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Performance of some suboptimal detectors can be enhanced by adding independent noise to their inputs
via the stochastic resonance (SR) effect. In this paper, the effects of SR are studied for binary composite
hypothesis-testing problems. A Neyman–Pearson framework is considered, and the maximization of
detection performance under a constraint on the maximum probability of false-alarm is studied. The
detection performance is quantified in terms of the sum, the minimum, and the maximum of the
detection probabilities corresponding to possible parameter values under the alternative hypothesis.
Sufficient conditions under which detection performance can or cannot be improved are derived for each
case. Also, statistical characterization of optimal additive noise is provided, and the resulting false-alarm
probabilities and bounds on detection performance are investigated. In addition, optimization theoretic
approaches to obtaining the probability distribution of optimal additive noise are discussed. Finally,
a detection example is presented to investigate the theoretical results.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Stochastic resonance (SR) refers to a physical phenomenon that
is observed as an improvement in the output of a nonlinear system
when noise level is increased or specific noise is added to the sys-
tem input [1–15]. Although noise commonly degrades performance
of a system, it can also improve performance of some nonlinear
systems under certain circumstances. Improvements that can be
obtained via noise can be in various forms, such as an increase
in output signal-to-noise ratio (SNR) [1–3] or mutual information
[8–13], a decrease in the Bayes risk [16–18], or an increase in
probability of detection under a constraint on probability of false-
alarm [14,15,19–21]. The first study on the SR phenomenon was
performed in [1] to explain the periodic recurrence of ice gases.
In that work, presence of noise was taken into account in order
to explain a natural phenomenon. Since then, the SR concept has
been considered in numerous nonlinear systems, such as optical,
electronic, magnetic, and neuronal systems [7].

The SR phenomenon has been investigated for hypothesis-
testing (detection) problems in recent studies such as [14–30].
By injecting additive noise to the system or by adjusting the
noise parameters, performance of some suboptimal detectors can
be improved under certain conditions [19,24]. The phenomenon
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of improving performance of a detector via noise is also called
noise-enhanced detection (NED) [31,32]. Depending on detection
performance metrics, additive noise can improve performance of
suboptimal detectors according to the Bayesian [16], minimax [20],
and Neyman–Pearson [14,15,19,25] criteria. The effects of additive
noise on performance of suboptimal detectors are investigated in
[16] according to the Bayesian criterion under uniform cost as-
signment. It is proven that the optimal noise that minimizes the
probability of decision error has a constant value, and a Gaussian
mixture example is presented to illustrate the improvability of a
suboptimal detector via adding constant “noise”, which is equiv-
alent to shifting the decision region of the detector. The study in
[20] investigates optimal additive noise for suboptimal variable de-
tectors according to the Bayesian and minimax criteria based on
the results in [14] and [16].

In the Neyman–Pearson framework, additive noise can be uti-
lized to increase probability of detection under a constraint on
probability of false-alarm. In [24], noise effects are investigated
for sine detection and it is shown that the conventional incoher-
ent detector can be improved under non-Gaussian noise. In [19],
an example is presented to illustrate the effects of additive noise
for the problem of detecting a constant signal in Gaussian mix-
ture noise. In [14], a theoretical framework for investigating the
effects of additive noise on suboptimal detectors is established ac-
cording to the Neyman–Pearson criterion. Sufficient conditions are
derived for improvability and nonimprovability of a suboptimal de-
tector via additive noise, and it is proven that optimal additive
noise can be generated by a randomization of at most two discrete
signals, which is an important result since it greatly simplifies the
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calculation of the optimal noise probability density function (PDF).
An optimization theoretic framework is provided in [15] for the
same problem, which also proves the two mass point structure of
the optimal additive noise PDF, and, in addition, states that an op-
timal additive noise may not exist in certain cases.

The results in [14] are extended to variable detectors in [20],
and similar conclusions as in the fixed detector case are made.
In addition, the theoretical framework in [14] is employed for
sequential detection and parameter estimation problems in [33]
and [34], respectively. In [33], a binary sequential detection prob-
lem is considered, and additive noise that reduces at least one
of the expected sample sizes for the sequential detection system
is obtained. In [34], improvability of estimation performance via
additive noise is illustrated under certain conditions for various
estimation criteria, and the form of the optimal noise PDF is de-
rived in each case. The effects of additive noise are studied also
for detection of weak sinusoidal signals and for locally optimally
detectors. In [26] and [27], detection of a weak sinusoidal signal
is considered, and improvements on detection performance are in-
vestigated. In addition, [28] focuses on the optimization of noise
and detector parameters of locally optimal detectors for the detec-
tion a small-amplitude sinusoid in non-Gaussian noise.

The theoretical studies in [14] and [15] on the effects of addi-
tive noise on signal detection in the Neyman–Pearson framework
consider simple binary hypothesis-testing problems in the sense
that there exists a single probability distribution (equivalently, one
possible value of the unknown parameter) under each hypothe-
sis. The main purpose of this paper is to study composite binary
hypothesis-testing problems, in which there can be multiple pos-
sible distributions, hence, multiple parameter values, under each
hypothesis [35]. The Neyman–Pearson framework is considered by
imposing a constraint on the maximum probability of false-alarm,
and three detection criteria are studied [36]. In the first one, the
aim is to maximize the sum of the detection probabilities for all
possible parameter values under the first (alternative) hypothesis
H1 (max-sum criterion), whereas the second one focuses on the
maximization of the minimum detection probability among all pa-
rameter values under H1 (max-min criterion). Although it is not
commonly used in practice, the maximization of the maximum de-
tection probability among all parameter values under H1 is also
studied briefly for theoretical completeness (max-max criterion).
For all detection criteria, sufficient conditions under which perfor-
mance of a suboptimal detector can or cannot be improved via
additive noise are derived. Also, statistical characterization of op-
timal additive noise is provided in terms of its PDF structure in
each case. In addition, the probability of false-alarm in the pres-
ence of optimal additive noise is investigated for the max-sum
criterion, and upper and lower bounds on detection performance
are obtained for the max-min criterion. Furthermore, optimiza-
tion theoretic approaches to obtaining the optimal additive noise
PDF are discussed for each detection criterion. Both particle swarm
optimization (PSO) [37–40] and approximate solutions based on
convex relaxation [41] are considered. Finally, a detection example
is provided to investigate the theoretical results.

The main contributions of the paper can be summarized as fol-
lows:

• Theoretical investigation of the effects of additive noise in bi-
nary composite hypothesis-testing problems in the Neyman–
Pearson framework.

• Extension of the improvability and nonimprovability condi-
tions in [14] for simple hypothesis-testing problems to the
composite hypothesis-testing problems.

• Statistical characterization of optimal additive noise according
to various detection criteria.
Fig. 1. Independent noise n is added to data vector x in order to improve the per-
formance of the detector, φ(·).

• Derivation of upper and lower bounds on the detection per-
formance of suboptimal detectors according to the max-min
criterion.

• Optimization theoretic approaches to the calculation of opti-
mal additive noise.

The remainder of the paper is organized as follows. Section 2
describes the composite hypothesis-testing problem, and intro-
duces the detection criteria. Then, Sections 3 and 4 study the
effects of additive noise according to the max-sum and the max-
min criteria, respectively. In Section 5, the results in the previous
sections are extended to the max-max case, and the main implica-
tions are briefly summarized. A detection example in provided in
Section 6, which is followed by the concluding remarks.

2. Problem formulation and motivation

Consider a binary composite hypothesis-testing problem de-
scribed as

H0: pθ0(x), θ0 ∈ Λ0,

H1: pθ1(x), θ1 ∈ Λ1 (1)

where Hi denotes the ith hypothesis for i = 0,1. Under hypothe-
sis Hi , data (observation) x ∈ R

K has a PDF indexed by θi ∈ Λi ,
namely, pθi (x), where Λi is the set of possible parameter val-
ues under hypothesis Hi . Parameter sets Λ0 and Λ1 are disjoint,
and their union forms the parameter space, Λ = Λ0 ∪ Λ1 [35]. In
addition, it is assumed that the probability distributions of the pa-
rameters are not known a priori.

The expressions in (1) present a generic formulation of a bi-
nary composite hypothesis-testing problem. Such problems are en-
countered in various scenarios, such as in radar systems and non-
coherent communications receivers [35,42]. In the case that both
Λ0 and Λ1 consist of single elements, the problem in (1) reduces
to a simple hypothesis-testing problem [35].

