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a b s t r a c t

A Pyro-electric Infrared (PIR) sensor based flame detection system is proposed using a Markovian

decision algorithm. A differential PIR sensor is only sensitive to sudden temperature variations within

its viewing range and it produces a time-varying signal. The wavelet transform of the PIR sensor signal

is used for feature extraction from sensor signal and wavelet parameters are fed to a set of Markov

models corresponding to the flame flicker process of an uncontrolled fire, ordinary activity of human

beings and other objects. The final decision is reached based on the model yielding the highest

probability among others. Comparative results show that the system can be used for fire detection in

large rooms.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Conventional point smoke and fire detectors typically detect
the presence of certain particles generated by smoke and fire by
ionization or photometry. An important weakness of point detec-
tors is that the smoke has to reach the sensor. This may take
significant amount of time to issue an alarm and therefore it is not
possible to use them in open spaces or large rooms. The main
advantage of differential Pyro-electric Infrared (PIR) based sensor
system for fire detection over the conventional smoke detectors is
the ability to monitor large rooms and spaces because they
analyze the infrared light reflected from hot objects or fire flames
to reach a decision.

An uncontrolled fire in its early stage exhibits a transition to
chaos due to the fact that combustion process consists of nonlinear
instabilities which result in transition to chaotic behavior via
intermittency [2–5]. Consequently, turbulent flames can be char-
acterized as a chaotic wide band frequency activity. Therefore, it is
not possible to observe a single flickering frequency in the light
spectrum due to an uncontrolled fire. In fact, we obtained a time
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series from the sampled read-out signal strength values of a PIR
sensor with flickering flames in its viewing range (cf. Fig. 3). It is
clear from Fig. 3 that there is no single flickering frequency and that
flame flicker behavior is a wide-band activity covering 1–13 Hz. It is
also reported in the literature that turbulent flames of an uncon-
trolled fire flicker with a frequency of around 10 Hz [6,7]. Actually,
instantaneous flame flicker frequency is not constant, rather it varies
in time. Recently developed video based fire detection schemes also
take advantage of this fact by detecting random high-frequency
behavior in flame colored moving pixels [8–10]. Therefore, a Markov
model based modeling of flame flicker process produces more
robust performance compared to frequency domain based methods.
Markov models are extensively used in speech recognition systems
and in computer vision applications [11–14].

In [15,16], several experiments on the relationship between
burner size and flame flicker frequency are presented. Recent
research on pyro-IR based combustion monitoring includes [17]
in which monitoring system using an array of PIR detectors is
realized.

A regular camera or typical IR flame sensors have a fire
detection range of 30 m. The detection range of an ordinary
low-cost PIR sensor based system is 10 m but this is enough to
cover most rooms with high ceilings. Therefore, PIR based
systems provide a cost-effective solution to the fire detection
problem in relatively large rooms as the unit cost of a camera
based system or a regular IR sensor based system is in the order of
one thousand dollars.

In the proposed approach, wavelet domain signal processing
methods are used for feature extraction from sensor signals.
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This provides robustness against sensor signal drift due to
temperature variations in the observed area. Notice that, differ-
ential PIR sensors are sensitive only to the changes in the
intensity of the IR radiation within the viewing range rather than
the absolute infrared radiation. In a very hot room the differential
PIR sensor does not measure the temperature of the room, it only
produces a constant output value which is not related with the
temperature value. Regular temperature changes in a room are
slow variations compared to the moving objects and flames. Since
wavelet signals are high-pass and band-pass they do not get
affected by slow variations in sensor signal.

There are two different classes of events defined in this
approach. The first class represents fire events whereas the second
class represents non-fire events. Each class of events is modeled by
a different Markov model. The main application of PIR sensors is
hot body motion detection. Therefore, we include regular human
motion events like walking or running in the non-fire event class.

In Section 2, we present the operating principles of PIR sensors
and how we modified the PIR circuit for flame detection. In
Section 3, the wavelet domain signal processing and the Markov
based modeling of the flames and human motion are described. In
Section 4, comparative experimental results with other sensing
modalities are presented.
2. Operating principles of a PIR sensor system and data
acquisition

The main motivation of using a PIR sensor is that it can reliably
detect the presence of moving bodies from other objects. Basi-
cally, it detects the difference in infrared radiation between the
two ‘segments’ in its viewing range. Sensing normal variations in
temperature and also disturbances in airflow are avoided by the
elements connected in pairs. When these elements are subject to
the same infrared radiation level, they generate a zero-output
signal by canceling each other out [18]. Therefore, a PIR sensor
can reject false detections accurately. The block diagram of a
typical differential PIR sensor is shown in Fig. 1. A single sensor
system requires additional expensive IR filters to distinguish
ordinary hot bodies from CO and CO2 emissions. In this article,
we show that it is possible to distinguish the flames from other
hot bodies by analyzing the motion information captured by the
differential system.

