltage

difference between the nodes of the capacitor. This voltage is multiplied with the

signal coming from the AC source which represents the varying capacitance value,

and this is sent to a 1F capacitor. The current passing through this capacitor is

derivative of the signal introduced and this current is applied between the nodes

of the variable capacitor through a current-controlled current source, F. This
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Figure 2.8: The P-Spice model of the variable capacitor-based circuit implement-
ing the proposed energy conversion principle.

way, current passing through the variable capacitor is equal to (d(C(t)∗V (t)))/dt,

where V (t) is the voltage difference between the nodes and C(t) is the capacitance

value at time t.

Figure 2.9: The P-Spice model of the variable capacitor.

Following is the SPICE simulation implemented using BAS416 diodes, ideal

voltage source and ideal variable capacitors, i.e. without parasitic resistance.

First a small time interval is presented to make the charge transfer behavior

visible, then the linear increase in harvested energy is shown in long term:

a) For V = 5V, Vt ' 0.4V, Cmax = 1nF, γ = 20, f = 1KHz Fig. 2.10 shows in

a small time interval how the charge transfer occurs between the voltage
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source and the rest of the circuit. Increase in value means charge is going

from the capacitors to the voltage source, and decrease means charge is

going out of the voltage source to the capacitors.

Figure 2.10: The plot of charge gain vs. time for a duration of 5ms when V = 5V,
Vt ' 0.4V, Cmax = 1nF, γ = 20, f = 1KHz showing the charge transfer behavior.

b) The “one second” plot of charge transfer for V = 5V, Vt ' 0.4V, Cmax =

1nF, γ = 20, f = 1KHz is shown on Fig. 2.11. According to the theoretical

calculations, we expect the charge gain at the end of 1 second to be 2.03µC

and it turns out to be 2.0µC in the simulations. This 1.5% difference is

due to the incomplete charge transfer and leakage currents. The energy

harvested by this circuit in one second turns out to be 2µC * 5V=10 µJ.

Figure 2.11: The plot of charge gain vs. time for a duration of 1s when V = 5V,
Vt ' 0.4V, Cmax = 1nF, γ = 20, f = 1KHz, showing the consistency of the
theoretical calculations and simulations.
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2.3.2 Experiment

An experiment is carried out using large variable capacitors and circuit ele-

ments as shown in Fig. 2.12. A DC power supply(the reservoir), two variable

Figure 2.12: The macro level experiment setup employing two gang (variable)
capacitors.

capacitors, and three diodes are used. The two variable gang capacitors (Ocean

State Electronics-BC15500) are of value 45− 1500pF each. The diodes used are

VISHAY-DPAD1 diodes, having 1pA reverse current and 1.5V turn-on voltage.

To observe the current flow in the circuit a 1MΩ resistor - 68nF capacitor pair

is connected in parallel with the 10MΩ oscilloscope probe and they are all con-

nected in series to the reservoir. The diagram in Fig. 2.13 shows the experimental

circuitry. The 68nF capacitor serves to increase the time constant so that the

oscilloscope can track the current flow. The 1Mohm resistor is used to decrease

the effect of noise coupling to the probe, but still there is significant amount of

noise accompanying the data. In order to eliminate the noise, multiple measure-

ments at zero source voltage are performed, and the averaged noise (∼ 2nA ) is

subtracted from the current data.

The voltage read on the oscilloscope is equal to 107 times the current com-

ing out of the voltage source. Fig. 2.14 gives a sample oscilloscope output for 6

seconds. When the experiment is carried out at V = 40V, Vt = 1.5V, f = 1Hz,

Cmax = 1.5nF, Cmin = 45pF, Fig. 2.15, plot of charge entering the voltage source

vs. time, is obtained. This plot is obtained in Matlab by integrating the current
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Figure 2.13: The circuit diagram of the experimental setup.

Figure 2.14: The sample oscilloscope image of current coming out of the voltage
source.

measurement of oscilloscope. This current value is slightly higher than actual,

as electrical fields existing in the environment and the experiment setup induce

noise on the capacitors. When the noise is discarded, the amount of charge gained

per second turns out to be 22nC. The theoretically expected value is 27nC in

ideal case, but because of the charge leakage through the contamination between

the plates of the capacitors, and the parasitic effects of the electrical components

and measurement devices, the gain is 19% below the ideal case.
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Figure 2.15: The plot of charge entering the voltage source, for the case V = 40V,
f = 1Hz, Cmax = 1.5nF, Cmin = 45pF.

2.4 Self-Controlled Energy Converter Design

Utilizing Capacitive Storage Element

A second circuit very similar to the one in Section 2.3 is shown in Fig. 2.16.

There exist two capacitors and three diodes in this circuit as previously, but this

time a capacitor substitutes for the reservoir. Voltage on the source capacitor is

referred as Vs and voltage on each of the variable capacitors is referred as Vv.

This implementation is very similar to the previous one and the switching

mechanism works the same way. D1 and D3 let the current flow from the variable

capacitors to the source capacitor. As Vv becomes greater than Vs + Vt, D1 and

D3 start conducting and all the capacitors are connected in parallel; and this
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Figure 2.16: Self-controlled energy converter model utilizing diodes in place of
switches and a capacitor in place of reservoir

can take place when C tends to decrease and force Vv to increase. D2 lets the

current flow from the source capacitor to the variable capacitors. As Vv becomes

smaller than (Vs−Vt)/2, it conducts connecting all the capacitors in serial. This

can happen only when C value is increasing. When Vs + Vt > Vv > (Vs − Vt)/2

none of the diodes conduct and the charge residing on each of the plates remain

the same.