A generic detector (decision rule), denoted by φ(x), is consid-
ered, which maps the data vector into a real number in [0,1] that
represents the probability of selecting H1 [35]. The aim is to in-
vestigate the effects of additive independent noise to the original
data, x, of a given detector, as shown in Fig. 1, where y represents
the modified data vector expressed as

y = x + n, (2)

with n denoting the additive noise term that is independent of x.
The Neyman–Pearson framework is considered in this study,

and performance of a detector is specified by its probabilities of
detection and false-alarm [35,36,43]. Since the additive noise is
independent of the data, the probabilities of detection and false-
alarm can be expressed, conditioned on θ1 and θ0, respectively, as

Py
D(θ1) =

∫

RK

φ(y)

[ ∫

RK

pθ1(y − x)pn(x)dx
]

dy, (3)

Py
F(θ0) =

∫
K

φ(y)

[ ∫
K

pθ0(y − x)pn(x)dx
]

dy, (4)
R R
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where pn(·) denotes the PDF of the additive noise. After some ma-
nipulation, (3) and (4) can be expressed as [14]

Py
D(θ1) = En

{
Fθ1(n)

}
, (5)

Py
F(θ0) = En

{
Gθ0(n)

}
, (6)

for θ1 ∈ Λ1 and θ0 ∈ Λ0, where

Fθ1(n) �
∫

RK

φ(y)pθ1(y − n)dy, (7)

Gθ0(n) �
∫

RK

φ(y)pθ0(y − n)dy. (8)

Note that Fθ1 (n) and Gθ0 (n) define, respectively, the probability of
detection conditioned on θ1 and the probability of false-alarm con-
ditioned on θ0 when a constant noise n is added to the data. Also,
in the absence of additive noise, i.e., for n = 0, the probabilities
of detection and false-alarm are expressed as Px

D(θ1) = Fθ1 (0) and
Px

F(θ0) = Gθ0 (0), respectively, for given values of the parameters.
Various performance metrics can be defined for compos-

ite hypothesis-testing problems [35,36]. In the Neyman–Pearson
framework, the main constraint is to keep the probability of false-
alarm below a certain threshold for all possible parameter values
θ0; i.e.,

max
θ0∈Λ0

Py
F(θ0) � α̃. (9)

In most practical cases, the detectors are designed in such a way
that they operate at the maximum allowed false-alarm probability
α̃ in order to obtain maximum detection probabilities. Therefore,
the constraint on the false-alarm probability can be defined as α̃ =
maxθ0∈Λ0 Px

F(θ0) = maxθ0∈Λ0 Gθ0 (0) for practical scenarios. In other
words, in the absence of additive noise n, the detectors commonly
operate at the false-alarm probability limit.

Under the constraint in (9), the aim is to maximize a func-
tion of the detection probabilities for possible parameter values
θ1 ∈ Λ1. In this study, the following performance criteria are con-
sidered [36]:

• Max-sum criterion: In this case, the aim is to maximize∫
θ1∈Λ1

Py
D(θ1)dθ1, which can be regarded as the “sum” of the

detection probabilities for different θ1 values. This is equiva-
lent to assuming uniform distribution for θ1 and maximizing
the average detection probability [36].

• Max-min criterion: According to this criterion, the aim is
to maximize the worst-case detection probability, defined as
minθ1∈Λ1 Py

D(θ1) [36,43,44]. The worst-case detection probabil-
ity corresponds to considering the least-favorable distribution
for θ1 [36].

• Max-max criterion: This criterion maximizes the best-case de-
tection probability, maxθ1∈Λ1 Py

D(θ1). This criterion is not very
common in practice, since maximizing the detection proba-
bility for a single parameter can result in very low detection
probabilities for the other parameters. Therefore, this criterion
will only be briefly analyzed in Section 5 for completeness of
the theoretical results.

There are two main motivations for investigating the effects of
additive independent noise in (2) for binary composite hypothesis-
testing problems. First, it is important to quantify performance
improvements that can be achieved via additive noise, and to de-
termine when additive noise can improve detection performance.
In other words, theoretical investigation of SR in binary composite
hypothesis-testing problems is of interest. Second, in many cases,
the optimal detector based on the calculation of likelihood func-
tions is challenging to obtain or requires intense computations [14,
35,43,45]. Therefore, a suboptimal detector can be preferable in
some practical scenarios. However, the performance of a subop-
timal detector may need to be enhanced in order to meet certain
system requirements. One way to enhance the performance of a
suboptimal detector without changing the detector structure is to
modify its original data as in Fig. 1 [14]. Even though calcula-
tion of optimal additive noise causes a complexity increase for the
suboptimal detector, the overall computational complexity is still
considerably lower than that of an optimal detector based on like-
lihood function calculations. This is because the optimal detector
needs to perform intense calculations for each decision whereas
the suboptimal detector with modified data needs to update the
optimal additive noise whenever the statistics of the hypotheses
change. For instance, in a binary communications system, the op-
timal detector needs to calculate the likelihood ratio for each sym-
bol, whereas a suboptimal detector as in Fig. 1 needs to update n
only when the channel statistics change, which can be constant
over a large number of symbols for slowly varying channels [46].

3. Max-sum criterion

In this section, the aim is to determine the optimal additive
noise n in (2) that solves the following optimization problem.

max
pn(·)

∫
θ1∈Λ1

Py
D(θ1)dθ1, (10)

subject to max
θ0∈Λ0

Py
F(θ0) � α̃ (11)

where Py
D(θ1) and Py

F(θ0) are as in (5)–(8). Note that the problem
in (10) and (11) can also be regarded as a max-mean problem
since the objective function in (10) can be normalized appropri-
ately so that it defines the average detection probability assuming
that all θ1 parameters are equally likely [36].1

From (5) and (6), the optimization problem in (10) and (11) can
also be expressed as

max
pn(·)

En
{

F (n)
}
, (12)

subject to max
θ0∈Λ0

En
{

Gθ0(n)
}

� α̃ (13)

where F (n) is defined by

F (n) �
∫

θ1∈Λ1

Fθ1(n)dθ1. (14)

Note that F (n) defines the total detection probability for a specific
value of additive noise n.

In the following sections, the effects of additive noise are in-
vestigated for this max-sum problem, and various results related
to optimal solutions are presented.

3.1. Improvability and nonimprovability conditions

According to the max-sum criterion, the detector is called im-
provable if there exists additive independent noise n that satisfies

Py
D,sum �

∫
θ1∈Λ1

Py
D(θ1)dθ1 >

∫
θ1∈Λ1

Px
D(θ1)dθ1 � Px

D,sum (15)

1 When Λ1 does not have a finite volume, the max-mean formulation should be
used since

∫
θ ∈Λ

Py
D(θ1)dθ1 may not be finite.
1 1
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under the false-alarm constraint. From (5) and (14), the condition
in (15) can also be expressed as

Py
D,sum = En

{
F (n)

}
> F (0) = Px

D,sum. (16)

If the detector cannot be improved, it is called nonimprovable.
In order to determine the improvability of a detector accord-

ing to the max-sum criterion without actually solving the op-
timization problem in (12) and (13), the approach in [14] for
simple hypothesis-testing problems can be extended to compos-
ite hypothesis-testing problems in the following manner. First, we
introduce the following function

H(t) � sup
{

F (n)

∣∣∣ max
θ0∈Λ0

Gθ0(n) = t, n ∈R
K
}
, (17)

which defines the maximum value of the total detection probabil-
ity for a given value of the maximum false-alarm probability. In
other words, among all constant noise components n that achieve
a maximum false-alarm probability of t , H(t) defines the maxi-
mum probability of detection.

From (17), it is observed that if there exists t0 � α̃ such that
H(t0) > Px

D,sum, then the system is improvable, since under such
a condition there exists a noise component n0 such that F (n0) >

Px
D,sum and maxθ0∈Λ0 Gθ0 (n0) � α̃. Hence, the detector performance

can be improved by using an additive noise with pn(x) = δ(x−n0).
However, that condition may not hold in many practical scenar-
ios since, for constant additive noise values, larger total detection
probabilities than Px

D,sum are commonly accompanied by false-
alarm probabilities that exceed the false-alarm limit. Therefore, a
more generic improvability condition is derived in the following
theorem.

Theorem 1. Define the maximum false-alarm probability in the absence
of additive noise as α � maxθ0∈Λ0 Px

F(θ0). If H(t) in (17) is second-order
continuously differentiable around t = α and satisfies H ′′(α) > 0, then
the detector is improvable.

