
Discrete Applied Mathematics 45 (1993) 93-115

North-Holland
93

A genuinely polynomial primal
simplex algorithm for the
assignment problem

Mustafa Akgiil

Department of Industrial Engineering, Bilkent University, 06533 Biikent, Ankara. Turkey

Received 2 1 March 1990

Revised 2 August 199 1

Abstract

Akgiil, M., A genuinely polynomial primal simplex algorithm for the assignment problem, Discrete

Applied Mathematics 45 (1993) 93-l 15.

We present a primal simplex algorithm that solves the assignment problem in :n(n+3)-4 pivots. Start-

ing with a problem of size 1, we sequentially solve problems of size 2,3,4,. ..,lt. The algorithm utilizes

degeneracy by working with strongly feasible trees and employs Dantdg’s rule for entering edges for the

subproblem. The number of nondegenerate simplex pivots is bounded by n-l. The number of consecu-

tive degenerate simplex pivots is bounded by : (n-2)(n+ 1). All three bounds are sharp. The algorithm

can be implemented to run in O(ni) time for dense graphs. For sparse graphs, using state of the art data

structures, it runs in O(n2 log n+nm) time, where the bipartite graph has 2n nodes and m edges.

Keywords. Assignment problem, network simplex method, linear programming, polynomial algo-

rithms, strongly feasible bases, Hirsch conjecture.

Introduction

The assignment problem is one of the most-studied, well-solved and important

problems in mathematical programming. Solution procedures vary from primal-

dual/successive shortest paths [12,25,26,33,35,46] (see [23] for a survey), cost

parametric [43], recursive [45], relaxation [24,31] to primal methods [lo, 211. It has

many applications, in particular it occurs as a relaxation of the travelling salesman

problem. It has been generalized to bottleneck, quadratic and algebraic cases, see

[15,16] for references.

Correspondence to: Professor M. Akgiil, Department of Industrial Engineering, Bilkent University, 06533

Bilkent, Ankara, Turkey.

0166-218X/93/$06.00 0 1993 - Elsevier Science Publishers B.V. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52924441?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

94 M. Akgiil

There are several efficient primal simplex algorithms for the assignment problem,

either especially designed for the assignment problem [ll] or designed for the

transshipment problem [28,42]. Naturally, they all work well in practice, but

theoretically they are exponential algorithms. Roohey-Laleh [39] exhibits a family

of problems with exponentially long nondegenerate pivot sequences.

Balinski [8] introduced a dual simplex algorithm with the number of pivots

bounded by +n(n- 1). Balinski’s algorithm starts with a dual feasible tree, and

searches for a strongly (primal) feasible tree. Strictly speaking the algorithm is not

a dual simplex method; since it allows replacing primal feasible tree edges with co-

tree edges. Nevertheless, it is a pivotal method. With proper implementation it runs

in O(n3) time. Goldfarb [29], modified Balinski’s signature method to a sequential

method and improved its efficiency. Balinski [9] also gave a purely dual simplex

algorithm with O(n’) pivot and 0(n3) time complexity. He developed a theory of

strongly feasible dual trees with remarkable properties. Akgul [4] gave a sequential

version of Balinski’s method similar to Goldfarb’s algorithm. Balinski’s algorithm

led to signature guided dual based forest algorithms (see, e.g., [1,6]).

Hung [30] gave a polynomial primal simplex method that requires 0(n3 log d)

pivots, where d =d, and dk = cxk - cx* is the difference in the objective function

value between the current solution xk and an optimal solution x*, and x0 is the

initial basic solution. He notices that when a nondegenerate pivot occurs with

Dantzig’s rule, we have the relationship d k+l I ((n - l)/n)dk. Thus, the number of

nondegenerate pivots by Dantzig’s rule is bounded by O(n log d). Cunningham [20]

earlier bounded the number of degenerate pivots at an extreme point by n(n - 1) by

utilizing strongly feasible trees and a certain pivot rule. Combining these one obtains

the given bound.

Orlin [36] using a perturbation technique (which is equivalent to strongly feasible

trees) reduced the bound on the number of pivots to O(n2 log d). He later reduced

the bound to O(n2m log n) where m is the number of edges and n is the number of

nodes in the graph by showing that there exist an equivalent network with cost coef-

ficients bounded by 4m(m!)2; and hence proving log d is O(m log n). The above

algorithms, [30,36] at least implicitly, are influenced by the ellipsoidal algorithm.

Their common feature is the reduction of the objective function value by a fraction

depending on n or m, independent of the rest of the problem parameters. In the

ellipsoidal algorithm this ratio is exp(-l/m2), whereas, say, in Orlin’s algorithm it

is exp(-l/n2). It is worth mentioning that for totally unimodular linear programs

the ellipsoidal algorithm needs 0(m2 log@ l/c/l llbll)) iterations [2, Chapter 41, where

as before m is the number of variables, and llxll denotes the (Euclidean) norm of the

vector x.

Cunningham and Roohy-Laleh [39] developed a genuinely polynomial primal

simplex algorithm. The algorithm needs 0(n3) pivots and 0(n5) time in the worst

case.

Here we present a primal simplex algorithm with O(n2) pivot and 0(n3) time

bound. We cast the problem as an instance of transshipment problem and work on

The assignment problem 95

a directed graph. The algorithm has three features. We consider an increasing se-
quence of subgraphs, the last of which is the graph of the original problem, and each
one differs from the previous one by addition of some of the edges incident with
one node. In matrix terms, we solve the subproblems defined by principal minors
of the cost matrix. The motivation for this approach came from the author’s work
on the shortest path problem [5]. Moreover, we restrict the feasible basis to strongly
feasible trees. Interestingly, degeneracy together with strongly feasible trees is very
helpful, at least theoretically. The third component of the algorithm is the use of
Dantzig’s rule restricted to the current subgraph. Our algorithm is a purely primal
simplex algorithm, because we carry a full basis of the original problem all the time.
We do not attempt to evaluate the change in the objective function value. Instead,
we study the structure of the set of nodes on which we make dual variable changes
during the solution of the current subproblem. We call these sets cut-sets. It turns
out that: (i) cut-sets are disjoint, (ii) edges originating from a cut-set are dual
feasible once for all the subgraph under consideration, (iii) dual infeasible edges
have the property that their tails have no dual variable change and (iv) each node
is subject to at most one dual variable change. Thus passing from a subproblem of
size k x k to a subproblem of size (k + 1) x (k + 1) can be done with at most k + 2
pivots. Hence, we have the bound +n(n + 3) - 4 for the number of pivots. The total
number of nondegenerate pivots is bounded by n - 1. The total number of con-
secutive degenerate pivots is bounded by +(n +2)(n - 1). All of these bounds are
sharp. A very naive implementation runs in 0(n3) time for dense graphs. For
sparse graphs, using the state of the art data structures [27,40], the algorithm runs
in 0(n2 log n+nm) time, which is currently the best available bound [27,29].