Analysis of the circuit for one period of capacitor plate behavior (as given in

Fig. 2.17) indicates that at t = 0 Vv = qv/C starts increasing, and D2 just stops

conducting as Vs remains the same. qv is fixed as there is no charge transfer until

Vv reaches Vs + Vt and D1 and D3 start conducting. As capacitors connect in

parallel, charge is transferred to the source while C keeps decreasing. At t = T/2,

C reaches Cmin and the potentials of all the capacitors reach the highest level. C

increases thereafter causing Vv to decrease. D1 and D3 do not conduct while Vv

decreases. When Vv becomes (Vs − Vt)/2, D2 starts conducting and it conducts

until t = T and C = Cmax again, and the variable capacitors receive charge in

that interval.

In this case, the source voltage is not fixed and it goes up as the energy

stored in the system increases. So, it is better to trace the amount of charge

accumulated on the capacitors in each cycle. We simply need to calculate the
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Figure 2.17: Time plots of the source voltage (Vs), capacitor voltage (Vv), and
diode voltages (VD1, VD2, VD3) vs. sinusoidal capacitor motion.

total amount of charge residing on the line connecting the source capacitor to

the variable capacitors in order to determine the energy increase in the system.

The following is the charge analysis of one cycle: the total amount of charge

(qT ) is calculated first when the capacitors are in serial connection, then when the

capacitors switch to parallel connection and finally when the capacitors switch

back to serial connection to calculate the increase in the total charge amount

—and hence the total energy of the system.(See Fig. 2.18)

Figure 2.18: Circuit configurations at t = 0, t = T/2, t = T .
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At t = 0,

qT (0) = qs(0) + qv(0) (2.7)

= Vs(0)Cs + Vv(0)C(0) = Vs(0)Cs + Vv(0)Cmax

= Vs(0)Cs +
Vs(0)− Vt

2
Cmax

= Vs(0)
2Cs + Cmax

2
− Vt

Cmax

2

=
qs(0)
Cs

2Cs + Cmax

2
− Vt

Cmax

2

qs(0) = (qT (0) + Vt
Cmax

2
)

2Cs

2Cs + Cmax

(2.8)

as, in serial connection,

Vs(0) = 2Vv(0) + Vt

C(0) = Cmax

At t = T
2 ,

qT (
T

2
) = qs(0) + 2qv(0) = 2qT (0)− qs(0) (2.9)

= 2qs(0)
2Cs + Cmax

2Cs

− VtCmax − qs(0)

= qs(0)
(Cs + Cmax)

Cs

− VtCmax

qT (
T

2
) = qs(

T

2
) + 2qv(

T

2
) (2.10)

= Vs(
T

2
)Cs + 2Vv(

T

2
)C(

T

2
)

= Vs(
T

2
)(Cs + 2Cmin) + 2VtCmin

⇒ qs(
T

2
) =

(
qT (

T

2
)− 2VtCmin

)
Cs

Cs + 2Cmin

(2.11)
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as, in parallel connection,

Vs(
T

2
) = Vv(

T

2
)− Vt

C(
T

2
) = Cmin

At t = T ,

qT (T ) = qs(
T

2
) + qv(

T

2
) =

1
2
qT (

T

2
) +

1
2
qs(

T

2
) (2.12)

=

(
qs(0)

(Cs + Cmax)
Cs

− VtCmax

)
Cs + Cmin

Cs + 2Cmin

− VtCminCs

Cs + 2Cmin

= qs(0)
(Cs + Cmax)(Cs + Cmin)

Cs(Cs + 2Cmin)

−Vt
CsCmax + CsCmin + CmaxCmin

Cs + 2Cmin

qs(T ) = (qT (T ) + VtC(T ))
2Cs

2Cs + C(T )
(2.13)

= qs(0)
(Cs + Cmax)(Cs + Cmin)

(Cs + Cmax

2 )(Cs + 2Cmin)

−Vt
C2

s (Cmax + 2Cmin)
(Cs + 2Cmin)(2Cs + Cmax)

as, in serial connection,

Vs(T ) = 2Vv(T ) + Vt

C(T ) = Cmax

Iteratively calculating the amount of charge stored at the end of n cycles;

qs(nT ) = qs((n− 1)T )
(Cs + Cmax)(Cs + Cmin)

(Cs + Cmax

2 )(Cs + 2Cmin)
(2.14)

−Vt
C2

s (Cmax + 2Cmin)
(Cs + 2Cmin)(2Cs + Cmax)

qs(nT ) = knqs(0) (2.15)

−(kn−1 + kn−2 + · · ·+ k0)Vt
C2

s (Cmax + 2Cmin)
(Cs + 2Cmin)(2Cs + Cmax)

= knqs(0)− kn − 1
k − 1

Vt
C2

s (Cmax + 2Cmin)
(Cs + 2Cmin)(2Cs + Cmax)
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where k =
(Cs + Cmax)(Cs + Cmin)

(Cs + Cmax

2 )(Cs + 2Cmin)

and,

Es(nT ) =
qs(nT )2

2Cs

(2.16)

As the charge stored in each cycle is not fixed but increases with increasing

stored energy, the system voltage increases exponentially. One should make sure

that the voltage limits of the load components are not exceeded. Fortunately,

our implementation example is self limiting. The diodes used in place of switches

control the voltage increase by the breakdown mechanism, they do not let the

potential on them become greater than the breakdown level. A diode starts

conducting (i.e. breakdown occurs) when the potential on it reaches a highly

negative value. As VD2 = −Vs − 2Vt, D2 starts to conduct whenever Vs + 2Vt

reaches the breakdown voltage of the diode.(see figure 2.19)(Breakdown first

occurs in D2 as the negative voltage on D1 and D3 equals −Vs+Vt

2 .) So the Vs

(and Vv) cannot exceed the breakdown level of the diode, and with a proper

diode design the upper level of voltage can be specified by the designer.