Proof. Since H ′′(α) > 0 and H(t) in (17) is second-order contin-
uously differentiable around t = α, there exist ε > 0, n1 and n2
such that maxθ0∈Λ0 Gθ0 (n1) = α +ε and maxθ0∈Λ0 Gθ0 (n2) = α −ε .
Then, it is proven in the following that an additive noise with
pn(x) = 0.5δ(x − n1) + 0.5δ(x − n2) improves the detection per-
formance under the false-alarm constraint. First, the maximum
false-alarm probability in the presence of additive noise is shown
not to exceed α.

max
θ0∈Λ0

En
{

Gθ0(n)
}

� En

{
max
θ0∈Λ0

Gθ0(n)
}

= 0.5(α + ε) + 0.5(α − ε) = α. (18)

Then, the increase in the detection probability is proven as fol-
lows. Due to the assumptions in the theorem, H(t) is convex in
an interval around t = α. Since En{F (n)} can attain the value of
0.5H(α + ε) + 0.5H(α − ε), which is always larger than H(α) due
to convexity, it is concluded that En{F (n)} > H(α). As H(α) �
Px

D,sum by definition of H(t) in (17), En{F (n)} > Px
D,sum is satisfied;

hence, the detector is improvable. �
Theorem 1 provides a simple condition that guarantees the im-

provability of a detector according to the max-sum criterion. Note
that H(t) is always a single-variable function irrespective of the di-
mension of the data vector, which facilitates simple evaluations of
the conditions in the theorem. However, the main complexity may
come into play in obtaining an expression for H(t) in (17) in cer-
tain scenarios. An example is presented in Section 6 to illustrate
the use of Theorem 1.
In addition to the improvability conditions in Theorem 1, suffi-
cient conditions for nonimprovability can be obtained by defining
the following function:

Jθ0(t) � sup
{

F (n)
∣∣ Gθ0(n) = t, n ∈ R

K }
. (19)

This function is similar to that in [14], but it is defined for each
θ0 ∈ Λ0 here, since a composite hypothesis-testing problem is con-
sidered. Therefore, Theorem 2 in [14] can be extended in the fol-
lowing manner.

Theorem 2. If there exits θ0 ∈ Λ0 and a nondecreasing concave function
Ψ (t) such that Ψ (t) � Jθ0 (t) ∀t and Ψ (α̃) = Px

D,sum , then the detector
is nonimprovable.

Proof. For the θ0 value in the theorem, the objective function
in (12) can be expressed as

En
{

F (n)
} =

∫
pn(x)F (x)dx �

∫
pn(x) Jθ0

(
Gθ0(x)

)
dx, (20)

where the inequality is obtained by the definition in (19).
Since Ψ (t) satisfies Ψ (t) � Jθ0 (t) ∀t , and is concave, (20) be-

comes

En
{

F (n)
}

�
∫

pn(x)Ψ
(
Gθ0(x)

)
dx

� Ψ

(∫
pn(x)Gθ0(x)dx

)
. (21)

Finally, the nondecreasing property of Ψ (t) together with∫
pn(x)Gθ0 (x)dx � α̃ implies that En{F (n)} � Ψ (α̃). Since Ψ (α̃) =

Px
D,sum, En{F (n)} � Px

D,sum is obtained for any additive noise n.
Hence, the detector is nonimprovable. �

The conditions in Theorem 2 can be used to determine that
the detector performance cannot be improved via additive noise,
which prevents efforts for solving the optimization problem in (10)
and (11).2 However, it should also be noted that the detector can
still be nonimprovable although the conditions in the theorem are
not satisfied; that is, Theorem 2 does not provide necessary condi-
tions for nonimprovability.

3.2. Characterization of optimal solution

In this section, the statistical characterization of optimal addi-
tive noise components is provided. First, the maximum false-alarm
probabilities of optimal solutions are specified. Then, the structures
of the optimal noise PDFs are investigated.

In order to investigate the false-alarm probabilities of the opti-
mal solution obtained from (10) and (11) without actually solving
the optimization problem, H(t) in (17) can be utilized. Let Fmax
represent the maximum value of H(t), i.e., Fmax = maxt H(t). As-
sume that this maximum is attained at t = tm.3 Then, one im-
mediate observation is that if tm is smaller than or equal to the
false-alarm limit, i.e., tm � α̃, then the noise component nm that
results in maxθ0∈Λ0 Gθ0 (nm) = tm is the optimal noise component;
i.e., pn(x) = δ(x − nm). However, in many practical scenarios, the
maximum of H(t) is attained for tm > α̃, since larger detection
probabilities can be achieved for larger false-alarm probabilities. In
such cases, the following theorem specifies the false-alarm proba-
bility achieved by the optimal solution.

2 The optimization problem yields pn(x) = δ(x) when the detector is nonimprov-
able.

3 If there are multiple t values that result in the maximum value Fmax, then the
minimum of those values is selected.
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Theorem 3. If tm > α̃, then the optimal solution of (10) and (11) satis-
fies maxθ0∈Λ0 Py

F(θ0) = α̃.

Proof. Assume that the optimal solution to (10) and (11) is given

by pñ(x) with β � maxθ0∈Λ0 Pỹ
F(θ0) < α̃. Define another noise n

with the following PDF:

pn(x) = α̃ − β

tm − β
δ(x − nm) + tm − α̃

tm − β
pñ(x), (22)

where nm is the noise component that results in the maximum
total detection probability; that is, F (nm) = Fmax, and tm is the
maximum false-alarm probability when noise nm is employed; i.e.,
tm = maxθ0∈Λ0 Gθ0 (nm).

For the noise PDF in (22), the false-alarm and detection proba-
bilities can be obtained as

Py
D,sum = En

{
F (n)

} = α̃ − β

tm − β
F (nm) + tm − α̃

tm − β
Pỹ

D,sum, (23)

Pỹ
F(θ0) = En

{
Gθ0(n)

} = α̃ − β

tm − β
Gθ0(nm) + tm − α̃

tm − β
Pỹ

F(θ0), (24)

for all θ0 ∈ Λ0. Since F (nm) > Pỹ
D,sum, (23) implies Py

D,sum > Pỹ
D,sum.

On the other hand, as Gθ0 (nm) � tm and Pỹ
F(θ0) � β , Pỹ

F(θ0) � α̃ is
obtained. Therefore, ñ cannot be an optimal solution, which indi-
cates a contradiction. In other words, any noise PDF that satisfies

maxθ0∈Λ0 Pỹ
F(θ0) < α̃ cannot be optimal. �

The main implication of Theorem 3 is that, in most practical
scenarios, the false-alarm probabilities are set to the maximum
false-alarm probability limit; i.e., maxθ0∈Λ0 Py

F(θ0) = α̃, in order to
optimize the detection performance according to the max-sum cri-
terion.

Another important characterization of the optimal noise in-
volves the specification of the optimal noise PDF. In [14] and [15],
it is shown for simple hypothesis-testing problems that an optimal
noise PDF, if exists, can be represented by a randomization of at
most two discrete signals. In general, the optimal noise specified
by (10) and (11) for the composite hypothesis-testing problem can
have more than two mass points. The following theorem specifies
the structure of the optimal noise PDF under certain conditions.

Theorem 4. Let θ0 ∈ Λ0 = {θ01, θ02, . . . , θ0M}. Assume that the additive
noise components can take finite values specified by ni ∈ [ai,bi], i =
1, . . . , K , for any finite ai and bi . Define set U as

U = {
(u0, u1, . . . , uM): u0 = F (n), u1 = Gθ01(n), . . . ,

uM = Gθ0M (n), for a � n � b
}
, (25)

where a � n � b means that ni ∈ [ai,bi] for i = 1, . . . , K . If U is a closed
subset of RM+1 , an optimal solution to (10) and (11) has the following
form

pn(x) =
M+1∑
i=1

λi δ(x − ni), (26)

where
∑M+1

i=1 λi = 1 and λi � 0 for i = 1,2, . . . , M + 1.

Proof. The proof extends the results in [14] and [15] for the two
mass point probability distributions to the (M + 1) mass point
ones. Since the possible additive noise components are specified
by ni ∈ [ai,bi] for i = 1, . . . , K , U in (25) represents the set of all
possible combinations of F (n) and Gθ0i (n) for i = 1, . . . , M . Let the
convex hull of U be denoted by set V . Since F (n) and Gθ0i (n) are
bounded by definition, U is a bounded and closed subset of RM+1
by the assumption in the theorem. Therefore, U is compact, and
the convex hull V of U is closed [47]. In addition, since V ⊆R

M+1,
the dimension of V is smaller than or equal to (M +1). In addition,
define W as the set of all possible total detection and false-alarm
probabilities; i.e.,

W = {
(w0, w1, . . . , w M): w0 = En

{
F (n)

}
, w1 = En

{
Gθ01(n)

}
,

. . . , w M = En
{

Gθ0M (n)
}
, ∀pn(n), a � n � b

}
. (27)

Similar to [14] and [48], it can be shown that W = V . Therefore,
Carathéodory’s theorem [49,50] implies that any point in V (hence,
in W ) can be expressed as the convex combination of (M + 2)

points in U . Since an optimal PDF must maximize the total detec-
tion probability, it corresponds to the boundary of V [14]. Since
V is closed, it always contains its boundary. Therefore, the opti-
mal PDF can be expressed as the convex combination of (M + 1)

elements in U . �
In other words, for composite hypothesis-testing problems with

a finite number of possible parameter values under hypothesis H0,
the optimal PDF can be expressed as a discrete PDF with a finite
number of mass points. Therefore, Theorem 4 generalizes the two
mass points result for simple hypothesis-testing problems [14,15].
It should be noted that the result in Theorem 4 is valid irrespective
of the number of parameters under hypothesis H1; that is, Λ1 in
(1) can be discrete or continuous. However, the theorem does not
guarantee a discrete PDF if the parameter space for H0 includes
continuous intervals.

