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Based on first-principles calculations, we resent a method to reveal the elastic properties of recently
synthesized monolayer hydrocarbon, graphane. The in-plane stiffness and Poisson’s ratio values are
found to be smaller than those of graphene, and its yielding strain decreases in the presence of
various vacancy defects and also at high ambient temperature. We also found that the band gap can
be strongly modified by applied strain in the elastic range. © 2010 American Institute of Physics.
�doi:10.1063/1.3353968�

Two-dimensional �2D� monolayer honeycomb structures
of graphene,1,2 BN,3 and silicon4 offer remarkable properties
and are promising materials for future applications. Honey-
comb structure of graphene with sp2 bonding underlies the
unusual mechanical properties providing very high in-plane
strength. Graphene and its rolled up forms, carbon nanotubes
are among the strongest and stiffest materials yet discovered
in terms of tensile strength and elastic modulus.5,6 Graphane,
another member of honeycomb structures was theoretically
predicted7 and recently synthesized by exposing graphene to
hydrogen plasma discharge.8 Here each carbon atom being
bonded to one hydrogen atom is pulled out from the
graphene plane and hence whole structure is buckled. Instead
of being a semimetal like graphene, graphane is a wide band
gap semiconductor and can attain permanent magnetic mo-
ment through hydrogen vacancies.9

In this work, we revealed the relevant elastic constants
of graphane using strain energy calculations in the harmonic
elastic deformation range and compared them with those cal-
culated for other honeycomb structures. We also found that
in the presence of hydrogen vacancy and carbon+hydrogen
divacancy, its yielding occurs at smaller strains. Furthermore,
its band gap first increases then decreases steadily with the
increasing applied strain. We believe that our predictions are
relevant for the current research focused on the electronic
properties of honeycomb structures under strain.10,11

First-principles plane wave calculations are carried out
within density functional theory using projector-augmented
wave potentials.12 The exchange correlation potential is ap-
proximated by generalized gradient approximation �GGA�
using PW91 functional. A plane-wave basis set with kinetic
energy cutoff of 450 eV is used. All atomic positions and
lattice constants are optimized by using the conjugate gradi-
ent method, where the total energy and atomic forces are
minimized. Interactions between adjacent graphane layers in
supercell geometry is hindered by a large spacing of �10 Å.
To correct the energy bands and band gap values obtained by
GGA, frequency-dependent G0W0 calculations are carried
out. G0W0 corrections are obtained by using �12�12�1�
k-points in the Brillouin zone �BZ�, 400 eV cut-off potential
for G0W0, 160 bands, and 64 frequency grid points. All nu-

merical calculations are performed by using VASP

package.13,14

The graphene has a 2D hexagonal unit cell with a lattice
constant of a=2.47 Å. The C–C bond length is d=1.42 Å
and all atoms lie in the same plane. Upon hydrogenation, the
lattice constant increases to 2.54 Å and d increases to 1.53 Å.
Moreover, C–H bonds are 1.11 Å and the amount of buckling
between the alternating carbon atoms in a hexagon is 0.46 Å.
Atomic configuration of graphene and graphane structures
are shown in Fig. 1�a�.

The elastic properties of homogeneous and isotropic ma-
terials can be represented by two independent constants,
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FIG. 1. �Color online� �a� Schematic representation of the atomic structure
of graphene and graphane. �b� �8�4� rectangular supercell configuration of
the system containing 128 C-H pairs used for the calculation of the elastic
constants. ax and ay are the lattice constants of the supercell in x- and
y-directions. Shaded region is the smallest unit cell. �c� The mesh of data
points �ax ,ay� used for the total energy calculations. The units are given in
angstroms. �d� The three-dimensional plot of ax ,ay and corresponding total
energy values. The red balls are actual points and the lines are the fitted
formula.
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Young’s modulus Y and Poisson’s ratio �. Since the thickness
of a monolayer structure h is ambiguous, the in-plane
stiffness C is a better measure of the strength rather than
Young’s modulus. Defining A0 as the equilibrium area of the
system, the in-plane stiffness can be given as, C= �1 /A0�
����2ES /��2��, where ES is the strain energy calculated by
subtracting the total energy of the strained system from the
equilibrium total energy and � is the uniaxial strain
��=�a /a, a being the lattice constant�. The Poisson’s ratio
which is the ratio of the transverse strain to the axial strain
can be defined straightforwardly as �=−�trans /�axial.