Figure 2.19: Plot of voltage on source capacitor vs. time. Its exponential increase
stops at the breakdown level of diodes.
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2.4.1 Simulations

The circuit in figure 2.20 is the modified circuit of section 2.3.1. Here the voltage

source is replaced with a 1µF capacitor.

Figure 2.20: The P-Spice model of the circuit employing capacitor as the source.

Following is the SPICE simulation implemented using BAS416 diodes, ideal

source capacitor and ideal variable capacitors, i.e. without parasitic resistance.

First a small time interval is presented to make the charge transfer behavior

visible, then the exponential increase in harvested energy is shown in long term:

a) For Cs = 1µF, Vs(0) = 5V, Vt ' 0.4V, Cmax = 1nF, γ = 20, f = 1KHz

figure 2.21 shows in a small time interval how the energy enters the source.

Increase in value means charge is going from the variable capacitors to

the source capacitor, and decrease means charge is going out of the source

capacitor to the variable capacitors.

b) The “two second” plot of energy transfer for Cs = 1µF, Vs(0) = 5V, Vt '
0.4V, Cmax = 1nF, γ = 20, f = 1KHz is shown on figure 2.22. The energy

converted by the system increases exponentially. At the end of one second

15.4µJ energy is stored and in the next one second 36.5µJ energy is stored.

According to the theoretical calculations, we expect the stored energy at
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Figure 2.21: The plot of energy gain vs. time for a duration of 4ms when
Cs = 1µF, Vs(0) = 5V, Vt ' 0.4V, Cmax = 1nF, γ = 20, f = 1KHz showing the
energy transfer behavior.

the end of two seconds to be 67.0µJ and it turns out to be 51.9µJ in the

simulations. This time the error ratio is 22.5% and this is because as the

voltage goes higher, the leakage through the circuit increases.

Figure 2.22: The plot of energy gain vs. time for a duration of 2s when Cs = 1µF,
Vs(0) = 5V, Vt ' 0.4V, Cmax = 1nF, γ = 20, f = 1KHz, showing the consistency
of the theoretical calculations and simulations.

2.5 Discussions

The work presented throughout this chapter introduced and proved the function-

ality of an electrostatic mechanical to electrical energy converter design which

differs from previous mechanical to electrical energy converters ([6–9]) with its

simplicity, self controlling and ability to store the harvested power to the same
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source it receives its initial electrical energy from. This system does not require

an inductor or any active components to transfer energy to the source; and also

there is no need for control-feedback circuitry as the switching is carried out by

diodes rather than externally controlled switches.

An experiment is carried out at 81% efficiency. This efficiency loss originates

from high leakage and parasitic effects. Diodes, variable capacitors, connections

and the measurement setup are not perfectly suitable for energy storage. Espe-

cially the leakage through the components should be much less than the stored

charge in one second in order to obtain high efficiency. When produced at the

micro scale with specific diode and capacitor designs caring for energy econ-

omy, leakage and parasitics of the system can be reduced significantly and better

efficiency can be achieved.

In this system, the power consumption of a control circuitry and the effi-

ciency loss due to mismatch in feedback timing is eliminated, and absence of

inductor and secondary reservoir means increase in dimension which in turn

means increase in power gain. Yet the power gain of this electrostatic system is

intrinsically low when designed in small dimensions. In the following chapter a

further improvement is presented that will help to increase power gain.
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Chapter 3

CHARGE EMBEDDED

CAPACITOR — INCREASING

EFFICIENCY

3.1 Introduction

The capacitive energy converter presented in Chapter 2 captures the energy of

a mechanical force opposing the electric field. So, the amount of mechanical

energy converted into electrical energy is determined by the work done against

the electric field inside the capacitor. In order not to waste input mechanical

energy, the electric field should be made large enough; but as the dimension of

the capacitor is limited, capacitance —so the electric field— has an upper limit

and there is a trade-off between the capacitance value and mechanical parameters

such as mass, and the mass travelling distance. Given the dimensions, there is

an optimum capacitor design that gives the best possible matching of mechanical

and electrical energy content and maximum energy conversion; but usually even

at this best point, converted energy remains below available energy level. So,
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regardless of the applied mechanical energy there is a limit on extractable power

set by the dimensions for a given frequency.

We can relieve the strict dependence of energy gain on dimensions by accu-

mulating larger amount of charge on the capacitor —without setting the applied

voltage to unacceptable values— through placing an electret inside the capacitor

and trapping charge on this electret. This trapped charge creates extra and per-

manent electric field inside the capacitor and mechanical energy works against

this increased electric field and does greater work.

Such a capacitor is also used in [23], where the current induced by the trapped

charge passes through a resistive load and the delivered energy is dynamically

consumed.

3.2 Application

In Fig. 3.1, there exists an explanatory example of charge embedded capacitor

which is composed of three parallel plates with equal area, A. Here −Q is trapped

in the middle plate .

Figure 3.1: A charge embedded capacitor example. The capacitor is a parallel
plate capacitor and there exists an electret in between the plates, and −Q charge
is trapped in this electret. The structure can be treated as two capacitors in
series, first arising between the top plate and the electret, and second between
the electret and the bottom plate.
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We can treat this structure as two capacitors connected in series; the upper

capacitor having capacitance C1 = (ε1A)/d1 and the lower capacitor having

capacitance C2 = (ε2A)/d2. The charge is distributed according to the rule

that equal amount of charge exists on the two plates of the capacitor. If q

is the amount of charge on the upper plate, on the upper side of the middle

plate there will exist −q, and the remaining −Q + q amount of charge will

reside at the lower side of the middle plate attracting the same amount of charge

(−Q + q) on the bottom plate. Now, to calculate q, we need to simply write

the potential difference between the upper and lower plates as the summation

of potential difference between the upper and middle plate and the potential

difference between the middle and lower plate. In this context;

VT = V1 + V2 (3.1)

=
qd1

ε1A
+

(−Q + q)d2

ε2A

=
q

C1
+
−Q

C2
+

q

C2

=
q

CT

− Q

C2

→ VT +
Q

C2
=

q

CT

q = (VT + VQ) ∗ CT (where VQ =
Q

C2
) (3.2)

So, the capacitor acts as if the voltage applied between its plates is VT + VQ.