Regarding the first assumption in the proposition, constraining
the additive noise values as a � n � b is quite realistic since ar-
bitrarily large/small values cannot be realized in practical systems.
In other words, in practice, the minimum and maximum possible
values of ni define ai and bi , respectively. In addition, the assump-
tion that U is a closed set guarantees the existence of the optimal
solution [15], and it holds, for example, when F and Gθ0 j are con-
tinuous functions.

3.3. Calculation of optimal solution and convex relaxation

After the derivation of the improvability and nonimprovability
conditions, and the characterization of optimal additive noise in
the previous sections, the calculation of optimal noise PDFs is stud-
ied in this section.

Let pn, f (·) represent the PDF of f = F (n), where F (n) is given
by (14). Note that pn, f (·) can be obtained from the noise PDF,
pn(·). As studied in [14], working with pn, f (·) is more convenient
since it results in an optimization problem in a single-dimensional
space. Assume that F (n) is a one-to-one function.4 Then, for a
given value of noise n, the false-alarm probabilities in (8) can be
expressed as gθ0 = Gθ0 (F −1( f )), where f = F (n). Therefore, the
optimization problem in (10) and (11) can be stated as

max
pn, f (·)

∞∫
0

f pn, f ( f )df ,

subject to max
θ0∈Λ0

∞∫
0

gθ0 pn, f ( f )df � α̃. (28)

Note that since pn, f (·) specifies a PDF, the optimization prob-
lem in (28) has also implicit constraints that pn, f ( f ) � 0 ∀ f and∫

pn, f ( f )df = 1.

4 Similar to the approach in [14], the one-to-one assumption can be removed.
However, it is employed in this study to obtain convenient expressions.
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In order to solve the optimization problem in (28), first con-
sider the case in which the unknown parameter θ0 under hy-
pothesis H0 can take finitely many values specified by θ0 ∈ Λ0 =
{θ01, θ02, . . . , θ0M}. Then, the optimal noise PDF has (M + 1) mass
points, under the conditions in Theorem 4. Hence, (28) can be ex-
pressed as

max
{λi , f i}M+1

i=1

M+1∑
i=1

λi f i,

subject to max
θ0∈Λ0

M+1∑
i=1

λi gθ0,i � α̃,

M+1∑
i=1

λi = 1,

λi � 0, i = 1, . . . , M + 1 (29)

where f i = F (ni), gθ0,i = Gθ0 (F −1( f i)), and ni and λi are the op-
timal mass points and their weights as specified in Theorem 4.
Note that the optimization problem in (29) may not be formu-
lated as a convex optimization problem in general since gθ0,i =
Gθ0 (F −1( f i)) may be non-convex. Therefore, global optimization
algorithms, such as PSO [37–40], genetic algorithms and differen-
tial evolution [51], can be employed to obtain the optimal solution.
In this study, the PSO approach is used since it is based on sim-
ple iterations with low computational complexity and has been
successfully applied to numerous problems in various fields [52–
56]. In Section 6, the PSO technique is applied to this optimization
problem, which results in accurate calculation of the optimal ad-
ditive noise in the specified scenario (please refer to [37–40] for
detailed descriptions of the PSO algorithm).

Another approach to solve the optimization problem in (29)
is to perform convex relaxation [41] of the problem. To that end,
assume that f = F (n) can take only finitely many known (pre-
determined) values f̃1, . . . , f̃ M̃ . In that case, the optimization can
be performed only over the weights λ̃1, . . . , λ̃M̃ corresponding to
those values. Then, (29) can be expressed as

max
λ̃

f̃
T
λ̃,

subject to g̃T
θ0

λ̃ � α̃, ∀θ0 ∈ Λ0,

1T λ̃ = 1,

λ̃ � 0 (30)

where f̃ = [ f̃1 · · · f̃ M̃ ]T , λ̃ = [λ̃1 · · · λ̃M̃ ]T , and g̃θ0
= [Gθ0 (F −1( f̃1))

· · · Gθ0 (F −1( f̃ M̃))]T . The optimization problem in (30) is a linearly
constrained linear programming (LCLP) problem. Therefore, it can
be solved efficiently in polynomial time [41]. Although (30) is an
approximation to (29) (since it assumes that f = F (n) can take
only specific values), the solutions can get very close to each other
as M̃ is increased; i.e., as more values of f = F (n) are included in
the optimization problem in (30). Also, it should be noted that the
assumption for F (n) to take only finitely many known values can
be practical in some cases, since a digital system cannot generate
additive noise components with infinite precision due to quantiza-
tion effects; hence, there can be only finitely many possible values
of n. When the computational complexity of the convex problem
in (30) is compared with that of (29), which is solved via PSO, it
is concluded that the convex relaxation approach can provide sig-
nificant reductions in the computational complexity. This is mainly
because of the fact that functions F and Gθ0 need to be evaluated
for each particle in each iteration in the PSO algorithm [37–40],
which can easily lead to tens of thousands of evaluations in total.
On the other hand, in the convex relaxation approach, these func-
tions are evaluated only once for the possible values of the additive
noise, and then the optimal weights are calculated via fast interior
point algorithms [41].

For the case in which the unknown parameter θ0 under hypoth-
esis H0 can take infinitely many values, the optimal noise may
not be represented by (M + 1) mass points as in Theorem 4. In
that case, an approximate solution is proposed based on PDF ap-
proximation techniques. Let the optimal PDF for the optimization
problem in (28) be expressed approximately by

pn, f ( f ) ≈
L∑

i=1

μiψi( f − f i), (31)

where μi � 0,
∑L

i=1 μi = 1, and ψi(·) is a window function that
satisfies ψi(x) � 0 ∀x and

∫
ψi(x)dx = 1, for i = 1, . . . , L. The PDF

approximation technique in (31) is called Parzen window density es-
timation, which has the property of mean-square convergence to
the true PDF under certain conditions [57]. In general, a larger L
facilitates better approximation to the true PDF. A common exam-
ple of a window function is the Gaussian window, which is ex-
pressed as ψi( f ) = exp{− f 2/(2σ 2

i )}/(√2π σi). Compared to other
approaches such as vector quantization and data clustering, the
Parzen window density estimation technique has the advantage
that it both provides an explicit expression for the density function
and can approximate any density function as accurately as desired
as the number of windows are increased.

Based on the approximate PDF in (31), the optimization prob-
lem in (28) can be stated as

max
{μi , f i ,σi}L

i=1

L∑
i=1

μi f̃ i,

subject to max
θ0∈Λ0

L∑
i=1

μi g̃θ0,i � α̃,

L∑
i=1

μi = 1,

μi � 0, i = 1, . . . , L (32)

where σi represents the parameter5 of the ith window function
ψi(·), f̃ i = ∫ ∞

0 f ψi( f − f i)df and g̃θ0,i = ∫ ∞
0 gθ0ψi( f − f i)df . Sim-

ilar to the solution of (29), the PSO approach can be applied to ob-
tain the optimal solution. Also, convex relaxation can be employed
as in (30) when σi = σ ∀i is considered as a pre-determined value,
and the optimization problem is considered as determining the
weights for a number of pre-determined f i values.

4. Max-min criterion

In this section, the aim is to determine the optimal additive
noise n in (2) that solves the following optimization problem.

max
pn(·)

min
θ1∈Λ1

Py
D(θ1), (33)

subject to max
θ0∈Λ0

Py
F(θ0) � α̃ (34)

where Py
D(θ1) and Py

F(θ0) are as in (5)–(8).

5 If there are constraints on this parameter, they should be added to the set of
constraints in (32).
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4.1. Improvability and nonimprovability conditions

According to this criterion, the detector is called improvable if
there exists additive noise n that satisfies

min
θ1∈Λ1

Py
D(θ1) > min

θ1∈Λ1
Px

D(θ1) = min
θ1∈Λ1

Fθ1(0) � Px
D,min (35)

under the false-alarm constraint. Otherwise, the detector is nonim-
provable.

A simple sufficient condition for improvability can be obtained
from the improvability definition in (35). If there exists a noise
component ñ that satisfies minθ1∈Λ1 Fθ1 (ñ) > minθ1∈Λ1 Fθ1 (0) and
Gθ0 (ñ) � α̃ ∀θ0 ∈ Λ0, (5) and (6) implies that addition of noise ñ
to the data vector increases the probability of detection under the

false-alarm constraint for all θ1 values; hence, minθ1∈Λ1 Pỹ
D(θ1) >

minθ1∈Λ1 Px
D(θ1) is satisfied, where ỹ = x + ñ. However, such a

noise component may not be available in many practical scenar-
ios. Therefore, a more generic improvability condition is obtained
in the following.