1. Preliminaries

We view the assignment problem as an instance of the transshipment problem
over a directed (bipartite) graph, G = (U, V, E) = (N, E), where U is the set of source
(row) nodes, Vis the set of sink (column) nodes, N= UU Vand E is the set of edges.
The edge e = (i,j) E E has tail t(e) = i and head h(e) =j, is directed from its tail to its
head, has cost c, = cij and flow x,. Thus the AP can be formulated compactly as

min{cx: Ax=b, xrO} (1)

wherexEm”,bEIRNwith6,=-1,uEU,b,=+1,oEV,andAisthenode-edgein-
cidence matrix of G.

The dual of (1) is

max c (Y$,,: UCN)

such that

Yh(e) - Y/(C) 5 c, 5 VeeE. (2)

96 M. Akgiil

The network simplex method is a specialization of the primal simplex method of

general linear programming to the transshipment problem. It is well known that any

basis of (1) corresponds to a tree T of G. Given any T, it is well known that the

flow values x,, eE T are uniquely determined for each compatible (C b, =0)

“supply” vector b. Moreover, the complementary dual basic solution is also unique-

ly determined once one of the y’s is fixed at an arbitrary level. Optimality conditions

for the LP are: (i) primal feasibility, (ii) dual feasibility, (iii) complementary

slackness. The simplex method maintains a primal feasible basis, and by construc-

tion the complementary slackness condition is automatically satisfied. Thus, the

simplex method, while maintaining primal feasibility and complementary slackness,

tries to satisfy the dual feasibility conditions, namely the constraints (2).

For every co-tree edge eE T’ = E - T, TU e contains a unique cycle C(T, e),

called the fundamental cycle determined by T and e. We orient C(T, e) in the direc-

tion of e. This will give us a partition of C(T,e) as

C(T,e)=C+(T,e)UC(T,e), eEC+(T,e) (3)

where C+(T, e) contains all edges of C(T, e) having the same orientation as e. Let

P = P(T, e) be the unique path in T from t(e) to h(e) with the natural partition of

the edges in P as Pf and P-. Then we have the following relationship between P
and C(T, e)

C+(T,e)=P-Ue, C-(T,e)=P+. (4)

Then, the edge f leaving T is determined by

8=xf=min{xj: jEC_(T,e)}. (5)

The new flow values will be

(

xj+ 19, je C+(T,e),

Xj= Xj-0, jEC_(T,e), (6)

xj, j@C(Te).

In general, anyfsatisfying (5) can leave the basis. Clearlyfe T. Then T-fwill have

exactly two components, say X and XC=N-X, with t(e) EX. Then the dual

variable change will be

yu= ylJ, -I VEXC,

yu+&, VEX

where E is determined so that the entering edge e will satisfy

Y/l(,) -Y,(e) = c6? (8)

with respect to new dual variables, i.e., E is the amount of dual infeasibility of the

edge e. Unconventionally, we will call f the cut-edge, and X the cut-set. Following

Rockafellar [38], let us define the left-hand side of (2) as the differential z,~ of e.

The assignment problem 97

Then (2) can be rewritten as

Z,IC,, VeEE. (2’)

The set of edges with one end in X and the other in Xc is called the fundamental
co-cycle of G determined by T and f, D(T, f). This can now be partitioned into

D(T,f)=Dt(T,f)UD-(T,f), e,f~D’(T,f), (9)

where D+(T,f) contains all the edges in the cocycle having the same orientation as

f, i.e., {jeE: t(j)EX, h(j)EXC).
Thus, dual variable (potential) change defined by (7) will cause the following

changes in differential:

L

Zj-s, jeD’(T,f),

Zj = Zj+E, jED_(T,f), (10)

Zj 9 j@D(T,f).

The relationship between the basis tree and the simplex tableau is well known

[13,38]. The efficiency of the network simplex method comes from the fact that the

algorithm works on trees combinatorially rather than on the tableaux algebraically.

Any selection rule specifying the choice of one dual infeasible co-tree edge e and

the choice off E Tsatisfying (5) will define a simplex method. For more information

on network simplex method see, e.g., [18,19,32].

Cunningham [19] and Barr et al. [l I], introduced the concept of strongly feasible

trees. Here we follow Barr et al.‘s convention. Given a specified node, say, r as a

root, let d=(x) be the distance of the node x from r in the (undirected) tree T, i.e.,

the number of edges in the unique path from r to x. We say e E T is directed toward

r or a reverse edge, if dr(t(e)) = d&z(e)) + 1, otherwise directed away from r or a

forward edge. A feasible rooted tree is strongly feasible (SFT) if Vf E T, xJ= 0 im-

plies f is a reverse edge.

We need to classify co-tree edges as forward, reverse and cross. e E T’ is a for-

0 SOURCE NODE

0 S,NK NODE

--
I

_-- T

F FORWARD

R .REVERSE

C CROSS

0
r

cl

Fig. 1. A strongly feasible tree.

98 M. Akgiil

ward edge if t(e) lies on the unique path from r to h(e) and a reverse edge if h(e)

lies on the path from r to t(e). Otherwise a co-tree edge is called a cross edge. For

nodes u and u, the nearest common ancestor NCA(u, u) is the last node common to

paths from r to u and u respectively. Then, e = (u, u) E E is forward if u = NCA(u, u),

reverse if u = NCA(u, u), otherwise e is a cross edge.

A typical example of a strongly feasible tree for the AP is shown in Fig. 1.

Let ? be the tree obtained from T by changing all reverse edges to forward

edges. VUE N, ufr, there is a unique edge e= (u, u) ET with h(e)= u. Through

such an edge the parent of u is defined as p(u) = u. ? is called a branching rooted

at r. T is represented as a data structure using parent and a few other pointers. For

u#r, when (p(u), u) is deleted from ?, the component containing u is called the

subtree rooted at u and denoted by F(u). This subtree contains all nodes that can

be reached from u by a directed path in ?. Clearly, u E F(u) and r E ?(u) w u = r.
To store the current matching we use an array named mate. If e = (u, u) is a matching

edge then we have mate(u) = u and mate(u) = u.
When rooted at a source node, an SFT has the following properties:

Lemma 1.1. (i) Every forward edge has flow value 1, and every reverse edge has
flow value 0.

(ii) The root has degree 1, every other source node has degree 2.
(iii) If e, f satisfy

eE T’, f~G(T,e), t(e)=t(f), (11)

then the selection off as the departing variable is valid and maintains strong
feasibility.

(iv) For eE T’, the pivot determined by e and (11) is nondegenerate iff e E T ’
is forward iff f E T is forward.