This gives us the flexibility of raising the voltage and charge amount to a desired

level without need for a high voltage supply, and also while doing this we will

not be hindered by the upper voltage limit of the devices used together with the

capacitor.
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3.3 Using Embedded Capacitors Together with

the Design Utilizing Voltage Source

In Fig. 3.2, the capacitors of the circuit analyzed in section 2.3 are replaced by

charge embedded capacitors, and the following analysis calculates the amount of

charge transferred to the battery per cycle.

Figure 3.2: The model of the two capacitor, diode switched circuit employing
charge embedded capacitors.

Here it is assumed that the capacitance varies sinusoidally, and the same cycle

follows starting at t = 0 with C = Cmax. While C decreases in the following

T/2 period, the capacitors first keep the same charge on them until the voltage

on each rise up to V + Vt. When the voltage level reaches the reservoir, the

diodes 1 and 3 start conducting as the voltage of the capacitors tend to increase

further. At that point (point 1 of Fig. 3.3), there exist Cmax((V − Vt)/2 + VQ)

amount of charge on each of the capacitors as they were serially connected just

before t = 0, and the total amount of charge is 2Cmax((V − Vt)/2 + VQ) as the

capacitors are now in parallel connection. Until t = T/2 and C = Cmin capacitors

stay in parallel connection with voltage V + Vt on them, delivering charge to the

reservoir. When C = Cmin (point 2 of Fig. 3.3), charge amount on each of the

capacitors is equal to Cmin(V + Vt + VQ) and the total amount of charge is two

times this value.
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At t = T/2, C = Cmin, C starts increasing causing the potential on the

capacitors to decrease. So the charge transfer stops at that point, the capacitors

can neither deliver charge nor receive, as voltage on each is lower than V +Vt and

higher than (V − Vt)/2. When sum of the potentials of the capacitors become

V −Vt (point 3 of Fig. 3.3), diode 2 starts conducting and connects the capacitors

serially. At that moment, the charge seen by the reservoir is equal to the amount

of charge residing on one of the capacitors and that is equal to Cmin(V +Vt +VQ)

as left from the previous period. After that the capacitors receive charge from

the reservoir until C = Cmax and the charge on each of the capacitors reaches

Cmax((V − Vt)/2 + VQ) (point 2 of Fig. 3.3). One cycle is completed at that

point.

Figure 3.3: Plot of “Qeq” versus C for one period when there exists an electret
above the bottom plate. The electret has a potential difference of VC with respect
to the bottom electrode.

Calculating the charge transferred to battery in every step:
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1 to 2:

Cmax(V − Vt + 2VQ)− 2Cmax(V + Vt + VQ)
γ

(3.3)

= CmaxV (
γ − 2

γ
)− CmaxVt(

γ + 2
γ

) + CmaxVQ(
2γ − 2

γ
)

3 to 4: as ”Qeq” halves when serialized

Cmax(V + Vt + VQ)
γ

− Cmax(
V − Vt

2
+ VQ) (3.4)

= CmaxV (
2− γ

2γ
) + CmaxVt(

γ + 2
2γ

) + CmaxVQ(
1− γ

γ
)

Summing up all charges:

Qnet/cycle = CmaxV (
γ − 2

γ
)− CmaxVt(

γ + 2
γ

) + CmaxVQ(
2γ − 2

γ
) (3.5)

+ CmaxV (
2− γ

2γ
) + CmaxVt(

γ + 2
2γ

) + CmaxVQ(
1− γ

γ
)

= CmaxV (
γ − 2

2γ
)− CmaxVt

γ + 2
2γ

+ CmaxVQ(
γ − 1

γ
)

As long as γ is large, we can approximately write this equation as:

Qnet/cycle = 0.5Cmax(V − Vt) + CmaxVQ (3.6)

= 0.5Cmax(V − Vt) + Q (where Q = CmaxVQ)

This equation tells us that the amount of charge delivered to the reservoir is

increased by Q, which is the amount of charge trapped in the capacitor. This

improves the gain in proportion with the quantity of Q. If we are able to force high

amount of charge (much larger than 0.5CmaxV ) into the electret, then limitations

on Cmax become unimportant and we only need to maximize Q, regarding the

mechanical energy input.
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3.3.1 Simulations

The model in Fig. 3.4 is the modified PSpice model of our variable capacitor

including the electret effect. A DC voltage source which stands for VQ is added,

as the capacitor equation is q = C(V + VQ) now.

Figure 3.4: The P-Spice model of the variable capacitor with electret between
the plates.

Replacing the old variable capacitor models with the new one, in PSpice

model of our energy generating circuit, we obtained the output in Fig. 3.5 for

V = 5V, VQ = 20V , Vt ' 0.4V, Cmax = 1nF, γ = 20, f = 1KHz. The

Figure 3.5: The plot of charge entering the reservoir vs. time for a duration of
1s when V = 5V, VQ = 20V , Vt ' 0.4V, Cmax = 1nF, γ = 20, f = 1KHz.

charge generated in one second is 20.9µC in the simulation. Theoretically, for a

circuit without leakage current and employing ideal diodes it was expected to be

21.03µC. Without the electret, this circuit would produce only 2.03µC charge in

one second.