Commercially available PIR motion-detector read-out circuits
produce binary outputs. However, it is possible to capture a
continuous time analog signal indicating the strength of the
Fig. 1. The model of the internal structure of a PIR sensor.
received signal in time. The circuit diagram of a typical PIR
motion-detector is shown in Fig. 2. It is possible to capture an
analog signal from this circuit.

The circuit consists of four operational amplifiers (op. amps.),
IC1A, IC1B, IC1C and IC1D. IC1A and B constitutes a two stage
amplifier circuit whereas IC1C and D couple behaves as a
comparator. The very-low amplitude raw output at the 2nd pin
of the PIR sensor is amplified through the two stage amplifier
circuit. The amplified signal at the output of IC1B is fed into the
comparator structure which outputs a binary signal, either 0 V or
5 V. Instead of using binary output in the original version of the
PIR sensor read-out circuit, we directly capture the analog output
signal at the output of the 2nd op. amp. IC1B and transfer it to a
computer or a digital signal processor for further processing. The
goal is to distinguish the flame signal from other signals due to
ordinary moving bodies.

In uncontrolled fires, flames flicker. Following the discussion in
Section 1 regarding the turbulent wide band activity of the flame
flicker process, the analog signal is sampled with a sampling
frequency of fs¼50 Hz because the highest flame flicker frequency
is 13 Hz and fs¼50 Hz is well above the Nyquist rate, 2�13 Hz [7].
In Fig. 3, a frequency distribution plot corresponding to a flickering
flame of an uncontrolled fire is shown. It is clear that the sampling
frequency of 50 Hz is sufficient. Typical sampled signal for no
activity case using 8 bit quantization is shown in Fig. 4. Other
typical received signals from a moving person and flickering fire
are presented in Figs. 5 and 6, respectively.

The strength of the received signal from a differential PIR
sensor increases when there is motion due to a hot body within
its viewing range. In fact, this is due to the fact that pyro-electric
sensors give an electric response to a rate of change of tempera-
ture rather than temperature itself. On the other hand, the motion
may be due to human motion taking place in front of the sensors
or flickering flame. In this paper the differential PIR sensor data is
used to distinguish the flame flicker from the motion of a human
being like running or walking. Typically the PIR signal frequency
of oscillation for a flickering flame is higher than that of PIR
signals caused by a moving hot body. In order to keep the
computational cost of the detection mechanism low, we decided
to use Lagrange filters for obtaining the wavelet transform
coefficients as features instead of using a direct frequency
approach, such as the FFT based methods.
3. Sensor data processing and Markov models

Two different Markov models corresponding to flames and
other motion are trained using the wavelet transforms of PIR
recordings. Training of Markov models are carried out using
various fire and motion recordings. During testing, the sensor
signal is fed to both Markov models and the model producing the
highest probability determines the class of the signal.

There is a bias in the PIR sensor output signal which changes
according to the room temperature. Wavelet transform of the PIR
signal removes this bias. Let x[n] be a sampled version of the
signal coming out of a PIR sensor. Wavelet coefficients obtained
after a single stage subband decomposition, w[k], corresponding
to [12.5 Hz and 25 Hz] frequency band information of the original
sensor output signal x[n] are evaluated with an integer arithmetic
high-pass filter corresponding to Lagrange wavelets [19] followed
by decimation. The filter bank of a biorthogonal wavelet trans-
form is used in the analysis. The low-pass filter has the transfer
function:

HlðzÞ ¼
1

2
þ

1

4
ðz�1þz1Þ ð1Þ



Fig. 2. The circuit diagram for capturing an analog signal output from a PIR sensor.

Fig. 3. Flame flicker spectrum distribution. PIR signal is sampled with 50 Hz.

Fig. 4. A typical PIR sensor output sampled at 50 Hz with 8bit quantization when

there is no activity within its viewing range.
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and the corresponding high-pass filter has the transfer function

HhðzÞ ¼
1

2
�

1

4
ðz�1þz1Þ ð2Þ

A Markov model based classification is carried out for fire
detection. Two three-state Markov models are used to represent
fire and non-fire events (cf. Fig. 7). In these Markov models, state
S1 corresponds to no activity within the viewing range of the PIR
sensor. The system remains in state S1 as long as there is not any
significant activity, which means that the absolute value of the
current wavelet coefficient at index number k, 9w[k]9, is below a
non-negative threshold T, where T is initialized based on the
background noise level. This value can be estimated by a genetic-
algorithm based approach, as in [20]. The second state, S2, which
corresponds to an increase, or ‘‘rise’’ in consecutive wavelet
coefficient values, is attained when

w½k��w½k�1�4T ð3Þ

is satisfied. Similarly, the third state, S3, which corresponds to a
decrease, or ‘‘fall’’ in consecutive wavelet coefficient values, is
attained when

w½k��w½k�1�oT ð4Þ

is satisfied.