(v) For e, f satisfying (11) the pivot is nondegenerate iff r E X.
(vi) For e, f = (u, w) satisfying (1 l_): the pivot is degenerate iff X= T(u), and the

pivot is nondegenerate iff X= N\ T(w).

Proof. Most of these observations are elementary and were known by Cunningham

[19,20], and Barr et al. [ll]. (v) will be used to bound the total number of non-

degenerate pivots. 0

We will use the following property of Dantzig’s rule frequently.

Lemma 1.2. Let G=(N,E) be the graph of a transshipment problem, e be a pivot
edge selected by Dan&zig’s rule, f a cut-edge and X be the corresponding cut-set.
Then all edges in G(X,N\X) are dual feasible after the pivot.

Proof. Just notice that 6(X, N\X) = D+(T, f). Correctness of the lemma follows

from (10). 0

The assignment problem 99

0 1 2 3 4 2n-2 2n-1
c‘ . . w

Fig.2. Initial basis TO.

2. The new algorithm

We number the source nodes as 0,2,4, . . . ,2n - 2, and call them even nodes,
denoting them by circles in the diagrams. Similarly, the sink nodes are numbered
as 1,3,5 ,..., 2n - 1, called odd and denoted by squares. Clearly then, in an SFT
rooted at a source node r, a node u is even (odd) iff d,(v) is even (odd).

Our initial tree 7’,‘, is the path shown in Fig. 2. Since To might seem somewhat
restrictive, we remark that:

(1) Given a matching ~:(1,2,...,n}+(l,2,...,n}, one can obtain such a tree
containing the given matching by adding the degenerate edges (i, o(i- l)), for
i-2,3 ,..., n.

(2) If any other strongly feasible tree is available, then one can renumber the
nodes in preorder, leading to the same analysis.

(3) In case of a sparse graph where some of the edges (in To) are absent, the big
M technique can be applied with the introduction of artificial edges.

Let us further define for S, X, YcN and X (7 Y = 0,

y(S)=(eEE: t(e),h(e)ES},

[il={O,1,2,...,i}, Yi=Y([il),

6(X, Y)={eeE: t(e)EX, h(e)e Y},
(12)

G[Sl = G Y(S)).

Let Tz = TO, GO = G, = Gz = (IV, y2 U T,) = (N, T,). Clearly T, is an optimal basis
for the assignment problem defined by the graph GZ.

We will sequentially define Gi, 2 5 is 2n - 1, as subgraphs of G so that (i)
G = G2,,_ 1, (ii) AP defined by Gi+i is solved optimally by relatively few simplex
iterations starting with optimal basis Ti* of Gi.

i+l odd
i+l even

Fig. 3. Representation of Gi+ 1.

100 M. Akgd

Define Gi+ 1 = (IV, yi+, U q*) = (N, yi+, U To). For i odd (even) the only edges add-
ed to Gi to obtain Gi+i are 6(i+ 1, [i]), (6([i], i+ 1)). By Pi we denote the subpath
of & between i and 2n - 1. We can represent these concepts pictorially as in Fig. 3.

Clearly each Gi defines an assignment problem denoted by APi. We will refer Gi
instead of AP,, e.g., we will say Gi is optimal when APi is optimal. Thus, we start
with Gz which is optimal. Given Gi optimal, we then solve Gi+i optimally starting
with optimal tree q* of Gi, which is called stage i+ 1 or processing of node i+ 1.
A stage is called even (odd), if the node added is even (odd). Our selection of incom-
ing edges is restricted to dual infeasible edges in Gi+, . From these edges we choose
a most violated edge as the pivot edge, i.e., we use the restricted Dantzig’s rule.
Selection of departing variable will be by (11).

We will call the method the sequential network simplex algorithm (SNSA). We
need a few observations:

Lemma 2.1. (i) At the end of stage i, i.e., when Gi is solved optimally, the subpath
Pi is apart Of q.

(ii) In Pi every forward edge has value 1 and every reverse edge has value zero.

When i is odd, the passage from Gi to Gi+i is easy. Consider Fig. 4. Let
e E 6(i + 1, [i]) be a most violated edge and f be the edge (i + 1, i). By Lemma 2.1,
f E q, xf= 0. Clearly, f E C-(T, e). Since xf= 0, the pivot is degenerate and the selec-
tion off as the departing edge is valid. Then, increasing Yj by E for j>i, where
E =yh(,) -y,(,) - C, will make Gi+i optimal. Thus we have proved that

Lemma 2.2. For odd i, the passage from Gi to Gi+, can be done in at most one
pivot, and that pivot is degenerate.

For even i solving Gi+, from an optimal solution of Gi is nontrivial. We will
show that we need at most I = i/2 + 1 (the number of source nodes in [i]), simplex
pivots for that stage.

Letussetupsomenotation:letS=[i],o=i+1,andfo=(i,i+1)=(UO,U). Wesay
an edge is external if t(e) ES, h(e) = u. If h(e) E S, t(e) ES, then e is called internal.

Fig. 4. An even stage.

The assignment problem 101

During the current stage let ?” be the basis tree after the kth pivot, with To= 7;*.

Clearly f. E TO = q* by construction. At iteration k, let ek = (uk, uk) be the entering

edge and fk = (uk, wk) the departing edge with i;, = pk_ 1 + ek -fk. We let Xk be the

component of $_, -fk containing z.+ Then the dual variable change will increase

yj by &k for j E Xk, where &k is the amount of dual infeasibility of the pivot edge ek.

Let

Y,= ;, X,, Sk=S- Y,, Y,+=Y,uu, Y,=0. (13)
j=l

Yk is the set of nodes which were subject to dual variable change during the first

k pivots and Sk is the set of nodes in S with no dual variable change.

Notice that, at the beginning the only dual infeasible edges in G;, 1, if any, are

among the external edges, i.e., in 6(S,, Y,+) =a(& u). The algorithm will maintain

the main invariant: the only dual infeasible edges are among 6(&, Yk+). It tUrnS

Out that X,,, CSk, hence Xk+i is disjoint from Xi, X2, . . . , xk, and Xk+ 1 contains

at least one source node, namely uk + 1. Hence after at most 1 iterations, we have

sk=0, arriving at an optimal tree. Of course, a stage can be over earlier and some

Xk may contain more than one source node. It should be noted that the crucial

observation that Xi, X2, . . . , xk are disjoint is achieved by exploiting degeneracy,

and three components of the algorithm; namely, SFT’s, the sequentiality and

Dantzig’s rule are instrumental in achieving this result.

The algorithm will also maintain a second invariant: for u E Sk the path from u

to u in i;, contains fO (and u,), and for 2.4 E Yk’ the path in i;, from u to u does not

contain fO. This invariant implies that ail fundamental CyCkS c<Fk_ ,, ek) Will con-
tain u andfO. We will show that if fO is cut during the stage then the stage is over,

i.e., Gi+i is solved optimally. We will also show that fk+, = (uk+,, wk+,) E y(sk), if

fk+l #fO. Since in any tree there is a unique path between any two nodes, it suffices

to show that for UE Yk the second invariant holds, for 2.4~s~ it was true at the

beginning of the stage and remains valid.