Similar to the max-sum case, the following function is defined
for deriving generic improvability conditions:

Hmin(t) � sup
{

min
θ1∈Λ1

Fθ1(n)

∣∣∣ t = max
θ0∈Λ0

Gθ0(n), n ∈R
K
}
, (36)

which defines the maximum value of the minimum detection
probability for a given value of the maximum false-alarm prob-
ability. From (36), it is observed that if there exists t0 � α̃ such
that Hmin(t0) > Px

D,min, the system is improvable, since under
such a condition there exists a noise component n0 such that
minθ1∈Λ1 Fθ1 (n0) > Px

D,min and maxθ0∈Λ0 Gθ0 (n0) � α̃. Hence, the
detector performance can be improved by using an additive noise
with pn(x) = δ(x − n0). However, as stated previously, such a con-
dition may not hold in many practical scenarios. Therefore, a more
generic improvability condition is derived in the following theo-
rem.

Theorem 5. Let α = maxθ0∈Λ0 Px
F(θ0) denote the maximum false-

alarm probability in the absence of additive noise. If Hmin(t) in (36)
is second-order continuously differentiable around t = α and satisfies
H ′′

min(α) > 0, then the detector is improvable.

Proof. Since H ′′
min(α) > 0 and Hmin(t) is second-order continu-

ously differentiable around t = α, there exist ε > 0, n1 and n2
such that maxθ0∈Λ0 Gθ0 (n1) = α +ε and maxθ0∈Λ0 Gθ0 (n2) = α −ε .
Then, it is proven in the following that additive noise with pn(x) =
0.5δ(x − n1) + 0.5δ(x − n2) improves the detection performance
under the false-alarm constraint. First, the maximum false-alarm
probability in the presence of additive noise is shown not to ex-
ceed α.

max
θ0∈Λ0

En
{

Gθ0(n)
}

� En

{
max
θ0∈Λ0

Gθ0(n)
}

= 0.5(α + ε) + 0.5(α − ε) = α. (37)

Then, the increase in the detection probability is proven as follows.
Since

min
θ1∈Λ1

En
{

Fθ1(n)
}

� En

{
min
θ1∈Λ1

Fθ1(n)
}

(38)

is valid for all noise PDFs,

min
θ1∈Λ1

En
{

Fθ1(n)
}

� 0.5Hmin(α + ε) + 0.5Hmin(α − ε) (39)

can be obtained. Due to the assumptions in the theorem, Hmin(t)
is convex in an interval around t = α. Therefore, (39) becomes
min
θ1∈Λ1

En
{

Fθ1(n)
}

� 0.5Hmin(α + ε) + 0.5Hmin(α − ε)

> Hmin(α). (40)

Since Hmin(α) � Px
D,min by definition, (40) implies

minθ1∈Λ1 En{Fθ1 (n)} > Px
D,min. Therefore, the detector is improv-

able. �
Similar to Theorem 1 in Section 3.1, Theorem 5 provides a

convenient sufficient condition that deals with a scalar function
Hmin(t) irrespective of the dimension of the observation vector.

In order to obtain sufficient conditions for nonimprovability, the
following function is defined as an extension of that in (19).

Jθ0,θ1(t) � sup
{

Fθ1(n)
∣∣ Gθ0(n) = t, n ∈R

K }
. (41)

Then, the following theorem can be obtained as an extension of
Theorem 2 in Section 3.1.

Theorem 6. Let θmin
1 represent the value of θ1 ∈ Λ1 that has the mini-

mum detection probability in the absence of additive noise; that is,

θmin
1 � arg min

θ1∈Λ1
Px

D(θ1). (42)

If there exits θ0 ∈ Λ0 and a nondecreasing concave function Ψ (t) such
that Ψ (t) � Jθ0,θmin

1
(t) ∀t and Ψ (α̃) = Px

D(θmin
1 ), then the detector is

nonimprovable.

Proof. If the detector is nonimprovable for θ1 = θmin
1 , it is nonim-

provable according to the max-min criterion, since its minimum
can never increase by using additive noise components. Therefore,
the result in Theorem 6 directly follows from that in Theorem 2 by
considering the nonimprovability conditions at θ1 = θmin

1 . �
The conditions in Theorem 6 can be used to determine the sce-

narios in which the detector performance cannot be improved via
additive noise. Hence, unnecessary efforts for solving the optimiza-
tion problem in (33) and (34) can be prevented.

4.2. Characterization of optimal solution

In this section, performance bounds for the detector based on
y = x + n, where the PDF of n is obtained from (33) and (34)
are derived. In addition, statistical characterization of optimal noise
PDFs is provided.

In order to obtain upper and lower bounds on the performance
of the detector that employs the noise specified by the optimiza-
tion problem in (33) and (34), consider a separate optimization
problem for each θ1 ∈ Λ1 as follows:

max
pn(·)

Py
D(θ1),

subject to max
θ0∈Λ0

Py
F(θ0) � α̃. (43)

Let Py
D,opt(θ1) represent the solution of (43), and pnθ1

(·) denote

the corresponding optimal PDF. In addition, let θ̃1 represent the
parameter value with the minimum Py

D,opt(θ1) among all θ1 ∈ Λ1.
That is,

θ̃1 = arg min
θ1∈Λ1

Py
D,opt(θ1). (44)

Then, the following theorem provides performance bounds for the
noise-modified detector according to the max-min criterion.
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Theorem 7. Let Py
D,mm represent solution of the optimization problem

specified by (33) and (34). It has the following lower and upper bounds:

max
{

min
θ1∈Λ1

Px
D(θ1), min

θ1∈Λ1
P

y
θ̃1

D (θ1)
}

� Py
D,mm � min

θ1∈Λ1
Py

D,opt(θ1), (45)

where Py
D,opt(θ1) is the solution of the optimization problem in (43),

Px
D(θ1) is the probability of detection in the absence of additive noise, and

P
y
θ̃1

D (θ1) is the probability of detection in the presence of additive noise
nθ̃1

, which is specified by the PDF pn
θ̃1

(·) that is the optimizer of (43)

for θ̃1 defined by (44).

Proof. The upper bound in (45) directly follows from (33), (34)
and (43), since maxpn(·) Py

D(θ1) � maxpn(·) minθ1∈Λ1 Py
D(θ1) for all

θ1 ∈ Λ1. For the lower bound, it is first noted that the noise-
modified detector can never have lower minimum detection prob-
ability than that in the absence of noise, i.e., minθ1∈Λ1 Px

D(θ1). In
addition, using a noise with PDF pn

θ̃1
(·), which is the optimal noise

for the problem in (43) for a specific θ1 value, can never result in
a larger minimum probability minθ1∈Λ1 Py

D(θ1) than that obtained
from the solution of (33) and (34), since the latter directly max-

imizes the minθ1∈Λ1 Py
D(θ1) metric. Therefore, minθ1∈Λ1 P

y
θ̃1

D (θ1)

provides another lower bound. �
The main intuition behind the upper and lower bounds in

Theorem 7 can be explained as follows. Note that Py
D,opt(θ1)

represents the maximum detection probability when an addi-
tive noise component that is optimized for a specific value of
θ1 is used. Therefore, for each θ1 ∈ Λ1, Py

D,opt(θ1) is larger than

maxpn(·) minθ1∈Λ1 Py
D(θ1), as the latter involves a single additive

noise component that is optimized for the minimum detection
probability metric and is used for all θ1 values. In other words, the
upper bound is obtained by assuming a more flexible optimiza-
tion problem in which a different optimal noise component can
be used for each θ1 value. Considering the lower bound, the first
lower bound expression is obtained from the fact that the opti-
mal value can never be smaller than minθ1∈Λ1 Px

D(θ1), which is the
minimum detection probability in the absence of additive noise.
The second lower bound is obtained from the observation that the
optimal noise PDF that maximizes the minimum detection proba-
bility, minθ1∈Λ1 Py

D(θ1), is obtained from the optimization problem
in (33) and (34); hence, the resulting optimal value, Py

D,mm, is

larger than or equal to all other minθ1∈Λ1 Py
D(θ1) values that are

obtained by using a different noise PDF.
Both the lower and the upper bounds in Theorem 7 are achiev-

able. For example, when the detector is nonimprovable, the lower
bound is achieved since Py

D,mm = minθ1∈Λ1 Px
D(θ1) and Py

D,mm �
minθ1∈Λ1 P

y
θ̃1

D (θ1). Note that minθ1∈Λ1 P
y
θ̃1

D (θ1) can be smaller than
Py

D,mm in certain scenarios since the additive noise pn
θ̃1

(·) that is

optimized for θ1 = θ̃1 can degrade the detection performance for
other θ1 values. In fact, this is the main reason why a maximum
operator in used for the lower bound in Theorem 7. On the other
hand, for scenarios in which the detector performance can be im-

proved, minθ1∈Λ1 P
y
θ̃1

D (θ1) can be larger than minθ1∈Λ1 Px
D(θ1). Also,

in some cases, minθ1∈Λ1 Py
D,opt(θ1) = Py

D,mm = minθ1∈Λ1 P
y
θ̃1

D (θ1) �
minθ1∈Λ1 Px

D(θ1) can be satisfied; that is, the upper and lower

bounds in Theorem 7 can be equal. If P
y
θ̃1

D (θ̃1) � P
y
θ̃1

D (θ1) for all
θ1 ∈ Λ1, then pn

θ̃1
(·) becomes the optimal PDF for the max-min

problem as well, since any other noise PDF will have smaller de-

tection probability than P
y
θ̃1 (θ̃1) at θ1 = θ̃1, and hence will de-
D
crease the minimum detection probability. In addition, using a
different optimal noise for each θ1 will not improve the max-min

performance since P
y
θ̃1

D (θ̃1) will be the limiting factor. Therefore,

minθ1∈Λ1 Py
D,opt(θ1) = minθ1∈Λ1 P

y
θ̃1

D (θ1) is satisfied, and the lower
and upper bounds become equal in such a case.