When we increase the capacitor number in the system, every new capacitor

delivers approximately γ−1
γ

Q more charge to the reservoir in every cycle. The
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simulation output in Fig. 3.6 verifies this situation. This simulation is done with

n = 5 capacitors and V = 5V, VQ = 20V, Vt ' 0.4V, Cmax = 1nF, γ = 20,

f = 1KHz. The expected charge gain per second is 79µC in ideal circuit case,

and it is 76.7µC in the simulation.

Figure 3.6: The plot of charge entering the reservoir vs. time for a duration of
1s when V = 5V, VQ = 20V , Vt ' 0.4V, Cmax = 1nF, γ = 20, f = 1KHz and 5
capacitors are employed in the system.

3.4 Using Embedded Capacitors Together with

the Design Utilizing Capacitive Source

In this case the circuit in section 2.4 is implemented using charge embedded

capacitors. (Fig. 3.7)

Figure 3.7: The model of the two charge embedded capacitor, diode switched
circuit with source capacitor.

Here the same operation cycle is followed as in the former case in section 2.4

under the conditions that the capacitance varies sinusoidally and the diodes are

ideal with turn-on voltage Vt.
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Calculation of the increase in the amount of charge residing on the source

capacitor at the end of one cycle:

At t = 0,

qT (0) = qs(0) + qv(0) (3.7)

= Vs(0)Cs + (Vv(0) + VQ)C(0)

= Vs(0)Cs + Vv(0)Cmax + VQCmax

= Vs(0)Cs +
Vs(0)− Vt

2
Cmax + VQCmax

= Vs(0)
2Cs + Cmax

2
+ VQCmax − Vt

Cmax

2

=
qs(0)
Cs

2Cs + Cmax

2
+ VQCmax − Vt

Cmax

2

qs(0) = (qT (0)− VQCmax + Vt
Cmax

2
)

2Cs

2Cs + Cmax

(3.8)

as, in serial connection,

Vs(0) = 2Vv(0) + Vt

C(0) = Cmax

At t = T
2 ,
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qT (
T

2
) = qs(0) + 2qv(0) = 2qT (0)− qs(0) (3.9)

= 2qs(0)
2Cs + Cmax

2Cs

+ 2VQCmax − VtCmax − qs(0)

= qs(0)
(Cs + Cmax)

Cs

+ 2VQCmax − VtCmax

qT (
T

2
) = qs(

T

2
) + 2qv(

T

2
) (3.10)

= Vs(
T

2
)Cs + 2Vv(

T

2
)C(

T

2
) + 2VQC(

T

2
)

= Vs(
T

2
)(Cs + 2Cmin) + 2VQCmin + 2VtCmin

⇒ qs(
T

2
) =

(
qT (

T

2
)− 2VQCmin − 2VtCmin

)
Cs

Cs + 2Cmin

(3.11)

as, in parallel connection,

Vs(
T

2
) = Vv(

T

2
)− Vt

C(
T

2
) = Cmin

At t = T ,

38



qT (T ) = qs(
T

2
) + qv(

T

2
) =

1
2
qT (

T

2
) +

1
2
qs(

T

2
) (3.12)

=

(
qs(0)

(Cs + Cmax)
Cs

+ 2VQCmax − VtCmax

)
Cs + Cmin

Cs + 2Cmin

− VQCminCs

Cs + 2Cmin

− VtCminCs

Cs + 2Cmin

= qs(0)
(Cs + Cmax)(Cs + Cmin)

Cs(Cs + 2Cmin)

+VQ
2CsCmax + 2CmaxCmin − CsCmin

Cs + 2Cmin

−Vt
CsCmax + CsCmin + CmaxCmin

Cs + 2Cmin

qs(T ) = (qT (T )− VQC(T ) + VtC(T ))
2Cs

2Cs + C(T )
(3.13)

= qs(0)
(Cs + Cmax)(Cs + Cmin)

(Cs + Cmax

2 )(Cs + 2Cmin)

+VQ
2C2

s (Cmax − Cmin)
(Cs + 2Cmin)(2Cs + Cmax)

−Vt
C2

s (Cmax + 2Cmin)
(Cs + 2Cmin)(2Cs + Cmax)

as, in serial connection,

Vs(T ) = 2Vv(T ) + Vt

C(T ) = Cmax

So in each cycle,

VQ
2C2

s (Cmax − Cmin)
(Cs + 2Cmin)(2Cs + Cmax)

≈ VQCmax = Q (3.14)

for Cs À Cmax À Cmin

amount of extra charge is stored to the system as in the previous implementation

and the same conclusion is also valid for this case.
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3.4.1 Simulations

The Spice simulation with two variable capacitors give the following output (Fig.

3.8) for Cs = 10nF, qs(0) = 150nC, VQ = 20V, Vt ' 0.4V, Cmax = 1nF, γ = 20,

f = 1KHz:

Figure 3.8: The plot of charge entering the reservoir vs. time for a duration
of 5ms when Cs = 10nF, qs(0) = 150nC, VQ = 20V, Vt ' 0.4V, Cmax = 1nF,
γ = 20, f = 1KHz.

In the third cycle, charge increases from qs = 150 + 57.7nC to qs = 150 +

82.9nC. So the gain is 25.2nC. Making use of the analytical calculations it is

expected to be 26.5nC. Without the electret the expected gain is only 8.6nC in

this cycle.

3.5 Discussions

The simulations show that this improvement may increase the gain by high per-

centage. Other than the load limitations, the physical constraints on electrical

circuitry —such as limited area and small dielectric constant— no longer restrict

us, and we are only restricted by the mechanical energy input.

One possible problem of this application is about the stability of embedded

charge in long term. It may leak as time passes and need to be replenished.