Let us introduce two more operations to make the presentation clearer: shrinking
and rerooting. Let us shrink Yk’ into a single node, say, o^ and call the resulting tree

Tk. By shrinking i;, is transformed into $. Clearly To = Fo and shrinking puts each

i;, into the same form as PO. The main invariant states that only dual infeasible

edges for the current stage are among 6(sk, 01). The second invariant simply states

that fOE C(q_,,ej), Vj. Subtrees of i;, induced by Yk are connected to u by exter-

nal pivot edges and among themselves by internal pivots. The subtree of i;, in-

duced by Sk, which we denote by $[sk], is connected to u only by fO. Then, when

fk+ 1 = fO, xk+ 1 = Sk and the Stage iS Over. %Idarly When fk+ 1 #fO, fk+ , E i;, implies

fk+, rz j;c[sk] C y(sk) which in turn implies that Xk+ 1 C Sk.

Let us denote by $k the branching obtained from i;, making u as the root, i.e.,

rerooting i;, at 0. Since fO = (uO, u), the second invariant simply states that Sk is the

node set of one branch of j;c, the branch which contains fO. Clearly nodes in Yk lie

in different branches, each one corresponding to an external pivot edge. (We can

102 M. Akgiil

a

f 0

“0

Fig. 5. An odd stage. (a) The first three iterations. (b) Redrawing of (a) and 4th iteration. (c) p; and 4th
pivot. (d) Fd,.

The assignment problem 103

safely ignore nodes on P;+2 for this discussion.) Thus each pivot will move some

set of nodes, namely X, from the branch containing Jo to another branch which is

connected to u by an external edge. Moreover, the cut-set X, will be the node-set

of flk(uk) independent of whether fk was forward or reverse.

Let us make some remarks concerning Fig. 5. Pivots e, and e2 are external, they

increase the degree of u in T. The first three pivots are degenerate and their cut-sets

are subtrees of current ?. Pivot e, is nondegenerate, and Rex,. X, and X4 contain

two and four source nodes respectively.

Our main technical lemma is the follwoing:

Lemma 2.3. After the kth pivot we have:
(i) &1>&2z..‘z&k.

(ii) The Xj, jr k are disjoint.
(iii) If fk = f. then the stage is over. Moreover foe C<q- 1, ej), Qj< k.
(iv) The only dual infeasible edges, if any, are among

(v) Qjl k, ej connects Xj to either Xi with i< j or to V.

Proof. By induction on k, the number of pivots at the current stage. Clearly, for

k = 0, only (iv) makes sense and it holds by definition of the stage. For k = 1, clearly

el is an external edge, since all the internal edges are dual feasible at the beginning

of the stage. X, is transferred from S, =S to Y,. Notice that all the edges in

6(X,, v) U 6(X,, S,) are dual feasible by Lemma 1.2. Clearly edges in y(X,) U y(S1)

are dual feasible, since they were dual feasible before the pivot and did not have any

differential change. We may, however, create some internal dual infeasible edges

entering into X1, i.e., in 6(S,,X1). Hence we have the main invariant. Since e, is

external, u1 # uo, and f, #fo. Since nodes in X, are connected among themselves in

i1 and connected to v via e, and f. and e, both connected to v we have the second

invariant, for in any tree there is a unique path between any two nodes. Thus the

lemma holds for k = 1.

Edge e2 can be external or internal; in any case u2~S1. Let us show (i). If e2 is

external then v2 = v. Then the differential of e2 did not change by the first pivot

and it was dual infeasible before the first pivot. Then the fact that we have not

chosen e2 as the first edge implies ~~1 cl. If e2 is internal then v2eX1. Since it was

dual feasible before the first pivot, the dual infeasibility introduced by the first pivot

I Ed. This shows ~~1 E, in both cases. If f2 =fo then X2 = S1, and the stage is over,

for all the edges in 6(S,, YT) are dual feasible by Lemma 1.2 and since S2=0, the

second pivot will not create any dual infeasible edges. If f2#fo then u2 # u. and

w2 = h(f2) is a neighbour of u2 (w2 is either ~(2.4~) or mate(u2)). u2 ES, and w2 is a

neighbour of u2 implies w2 E S1 hence f2 E y(S,). Thus X2 c S1 and disjoint from X1.

This proves (ii). We have already shown (v) in proving (i). The second part of (iii)

and the second invariant follow from the observation that Y2 and S2 are connected

104 M. Akgiil

to u by external pivot edges and f0 respectively. Let us show (iv). Edges in
y(S,) U y(X,) U &X2) are dual feasible simply because they were dual feasible at the
beginning of the stage and their differential did not change. Edges in
6(X,, Y: U S,) are dual feasible by Lemma 1.2. To show that edges in S(X,,X,)
are dual feasible we use (i). Recall that they were dual feasible at the beginning of
the stage and the change in differential is s2 - e1 I 0, so they remain dual feasible.
This finishes the proof of (iii). Thus the lemma holds for k=2.

Now let us assume that the assertions of the lemma hold after the iteration k and
we want to prove for the iteration k + 1, Let e k+l =(uk+i,uk+i) be the pivot edge.
Let y, y’ be the vectors of dual variables before pivot 1 and after pivot k and z, z’
be the corresponding differentials respectively. By the induction hypothesis uk+i =

t@k+l)ESkr thus Y:k+,=Y~k+,. For (i) we differentiate several cases. If uk+i = u,
i.e., ek+, is external, then J$+,=Y~~+,, hence dual infeasibility of ek+i did not
change during the first k iterations; and the fact that it has not been selected as the
pivot edge at iteration k forces Sk+ i _ k <& b Dantzig’s rule. Otherwise ek+i is inter- y
nal. If uk+i = h(++i) EX~, then it was dual feasible before the pivot k, hence dual
infeasibility introduced at pivot k is bounded by &k, i.e., &k+i I&k. If uk+i E q,
j< k, then it was dual infeasible before pivot k, and the fact that it was not chosen
as the pivot edge at the iteration k implies that the dual infeasibility of ek+i I&k.
Thus We have &k+ 1 I&k.

If fk+l = f. (this could happen only if uk+i = ue), then Xk+i = Sk, and all the
edges in 6(X,+,, Yk+) are dual feasible by Lemma 1.2. In this case since Sk+i =0
the stage will be over once we prove (iv). Notice that c(pk, ek+ i) is the union of
paths from &+i to u, uk+i to 0 and ek+i. The second part of (iii) follows from the
induction hypothesis. To prove the second invariant it suffices to notice that nodes

in xk+l are connected by ek + , to Yk’ hence to u, and paths from these nodes to u
do not involve fo.