Regarding the statistical characterization of the optimal additive
noise according to the max-min criterion, it can be shown that
when parameter sets Λ0 and Λ1 in (1) consist of a finite number
of parameters, the optimal additive noise can be represented by a
discrete random variable with a finite number of mass points as
specified below.

Theorem 8. Let θ0 ∈ Λ0 = {θ01, θ02, . . . , θ0M} and θ1 ∈ Λ1 = {θ11, θ12,

. . . , θ1N }. Assume that the additive noise components can take finite val-
ues specified by ni ∈ [ai,bi], i = 1, . . . , K , for any finite ai and bi . Define
set U as

U = {
(u1, . . . , uN+M): u1 = Fθ11(n), . . . , uN = Fθ1N (n),

uN+1 = Gθ01(n), . . . , uN+M = Gθ0M (n), for a � n � b
}
, (46)

where a � n � b means that ni ∈ [ai,bi] for i = 1, . . . , K . If U is a closed
subset of RN+M , an optimal solution to (33) and (34) has the following
form

pn(x) =
N+M∑
i=1

λi δ(x − ni), (47)

where
∑N+M

i=1 λi = 1 and λi � 0 for i = 1,2, . . . , N + M.

Proof. The proof is omitted since it is a straightforward extension
of that of Theorem 4. �

The main difference of Theorem 8 from Theorem 4 in Sec-
tion 3.2 is that both Λ0 and Λ1 should be discrete for the optimal
PDF to have a discrete structure in the max-min framework. How-
ever, for the max-sum criterion, it is enough to have a discrete
Λ0 in order to have a discrete PDF as stated in Theorem 4. The
reason for this is that according to the max-sum criterion, the
objective function to maximize becomes En{F (n)}, where F (n) =∫
θ1∈Λ1

Fθ1 (n)dθ1 is as defined in (14). In other words, maximiza-
tion of a single function is considered in the max-sum problem
under the false-alarm constraint.

4.3. Calculation of optimal solution and convex relaxation

In this section, possible approaches to solving the optimization
problem in (33) and (34) are considered. In order to express the
optimization problem as optimization over a single-dimensional
PDF, consider a specific value of θ1 ∈ Λ1, for which Fθ1 (n) is one-
to-one. Let this value be represented as θ̃1. Then, for a given value
n of noise, f = F θ̃1

(n) can be used to express gθ0 = Gθ0 (n) and

fθ1 = Fθ1 (n) as gθ0 = Gθ0 (F −1
θ̃1

( f )) and fθ1 = Fθ1 (F −1
θ̃1

( f )), respec-

tively. Therefore, the optimization problem in (33) and (34) can be
reformulated as

max
pn, f

θ̃1
(·)

min
θ1∈Λ1

1∫
0

fθ1 pn, f
θ̃1

( f )df ,

subject to max
θ0∈Λ0

1∫
0

gθ0 pn, f
θ̃1

( f )df � α̃. (48)

First, consider the case in which the parameters can take
finitely many values specified by θ0 ∈ Λ0 = {θ01, θ02, . . . , θ0M} and
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θ1 ∈ Λ1 = {θ11, θ12, . . . , θ1N }. In this case, the optimal noise PDF
can be represented by (N + M) mass points under the conditions
in Theorem 8. Hence, (48) can be expressed as

max
{λi , f i}N+M

i=1

min
θ1∈Λ1

N+M∑
i=1

λi fθ1,i,

subject to max
θ0∈Λ0

N+M∑
i=1

λi gθ0,i � α̃,

N+M∑
i=1

λi = 1,

λi � 0, i = 1, . . . , N + M (49)

where f i = F θ̃1
(ni), fθ1,i = Fθ1 (F −1

θ̃1
( f i)), gθ0,i = Gθ0 (F −1

θ̃1
( f i)), and

ni and λi are, respectively, the optimal mass points and their
weights as specified in Theorem 8. Since the optimization problem
in (49) may not be formulated as a convex optimization problem
in general, global optimization techniques, such as PSO [37–40]
can be employed to obtain the optimal solution, as studied in Sec-
tion 6.

Due to the complexity of the optimization problem in (49), an
approximate and efficient formulation can obtained by the con-
vex relaxation approach as in Section 3.3. Assume that f = F θ̃1

(n)

can take known values of f̃1, . . . , f̃ M̃ only. In that case, the opti-
mization can be performed only over the weights λ̃1, . . . , λ̃M̃ cor-
responding to those values. Hence, (49) becomes

max
λ̃

min
θ1∈Λ1

f̃
T
θ1

λ̃,

subject to g̃ T
θ0

λ̃ � α̃, ∀θ0 ∈ Λ0,

1T λ̃ = 1,

λ̃ � 0 (50)

where f̃ θ1
= [Fθ1 (F −1

θ̃1
( f̃1)) · · · Fθ1 (F −1

θ̃1
( f̃ M̃))]T , g̃θ0

= [Gθ0 (F −1
θ̃1

( f̃1))

· · · Gθ0 (F −1
θ̃1

( f̃ M̃))]T , and λ̃ = [λ̃1 · · · λ̃M̃ ]T . The optimization prob-

lem (50) can be expressed as a convex problem when we define
an auxiliary optimization variable t as follows:

max
λ̃,t

t,

subject to f̃
T
θ1

λ̃ � t, ∀θ1 ∈ Λ1,

g̃ T
θ0

λ̃ � α̃, ∀θ0 ∈ Λ0,

1T λ̃ = 1,

λ̃ � 0. (51)

In fact, (51) can be recognized as an LCLP problem if the new op-

timization variable is defined as x = [λ̃T
t]T . Therefore, it can be

solved efficiently in polynomial time [41]. Although (51) is an ap-
proximation to (49), the solutions get very close as more values of
f = F θ̃1

(n) are included in the optimization.
When at least one of θ0 or θ1 can take infinitely many values,

the optimal noise may not be represented by a finite number of
mass points as in Theorem 8. In such cases, the optimization prob-
lem in (48) can be solved over the set of PDF approximations as in
Section 3.3. Let the optimal PDF be approximated similarly to (31).
Then, the optimization problem in (48) can be stated as

max
{μi , f i ,σi}L

min
θ1∈Λ1

L∑
μi f̃θ1,i,
i=1 i=1
subject to max
θ0∈Λ0

L∑
i=1

μi g̃θ0,i � α̃,

L∑
i=1

μi = 1,

μi � 0, i = 1, . . . , L (52)

where σi represents the parameter of the ith window function
ψi(·), f̃θ1,i = ∫

fθ1ψi( f − f i)df , and g̃θ0,i = ∫
gθ0ψi( f − f i)df . Sim-

ilar to the solution of (49), the PSO approach can be employed, for
example, to obtain the optimal solution of (52). Also, the convex
relaxation technique can be employed as in (50) and (51) when
σi = σ ∀i is considered as a pre-determined value.

5. Max-max criterion

In this section, the aim is to determine the optimal additive
noise n in (2) that solves the following optimization problem.

max
pn(·)

max
θ1∈Λ1

Py
D(θ1), (53)

subject to max
θ0∈Λ0

Py
F(θ0) � α̃ (54)

where Py
D(θ1) and Py

F(θ0) are as in (5)–(8). According to the max-
max criterion, the detector is called improvable if there exists ad-
ditive noise n that satisfies

max
θ1∈Λ1

Py
D(θ1) > max

θ1∈Λ1
Px

D(θ1) = max
θ1∈Λ1

Fθ1(0) � Px
D,max (55)

under the false-alarm constraint. Otherwise, the detector is nonim-
provable.

The results in the previous sections can be extended to cover
the max-max case as well. Since the derivations are quite similar,
the results for this case are stated without any proofs.

Let θmax
1 represent the value of θ1 ∈ Λ1 that has the maxi-

mum detection probability in the absence of additive noise; that
is, θmax

1 � arg maxθ1∈Λ1 Px
D(θ1). In addition, define

Hθ1(t) � sup
{

Fθ1(n)

∣∣∣ max
θ0∈Λ0

Gθ0(n) = t, n ∈R
K
}
. (56)

Then, the detector is improvable if Hθmax
1

(t) is second-order con-
tinuously differentiable around t = α and satisfies H ′′

θmax
1

(α) > 0,

where α � maxθ0∈Λ0 Px
F(θ0). This result can be proven as in The-

orem 1. In fact, it directly follows from the observation that if
the detector can be improved for θ1 = θmax

1 , then the maximum
of maxθ1∈Λ1 Py

D(θ1) is always larger than maxθ1∈Λ1 Px
D(θ1).