For calculation of elastic constants of graphane, we con-
sider large supercell comprising 32 rectangular unit cells
�8�4�. The calculations are also repeated in �2�1�,
�4�2�, and �6�3� supercells and the obtained results are
almost identical, since no reconstructions are observed in the
system. Figure 1�b� shows the supercell used in the calcula-
tions. ax and ay are the lattice constants of the supercell in
x- and y-directions in any strain condition. In the harmonic
region, a�s are varied with the strain values between + /
−0.02. A grid data �ax ;ay� containing 225 points is obtained
as shown in Fig. 1�c�. For each grid point, the corresponding
supercell is fully optimized and its total energy is calculated
as shown in Fig. 1�d�. By using the least-squares method, the
data is fitted to the formula, ES=a1�x

2+a2�y
2+a3�x�y; where �x

and �y are the small strains along x- and y-directions in the
harmonic region. As a result of isotropy in the honeycomb
symmetry, a1 is equal to a2. The same equation can be
obtained from elasticity matrix15 in terms of elastic stiffness
constants, namely, a1=a2= �h ·A0 /2� ·C11; a3= �h ·A0� ·C12.
Hence one obtains Poisson’s ratio � which is equal to
C12 /C11=a3 /2a1. Similarly, the in-plane stiffness, C
=h ·C11· �1− �C11 /C12�2�= �2a1− �a3�2 /2a1� / �A0�. The calcu-
lated values of C by using the present method for graphane,
graphene, BN, Si, and SiC 2D honeycomb structures are,
respectively, 243, 335, 267, 62, and 166 J /m2. Also the cal-
culated Poisson’s ratios are 0.07, 0.16, 0.21, 0.30, and 0.29.
Our calculated value of the in-plane stiffness of graphene
is in good agreement with the experimental value5 of
340�50 N /m and justifies the reliability of our method. As
seen from the calculated values, the change of the bonding
type from sp2 to sp3 and buckling of the atoms in graphane
structure makes it 27% less stiffer than graphene. This dif-
ference can be used to distinguish graphene and graphane
materials. Also the Poisson’s ratio of graphane is almost half
of the Poisson’s ratio of graphene, since the buckled struc-
ture of graphane reduces the transverse contraction. Note
that depending on their types and concentrations the defects
can alter the above elastic constants. For example, a
C2H2-vacancy for the structure in Fig. 1�b� breaks the isot-
ropy and can reduce C by �12% in a specific direction.
Hydrogen frustration8,16 can also be a crucial type of defect,
which would affect C, since the structure is locally com-
pressed and A0 is influenced.

We next consider the behavior of the system for higher
values of the strain ranging from �0.02 to 0.45 in uniform
expansion. For this purpose, we preferred a fully symmetric
hexagonal lattice with well defined high symmetry points
in the BZ. Again the calculations are performed in a large
�10�10� supercell as shown in Fig. 2�a�. The harmonic re-
gion can be taken between −0.02���0.02 and it is fol-
lowed by an anharmonic region where higher order terms are

not negligible in the strain energy equation. The anharmonic
region is followed by a plastic region where irreversible
structural changes occur in the system and it transforms into
a different structure after the yielding point. Figure 2�b� is
the plot of strain energy ES and its derivative �dES��� /d��
with respect to the applied strain. Two critical strain values
can be deduced from the plots. The first one, �c1

, is the point
where the derivative curve attains its maximum value and
then starts to decrease. It occurs nearly at �=0.23, where the
C–C bond length is around 1.87 Å. This means that for �
��c1

, the structure can be expanded under smaller tensions.
The phonon frequencies, we calculated by using the force
constant method17 are all positive throughout the BZ for �
��c1

, but the frequencies of longitudinal acoustic modes
start to become imaginary for ���c1

, indicating an instabil-
ity of 2D graphane under uniform expansion beyond �c1

.