To prove (ii) it Suffices to show that fk+l =(&+l, wk+l)Ey(Sk). Since &+i ESk
and &+i is a neighbour of &+i # uo, it fOllOWS that wk+i E Sk implying

f k+ I E dsk).

(iv) Recall that each pivot will change only the differential of edges in the
fundamental CO-Cycle: D+(j;c,fk+l)=B(xk+l,sk+lu Yk+) and D-(j;c,fk+l)=
~(yk+,xk+,) u 6@k+b xk+,). Dual infeasibility of the edges in y(Y,+), y(Sk+i) and
y(Xk+i) will not change, since either both or neither of the ends of these edges are
subject to the same amount of dual variable change. For edges in 6(Yk+i, Sk+ i) the
dual variable change will not create any dual infeasibility because they were dual
feasible with respect to y, and the differentials of such edges will decrease,
since the dual variable change occurs at t(e) for such an edge e. Edges in

d(xk+Psk+l U Y,‘), are dual feasible by Lemma 1.2. Since the symmetric dif-
ference of 6(Sk, Yk+) and 6(Sk+i, Yk+++l) is s(Xk+i, yk+)u~(~k+l,xk+l), to prove

(iv) it suffices to show that the edges in 6(Yk,X k+i) are dual feasible. For this we
use (i). Let e=(U, w) be such an edge with usXj, w~Xk+i, jlk. Since e is inter-
nal, it was dual feasible with respect to y. But the change in the differential of e is

The assignment problem 105

&k+ r - Ej’ 0, implying that e is dual feasible after the pivot k + 1. This proves (iv).

We have already shown (v) in proving (i). 0

Since each Xj contains at least one source (even) node, namely t(ej), and they are

disjoint it follows that

Lemma 2.4. For even i, passage from Gi to Gi,, can be done in 1, the number of
even nodes in [i], pivots.

Combining Lemmas 2.2 and 2.4 we have:

Theorem 2.5. SNSA solves the assignment problem in +n(n + 3) - 4 simplex pivots.

Proof. Processing of even nodes requires n - 2 pivots. Processing of odd nodes re-

quires 1+ CS=s j pivots. Note that when node 3 is added to the current graph, we

can have at most one pivot. Summing up these numbers will give the above

result. 0

The following, which is interesting by itself, can be seen as a corollary of Lemma

2.3.

Lemma 2.6. During a stage
(i) The pivot edges el,e2, ek will never leave the basis.

(ii) The cut-edges f,, f2, . . . , fk will never re-enter the basis.

Now, we will determine the maximum number of nondegenerate pivots during the

course of the algorithm.

Lemma 2.1. In an odd stage there is at most one nondegenerate pivot.

Proof. Recall that by (v) of Lemma 1.1 a pivot ek is nondegenerate iff rEXk, and

by (ii) of Lemma 2.3 all X, are disjoint. Thus root r can only be in one Xk, hence

there is at most one nondegenerate pivot. q

Theorem 2.8. SNSA can have at most n - 1 nondegenerate simplex pivots.

Proof. This follows from Lemmas 2.2 and 2.7. Note also that G, is already op-

timal. 0

Remark. Theorem 2.8 can be seen as a proof of a variant of Hirsch conjecture [22]

for the assignment problem.

Next we would like to determine the largest number of consecutive degenerate

106 M. Akgiil

pivots in a stage, and then in the whole algorithm. Clearly in an even stage we can

have only one degenerate pivot by Lemma 2.2.

Consider an odd stage. Let P be the unique path from r to u in the current tree

at the beginning of stage v. Suppose we have 1 even nodes in P, say ii,, i&, ii,,

numbered from r towards u. Initially any pivot of the form (Z&U) is a non-

degenerate pivot. More generally, we have:

Lemma 2.9. (i) The first pivot with entering edge (ii,, w), ~51, w E qt, for some
j will be nondegenerate. Suppose it occurs as qth pivot, if it occurs.

(ii) Pivot edges ek, k<q, if any, will be cross edges.
(iii) Pivot edges ek, k > q, if any, will be reverse or cross.

Proof. (i) Suppose first such pivot is e4 = (ii,, w). For such a pivot, the path from

iip to w will contain (iik. * kzp} and in particular edge fO (see Lemma 2.3) and node

u, and the cut-edge fq will be (ii,, mate(tiJ). Consequently, the cut-set X will con-

tain the part of P from r to Up, hence r EX implying that the pivot is

nondegenerate.

(ii) Consider the pivots before ek = (2.4, w), k< q. Clearly the u # iik, k= 1, . . . , 1.

Then u E S \P, and w E Ykt. Hence NCA(u, w) $ {u, w} proving that ek is a cross

edge.

(iii) After the nondegenerate pivot r will be in Y’. Pivots with head on the path

between r and o will be reverse and others will be cross. 0

As a corollary of Lemma 2.9 we have:

Lemma 2.10. The maximum number of consecutive degenerate pivots in an odd
stage u is bounded by +(v+ 1)-l.

Proof. By Lemma 2.9, we can have only pivots with tails on Utl (S \P). Clearly

the number of such nodes is as given above. 0

Since every path P from r to v, u L 3 odd, contains at least two even nodes, we

have:

Theorem 2.11. The maximum number of consecutive degenerate pivots is bounded

by

n-2+ t (j-2)=+(n-2)(n+l).
j=3

Note that for the transshipment problem SFT’s prevent cycling [19]. In fact, that

was the main motivation for the development of strongly feasible trees. However,

it is possible to have an exponential sequence of degenerate pivots, without cycling.

This is known as stalling. Cunningham [20] introduced several pivot strategies, the

The assignment problem 107

best of which together with SFT’s bounds the length of consecutive degenerate

pivots, for the AP, by n(n - 1). Hung [30] used this particular pivot strategy to ob-

tain his polynomial primal simplex algorithm. (Recall that Roohy-Laleh [39] ex-

hibits a class of problems having an exponentially long sequence of nondegenerate

pivots.) Our Theorem 2.11 reduces this bound by half. Notice that the difference

between the bounds in Theorems 2.5 and 2.11 is I 2n.

3. Worst-case examples

Now, we would like to show that the bounds in Theorems 2.5, 2.8 and 2.11 are

sharp. We first look at Theorems 2.5 and 2.8. We will construct a cost matrix C,,,

one for each n2 3 with the following properties:

(i) C, is integral.

(ii) c,=O, for eETo.

(iii) For T,*, the optimal tree for C,, we have &#O, t/e E T,*' . In other words,

the reduced cost of the co-tree edges would be nonzero. This will imply that the op-

timal tree is unique among strongly feasible trees rooted at r.