To partly overcome this problem, the best possible optimization for dimension,

timing and charge amount of the trapping mechanism should be achieved in order
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to meet the requirements of a specific application. One advantage is that even

when the charge leaks out completely the system continues harvesting power

obeying the working principle of the converter of Chapter 2.

This improvement can also be used in other applications employing capaci-

tors, to increase efficiency. In any application where there is a limit on the source

voltage but high charge accumulation is required; and for the reverse situation,

when less charge accumulation is required although high voltage is applied on

the capacitor, this trick can be used with proper choice of the polarization of the

stored charge.
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Chapter 4

MECHANICAL

CONSIDERATIONS

4.1 Introduction

When designing a mechanical-to-electrical energy converter, electrical and me-

chanical circuits should be considered simultaneously. First of all, the variable

capacitors should be effectively designed to exert high enough electrostatic field

so that they are coupled to the mechanical system while meeting the electri-

cal energy needs of the application. The mechanical energy capturing mecha-

nism should be matched to the external source impedance and should store high

enough amount of mechanical energy. On the other hand, given a limited volume

and restrictions on physical parameters, all the electrical and mechanical param-

eters become strictly dependent on each other. So, the mechanical and electrical

circuits should be designed and optimized simultaneously to reach maximum

efficiency.

The converter can be implemented in various ways, and for every specific ap-

plication, a different circuitry and operation scheme best captures the available

42



mechanical energy and converts with high efficiency. If the mechanical energy is

provided from a source that can apply force directly on the converter, a mechan-

ical interface (such as a membrane) moving under effect of this force captures

and delivers the motion. Otherwise, when there is mechanical acceleration in the

medium, the energy of this acceleration is captured through a mass suspended

to the casing. Such converters, utilizing a mass showing inertia to the motion

of the casing, are called inertial converters. As inertial conversion is suitable

for a wider range of energy sources, we concentrate on such a design. Inertial

converter designs, design concepts and constraints are discussed in the following

sections.

4.2 Mechanical Circuit

An inertial electrostatic converter can be constituted in various ways depending

on the choice of motion-affected parameter. Either area or distance or dielectric

constant of the capacitor can be altered through the effect of the mass motion.

The in-plane overlap type capacitor described in [5] is an example to the convert-

ers where the area of the capacitor is altered, and the distance between the plates

is altered using the in-plane gap closing type capacitor and the out-of-plane gap

closing type capacitor [5]. A converter in which the dielectric constant is altered

through motion can be implemented using micro-fluidics technology.

Every design exhibits a different damping characteristic throughout one op-

eration cycle, the electrical force between the plates of the capacitor may be

constant or varying relative to the motion depending on the design. So, each

of these designs will result in a different conversion efficiency when matched to

the electrical circuitry. Depending on the volume restrictions, input energy char-

acteristic, and physical constraints specific to the application, the mechanical
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circuit giving highest conversion efficiency may change. In the following sec-

tion, common factors that effect the power output and conversion efficiency and

constraints on these factors are discussed.

4.2.1 Efficiency Analysis — Design Optimization

Given the available input mechanical power, an optimization is required for the

mechanical and electrical circuitries to achieve optimum conversion efficiency. For

a mass-spring system oscillating under effect of an externally applied motion, and

altering the distance between the plates of the capacitor, the intrinsic parameters

to consider are the power content of the external mechanical energy (P (f)), fluid

damping resisting to the motion of mass (Ffric), and average electrical resistance

serial to the capacitors (Rav); and the controllable parameters to optimize are

frequency (f), mass weight (m), capacitor area (A), minimum distance between

the plates of the capacitor (dmin), and voltage of the source (V).

We need to match the available, mechanically stored, electrically captured,

and required power levels. Available power at the frequency of operation, the

power captured and stored by the mass at that frequency, and power stored to

the electrical source should be maximized to exceed the power requirement of

the application.

Firstly, the power content of the frequency of operation should meet the power

requirement:

P (f) À Preq (4.1)

This usually implies operating at low frequencies where the power level is higher.

Secondly, the mechanically stored energy should be larger than the electrically

captured energy. So the oscillating mass(m), the resonance frequency(f), and

the maximum velocity of the mass (vmax)(so the travelling distance,X) should
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be set to highest possible values:

mv2
max

2
= 2π2mX2f 2 À QF Enet/cycle (4.2)

QF is the quality factor of the mechanical system.

The time constant of the capacitors’ charge-discharge process is a limiting

factor for the power gain. The power gain linearly increases with increasing Cmax

(see equations 2.6, 2.16) and f ; but Cmaxf multiplier cannot be made arbitrarily

large as the period of operation should be larger than the time constant:

τ = αRavCmax ≤ f−1 (4.3)

α is the safety margin.

Applying this condition to Eq. 2.6 we get the following upper limit for power

gain;

Pnet = Enet/cycle × f = 0.5(V − Vt)V Cmaxf ≤ 0.5(V − Vt)V
αRav

(4.4)

and this limit should be greater than the required power level:

0.5(V − Vt)V
αRav

À Preq (4.5)

This also means that there exists an optimal Cmax value for every frequency, and

when deciding on the resonance frequency the maximum achievable Cmax value

should be considered.

Lastly, the electrical stored power (see Eq. 4.6) is the parameter of interest

which should not only exceed the required power level of the application but also

increased further to the optimum level.

Pnet =
(V − Vt)V εAf

dmin

(4.6)

Direct observation tells that A, V and 1/dmin should be increased; but A is

limited as the total volume is limited, dmin is restricted by the process, and V

should remain within the breakdown limit. Also, there is actually a maximum

Pnet value that ensures matching between external energy source and the system.
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At the dimension of our interest, i.e. at micron level, the most limiting part is

the mechanical energy capturing mechanism rather than the electrical circuitry.