A nonimprovability condition can be obtained in a similar way
to that in Theorem 6. The detector is nonimprovable if there ex-
its θ0 ∈ Λ0 and a nondecreasing concave function Ψθ1 (t) such that
Ψθ1 (t) � Jθ0,θ1 (t) ∀t and Ψθ1 (α̃) = Px

D(θ1) for all θ1 ∈ Λ1, where
Jθ0,θ1 (t) is given by (41).

Regarding the structure of the optimal noise PDF for the prob-
lem in (53) and (54), consider a composite hypothesis-testing
problem with θ0 ∈ Λ0 = {θ01, θ02, . . . , θ0M}. Then, it can be con-
cluded that the optimal PDF can be represented by (M + 1) mass
points under the conditions in Theorem 4. This follows from the
fact that the max-max problem in (53) and (54) can be solved by
choosing the PDF that results in the maximum detection proba-
bility among the PDFs that solve the following optimization prob-
lems:

max
pn(·)

Py
D(θ1), (57)

subject to max Py
F(θ0) � α̃ (58)
θ0∈Λ0
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for θ1 ∈ Λ1. In other words, the optimal noise PDF can be calcu-
lated for each θ1 ∈ Λ1 separately, and the noise PDF that yields
the maximum detection probability becomes the solution of the
max-max problem. Since the structure of each optimization prob-
lem is as in the max-sum formulation, Theorem 4 applies to the
max-max case as well.

Finally, for the solution of the max-max problem, the ap-
proaches in Section 3.3 for the max-sum problem can directly be
applied, since the optimization problems in (10)–(11) and (57)–
(58) have the same structure.

6. Numerical results

In this section, a composite version of the detection example in
[14] and [19] is studied in order to illustrate the theoretical results
obtained in the previous sections. Namely, the following composite
hypothesis-testing problem is considered:

H0: x = w,

H1: x = A + w (59)

where A is a known constant, and w is the noise term that has a
Gaussian mixture distribution specified as

pw(w) = 1

2
γ

(
w;−θ,σ 2) + 1

2
γ

(
w; θ,σ 2), (60)

with γ (w; θ,σ 2) = exp{−(w − θ)2/(2σ 2)}/√2πσ 2. The PDF of
noise w has an unknown parameter θ , which belongs to Λ0 under
hypothesis H0 and to Λ1 under H1 with Λ0 ∩ Λ1 = ∅.

From (59) and (60), the probability distributions of observation
x under hypotheses H0 and H1 are given, respectively, by

pθ0(x) = 1

2
γ

(
x;−θ0,σ

2) + 1

2
γ

(
x; θ0,σ

2), (61)

pθ1(x) = 1

2
γ

(
x;−θ1 + A,σ 2) + 1

2
γ

(
x; θ1 + A,σ 2). (62)

Since additive noise can improve the performance of subopti-
mal detectors only [19], a suboptimal sign detector, as in [14], is
considered as the decision rule for the problem in (59), which is
given by

φ(x) =
{

1, x > 0,

0, x � 0.
(63)

Then, from (61)–(63), detection and false-alarm probabilities when
constant noise is added can be calculated as (see (7) and (8))

Fθ1(x) =
∞∫

−∞
φ(y)pθ1(y − x)dy

= 1

2
Q

(−x + θ1 − A

σ

)
+ 1

2
Q

(−x − θ1 − A

σ

)
(64)

and

Gθ0(x) =
∞∫

−∞
φ(y)pθ0(y − x)dy

= 1

2
Q

(−x + θ0

σ

)
+ 1

2
Q

(−x − θ0

σ

)
, (65)

respectively, where Q (x) = (1/
√

2π )
∫ ∞

x e−t2/2 dt is the Q -func-
tion. It is noted that both Fθ1 (x) and Gθ0 (x) are monotone increas-
ing functions of x for all parameter values.

The aim is to add noise n to observation x in (59), and to im-
prove the detection performance of the sign detector in (63) under
a false-alarm constraint. The noise-modified observation is denoted
as y = x + n, and the probabilities of detection and false-alarm are
given by

Py
D(θ1) =

∞∫
−∞

Fθ1(x)pn(x)dx,

Py
F (θ0) =

∞∫
−∞

Gθ0(x)pn(x)dx, (66)

where pn(·) represents the PDF of the additive noise.

Remark. In terms of the computational complexity, using a low-
complexity suboptimal detector (such as the sign detector) and
enhancing its performance via optimal additive noise can be more
advantageous than employing the optimal detector in some scenar-
ios. Let the computational complexity of the optimal (suboptimal)
detector be denoted by Co (Cs), and the computational complex-
ity of obtaining the optimal additive noise PDF be represented
by Cn . Considering Nd consecutive decisions and assuming that
the statistics of the hypotheses do not change over Ns consecutive
decisions, the computational complexities of using the optimal de-
cision rule and employing the noise injection approach are given
by NdCo and NdCs + Cn Nd/Ns , respectively. Note that the calcu-
lation of optimal additive noise PDF needs to be performed only
when the statistics of the hypotheses change. Based on these ex-
pressions, it is concluded that the noise injection approach is ben-
eficial when Co 
 Cs + Cn/Ns . In the examples below, C0 
 Cs is
satisfied. Therefore, the noise injection approach can be useful if
the statistics do not change rapidly (which depends on the specific
application scenario).

6.1. Scenario-1: Λ0 and Λ1 with finite number of elements

In the first scenario, the parameter sets under H0 and H1 are
specified as θ0 ∈ Λ0 = {0.1,0.4} and θ1 ∈ Λ1 = {2,2.5,4}. Accord-
ing to Theorem 4 and Theorem 8, the optimal additive noise has
a PDF of the form pn(x) = ∑Nm

i=1 λiδ(x − ni), where Nm = 3 for the
max-sum case, and Nm = 5 for the max-min case. For the noise
PDF specified as pn(x) = ∑Nm

i=1 λiδ(x − ni), the detection and false-
alarm probabilities in (66) become

Py
D(θ1) =

Nm∑
i=1

λi

2

[
Q

(−ni + θ1 − A

σ

)
+ Q

(−ni − θ1 − A

σ

)]
,

Py
F (θ0) =

Nm∑
i=1

λi

2

[
Q

(−ni + θ0

σ

)
+ Q

(−ni − θ0

σ

)]
. (67)

For the first simulations, A = 1 and σ = 1 are used. For
the max-sum and max-min cases, the original detection proba-
bilities (i.e., in the absence of additive noise) can be calculated
from (64) and (65) as Px

D,sum = 1.613 and Px
D,min = 0.5007, re-

spectively, with maxθ0 Px
F(θ0) = α = α̃ = 0.5. Then, the PSO6 and

the convex relaxation techniques are applied as described in Sec-
tions 3.3 and 4.3, and the optimal additive noise PDFs are calcu-
lated for both the max-sum and max-min cases, which are illus-
trated in Fig. 2 and Fig. 3, respectively. For the convex solutions,

6 In the PSO algorithm, 50 particles and 1000 iterations are employed. In addition,
the other parameters are set to c1 = c2 = 2.05 and χ = 0.72984, and the inertia
weight ω is changed from 1.2 to 0.1 linearly with the iteration number. Please refer
to [37] for the details of the PSO algorithm and the definitions of the parameters.
In the considered examples, the use of 50 particles is observed to provide a good
tradeoff between accuracy and computational complexity.
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Fig. 2. Probability mass functions of the optimal additive noise based on the PSO and the convex relaxation techniques for the max-sum case when A = 1 and σ = 1.

Fig. 3. Probability mass functions of the optimal additive noise based on the PSO and the convex relaxation techniques for the max-min case when A = 1 and σ = 1.
the optimizations are performed over the noise values that are
specified as −15 + 0.25i for i = 0,1, . . . ,120. The resulting de-
tection probabilities when the PSO algorithm is used are calcu-
lated as Py

D,sum = 2.172 and Py
D,mm = 0.711 under the constraint

that maxθ0 Py
F (θ0) = 0.5. In other words, improvement ratios of

2.172/1.613 = 1.347 and 0.711/0.5007 = 1.420 are obtained ac-
cording to the max-sum and max-min criteria, respectively. When
the convex relaxation approach is employed, the detection proba-
bilities become Py

D,sum = 2.171 and Py
D,mm = 0.711, which are al-

most the same as those obtained by the PSO technique. It is noted
from Fig. 2 and Fig. 3 that the convex solutions approximate the
optimal PSO solutions with 3 and 5 mass points (for the max-sum
and max-min cases, respectively) with a larger number of non-zero
mass points. This is mainly due to the fact that the possible addi-
tive noise values are fixed and the optimization is performed only
over the probabilities of those fixed values in the convex approach.
(Hence, Theorems 4 and 8 do not apply in general for the convex
solution.)