(iv) G+i will be obtained from K, by appending one row and one column sub-

ject to (ii), where 19 is a positive integer to be specified later. Furthermore, starting

with To the first 2n - 1 stages of the algorithm for C,,, 1 will yield identical pivots

with C,, (except E’S will be multiplied by 0) and T,* augmented with a path of

length 2 will be the tree obtained at the end of stage 2n - 1.

(v) Starting with T,*, C,,+l will require exactly II + 2 pivots.

Let w = 2n - 1, u = 2n, u = 2n + 1, T= T,*, with U, o, w being nodes. We assume

as the induction hypothesis that T is of the form in Fig. 6. Thus, the source nodes

are r,uo,ui)..., uk, and sink nodes are uo, ul, . . . , uk, w where k = n - 2, and there is

a path P containing the nodes r, w, u o, uo, &, uk in that order. The rest Of the tree

consists of paths (w, u;, Oi) for i= 1,2, . . . , k - 1. Note that the numbering of Ui, ui

has no relation to initial numbering and is arbitrary except for the ordering induced

by the path, P. By adding edges (w, u) and (u, u) we obtain a strongly feasible tree

T” for C,,,,. Then T’= T”+ (u, uo) - (u, w) will be the resulting tree after pivoting

in the edge (u, uo) in the even stage 2n. Let T- be the tree obtained by shrinking the

path P’, from r to o, i.e., the nodes r, w, uo, uo, U, u, into a single (odd) node, say

r’. The tree T- consists of paths (r’, Ui, Vi), i= 1,2, . . . , k.

Now we will describe the last row and column of C,,+r . Let 8= 5. Consider the

optimal dual solution for 0C,. Instead of giving the last row of C,, i, we will

describe the reduced costs (Q =yhce) -_Y,(,) - c,) of the edges (u, ui), for i = 0, 1, . . . , k.

Recall that C(U, o) = C(U, w) = 0. Let the reduced costs of the remaining edges be

C(z4, 00) = 1)

i’(U,Ui)=-5, i=l,2,...,k.

108 M. Akgiil

Consequently, the edge (u, uO) will be the pivot edge and T’ will be the new tree; the
dual variables on the nodes u, u will be changed. Furthermore, we have C(U, W) = - 1.
Let the reduced cost coefficients of the edges entering into o with respect to dual
variables of T’ be

E(r, U) = 4,

E(&,fJ)=3, ISilk, (15)

c(uo, 0) = 2.

It is easy to see that in the odd stage 2n + 1 the first pivot will be the edge (r, u),

r W “0 “0 “k “k

fO _&A
r W “0 “0 U V

“1

u

T- k
r’ “k “k

T:.dk = ~ -o

r V
“0 W U “0

Fig. 6.

The assignment problem 109

Fig. 7.

which will result in a nondegenerate pivot. The algorithm, then, will select edges

(ui, u), 1 lis k, in any order as pivot edges. Since nodes Ui, 1 I is k are on dif-

ferent branches of T-, the order in which these nodes are selected as the tail of

pivot edges is immaterial. Up to now, we have a total of n pivots including the pivot

(u, ue). Clearly the next pivot will be (ue, o) which will result in the edge (u, w) being

dual infeasible with Z(U, w) = 1. Thus the edge (u, w) will be the last pivot.

We need to show that the above sequence of pivots is valid. By the induction

hypothesis, ~5-1, V co-tree edge eE Tn* for C,,. Multiplying C, by 8 guarantees

that the reduced cost of co-tree edges is at most -0 for K,. Since the dual variable

changes will be strictly less than 8, none of the co-tree edges of T,* will become

dual infeasible. Moreover, the reduced cost of these edges will be I - 1. The last

pivot edge (u, w) will have E = 1, resulting in r(u, u) = - 1. This completes the proof

of the inductive step.

To complete the proof it suffices to give a Cs with the desired properties. One

such matrix is

(16)

The resulting optimal tree is given in Fig. 7. The optimal matching is (0,5), (2,3),

(4,1) and it requires five pivots.

Note that, if desired, one can remove the nondeterminism of pivots. Let K be the

ordered set r, ur, u2, uk, uo. Starting with uo, let I?(#~, u) = 2, and increase the

reduced cost of each edge ~(s, u) by one for s EK in the reverse order, and let

0 = E(T, u) + 1, The result will be a unique sequence of pivots induced by the order

in K.
We have thus proved

Theorem 3.1. The bounds in Theorems 2.5 and 2.8 are sharp.

Next we would like to show that the bound in Theorem 2.11 is attainable. The

construction is very similar to one given above. We start the induction with the

following C, :

for which T-f is given in Fig. 8.

(17)

110 M. Akgiil

m % 3 ITJ

Fig. 8.

Let (ui,Ui)=(2i,2i+1), i=O,l,..., n - 1 be the edges of the matching in T,‘,,

where uO=r. As the induction hypothesis we assume that T,* consists of a path

(Q,, ue, U, _ r, u, _ r) together with paths (U, _ r, Ui, Vi), for 1~ i < n - 1 attached to U, _ 1

as shown in Fig. 9. Let T= T,*, T"=T+(u,w)+(u,o), T'=T"+(u,uO)-(u,w)
where U, u, w are defined as before. Let 0 = 4 and let us choose the reduced cost

of edges (u, Ui) with respect to dual variables of T" after multiplying C,, by 0 as

qz.4, ug) = 3,

f(&Ui)=-4, lli<n-1.
(18)

T”

Fig. 9.

The assignment problem 111

The reduced cost of the edges (ui, o) with respect to dual variables of T’ are chosen

as

E(r, 0) = -4,

C(Ui,O)=2, lli<n-1, (19)

E(u,_,,o)= 1.

Recall that c(u, u) = 0, and E(U, u) = 0 since (u, u) E T’. Then by Lemmas 2.1 and 2.10,

it is easy to see that in passing from K’, to C, + 1 one will have exactly 1 + (n + 1) - 2

consecutive degenerate pivots, and T,,:, will be the unique optimal tree for C,, 1

provided that T,,* is the unique optimal tree for C,, (among SFT’s rooted at r). Thus

we have proved

Corollary 3.2. The bound in Theorem 2.11 is attainable.