Fig. 6. PIR sensor output signal recorded at a distance of 5 m for a flame of an

uncontrolled fire.

Fig. 7. Two three-state Markov models are used to represent (a) ‘fire’ and (b) ‘non-

fire’ classes.

Fig. 5. PIR sensor output signal recorded at a distance of 5 m for a walking person.
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The first step of the Markov based analysis consists of dividing
the wavelet coefficient sequences in windows of 25 samples. For
each window, a corresponding state transition sequence is deter-
mined. An example state transition sequence of size 5 may look like

C ¼ fS2,S1,S3,S2,S1g ð5Þ

Since the wavelet signal captures the high frequency informa-
tion in the signal, we expect that there will be more transitions
occurring between states when monitoring fire compared to
human motion.

The threshold T in the wavelet domain determines the state
transition probabilities, given a signal. In the training step, given T,
ground-truth fire and non-fire wavelet training sequences, the task
is to estimate the transition probabilities for each class. Let aij

denote the transition probabilities for the ‘fire’ class and bij denote
the transition probabilities for the ‘non-fire’ class.
The decision about the class affiliation of a state transition
sequence C of size L is made by calculating the two joint
probabilities Pa(C) and Pb(C) corresponding to fire and non-fire
classes, respectively

PaðCÞ ¼
Y

i

paðCiþ19CiÞ ¼
Y

i

aCi ,Ciþ 1
, ð6Þ

and

PbðCÞ ¼
Y

i

pbðCiþ19CiÞ ¼
Y

i

bCi ,Ciþ 1
ð7Þ

where pa(Ciþ19Ci)¼aCi ,Ciþ 1
, pb(Ciþ19Ci)¼bCi ,Ciþ 1

, and i ¼1,y,L.
In case of Pa(C)4Pb(C) the class affiliation of state transition

sequence C will be declared as ‘fire’, otherwise it is declared as
‘non-fire’.

For the training of the Markov models, the state transition
probabilities for human motion and flame are estimated from 250
consecutive wavelet coefficients covering a time frame of 10 s.

During the classification phase a state history signal consisting
of 50 consecutive wavelet coefficients are computed from the
received sensor signal. This state sequence is fed to fire and non-
fire Markov models for each window. The model yielding the
highest probability is determined as the result of the analysis of
PIR sensor data.

For flame sequences, the transition probabilities a’s should be
high and close to each other due to random nature of uncon-
trolled fire. On the other hand, transition probabilities should be
small in constant temperature moving bodies like a walking
person, because there is no change or little change in sensor
signal values. Hence, we expect a higher probability for b00 than
any other b value in the non-fire model which corresponds to
higher probability of being in S1. The states S2 and S3 aims at
tracking the rising and falling trends of the sensor signal in
wavelet domain, respectively. Therefore, we expect frequent
transitions between these states for uncontrolled fire.
4. Experimental results

The analog output signal is sampled with a sampling fre-
quency of 50 Hz and quantized at 8bits. Real-time analysis and
classification methods are implemented with Cþþ running on a
PC. Digitized output signal is fed to the PC via RS-232 serial port.
It is also possible to process this signal using an FPGA or a digital
signal processor.

In our experiments, we recorded fire and non-fire sequences at
a distance of 5 m to the sensor. For fire sequences, we burned
paper and alcohol, and recorded the output signals. For the non-
fire sequences, we recorded walking and running person
sequences. The person within the viewing range of the PIR sensor



Fig. 9. Smoke sensors setup in a 4 m�4 m small room with a ceiling height of

2.5 m.

Table 2
Response times of different sensors.

Response time

Paradox PIR flame sensor 1 min 48 s

Flamingo FA11 photo electric Smoke sensor 1 min 17 s

CATA-CT9451 Smoke alarm Sensor 9 min 36 s

CODEDN-23 Optical smoke detector 11 min 32 s

IPXDDK-1500 video camera (as smoke detector) Less than 10 s

IPXDDK-1500 video camera (as flame detector) Less than 5 s
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walked or ran on a straight line which was tangent to the circle
with a radius of 5 m and the sensor being at the center.