Next, A = 1 is used, and the detection probabilities are plotted
versus σ in Fig. 4 in the absence and in the presence of addi-
tive noise (labeled as “original” and “SR”, respectively) for both
the max-sum and the max-min criteria.7 In the figure, the normal-
ized (‘average’) detection probabilities are plotted for the max-sum
criterion, which is defined as Py

D,sum/3 since there are three possi-
ble values of θ1. On the other hand, the minimum (worst-case)
detection probabilities are illustrated for the max-min criterion.
It is observed from the figure that the improvement via additive
noise decreases as σ increases. This is mainly due to the fact
that the improvability is commonly caused by the multi-modal na-
ture of the measurement noise PDF in (60), which reduces as σ

7 The PSO technique is employed for calculating the optimal additive noise PDFs.
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Fig. 4. Detection probabilities in the absence (“original”) and presence (“SR”) of additive noise according to the max-sum and max-min criteria for various values of σ .
Normalized and minimum detection probabilities are illustrated for the max-sum and max-min criteria, respectively.

Fig. 5. Normalized detection probabilities versus σ for the max-sum criterion considering the sign detector in the absence (“original”) and presence (“SR”) of additive noise,
and the optimal detector.
increases. In addition, as expected, the worst-case (minimum) de-
tection probabilities in the max-min criterion are lower than or
equal to the average detection probabilities in the max-sum crite-
rion.

In order to compare the performance of the sign detector in
the presence and absence of optimal additive noise to the perfor-
mance of the optimal detector, Fig. 5 is presented for the max-sum
criterion based on the same parameters as those for Fig. 4. It is
observed that the optimal detector achieves higher detection prob-
abilities for low values of σ , and the detection probabilities get
close for high values of σ . However, as discussed previously, the
noise injection approach can still be preferred in practice in order
to reduce the computational complexity since the optimal detector
has significantly higher complexity than the sign detector in this
example.

Fig. 6 illustrates the sufficient conditions in Theorem 1 and The-
orem 5 for the max-sum and max-min cases with respect to σ .
It is obtained that the improvement is guaranteed in the inter-
val σ ∈ [0.1259,2.639] for the max-sum case and in the interval
σ ∈ [0.3981,3.978] for the max-min case. Comparison of Fig. 6
with Fig. 4 reveals that whenever the second derivative is posi-
tive, the detector is improvable as stated in the related theorems;
however, it also indicates that the conditions in Theorem 1 and
Theorem 5 are not necessary conditions, as the detector can be
improved also for smaller σ values.
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Fig. 6. The second-order derivatives of H(t) in (17) and Hmin(t) (36) at t = α for various values of σ . Theorem 1 and Theorem 5 imply that the detector is improvable
whenever the second-order derivative at t = α is positive.

Fig. 7. The optimal additive noise PDF in (68) for A = 1 and σ = 1 according to the max-sum criterion. The optimal parameters in (68) obtained via the PSO al-
gorithm are μ = [0.0969 0 0.0019 0.1401 0.1377 0.0143 0.1470 0.4621], η = [25.4039 −20.1423 13.7543 17.0891 29.7452 −25.0785 17.6887 −2.2085], and σ =
[1.3358 26.2930 11.3368 0 19.5556 11.5953 17.9838 0.0001]. The mass centers with very small variances (ηi = 17.0891 and ηi = −2.2085) are marked by arrows for
convenience.
6.2. Scenario-2: Λ0 and Λ1 are continuous intervals

In the second scenario, Λ0 = [0.1,0.4] and Λ1 = [2,5] are used.
As discussed in Sections 3.3 and 4.3, an approximation to the opti-
mal additive noise PDF as in (31) can be used to obtain an approx-
imate solution in such a scenario. Considering Gaussian window
functions for PDF approximation, the additive noise PDF can be
expressed as8

8 Since scalar observations are considered in this example, the optimization prob-
lem can also be solved in the original noise domain, instead of the detection prob-
ability domain as in (28) or (48).
pn(x) ≈
L∑

i=1

μiγ
(
x;ηi,σ

2
i

)
. (68)

Then, the probabilities of detection and false-alarm can be calcu-
lated from (66), after some manipulation, as

Py
D(θ1) =

L∑
i=1

μi

2

[
Q

(−θ1 − ηi − A√
σ 2 + σ 2

i

)
+ Q

(
θ1 − ηi − A√

σ 2 + σ 2
i

)]
, (69)

Py
F (θ0) =

L∑
i=1

μi

2

[
Q

( −θ0 − ηi√
σ 2 + σ 2

)
+ Q

(
θ0 − ηi√
σ 2 + σ 2

)]
. (70)
i i
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Fig. 8. The optimal additive noise PDF in (68) for the max-min criterion when A = 1 and σ = 1. The optimal parameters in (68) obtained via the PSO al-
gorithm are μ = [0.0067 0.1797 0.0411 0.2262 0.0064 0.0498 0 0.4902], η = [20.1017 15.0319 0.1815 29.9668 17.2657 22.8092 −0.7561 −1.4484], and σ =
[16.5204 15.1445 0.8805 10.1573 12.9094 17.4184 19.0959 0.0102]. The mass center ηi = −1.4484 is marked by an arrow for convenience as it has a very small vari-
ance.

Fig. 9. Comparison of normalized detection probabilities in the absence (“original”) and presence (“SR”) of additive noise according to the max-sum criterion for various
values of σ .
For the following simulations, L = 8 is considered, and the
parameters {μi, ηi, σi}8

i=1 are obtained via the PSO algorithm
for both the max-sum and max-min cases. First, A = 1 and
σ = 1 are used. In the absence of additive noise, the detection
probabilities in the max-sum and max-min cases are given, re-
spectively, by

∫
θ1∈Λ1

Px
D(θ1)dθ1 = ∫

θ1∈Λ1
Fθ1 (0)dθ1 = 1.5417 and

minθ1∈Λ1 Px
D(θ1) = minθ1∈Λ1 Fθ1 (0) = 0.5 with maxθ0∈Λ0 Px

F(θ0) =
maxθ0∈Λ0 Gθ0 (0) = α = α̃ = 0.5. When the optimal additive noise
PDFs are calculated via the PSO algorithm, the detection probabili-
ties become

∫
θ1∈Λ1

Py
D(θ1)dθ1 = 2.1426 for the max-sum case, and

minθ1∈Λ1 Py
D(θ1) = 0.6943 for the max-min case. In other words,

improvement ratios of 1.390 and 1.389 are obtained for the max-
sum and max-min cases, respectively. The optimal additive noise
PDFs for the max-sum and max-min cases are shown in Figs. 7
and 8, respectively.

In Figs. 9 and 10, the detection probabilities according to the
max-sum and max-min criteria are plotted, respectively, for both
the original detector (i.e., without additive noise) and the noise-
modified one when A = 1. For the max-sum case, the detection
probability is normalized as 1

3

∫ 5
2 Py

D(θ1)dθ1. Similar to the first sce-
nario, more improvement can be achieved as σ decreases, and no
improvement is observed for large values of σ . It is also noted
that some fluctuations are present in the detection curves in the
noise-modified scenarios, which is mainly due to the fact that
the additive noise is optimized based on the approximate model
in (68).
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Fig. 10. Comparison of detection probabilities in the absence (“original”) and presence (“SR”) of additive noise according to the max-min criterion for various values of σ .

Fig. 11. The second-order derivatives of H(t) in (17) and Hmin(t) (36) at t = α for various values of σ . Theorem 1 and Theorem 5 imply that the detector is improvable
whenever the second-order derivative at t = α is positive.
Finally, the improvability conditions in Theorem 1 and Theo-
rem 5 are investigated in Fig. 11. It is observed from the figures
that the detector is improvable in the interval σ ∈ [0.1585,3.398]
for the max-sum case and in the interval σ ∈ [0.5012,4.996] for
the max-min case, which together with Figs. 9 and 10 imply that
the conditions in the theorems are sufficient but not necessary.

7. Concluding remarks and extensions

In this paper, the effects of additive independent noise have
been investigated for composite hypothesis-testing problems. The
Neyman–Pearson framework has been considered, and perfor-
mance of noise-modified detectors has been analyzed according to
the max-sum, max-min, and max-max criteria. Improvability and
nonimprovability conditions have been derived for each case, and
the statistical characterization of optimal additive noise PDFs has
been provided. A detection example has been presented in order
to explain the theoretical results.

Although the additive independent noise as in Fig. 1 is con-
sidered in this study, the results can be extended to other noise
injection approaches than the addition operation by considering a
nonlinear transformation of the observation, as discussed in [14].
In that case, the nonlinear operator and the original detector can
be regarded together as a new detector and the results in this
study can directly be applied.
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