4. Implementation and time complexity

It is well known that the primal simplex method performs well in practice and is

at least competitive with other (polynomial) methods. We now show that properly

implemented, our algorithm attains the same time complexity as with the state of

the art algorithms,

First let us look at dense graphs; in particular when m = n2, the complete bipar-

tite graph. It is well known that an update of the basis and dual variables can be

performed in O(n) time using any of the algorithms in [7,14,41]. The difficulty

arises in the selection of incoming edges. If we just look at any simplex pivot, the

selection of incoming edges by Dantzig’s rule, in fact any rule, will require O(m)

time in the worst case. The key to the analysis lies in looking at all the pivots in a

stage simultaneously, instead of analyzing each pivot by itself. Clearly, we can

restrict our attention to an odd stage, say the last stage. For the pivot k we need

to determine

The technique that we will employ is very similar to the technique used in the primal-

dual algorithm. Following, say, [37], for each XE Q= Un&_i we define

W=m={c(x,y): YE YkTl},

nbC.4 = CT 4, if I?@, S) = s(x). (22)

s(x) measures the largest reduced cost of the edges in the current graph that start

at x, and rib(x)) keeps one such edge. Thus the maximum in (20) can be computed

by finding max(s(x): XE Q}, and if this maximum is ~0, the stage is over. If this

maximum is positive, then rib(x)) for a maximizing x is a pivot edge. After the kth

112 M. Akgiil

pivot, we first set Q 6 Q \ (X, n U), then update the S(X) by computing the reduced
cost of edges in S(Sk,Xk). We initially start with s(x) = E(x, u). Since the X, are dis-
joint, we need to compute the reduced cost of each edge only once. Thus, during
an odd stage, updating of reduced costs will take O(m) time. Since s(x), rib(x))
facilitate the selection of incoming edge in O(n) time, the total complexity of a stage
is 0(n2 + m), resulting in the total complexity of the algorithm being 0(n3).

For sparse graphs we can do better. Our initial T, may not be feasible, or finding
an initial tree may be nontrivial. In that case, we appeal to the big M method: that
is we start with r,, by adding artificial edges if necessary.

We assume an adjacency list representation of graphs: for every XE U we carry
a list of edges N+(x) leaving the node X, and for XE I/ we carry a list of edges
N-(x) entering the node x. We need a sublist of N+(x) and N-(x) at each stage.
In addition to pointers necessary to manipulate the tree we carry an array y(v) of
dual variables, and mate(o) of flow values (matching) for OEN, i.e., if o: U- V
represents the current matching, then for o E U, mate(o)=o(o) and for u E V,
mate(u) = a-‘(n).

In order to improve the time bound we need to utilize two new data structures:
the dynamic trees of Sleator and Tarjan [40,44], and the Fibonacci heaps of Fred-
man and Tarjan [27]. We need the first to maintain the basis tree, and the second
for selecting incoming edges.

Now we will describe the working of the dynamic tree data structure and its use
in maintaining a tree basis. A basis tree is represented via ?. For u EN, p(u) is the
parent of u, and the edge (p(u),u) is directed from p(u) to u in ?. The dynamic
trees data structure allows the execution of the following primitives in O(log n) time:
cut, link, NCA. To determine the leaving or cut-edge we use the NCA primitive.
Let e= (u, u) be the pivot edge. Then by Lemma 1.1, e is a forward edge (i.e., the
pivot is nondegenerate) iff u =NCA(u, u). When e= (u, u) is a forward edge,
f = (u, mate(u)) is the cut-edge. Otherwise, the cut-edge is f = (p(u), u). Once the cut-
edge (p(x),x) is determined, then the primitive, cut(x) will result in (T,,r) and
(T2,x), and then the primitive, Zink(Tl, T,, u) will give the required new tree. Thus
each tree update can be done in O(log n) time. Update of the array mate can be done
in O(n) time. Since there is at most one nondegenerate pivot in a stage, all tree up-
dates in a stage can be achieved in O(n log n) time.

We will update dual variables while updating s(x), XE Q = U(l S,. The Fibonacci
heap of Fredman and Tarjan [27] is used to select the incoming edges via (20) and
(21). Items in the heap will be (s(x), rib(x)))) XE Q. The key of an item is its s(x) com-
ponent. We will describe the heap in terms of the minimum of keys rather than the
maximum. A Fibonacci heap supports the following operations in O(1) amortized
time: (i) make-heap, (ii) update key of any item, (iii) add an item into the heap with
a known key, (iv) find the minimum key of items in the heap, and delete any item,
including the min-key item, in O(log n) amortized time. Notice that a pointer to the
position of the item in the heap is maintained to achieve these bounds. At the begin-
ning of each odd stage we apply make-heap, compute s(x) = --I?~ = c, - y, + yX, add

The assignment problem 113

s(x) to the heap for each external edge e = (x, 0). At the kth pivot we need to perform

the following operations: find the item x with minimum key, i.e., s(x) whose rib(x))

gives the pivot edge, determine cut-edge fk and cut-set X,. We then traverse set X,,

make dual variable changes, update sets Y,, Sk and Q, apply delete-item for source

nodes in X,, and put sink nodes in X, in a list. We then process nodes in the list

and update the S(X) by examining edges in N-(o) for u in the list. Thus during an

odd stage we apply one make-heap, at most m update or add-item and n find-min

and n delete-item operations. Clearly all heap operations during an odd stage will

require O(n log n + m) time, and dual variable updates will require O(n) time. Since

each tree update can be done in O(log n) time, the total work required in a stage

will be bounded by O(n log n + m). Thus the overall bound is 0(n2 log n + nm).
This is the same as for the best known algorithms, the successive path algorithm of

Fredman and Tarjan and the dual simplex algorithm of Balinski and Goldfarb

[27,29].

In fact, we can obtain the same bound without using dynamic trees. Notice that

using the classical triple labels parent, first child, next sibling one can cut and link

any tree in constant time. The main difficulty in these data structures is the deter-

mination of cut-edge. In dynamic trees we used the NCA primitive to determine

whether a pivot edge is degenerate or not. But we know that, during an odd stage

i, we have at most one nondegenerate pivot edge and by Lemma 2.9 the first and

only nondegenerate edge must originate from a source node in the path P from r
to i. Let Z= Pn U. Then if the tail of rib(x)) lies in 2 then the pivot edge e= rib(x))
is nondegenerate hence the cut-edge is f = (x, mate(x)). Otherwise the cut-edge is

f = (p(x),x). We also know that after the first nondegenerate pivot, the remaining

pivots in that stage are all degenerate. Thus the determination of cut-edges takes

O(n) time during a stage. In order to perform cut and link operations in constant

time it suffices to maintain (next) sibling pointers in a doubly linked circular list.

For this, we maintain parent, first, feft (sibling) and right (sibling) pointers. But,

then, we do not need the array mate. For u E U, mate(u) =first(u) and for u E V,

mate(u) =parent(u). Thus all basis update and dual variable changes in a stage can

be done in O(n) time.

Acknowledgement

This paper is based on [3] and went through considerable changes. I would like

to thank the referees for their very thorough reports on earlier versions of this paper

and their thoughtful suggestions for improving it.

References

[l] H. Achatz, P. Kleinschmidt and K. Paparrizos, A dual forest algorithm for the assignment pro-

blem, Tech. Rept., Universittit Passau (1989).

114 M. Akgiil

121 M. Akgiil, Topics in Relaxation and Ellipsoidal Methods, Research Notes in Mathematics 97 (Pit-

man, London, 1984).