For the electrical side, in a limited volume, the power output can be increased

by increasing source voltage, or using high permittivity medium in between the

capacitors (making use of microfluidics technology), or employing the charge

embedded capacitors presented in Chapter 3. On the other hand, mechanical

parameters (mass, spring constant and travelling distance) are strictly restricted

within the given dimensions. So any improvement on increasing the mechanically

stored power will significantly increase conversion efficiency. Actually one such

idea, coulomb-force parametric generator (CFPG), is proposed by Mitcheson et

al. in [4,26,28]. They offer not to use the mass at resonance, but rather increase

the electrical force damping of the mass motion to such a level such that the mass

moves only at the portion of the external motion cycle where the acceleration is

maximum. So, lowering the quality factor of the mechanical circuit, the amount

of power delivered to the electrical circuit is increased. Except the cases where

it is compulsory to have a sinusoidal variation in capacitance for the feedback

unit or an internal L-C resonance circuit to function, this operation principle

can increase the conversion efficiency. It is applicable to our energy converter as

there is no feedback unit or electrically resonating part requiring regular motion

to function.

4.2.2 Simulations

Handling the constraints mentioned above separately lead to complexity, but

unfortunately the system of interest has multiple nonlinearities, and there is no

closed form power gain expression in terms of input mechanical power and system

parameters. In order to observe the behavior of the system, it is simulated in

PSpice using the analogy between mechanical and electrical components.
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The mechanical model of the system is given in Fig. 4.1. It is an out-of-plane

gap closing type converter. Although it is not the most efficient conversion mech-

anism, it is used in the simulations due to its simplicity. Attempts of simulating

the in-plane gap closing comb drive system were not successful as higher order

terms arose and the system complexity led to convergence problems.

This converter employs a simple parallel plate capacitor, the upper plate of

which is movable. This plate constitutes a resonance system together with the

springs it is attached to. The casing moves under effect of the external motion

and its position is x(t) with respect to ground, and the plate shows inertia to the

motion of the casing that is transferred to it through the springs and it oscillates

up and down, its position being y(t) with respect to ground.

Figure 4.1: Model of out-of-plane gap closing type converter.

The mass (plate) in Fig. 4.1 experiences three main forces which altogether

determine the acceleration of the mass. Felect is the electrostatic force between

the plates, Fspr is the force applied by the stretched spring and Ffluid is the force

applied by the fluid (air) compressed between the plates:

m a(t) = Felect + Fspr + Ffluid (4.7)

m
d2y(t)
dt2

=
εAVc(t)2

d(t)2
+ k(x(t)− y(t)) + Ffluid

m
dIy(t)

dt
=

εAVc(t)2

d(t)2
+ k(

∫
Ix(t)−

∫
Iy(t)) + Ffluid

m
dIy(t)

dt
=

εAVc(t)2

2d(t)2
+ k(

∫
Iz(t)) + Ffluid
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where m is mass, a(t) is acceleration of mass, Vc(t) potential of each of the

capacitors, ε is permittivity of the medium, A is the area of the plates and d(t)

is the distance between the plates of the capacitor, do is the initial value of

d(t)(when spring is at zero energy position), k is the spring constant, and;

d(t) = do + x(t)− y(t)

z(t) = x(t)− y(t)

Ix(t) =
dx(t)
dt

, Iy(t) =
dy(t)
dt

, Iz(t) =
dz(t)
dt

The corresponding circuit model of Eq. 4.7 is given in Fig. 4.2. Felect is

analogous to a voltage source, value of which depends on Iz, so it is actually a

feedback controlled voltage source.

Figure 4.2: Electrical circuit analogy of the mass-spring system.

In the simulations a current-controlled current source is used to sense Iz and

its integral is taken to find z(t), then making use of mixers Felect is calculated

and fed to the mechanical circuit. z(t) is also used to calculate the capacitance

and the capacitance value is fed to the electrical circuit of Chapter 2; and the

electrical circuit feeds Vc(t) value to the mechanical part for Felect calculation.

There is also two other voltages added to Felect representing the force applied

by the wall used for stopping the upper plate before it hits the lower plate and

preventing from traveling too high. Actually in the simulations the condition of

hitting the wall is avoided due to two problems. When the plate hits the wall,

other types of forces will appear which are not considered in the simulation, so
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Figure 4.3: PSpice simulation of the overall system.

the simulation will not be all correct; and also most of the time wall collisions

could not be solved by the simulator and the simulation ended giving an overflow

error. So only smooth resonance case is analyzed throughout the simulations.

Although we wished to observe the conversion efficiency of CFPG type operation,

it is not analyzed either due to overflow errors.

Setting A to 1cm2, f to 10Hz, m to 2.33× 10−5kg, Xo (amplitude of external

motion) to 1mm, and choosing a high source impedance, the system is simulated

for different V (source voltage) values. Optimum do value giving maximum

power output for each voltage level is obtained. In the simulations, Ffluid is set

to zero(assuming the system is in vacuum), otherwise the damping force is very

high and it dominates the motion and there is no energy generation unless the

external energy is extremely high. This is another important constraint that

makes this generator useless.

The sample plots for plate motion (Fig.4.4) and energy transfer to the elec-

trical source (Fig.4.5) are obtained for V = 10V and do = 225µm. This do value

is the limit for hitting the wall and maximum power gain is obtained here. Plate

oscillates smoothly as seen in Fig.4.4. Cmax turns out to be 15pF and γ = 6;
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and with these values expected power gain is 5nW which is very close to the

simulation output.

Figure 4.4: Distance between the plates of the capacitor vs. time.

Figure 4.5: Energy transferred into the electrical source.

For increasing source voltages, the corresponding maximum power gain is

plotted in Fig. 4.6. According to the plot the optimum voltage is around 28V

and maximum power gain is ∼ 10nW.