Such phenomena is known as “phonon instability,”18,19

where phonon frequencies 	n�k�, get imaginary for specific
wave vector k and branch index n. A detailed discussion can
be found in Ref. 18 and the references therein. Liu et al.18

calculated the critical strain values for graphene as 0.194 and
0.266 for uniaxial tension in zigzag �x-� and armchair �y-�
directions by using density functional perturbation theory.

The second critical point �c2
is the yielding point which

is around �=0.34. The C–C distance corresponding to �c2
is

2.02 Å. Up to this point, the strain energy always increases
and the system preserves its honeycomblike structure. Upon
the release of the tension, all the deformation disappears and
hence the system may return to its original size at �=0. Fur-
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FIG. 2. �Color online� 2D graphane under uniform expansion. �a� Initial
atomic configuration in a �10�10� supercell treated with periodic boundary
condition. �b� The variation in strain energy ES and its derivative. The
orange/shaded region indicating the plastic range. Strains corresponding to
two critical points in the elastic range are labeled as �c1

and �c2
. �c� Similar

to �b� for a single H-vacancy in a �10�10� supercell. �d� For
C+H-divacancy in a �10�10� supercell.
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thermore, the value of �c2
is found to depend on various

defects and the temperature of the system. For H-vacancy,
we found that �c2

is lowered to �0.21 as shown in Fig. 2�c�.
As for C+H-vacancy, which corresponds to a hole at one
corner of hexagon, �c2

is further lowered to 0.13 as shown in
Fig. 2�d�. We also examined the effect of ambient tempera-
ture on the yielding strain. Ab initio molecular dynamic cal-
culations �lasting 2 ps with time steps of 2�10−15 s� indi-
cate that �c2

=0.34 corresponding to T=0 K is reduced to
0.20 at T=300 K and is further reduced to 0.18 at T
=600 K. Apparently, the yielding of perfect graphane under
uniform strain at �c2

can only occur for ideal conditions. For
�c1

����c2
the system is in a metastable state. The long

wavelength perturbations, vacancy defects, as well as high
temperature effects lead �c2

decrease to the strain values
around �c1

. After the yielding point, where �
�c2
, the plastic

range sets in with irreversible deformations. This range,
however, is beyond the scope of this paper.

We finally investigate the variation in the electronic
properties of graphane with the uniform strain. The effect of
strain on the buckling is found to be minute. It decreases
from 0.46 to 0.43 Å as � increases from 0 to 0.30. Also, C–H
bonds are shortened only 1% in this range of strain. The
binding energy of a single hydrogen in �10�10� supercell
increases from 4.79 to 5.02 up to �=0.20. Normally,
graphane is a semiconductor with a wide direct band gap of
3.54 eV calculated by DFT-GGA, but our calculations show
that this gap can increase to 5.66 eV after G0W0 corrections.

On the other hand, recent GW0 �5.97 eV� �Ref. 9� and GW
�5.4 eV� �Ref. 20� corrections report slightly different values
depending on the method and parameters used. More re-
cently DFT-LDA calculations21 found the band gap as 3.6
eV. Figure 3 shows the variation in GGA and G0W0 band gap
values with respect to the strain for uniform expansion in the
elastic region. While the lowest conduction band is raised
with strain in the first and second panels; in the third panel,
the second �� band is lowered steadily and dips in the gap
for ��0.15. Dramatic variation in the band gap with the
strain suggests that graphane can be used as a strain gauge at
nanoscale.

In summary, we revealed the elastic constants of
graphane indicating that it has a quite high in-plane stiffness
and very low, perhaps the lowest Poisson’s ratio among
known monolayer honeycomb structures. We showed that
the band gap of graphane can be modified significantly by
applied strain in the elastic range. It is suggested that elastic
deformation can be used for further functionalization of
graphane and hence for monitoring its chemical and elec-
tronic properties.

Part of the computations have been provided by UY-
BHM at Istanbul Technical University through Grant No.
2-024-2007.
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FIG. 3. �Color online� The variation in energy band gaps with �2D� uniform
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