131 M. Akgiil, A genuinely polynomial primal simplex algorithm for the assignment problem, Tech.

Rept., North Carolina State University, Raleigh, NC (1985); also: Working Paper IEOR 87-07,

Bilkent University, Ankara (1987).

[4] M. Akgiil, A sequential dual simplex algorithm for the linear assignment problem, Oper. Res. Lett.

7 (1988) 155-158.

[5] M. Akgiil, Shortest paths and the simplex method, Working Paper IEOR 88-04, Bilkent University,

Ankara (1988).

[6] M. Akgiil and 0. Ekin, A dual feasible forest algorithm for the linear assignment problem, Res.

Optr. 25 (1991) 403-411.

[7] AI. Ali, R.V. Helgason, J.L. Kennington and H.S. Lall, Primal simplex network codes: state-of-

the-art implementation technology, Networks 8 (1978) 315-339.

[8] M.L. Balinski, Signature method for the assignment problem, Oper. Res. 33 (1985) 527-536; also:

Presented at Mathematical Programming Symposium, Bonn (1982).

[9] M.L. Balinski, A competitive (dual) simplex method for the assignment problem, Math. Programm-

ing 34 (1986) 125-141.

[lo] M.L. Balinski and R.E. Gomory, A primal method for the assignment and transportation pro-

blems, Management Sci. 10 (1964) 578-598.

[ll] R.S. Barr, F. Clover and D. Klingman, The alternating basis algorithm for assignment problems,

Math. Programming 13 (1977) l-13.

[12] D. Bertsekas, A new algorithm for the assignment problem, Math. Programming 21 (1981) 152-157.

[13] R.B. Bixby, Matroids and operations research, in: H.J. Greenberg et al., eds., Advanced Techni-

ques in the Practice of Operations Research (North-Holland, Amsterdam, 1982) 333-459.

[14] G.H. Bradley, G.G. Brown and G.W. Graves, Design and implementation of large scale primal

transshipment algorithms, Management Sci. 24 (1977) l-34.

[15] R.E. Burkard, Travelling salesman and assignment problems: a survey, in: Annals of Discrete

Mathematics 4 (North-Holland, Amsterdam, 1979) 193-215.

[16] R.E. Burkard, W. Hahn and W. Zimmerman, An algebraic approach to assignment problems,

Math. Programming 12 (1977) 318-327.

[17] G. Carpaneto and P. Toth, Primal-dual algorithms for the assignment problem, Discrete Appl.

Math. 18 (1987) 137-153.

[18] V. Chvatal, Linear Programming (Freeman, San Francisco, CA, 1983).

[19] W.H. Cunningham, A network simplex method, Math. Programming 11 (1976) 105-l 16.

[20] W.H. Cunningham, Theoretical properties of the network simplex method, Math. Oper. Res. 4

(1979) 196-208.

[21] W.H. Cunningham and A.B. Marsh, A primal algorithm for optimum matching, Math. Programm-

ing Stud. 8 (1978) 50-72.

[22] G.B. Dantzig, Linear Programming and Extensions (Princeton University Press, Princeton, NJ,

1963).

[23] U. Derigs, The shortest augmenting path method for solving assignment problems-motivation and

computational experience, Ann. Oper. Res. 4 (198516) 57-102.

[24] E.A. Dinic and M.A. Kronrad, An algorithm for the solution of the assignment problem, Soviet

Math. Dokl. 10 (1969) 1324-1326.

[25] J. Edmonds and R.M. Karp, Theoretical improvements in algorithmic efficiency for network flow

problems, J. ACM 19 (1972) 248-264.

[26] L.R. Ford and D.R. Fulkerson, Flows in Networks (Princeton University Press, Princeton, NJ,

1962).

[27] M.L. Fredman and R.E. Tarjan, Fibonacci heaps and their uses in improved network optimization

algorithms, J. ACM 34 (1987) 596-615; also in: Proceedings 25th FOCS (1984) 338-346.

The assignment problem 115

[28] F. Clover and D. Karney, Implementation and computational comparisons of primal, dual, primal-

dual codes for minimum cost network flow problems, Networks 4 (1977) 191-212.

[29] D. Goldfarb, Efficient dual simplex algorithms for the assignment problem, Math. Programming

37 (1985) 187-203.

[30] M.S. Hung, A polynomial simplex method for the assignment problem, Oper. Res. 31 (1983)

595-600.

[31] M.S. Hung and W.O. Rom, Solving the assignment problem by relaxation, Oper. Res. 27 (1980)

969-982.

[32] E.L. Johnson, Flows in networks, in: J.J. Moder and SE. Elmaghraby, eds., Handbook of Opera-

tions Research (Van Nostrand Reinhold, Princeton, NJ, 1978).

[33] R. Jonker and A. Volgenant, A shortest path algorithm for dense and sparse linear assignment

problems, Computing 38 (1987) 325-340.

[34] H.W. Kuhn, The hungarian method for the assignment problem, Naval Res. Logist. Quart. 2 (1955)

83-97.

[35] J. Munkres, Algorithms for the assignment and transporation problems, SIAM J. Comput. 5 (1957)

32-38.

[36] J.B. Orlin, On the simplex algorithm for networks and generalized networks, Math. Programming

Stud. 24 (1985) 166-178.

[37] C. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms & Complexity

(Prentice-Hall, Englewood Cliffts, NJ, 1982).

[38] R.T. Rockafellar, Network Flows and Monotropic Optimization (Wiley, New York, 1984).

[39] Roohy-Laleh, Improvements to the theoretical efficiency of the simplex method, PhD thesis,

University of Charleton, Ottawa, Ont. (1981); also: Dissertation Abstract International 43 (1982)

448B.

[40] D.D. Sleator and R.E. Tarjan, A data structure for dynamic trees, J. Comput. System Sci. 26 (1983)

362-391.

[41] V. Srinivasan and G.L. Thompson, Accelerated algorithms for labelling and relabelling of trees,

with applications to distribution problems, J. ACM 19 (1972) 712-726.

[42] V. Srinivasan and G.L. Thompson, Benefit-cost analysis for coding techniques for the primal

transportation problem, J. ACM 20 (1973) 184-213.

[43] V. Srinivasan and G.L. Thompson, Cost operator algorithms for the transportation problem,

Math. Programming 12 (1977) 372-391.

[44] R.E. Tarjan, Data Structures and Network Algorithms (SIAM, Philadelpha, PA, 1983).

[45] G.L. Thompson, A recursive method for the assignment problems, in: Annals of Discrete

Mathematics 11 (North-Holland, Amsterdam, 1981) 319-343.

[46] N. Tomizawa, On some techniques useful for solution of transportation network problems, Net-

works 1 (1972) 173-194.