This condition is expected, as the external source and mechanical system will

be matched to each other for a specific load (electrical energy capturing). At

optimum point, Felect is neither too high to pull down and contract the travelling

range of the plate, nor too low to capture only a small portion of the mechanical

energy.
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Figure 4.6: Power output vs. source voltage.

4.3 Discussions

The mechanical circuit of the generator can not be designed separately but rather

it should be considered together with the electrical circuitry. After achieving

the maximum mass (m) value in the given volume, spring constant, travelling

distance of mass, initial distance between the plates should all be decided in

coordination with the electrical parameters. The complete system should be

optimized to match the source of external motion.

In mechanical sense, the energy converter design presented in this thesis is

advantageous as it adapts to fluctuations in mechanical signal when the motion

does not perfectly repeat itself at a constant frequency. This is the common issue

of many electrostatic mechanical-to-electrical energy converters. The electrical

circuits of Chapters 2 and 3 are actually self adaptive as they do not employ

externally controlled switches and feedback circuitry. They do not need regular,
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fixed frequency motion. Whenever the electrostatic force is dominated by the

mechanical force, it generates charge to be stored in the reservoir. Otherwise no

current flows through the diodes other than leakage and the capacitors are kept

at a constant energy level.

As capacitors are commonly used in micro sensor-actuator applications, there

exist various MEMS capacitor designs that are applicable to our system. Among

those, the most suitable one is comb-drive which uses the volume most effectively

through tightly placed plates in parallel as in Fig. 4.7. As the power gain

increases proportionally with capacitance, these high capacitance structures are

useful for our applications. One other alternative is the honeycomb model shown

in Fig. 4.8 which uses the area effectively in vertical dimension.

Figure 4.7: Comb capacitor

Our aim is to further improve the capacitor designs given above for our sys-

tem. Making use of micro-fluidics technology, filling a high dielectric constant

fluid in between the plates of a capacitor, it may be possible to get larger capaci-

tance values. Also a variable capacitor with fixed plates but varying permittivity

can be obtained by using two types of fluids with different dielectric constants

and circulating them with the help of a pump working under effect of external

mechanical energy.
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Figure 4.8: Honeycomb capacitor

Volume limitation is also crucial for mechanically stored energy and it restricts

the power output of the generator seriously. In order to overcome this problem,

a CFPG type generator [4] will also be designed and fabricated.
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Chapter 5

CONCLUSION

This thesis introduced an electrostatic mechanical-to-electrical energy converter

design which is MEMS compatible and free of magnetic effects. This converter

employs only variable capacitors and switches, and it is capable of generating new

charge. It makes use of serial-parallel switching to generate charge; capacitors are

charged up in serial connection and discharged in parallel connection. This way

a pure electrostatic charge generating device came up. Being purely electrostatic

and pure silicon device, it is advantageous over other electrostatic converters

utilizing inductors. One other advantage is that the design is simple in nature as

it employs only diodes and variable capacitors, and does not include a feedback-

controller circuitry consuming some part of harvested energy.

Implementations of this device are modelled and analyzed, and also simulated.

For the design with voltage source, according to simulations on PSpice 11.25µW

power can be obtained for V = 5V, Cmax = 1nF, Cmin = 50pF, f = 1KHz,

confirming the theoretical calculations. The macro model experiment is carried

out at V = 40V, f = 1Hz, Cmax = 1500pF, Cmin = 45pF and 22nC charge is

gained in every second. The theoretically expected gain is 27nC for the ideal case
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where it is assumed that the time constant is zero, diodes are ideal and there is

no charge leakage in the circuitry.

An improvement for the capacitors used in energy conversion is also offered.

Placing an electret in between the plates of the capacitor and charging this

electret, a secondary electric field is created between the plates and this way

more charge accumulation is achieved on the outer plates -to compensate for

this secondary field. In our design, with this improvement, the power no longer

depends strictly on Cmax, but depends also on the charge trapped on the electret.

If large amount of charge is trapped on the electret, then Cmax value becomes less

important and we can work with smaller capacitors; and in this case, the charge

gain in every cycle is approximately equal to the amount of trapped charge.

We also simulated designs employing this improved capacitors in PSpice; for

V = 5V, Vt = 0.4V, Cmax = 1nF, γ = 20, f = 1KHz, and 20V being applied

through the electret, 20.9µC charge gain is obtained in one second. Theoretically,

for a circuit without leakage current and employing ideal diodes it was expected

to be 21.03µC, and without the electret this circuit would produce 2.03µC charge

in one second.

Physical design should compromise mechanical and electrical requirements.

The variable capacitors need to be high capacitance in order to circulate high

amount of electrical power in the circuit, the mass and its travelling distance

should be large for a high quality system sustaining large amount of mechanical

energy, spring constant should be small to be able to work at small frequencies

where the power content is higher, and also aspect ratio, minimum dimension

and fraction limits of the fabrication stage should be considered. The difficulty

in matching these conditions altogether decrease the conversion efficiency signif-

icantly. The charge embedded capacitor gives more flexibility at physical design

stage, and it increases the conversion efficiency for a given volume.
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The fabrication of this capacitor-diode system is fully compatible with MEMS

technology. The mechanically resonating capacitor is one of the commonly used

components in sensor applications that can be produced as a pure silicon device,

especially the comb-drive structure is a useful model for us with its tightly placed

plates generating high capacitance. We hope to further increase the maximum

achievable capacitance value in a limited volume by merging current designs with

other technologies such as microfluidics to come up with new capacitor models.

The idea of differentiating the circuit configuration making use of switches

can also be applied to other suitable energy converters transducing any form of

energy, and the charge embedded capacitor design presented in Chapter 3 can be

used with other applications employing capacitors, where it may serve to increase

efficiency or solve potential problems.
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