The training set consists of 90 fire and 90 non-fire recordings
with durations varying between 3 and 4 s. The test set for fire
class is 220 and that of non-fire set is 593. Our method success-
fully detected fire for 217 of the sequences in the fire test set. It
did not trigger fire alarm for any of the sequences in the non-fire
test set. This is presented in Table 1.

The false negative alarms, 3 out of 220 fire test sequences,
were issued for the recordings where a man was also within the
viewing range of the sensor along with a fire inside a waste-bin.
The test setting for which false alarms are issued is shown in
Fig. 8. The system was tested live in a trade show for 3 days in
Valladolid, Spain in November 2010. This was a FIRESENSE project
activity [21]. The flame detector did not produce any false alarms
and it detected flames in 30 cm almost instantaneously.

We also tested and compared several commercial smoke and
fire sensors. The first test area was a 4 m�4 m small room with a
ceiling height of 2.5 m. The test fire was burnt in a 40 cm�25 cm
barbecue chamber. The test fire was also recorded by an IPX DDK-
1500 video camera from a distance of 2.5 m. The PIR flame
detection sensor system is based on the PARADOX motion
detector. The smoke sensors used during the experiments are
shown in Fig. 9.

The following sensors were used Flamingo FA11 photo electric
smoke sensor, CATACT9451 smoke alarm sensor and CODE DN-23
optical smoke detector. All of the sensors were placed directly
above the fire pan. Under the given test conditions, response
times for the sensors are given in Table 2. The differential PIR
sensor response is better than two smoke detectors even for such
small rooms. It is obviously slower than video flame and smoke
detectors but they are expensive systems requiring computer
processing.

In the second case, the differential PIR sensor system was
tested in a large room of size 10 m�12 m with a ceiling of 5 m as
shown in Fig. 10. The distance between the 30 cm diameter pan
Table 1
Results with 220 fire, 593 non-fire test sequences. The system triggers an alarm

when fire is detected within the viewing range of the PIR sensor.

Number of

sequences

Number of false

alarms

Number of

alarms

Fire test sequences 220 3 217

Non-fire test

sequences

593 0 0

Fig. 8. The PIR sensor is encircled. The fire is close to die out completely. A man is

also within the viewing range of the sensor.

Fig. 10. The PIR sensor is in a large room of size 10 m�12 m with a ceiling of 5 m.

Cardboard is burned inside the flames.
and the PIR sensor was 9 m. The PIR sensor responded the flames
in 35 s after they became visible. We burned cardboard inside the
flames. The response time was less than 2 min after ignition. In
this case, none of the smoke sensors could issue an alarm within
10 min.

Finally, we tested the Paradox PIR flame sensor and Flamingo
FA11 Photo Electric Smoke Sensor in a 10 m�9 m room with a
ceiling of 3.5 m. The distance between the sensors and the flame
in a barbecue of 40 cm diameter was 4–6 m. The Flamingo FA11
photo electric smoke sensor could not produce an alarm within



Table 3
Comparison of the responses of Paradox PIR flame sensor and Flamingo FA11

photo electric smoke sensor to the flame in a barbecue, at 4–6 m distance, in a

10 m�9 m�3.5 m room.

Fire

area

(m2)

Fire

height

(cm)

Distance

(m)

Alarm time

Paradox PIR

flame sensor (s)

Flamingo FA11 photo

electric smoke sensor

0.04532 30 4 25 No alarm

0.06265 40 4 19 No alarm

0.08814 65 4 8 No alarm

0.09823 75 4 7 No alarm

0.12150 80 4 5 No alarm

0.08679 90 6 21 No alarm
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30 min, but the differential PIR sensor responded in a very short
time. The results are presented in Table 3.
5. Conclusion

In this paper, a differential PIR based flame detection system is
proposed. Time-varying analog sensor signal is sampled with a
sampling frequency of 50 Hz and quantized with 8 bits. Markov
models corresponding to various human activities and flame
flicker process are constructed and trained off-line using the
wavelet coefficients of the digitized sensor signal. An event is
characterized as an uncontrolled fire when the Markov model
corresponding to flame activity produces the highest probability.
The proposed algorithm and the system successfully detected
flames in all of our experiments.

Comparative results with other sensing modalities are also
presented. It is experimentally observed that video based system
[22] detects fire and smoke before all the other sensors, but they
may produce more false alarms as pointed out in an extensive
study by Verstockt [23–26]. In addition, video based systems are
significantly more expensive and computationally demanding
systems requiring powerful computers to process the video
signal. On the other hand, both the equipment and computational
cost of the PIR based flame detection system is low. The equip-
ment cost of a differential PIR based flame detection system is low
and comparable to the ordinary smoke detectors.
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